au1550_spi: fix prototype of irq handler
[wrt350n-kernel.git] / drivers / mtd / nand / fsl_elbc_nand.c
blobb025dfe0b27471e89a569f063a7b5f77eeb07c62
1 /* Freescale Enhanced Local Bus Controller NAND driver
3 * Copyright (c) 2006-2007 Freescale Semiconductor
5 * Authors: Nick Spence <nick.spence@freescale.com>,
6 * Scott Wood <scottwood@freescale.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/ioport.h>
29 #include <linux/of_platform.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
33 #include <linux/mtd/mtd.h>
34 #include <linux/mtd/nand.h>
35 #include <linux/mtd/nand_ecc.h>
36 #include <linux/mtd/partitions.h>
38 #include <asm/io.h>
41 #define MAX_BANKS 8
42 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
43 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
45 struct elbc_bank {
46 __be32 br; /**< Base Register */
47 #define BR_BA 0xFFFF8000
48 #define BR_BA_SHIFT 15
49 #define BR_PS 0x00001800
50 #define BR_PS_SHIFT 11
51 #define BR_PS_8 0x00000800 /* Port Size 8 bit */
52 #define BR_PS_16 0x00001000 /* Port Size 16 bit */
53 #define BR_PS_32 0x00001800 /* Port Size 32 bit */
54 #define BR_DECC 0x00000600
55 #define BR_DECC_SHIFT 9
56 #define BR_DECC_OFF 0x00000000 /* HW ECC checking and generation off */
57 #define BR_DECC_CHK 0x00000200 /* HW ECC checking on, generation off */
58 #define BR_DECC_CHK_GEN 0x00000400 /* HW ECC checking and generation on */
59 #define BR_WP 0x00000100
60 #define BR_WP_SHIFT 8
61 #define BR_MSEL 0x000000E0
62 #define BR_MSEL_SHIFT 5
63 #define BR_MS_GPCM 0x00000000 /* GPCM */
64 #define BR_MS_FCM 0x00000020 /* FCM */
65 #define BR_MS_SDRAM 0x00000060 /* SDRAM */
66 #define BR_MS_UPMA 0x00000080 /* UPMA */
67 #define BR_MS_UPMB 0x000000A0 /* UPMB */
68 #define BR_MS_UPMC 0x000000C0 /* UPMC */
69 #define BR_V 0x00000001
70 #define BR_V_SHIFT 0
71 #define BR_RES ~(BR_BA|BR_PS|BR_DECC|BR_WP|BR_MSEL|BR_V)
73 __be32 or; /**< Base Register */
74 #define OR0 0x5004
75 #define OR1 0x500C
76 #define OR2 0x5014
77 #define OR3 0x501C
78 #define OR4 0x5024
79 #define OR5 0x502C
80 #define OR6 0x5034
81 #define OR7 0x503C
83 #define OR_FCM_AM 0xFFFF8000
84 #define OR_FCM_AM_SHIFT 15
85 #define OR_FCM_BCTLD 0x00001000
86 #define OR_FCM_BCTLD_SHIFT 12
87 #define OR_FCM_PGS 0x00000400
88 #define OR_FCM_PGS_SHIFT 10
89 #define OR_FCM_CSCT 0x00000200
90 #define OR_FCM_CSCT_SHIFT 9
91 #define OR_FCM_CST 0x00000100
92 #define OR_FCM_CST_SHIFT 8
93 #define OR_FCM_CHT 0x00000080
94 #define OR_FCM_CHT_SHIFT 7
95 #define OR_FCM_SCY 0x00000070
96 #define OR_FCM_SCY_SHIFT 4
97 #define OR_FCM_SCY_1 0x00000010
98 #define OR_FCM_SCY_2 0x00000020
99 #define OR_FCM_SCY_3 0x00000030
100 #define OR_FCM_SCY_4 0x00000040
101 #define OR_FCM_SCY_5 0x00000050
102 #define OR_FCM_SCY_6 0x00000060
103 #define OR_FCM_SCY_7 0x00000070
104 #define OR_FCM_RST 0x00000008
105 #define OR_FCM_RST_SHIFT 3
106 #define OR_FCM_TRLX 0x00000004
107 #define OR_FCM_TRLX_SHIFT 2
108 #define OR_FCM_EHTR 0x00000002
109 #define OR_FCM_EHTR_SHIFT 1
112 struct elbc_regs {
113 struct elbc_bank bank[8];
114 u8 res0[0x28];
115 __be32 mar; /**< UPM Address Register */
116 u8 res1[0x4];
117 __be32 mamr; /**< UPMA Mode Register */
118 __be32 mbmr; /**< UPMB Mode Register */
119 __be32 mcmr; /**< UPMC Mode Register */
120 u8 res2[0x8];
121 __be32 mrtpr; /**< Memory Refresh Timer Prescaler Register */
122 __be32 mdr; /**< UPM Data Register */
123 u8 res3[0x4];
124 __be32 lsor; /**< Special Operation Initiation Register */
125 __be32 lsdmr; /**< SDRAM Mode Register */
126 u8 res4[0x8];
127 __be32 lurt; /**< UPM Refresh Timer */
128 __be32 lsrt; /**< SDRAM Refresh Timer */
129 u8 res5[0x8];
130 __be32 ltesr; /**< Transfer Error Status Register */
131 #define LTESR_BM 0x80000000
