au1550_spi: fix prototype of irq handler
[wrt350n-kernel.git] / drivers / mtd / nand / au1550nd.c
blob09e421a968934828a95100aebb4a6df8c6e9de54
1 /*
2 * drivers/mtd/nand/au1550nd.c
4 * Copyright (C) 2004 Embedded Edge, LLC
6 * $Id: au1550nd.c,v 1.13 2005/11/07 11:14:30 gleixner Exp $
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/interrupt.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/mtd/nand.h>
20 #include <linux/mtd/partitions.h>
21 #include <linux/version.h>
22 #include <asm/io.h>
24 #include <asm/mach-au1x00/au1xxx.h>
27 * MTD structure for NAND controller
29 static struct mtd_info *au1550_mtd = NULL;
30 static void __iomem *p_nand;
31 static int nand_width = 1; /* default x8 */
32 static void (*au1550_write_byte)(struct mtd_info *, u_char);
35 * Define partitions for flash device
37 static const struct mtd_partition partition_info[] = {
39 .name = "NAND FS 0",
40 .offset = 0,
41 .size = 8 * 1024 * 1024},
43 .name = "NAND FS 1",
44 .offset = MTDPART_OFS_APPEND,
45 .size = MTDPART_SIZ_FULL}
48 /**
49 * au_read_byte - read one byte from the chip
50 * @mtd: MTD device structure
52 * read function for 8bit buswith
54 static u_char au_read_byte(struct mtd_info *mtd)
56 struct nand_chip *this = mtd->priv;
57 u_char ret = readb(this->IO_ADDR_R);
58 au_sync();
59 return ret;
62 /**
63 * au_write_byte - write one byte to the chip
64 * @mtd: MTD device structure
65 * @byte: pointer to data byte to write
67 * write function for 8it buswith
69 static void au_write_byte(struct mtd_info *mtd, u_char byte)
71 struct nand_chip *this = mtd->priv;
72 writeb(byte, this->IO_ADDR_W);
73 au_sync();
76 /**
77 * au_read_byte16 - read one byte endianess aware from the chip
78 * @mtd: MTD device structure
80 * read function for 16bit buswith with
81 * endianess conversion
83 static u_char au_read_byte16(struct mtd_info *mtd)
85 struct nand_chip *this = mtd->priv;
86 u_char ret = (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
87 au_sync();
88 return ret;
91 /**
92 * au_write_byte16 - write one byte endianess aware to the chip
93 * @mtd: MTD device structure
94 * @byte: pointer to data byte to write
96 * write function for 16bit buswith with
97 * endianess conversion
99 static void au_write_byte16(struct mtd_info *mtd, u_char byte)
101 struct nand_chip *this = mtd->priv;
102 writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
103 au_sync();
107 * au_read_word - read one word from the chip
108 * @mtd: MTD device structure
110 * read function for 16bit buswith without
111 * endianess conversion
113 static u16 au_read_word(struct mtd_info *mtd)
115 struct nand_chip *this = mtd->priv;
116 u16 ret = readw(this->IO_ADDR_R);
117 au_sync();
118 return ret;
122 * au_write_buf - write buffer to chip
123 * @mtd: MTD device structure
124 * @buf: data buffer
125 * @len: number of bytes to write
127 * write function for 8bit buswith
129 static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
131 int i;
132 struct nand_chip *this = mtd->priv;
134 for (i = 0; i < len; i++) {
135 writeb(buf[i], this->IO_ADDR_W);
136 au_sync();
141 * au_read_buf - read chip data into buffer
142 * @mtd: MTD device structure
143 * @buf: buffer to store date
144 * @len: number of bytes to read
146 * read function for 8bit buswith
148 static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len)
150 int i;
151 struct nand_chip *this = mtd->priv;
153 for (i = 0; i < len; i++) {
154 buf[i] = readb(this->IO_ADDR_R);
155 au_sync();
160 * au_verify_buf - Verify chip data against buffer
161 * @mtd: MTD device structure
162 * @buf: buffer containing the data to compare
163 * @len: number of bytes to compare
165 * verify function for 8bit buswith
167 static int au_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
169 int i;
170 struct nand_chip *this = mtd->priv;
172 for (i = 0; i < len; i++) {
173 if (buf[i] != readb(this->IO_ADDR_R))
174 return -EFAULT;
175 au_sync();
178 return 0;
182 * au_write_buf16 - write buffer to chip
183 * @mtd: MTD device structure
184 * @buf: data buffer
185 * @len: number of bytes to write
187 * write function for 16bit buswith
189 static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
191 int i;
192 struct nand_chip *this = mtd->priv;
193 u16 *p = (u16 *) buf;
194 len >>= 1;
196 for (i = 0; i < len; i++) {
197 writew(p[i], this->IO_ADDR_W);
198 au_sync();
204 * au_read_buf16 - read chip data into buffer
205 * @mtd: MTD device structure
206 * @buf: buffer to store date
207 * @len: number of bytes to read
209 * read function for 16bit buswith
211 static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
213 int i;
214 struct nand_chip *this = mtd->priv;
215 u16 *p = (u16 *) buf;
216 len >>= 1;
218 for (i = 0; i < len; i++) {
219 p[i] = readw(this->IO_ADDR_R);
220 au_sync();
225 * au_verify_buf16 - Verify chip data against buffer
226 * @mtd: MTD device structure
227 * @buf: buffer containing the data to compare
228 * @len: number of bytes to compare
230 * verify function for 16bit buswith
232 static int au_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
234 int i;
235 struct nand_chip *this = mtd->priv;
236 u16 *p = (u16 *) buf;
237 len >>= 1;
239 for (i = 0; i < len; i++) {
240 if (p[i] != readw(this->IO_ADDR_R))
241 return -EFAULT;
242 au_sync();
244 return 0;
247 /* Select the chip by setting nCE to low */
248 #define NAND_CTL_SETNCE 1
249 /* Deselect the chip by setting nCE to high */
250 #define NAND_CTL_CLRNCE 2
251 /* Select the command latch by setting CLE to high */
252 #define NAND_CTL_SETCLE 3
253 /* Deselect the command latch by setting CLE to low */
254 #define NAND_CTL_CLRCLE 4
255 /* Select the address latch by setting ALE to high */
256 #define NAND_CTL_SETALE 5
257 /* Deselect the address latch by setting ALE to low */
258 #define NAND_CTL_CLRALE 6
260 static void au1550_hwcontrol(struct mtd_info *mtd, int cmd)
262 register struct nand_chip *this = mtd->priv;
264 switch (cmd) {
266 case NAND_CTL_SETCLE:
267 this->IO_ADDR_W = p_nand + MEM_STNAND_CMD;
268 break;
270 case NAND_CTL_CLRCLE:
271 this->IO_ADDR_W = p_nand + MEM_STNAND_DATA;
272 break;
274 case NAND_CTL_SETALE:
275 this->IO_ADDR_W = p_nand + MEM_STNAND_ADDR;
276 break;
278 case NAND_CTL_CLRALE:
279 this->IO_ADDR_W = p_nand + MEM_STNAND_DATA;
280 /* FIXME: Nobody knows why this is necessary,
281 * but it works only that way */
282 udelay(1);
283 break;
285 case NAND_CTL_SETNCE:
286 /* assert (force assert) chip enable */
287 au_writel((1 << (4 + NAND_CS)), MEM_STNDCTL);
288 break;
290 case NAND_CTL_CLRNCE:
291 /* deassert chip enable */
292 au_writel(0, MEM_STNDCTL);
293 break;
296 this->IO_ADDR_R = this->IO_ADDR_W;
298 /* Drain the writebuffer */
299 au_sync();
302 int au1550_device_ready(struct mtd_info *mtd)
304 int ret = (au_readl(MEM_STSTAT) & 0x1) ? 1 : 0;
305 au_sync();
306 return ret;
310 * au1550_select_chip - control -CE line
311 * Forbid driving -CE manually permitting the NAND controller to do this.
312 * Keeping -CE asserted during the whole sector reads interferes with the
313 * NOR flash and PCMCIA drivers as it causes contention on the static bus.
314 * We only have to hold -CE low for the NAND read commands since the flash
315 * chip needs it to be asserted during chip not ready time but the NAND
316 * controller keeps it released.
318 * @mtd: MTD device structure
319 * @chip: chipnumber to select, -1 for deselect
321 static void au1550_select_chip(struct mtd_info *mtd, int chip)
326 * au1550_command - Send command to NAND device
327 * @mtd: MTD device structure
328 * @command: the command to be sent
329 * @column: the column address for this command, -1 if none
330 * @page_addr: the page address for this command, -1 if none
332 static void au1550_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
334 register struct nand_chip *this = mtd->priv;
335 int ce_override = 0, i;
336 ulong flags;
338 /* Begin command latch cycle */
339 au1550_hwcontrol(mtd, NAND_CTL_SETCLE);
341 * Write out the command to the device.