132 #define LTESR_FCT 0x40000000
133 #define LTESR_PAR 0x20000000
134 #define LTESR_WP 0x04000000
135 #define LTESR_ATMW 0x00800000
136 #define LTESR_ATMR 0x00400000
137 #define LTESR_CS 0x00080000
138 #define LTESR_CC 0x00000001
139 #define LTESR_NAND_MASK (LTESR_FCT | LTESR_PAR | LTESR_CC)
140 __be32 ltedr; /**< Transfer Error Disable Register */
141 __be32 lteir; /**< Transfer Error Interrupt Register */
142 __be32 lteatr; /**< Transfer Error Attributes Register */
143 __be32 ltear; /**< Transfer Error Address Register */
144 u8 res6[0xC];
145 __be32 lbcr; /**< Configuration Register */
146 #define LBCR_LDIS 0x80000000
147 #define LBCR_LDIS_SHIFT 31
148 #define LBCR_BCTLC 0x00C00000
149 #define LBCR_BCTLC_SHIFT 22
150 #define LBCR_AHD 0x00200000
151 #define LBCR_LPBSE 0x00020000
152 #define LBCR_LPBSE_SHIFT 17
153 #define LBCR_EPAR 0x00010000
154 #define LBCR_EPAR_SHIFT 16
155 #define LBCR_BMT 0x0000FF00
156 #define LBCR_BMT_SHIFT 8
157 #define LBCR_INIT 0x00040000
158 __be32 lcrr; /**< Clock Ratio Register */
159 #define LCRR_DBYP 0x80000000
160 #define LCRR_DBYP_SHIFT 31
161 #define LCRR_BUFCMDC 0x30000000
162 #define LCRR_BUFCMDC_SHIFT 28
163 #define LCRR_ECL 0x03000000
164 #define LCRR_ECL_SHIFT 24
165 #define LCRR_EADC 0x00030000
166 #define LCRR_EADC_SHIFT 16
167 #define LCRR_CLKDIV 0x0000000F
168 #define LCRR_CLKDIV_SHIFT 0
169 u8 res7[0x8];
170 __be32 fmr; /**< Flash Mode Register */
171 #define FMR_CWTO 0x0000F000
172 #define FMR_CWTO_SHIFT 12
173 #define FMR_BOOT 0x00000800
174 #define FMR_ECCM 0x00000100
175 #define FMR_AL 0x00000030
176 #define FMR_AL_SHIFT 4
177 #define FMR_OP 0x00000003
178 #define FMR_OP_SHIFT 0
179 __be32 fir; /**< Flash Instruction Register */
180 #define FIR_OP0 0xF0000000
181 #define FIR_OP0_SHIFT 28
182 #define FIR_OP1 0x0F000000
183 #define FIR_OP1_SHIFT 24
184 #define FIR_OP2 0x00F00000
185 #define FIR_OP2_SHIFT 20
186 #define FIR_OP3 0x000F0000
187 #define FIR_OP3_SHIFT 16
188 #define FIR_OP4 0x0000F000
189 #define FIR_OP4_SHIFT 12
190 #define FIR_OP5 0x00000F00
191 #define FIR_OP5_SHIFT 8
192 #define FIR_OP6 0x000000F0
193 #define FIR_OP6_SHIFT 4
194 #define FIR_OP7 0x0000000F
195 #define FIR_OP7_SHIFT 0
196 #define FIR_OP_NOP 0x0 /* No operation and end of sequence */
197 #define FIR_OP_CA 0x1 /* Issue current column address */
198 #define FIR_OP_PA 0x2 /* Issue current block+page address */
199 #define FIR_OP_UA 0x3 /* Issue user defined address */
200 #define FIR_OP_CM0 0x4 /* Issue command from FCR[CMD0] */
201 #define FIR_OP_CM1 0x5 /* Issue command from FCR[CMD1] */
202 #define FIR_OP_CM2 0x6 /* Issue command from FCR[CMD2] */
203 #define FIR_OP_CM3 0x7 /* Issue command from FCR[CMD3] */
204 #define FIR_OP_WB 0x8 /* Write FBCR bytes from FCM buffer */
205 #define FIR_OP_WS 0x9 /* Write 1 or 2 bytes from MDR[AS] */
206 #define FIR_OP_RB 0xA /* Read FBCR bytes to FCM buffer */
207 #define FIR_OP_RS 0xB /* Read 1 or 2 bytes to MDR[AS] */
208 #define FIR_OP_CW0 0xC /* Wait then issue FCR[CMD0] */
209 #define FIR_OP_CW1 0xD /* Wait then issue FCR[CMD1] */
210 #define FIR_OP_RBW 0xE /* Wait then read FBCR bytes */
211 #define FIR_OP_RSW 0xE /* Wait then read 1 or 2 bytes */
212 __be32 fcr; /**< Flash Command Register */
213 #define FCR_CMD0 0xFF000000
214 #define FCR_CMD0_SHIFT 24
215 #define FCR_CMD1 0x00FF0000
216 #define FCR_CMD1_SHIFT 16
217 #define FCR_CMD2 0x0000FF00
218 #define FCR_CMD2_SHIFT 8
219 #define FCR_CMD3 0x000000FF
220 #define FCR_CMD3_SHIFT 0
221 __be32 fbar; /**< Flash Block Address Register */
222 #define FBAR_BLK 0x00FFFFFF
223 __be32 fpar; /**< Flash Page Address Register */
224 #define FPAR_SP_PI 0x00007C00
225 #define FPAR_SP_PI_SHIFT 10
226 #define FPAR_SP_MS 0x00000200
227 #define FPAR_SP_CI 0x000001FF
228 #define FPAR_SP_CI_SHIFT 0
229 #define FPAR_LP_PI 0x0003F000
230 #define FPAR_LP_PI_SHIFT 12
231 #define FPAR_LP_MS 0x00000800
232 #define FPAR_LP_CI 0x000007FF
233 #define FPAR_LP_CI_SHIFT 0
234 __be32 fbcr; /**< Flash Byte Count Register */
235 #define FBCR_BC 0x00000FFF
236 u8 res11[0x8];
237 u8 res8[0xF00];
240 struct fsl_elbc_ctrl;
242 /* mtd information per set */
244 struct fsl_elbc_mtd {
245 struct mtd_info mtd;
246 struct nand_chip chip;
247 struct fsl_elbc_ctrl *ctrl;
249 struct device *dev;
250 int bank; /* Chip select bank number */
251 u8 __iomem *vbase; /* Chip select base virtual address */
252 int page_size; /* NAND page size (0=512, 1=2048) */
253 unsigned int fmr; /* FCM Flash Mode Register value */
256 /* overview of the fsl elbc controller */
258 struct fsl_elbc_ctrl {
259 struct nand_hw_control controller;
260 struct fsl_elbc_mtd *chips[MAX_BANKS];
262 /* device info */
263 struct device *dev;
264 struct elbc_regs __iomem *regs;
265 int irq;
266 wait_queue_head_t irq_wait;
267 unsigned int irq_status; /* status read from LTESR by irq handler */
268 u8 __iomem *addr; /* Address of assigned FCM buffer */
269 unsigned int page; /* Last page written to / read from */
270 unsigned int read_bytes; /* Number of bytes read during command */
271 unsigned int column; /* Saved column from SEQIN */
272 unsigned int index; /* Pointer to next byte to 'read' */
273 unsigned int status; /* status read from LTESR after last op */
274 unsigned int mdr; /* UPM/FCM Data Register value */
275 unsigned int use_mdr; /* Non zero if the MDR is to be set */
276 unsigned int oob; /* Non zero if operating on OOB data */
277 char *oob_poi; /* Place to write ECC after read back */
280 /* These map to the positions used by the FCM hardware ECC generator */
282 /* Small Page FLASH with FMR[ECCM] = 0 */
283 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
284 .eccbytes = 3,
285 .eccpos = {6, 7, 8},
286 .oobfree = { {0, 5}, {9, 7} },
287 .oobavail = 12,
290 /* Small Page FLASH with FMR[ECCM] = 1 */
291 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
292 .eccbytes = 3,
293 .eccpos = {8, 9, 10},
294 .oobfree = { {0, 5}, {6, 2}, {11, 5} },
295 .oobavail = 12,
298 /* Large Page FLASH with FMR[ECCM] = 0 */
299 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
300 .eccbytes = 12,
301 .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
302 .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
303 .oobavail = 48,
306 /* Large Page FLASH with FMR[ECCM] = 1 */
307 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
308 .eccbytes = 12,
309 .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
310 .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
311 .oobavail = 48,
314 /*=================================*/
317 * Set up the FCM hardware block and page address fields, and the fcm
318 * structure addr field to point to the correct FCM buffer in memory
320 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
322 struct nand_chip *chip = mtd->priv;
323 struct fsl_elbc_mtd *priv = chip->priv;
324 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
325 struct elbc_regs __iomem *lbc = ctrl->regs;
326 int buf_num;
328 ctrl->page = page_addr;
330 out_be32(&lbc->fbar,
331 page_addr >> (chip->phys_erase_shift - chip->page_shift));
333 if (priv->page_size) {
334 out_be32(&lbc->fpar,
335 ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
336 (oob ? FPAR_LP_MS : 0) | column);
337 buf_num = (page_addr & 1) << 2;
338 } else {
339 out_be32(&lbc->fpar,
340 ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
341 (oob ? FPAR_SP_MS : 0) | column);
342 buf_num = page_addr & 7;
345 ctrl->addr = priv->vbase + buf_num * 1024;