343 if (command == NAND_CMD_SEQIN) {
344 int readcmd;
346 if (column >= mtd->writesize) {
347 /* OOB area */
348 column -= mtd->writesize;
349 readcmd = NAND_CMD_READOOB;
350 } else if (column < 256) {
351 /* First 256 bytes --> READ0 */
352 readcmd = NAND_CMD_READ0;
353 } else {
354 column -= 256;
355 readcmd = NAND_CMD_READ1;
357 au1550_write_byte(mtd, readcmd);
359 au1550_write_byte(mtd, command);
361 /* Set ALE and clear CLE to start address cycle */
362 au1550_hwcontrol(mtd, NAND_CTL_CLRCLE);
364 if (column != -1 || page_addr != -1) {
365 au1550_hwcontrol(mtd, NAND_CTL_SETALE);
367 /* Serially input address */
368 if (column != -1) {
369 /* Adjust columns for 16 bit buswidth */
370 if (this->options & NAND_BUSWIDTH_16)
371 column >>= 1;
372 au1550_write_byte(mtd, column);
374 if (page_addr != -1) {
375 au1550_write_byte(mtd, (u8)(page_addr & 0xff));
377 if (command == NAND_CMD_READ0 ||
378 command == NAND_CMD_READ1 ||
379 command == NAND_CMD_READOOB) {
381 * NAND controller will release -CE after
382 * the last address byte is written, so we'll
383 * have to forcibly assert it. No interrupts
384 * are allowed while we do this as we don't
385 * want the NOR flash or PCMCIA drivers to
386 * steal our precious bytes of data...
388 ce_override = 1;
389 local_irq_save(flags);
390 au1550_hwcontrol(mtd, NAND_CTL_SETNCE);
393 au1550_write_byte(mtd, (u8)(page_addr >> 8));
395 /* One more address cycle for devices > 32MiB */
396 if (this->chipsize > (32 << 20))
397 au1550_write_byte(mtd, (u8)((page_addr >> 16) & 0x0f));
399 /* Latch in address */
400 au1550_hwcontrol(mtd, NAND_CTL_CLRALE);
404 * Program and erase have their own busy handlers.
405 * Status and sequential in need no delay.
407 switch (command) {
409 case NAND_CMD_PAGEPROG:
410 case NAND_CMD_ERASE1:
411 case NAND_CMD_ERASE2:
412 case NAND_CMD_SEQIN:
413 case NAND_CMD_STATUS:
414 return;
416 case NAND_CMD_RESET:
417 break;
419 case NAND_CMD_READ0:
420 case NAND_CMD_READ1:
421 case NAND_CMD_READOOB:
422 /* Check if we're really driving -CE low (just in case) */
423 if (unlikely(!ce_override))
424 break;
426 /* Apply a short delay always to ensure that we do wait tWB. */
427 ndelay(100);
428 /* Wait for a chip to become ready... */
429 for (i = this->chip_delay; !this->dev_ready(mtd) && i > 0; --i)
430 udelay(1);
432 /* Release -CE and re-enable interrupts. */
433 au1550_hwcontrol(mtd, NAND_CTL_CLRNCE);
434 local_irq_restore(flags);
435 return;
437 /* Apply this short delay always to ensure that we do wait tWB. */
438 ndelay(100);
440 while(!this->dev_ready(mtd));
445 * Main initialization routine
447 static int __init au1xxx_nand_init(void)
449 struct nand_chip *this;
450 u16 boot_swapboot = 0; /* default value */
451 int retval;
452 u32 mem_staddr;
453 u32 nand_phys;
455 /* Allocate memory for MTD device structure and private data */
456 au1550_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
457 if (!au1550_mtd) {
458 printk("Unable to allocate NAND MTD dev structure.\n");
459 return -ENOMEM;
462 /* Get pointer to private data */
463 this = (struct nand_chip *)(&au1550_mtd[1]);
465 /* Initialize structures */
466 memset(au1550_mtd, 0, sizeof(struct mtd_info));
467 memset(this, 0, sizeof(struct nand_chip));
469 /* Link the private data with the MTD structure */
470 au1550_mtd->priv = this;
471 au1550_mtd->owner = THIS_MODULE;
474 /* MEM_STNDCTL: disable ints, disable nand boot */
475 au_writel(0, MEM_STNDCTL);
477 #ifdef CONFIG_MIPS_PB1550
478 /* set gpio206 high */
479 au_writel(au_readl(GPIO2_DIR) & ~(1 << 6), GPIO2_DIR);
481 boot_swapboot = (au_readl(MEM_STSTAT) & (0x7 << 1)) | ((bcsr->status >> 6) & 0x1);
482 switch (boot_swapboot) {
483 case 0:
484 case 2:
485 case 8:
486 case 0xC:
487 case 0xD:
488 /* x16 NAND Flash */
489 nand_width = 0;
490 break;
491 case 1:
492 case 9:
493 case 3:
494 case 0xE:
495 case 0xF:
496 /* x8 NAND Flash */
497 nand_width = 1;
498 break;
499 default:
500 printk("Pb1550 NAND: bad boot:swap\n");
501 retval = -EINVAL;
502 goto outmem;
504 #endif
506 /* Configure chip-select; normally done by boot code, e.g. YAMON */
507 #ifdef NAND_STCFG
508 if (NAND_CS == 0) {
509 au_writel(NAND_STCFG, MEM_STCFG0);
510 au_writel(NAND_STTIME, MEM_STTIME0);
511 au_writel(NAND_STADDR, MEM_STADDR0);
513 if (NAND_CS == 1) {
514 au_writel(NAND_STCFG, MEM_STCFG1);
515 au_writel(NAND_STTIME, MEM_STTIME1);
516 au_writel(NAND_STADDR, MEM_STADDR1);
518 if (NAND_CS == 2) {
519 au_writel(NAND_STCFG, MEM_STCFG2);
520 au_writel(NAND_STTIME, MEM_STTIME2);
521 au_writel(NAND_STADDR, MEM_STADDR2);
523 if (NAND_CS == 3) {
524 au_writel(NAND_STCFG, MEM_STCFG3);
525 au_writel(NAND_STTIME, MEM_STTIME3);
526 au_writel(NAND_STADDR, MEM_STADDR3);
528 #endif
530 /* Locate NAND chip-select in order to determine NAND phys address */
531 mem_staddr = 0x00000000;
532 if (((au_readl(MEM_STCFG0) & 0x7) == 0x5) && (NAND_CS == 0))
533 mem_staddr = au_readl(MEM_STADDR0);
534 else if (((au_readl(MEM_STCFG1) & 0x7) == 0x5) && (NAND_CS == 1))
535 mem_staddr = au_readl(MEM_STADDR1);
536 else if (((au_readl(MEM_STCFG2) & 0x7) == 0x5) && (NAND_CS == 2))
537 mem_staddr = au_readl(MEM_STADDR2);
538 else if (((au_readl(MEM_STCFG3) & 0x7) == 0x5) && (NAND_CS == 3))
539 mem_staddr = au_readl(MEM_STADDR3);
541 if (mem_staddr == 0x00000000) {
542 printk("Au1xxx NAND: ERROR WITH NAND CHIP-SELECT\n");
543 kfree(au1550_mtd);
544 return 1;
546 nand_phys = (mem_staddr << 4) & 0xFFFC0000;
548 p_nand = (void __iomem *)ioremap(nand_phys, 0x1000);
550 /* make controller and MTD agree */
551 if (NAND_CS == 0)
552 nand_width = au_readl(MEM_STCFG0) & (1 << 22);
553 if (NAND_CS == 1)
554 nand_width = au_readl(MEM_STCFG1) & (1 << 22);
555 if (NAND_CS == 2)
556 nand_width = au_readl(MEM_STCFG2) & (1 << 22);
557 if (NAND_CS == 3)
558 nand_width = au_readl(MEM_STCFG3) & (1 << 22);
560 /* Set address of hardware control function */
561 this->dev_ready = au1550_device_ready;
562 this->select_chip = au1550_select_chip;
563 this->cmdfunc = au1550_command;
565 /* 30 us command delay time */
566 this->chip_delay = 30;
567 this->ecc.mode = NAND_ECC_SOFT;
569 this->options = NAND_NO_AUTOINCR;
571 if (!nand_width)
572 this->options |= NAND_BUSWIDTH_16;
574 this->read_byte = (!nand_width) ? au_read_byte16 : au_read_byte;
575 au1550_write_byte = (!nand_width) ? au_write_byte16 : au_write_byte;
576 this->read_word = au_read_word;
577 this->write_buf = (!nand_width) ? au_write_buf16 : au_write_buf;
578 this->read_buf = (!nand_width) ? au_read_buf16 : au_read_buf;
579 this->verify_buf = (!nand_width) ? au_verify_buf16 : au_verify_buf;
581 /* Scan to find existence of the device */
582 if (nand_scan(au1550_mtd, 1)) {
583 retval = -ENXIO;
584 goto outio;
587 /* Register the partitions */
588 add_mtd_partitions(au1550_mtd, partition_info, ARRAY_SIZE(partition_info));
590 return 0;
592 outio:
593 iounmap((void *)p_nand);
595 outmem:
596 kfree(au1550_mtd);
597 return retval;
600 module_init(au1xxx_nand_init);
603 * Clean up routine
605 static void __exit au1550_cleanup(void)
607 struct nand_chip *this = (struct nand_chip *)&au1550_mtd[1];
609 /* Release resources, unregister device */
610 nand_release(au1550_mtd);
612 /* Free the MTD device structure */
613 kfree(au1550_mtd);
615 /* Unmap */
616 iounmap((void *)p_nand);
619 module_exit(au1550_cleanup);
621 MODULE_LICENSE("GPL");
622 MODULE_AUTHOR("Embedded Edge, LLC");
623 MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");