346 ctrl->index = column;
348 /* for OOB data point to the second half of the buffer */
349 if (oob)
350 ctrl->index += priv->page_size ? 2048 : 512;
352 dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
353 "index %x, pes %d ps %d\n",
354 buf_num, ctrl->addr, priv->vbase, ctrl->index,
355 chip->phys_erase_shift, chip->page_shift);
359 * execute FCM command and wait for it to complete
361 static int fsl_elbc_run_command(struct mtd_info *mtd)
363 struct nand_chip *chip = mtd->priv;
364 struct fsl_elbc_mtd *priv = chip->priv;
365 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
366 struct elbc_regs __iomem *lbc = ctrl->regs;
368 /* Setup the FMR[OP] to execute without write protection */
369 out_be32(&lbc->fmr, priv->fmr | 3);
370 if (ctrl->use_mdr)
371 out_be32(&lbc->mdr, ctrl->mdr);
373 dev_vdbg(ctrl->dev,
374 "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
375 in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
376 dev_vdbg(ctrl->dev,
377 "fsl_elbc_run_command: fbar=%08x fpar=%08x "
378 "fbcr=%08x bank=%d\n",
379 in_be32(&lbc->fbar), in_be32(&lbc->fpar),
380 in_be32(&lbc->fbcr), priv->bank);
382 /* execute special operation */
383 out_be32(&lbc->lsor, priv->bank);
385 /* wait for FCM complete flag or timeout */
386 ctrl->irq_status = 0;
387 wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
388 FCM_TIMEOUT_MSECS * HZ/1000);
389 ctrl->status = ctrl->irq_status;
391 /* store mdr value in case it was needed */
392 if (ctrl->use_mdr)
393 ctrl->mdr = in_be32(&lbc->mdr);
395 ctrl->use_mdr = 0;
397 dev_vdbg(ctrl->dev,
398 "fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n",
399 ctrl->status, ctrl->mdr, in_be32(&lbc->fmr));
401 /* returns 0 on success otherwise non-zero) */
402 return ctrl->status == LTESR_CC ? 0 : -EIO;
405 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
407 struct fsl_elbc_mtd *priv = chip->priv;
408 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
409 struct elbc_regs __iomem *lbc = ctrl->regs;
411 if (priv->page_size) {
412 out_be32(&lbc->fir,
413 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
414 (FIR_OP_CA << FIR_OP1_SHIFT) |
415 (FIR_OP_PA << FIR_OP2_SHIFT) |
416 (FIR_OP_CW1 << FIR_OP3_SHIFT) |
417 (FIR_OP_RBW << FIR_OP4_SHIFT));
419 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
420 (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
421 } else {
422 out_be32(&lbc->fir,
423 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
424 (FIR_OP_CA << FIR_OP1_SHIFT) |
425 (FIR_OP_PA << FIR_OP2_SHIFT) |
426 (FIR_OP_RBW << FIR_OP3_SHIFT));
428 if (oob)
429 out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
430 else
431 out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
435 /* cmdfunc send commands to the FCM */
436 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
437 int column, int page_addr)
439 struct nand_chip *chip = mtd->priv;
440 struct fsl_elbc_mtd *priv = chip->priv;
441 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
442 struct elbc_regs __iomem *lbc = ctrl->regs;
444 ctrl->use_mdr = 0;
446 /* clear the read buffer */
447 ctrl->read_bytes = 0;
448 if (command != NAND_CMD_PAGEPROG)
449 ctrl->index = 0;
451 switch (command) {
452 /* READ0 and READ1 read the entire buffer to use hardware ECC. */
453 case NAND_CMD_READ1:
454 column += 256;
456 /* fall-through */
457 case NAND_CMD_READ0:
458 dev_dbg(ctrl->dev,
459 "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
460 " 0x%x, column: 0x%x.\n", page_addr, column);
463 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
464 set_addr(mtd, 0, page_addr, 0);
466 ctrl->read_bytes = mtd->writesize + mtd->oobsize;
467 ctrl->index += column;
469 fsl_elbc_do_read(chip, 0);
470 fsl_elbc_run_command(mtd);
471 return;
473 /* READOOB reads only the OOB because no ECC is performed. */
474 case NAND_CMD_READOOB:
475 dev_vdbg(ctrl->dev,
476 "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
477 " 0x%x, column: 0x%x.\n", page_addr, column);
479 out_be32(&lbc->fbcr, mtd->oobsize - column);
480 set_addr(mtd, column, page_addr, 1);
482 ctrl->read_bytes = mtd->writesize + mtd->oobsize;
484 fsl_elbc_do_read(chip, 1);
485 fsl_elbc_run_command(mtd);
486 return;
488 /* READID must read all 5 possible bytes while CEB is active */
489 case NAND_CMD_READID:
490 dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
492 out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) |
493 (FIR_OP_UA << FIR_OP1_SHIFT) |
494 (FIR_OP_RBW << FIR_OP2_SHIFT));
495 out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
496 /* 5 bytes for manuf, device and exts */
497 out_be32(&lbc->fbcr, 5);
498 ctrl->read_bytes = 5;
499 ctrl->use_mdr = 1;
500 ctrl->mdr = 0;
502 set_addr(mtd, 0, 0, 0);
503 fsl_elbc_run_command(mtd);
504 return;
506 /* ERASE1 stores the block and page address */
507 case NAND_CMD_ERASE1:
508 dev_vdbg(ctrl->dev,
509 "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
510 "page_addr: 0x%x.\n", page_addr);
511 set_addr(mtd, 0, page_addr, 0);
512 return;
514 /* ERASE2 uses the block and page address from ERASE1 */
515 case NAND_CMD_ERASE2:
516 dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
518 out_be32(&lbc->fir,
519 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
520 (FIR_OP_PA << FIR_OP1_SHIFT) |
521 (FIR_OP_CM1 << FIR_OP2_SHIFT));
523 out_be32(&lbc->fcr,
524 (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
525 (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT));
527 out_be32(&lbc->fbcr, 0);
528 ctrl->read_bytes = 0;
530 fsl_elbc_run_command(mtd);
531 return;
533 /* SEQIN sets up the addr buffer and all registers except the length */
534 case NAND_CMD_SEQIN: {
535 __be32 fcr;
536 dev_vdbg(ctrl->dev,
537 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
538 "page_addr: 0x%x, column: 0x%x.\n",
539 page_addr, column);
541 ctrl->column = column;
542 ctrl->oob = 0;
544 fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) |
545 (NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
547 if (priv->page_size) {
548 out_be32(&lbc->fir,
549 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
550 (FIR_OP_CA << FIR_OP1_SHIFT) |
551 (FIR_OP_PA << FIR_OP2_SHIFT) |
552 (FIR_OP_WB << FIR_OP3_SHIFT) |
553 (FIR_OP_CW1 << FIR_OP4_SHIFT));
555 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
556 } else {
557 out_be32(&lbc->fir,
558 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
559 (FIR_OP_CM2 << FIR_OP1_SHIFT) |
560 (FIR_OP_CA << FIR_OP2_SHIFT) |
561 (FIR_OP_PA << FIR_OP3_SHIFT) |
562 (FIR_OP_WB << FIR_OP4_SHIFT) |
563 (FIR_OP_CW1 << FIR_OP5_SHIFT));
565 if (column >= mtd->writesize) {
566 /* OOB area --> READOOB */
567 column -= mtd->writesize;
568 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
569 ctrl->oob = 1;
570 } else if (column < 256) {
571 /* First 256 bytes --> READ0 */
572 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
573 } else {
574 /* Second 256 bytes --> READ1 */
575 fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
579 out_be32(&lbc->fcr, fcr);
580 set_addr(mtd, column, page_addr, ctrl->oob);
581 return;
584 /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
585 case NAND_CMD_PAGEPROG: {
586 int full_page;
587 dev_vdbg(ctrl->dev,
588 "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
589 "writing %d bytes.\n", ctrl->index);
591 /* if the write did not start at 0 or is not a full page
592 * then set the exact length, otherwise use a full page
593 * write so the HW generates the ECC.
595 if (ctrl->oob || ctrl->column != 0 ||
596 ctrl->index != mtd->writesize + mtd->oobsize) {
597 out_be32(&lbc->fbcr, ctrl->index);
598 full_page = 0;
599 } else {
600 out_be32(&lbc->fbcr, 0);
601 full_page = 1;
604 fsl_elbc_run_command(mtd);
606 /* Read back the page in order to fill in the ECC for the
607 * caller. Is this really needed?
609 if (full_page && ctrl->oob_poi) {
610 out_be32(&lbc->fbcr, 3);
611 set_addr(mtd, 6, page_addr, 1);
613 ctrl->read_bytes = mtd->writesize + 9;
615 fsl_elbc_do_read(chip, 1);
616 fsl_elbc_run_command(mtd);
618 memcpy_fromio(ctrl->oob_poi + 6,
619 &ctrl->addr[ctrl->index], 3);
620 ctrl->index += 3;
623 ctrl->oob_poi = NULL;
624 return;
627 /* CMD_STATUS must read the status byte while CEB is active */
628 /* Note - it does not wait for the ready line */
629 case NAND_CMD_STATUS:
630 out_be32(&lbc->fir,
631 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
632 (FIR_OP_RBW << FIR_OP1_SHIFT));
633 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
634 out_be32(&lbc->fbcr, 1);
635 set_addr(mtd, 0, 0, 0);
636 ctrl->read_bytes = 1;
638 fsl_elbc_run_command(mtd);
640 /* The chip always seems to report that it is
641 * write-protected, even when it is not.
643 setbits8(ctrl->addr, NAND_STATUS_WP);
644 return;
646 /* RESET without waiting for the ready line */
647 case NAND_CMD_RESET:
648 dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
649 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
650 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
651 fsl_elbc_run_command(mtd);
652 return;
654 default:
655 dev_err(ctrl->dev,
656 "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
657 command);
661 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
663 /* The hardware does not seem to support multiple
664 * chips per bank.
669 * Write buf to the FCM Controller Data Buffer
671 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
673 struct nand_chip *chip = mtd->priv;
674 struct fsl_elbc_mtd *priv = chip->priv;
675 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
676 unsigned int bufsize = mtd->writesize + mtd->oobsize;
678 if (len < 0) {
679 dev_err(ctrl->dev, "write_buf of %d bytes", len);
680 ctrl->status = 0;
681 return;
684 if ((unsigned int)len > bufsize - ctrl->index) {
685 dev_err(ctrl->dev,
686 "write_buf beyond end of buffer "
687 "(%d requested, %u available)\n",
688 len, bufsize - ctrl->index);
689 len = bufsize - ctrl->index;
692 memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
693 ctrl->index += len;
697 * read a byte from either the FCM hardware buffer if it has any data left
698 * otherwise issue a command to read a single byte.
700 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
702 struct nand_chip *chip = mtd->priv;
703 struct fsl_elbc_mtd *priv = chip->priv;
704 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
706 /* If there are still bytes in the FCM, then use the next byte. */
707 if (ctrl->index < ctrl->read_bytes)
708 return in_8(&ctrl->addr[ctrl->index++]);
710 dev_err(ctrl->dev, "read_byte beyond end of buffer\n");
711 return ERR_BYTE;
715 * Read from the FCM Controller Data Buffer
717 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
719 struct nand_chip *chip = mtd->priv;
720 struct fsl_elbc_mtd *priv = chip->priv;
721 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
722 int avail;
724 if (len < 0)
725 return;
727 avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
728 memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
729 ctrl->index += avail;
731 if (len > avail)
732 dev_err(ctrl->dev,
733 "read_buf beyond end of buffer "
734 "(%d requested, %d available)\n",
735 len, avail);
739 * Verify buffer against the FCM Controller Data Buffer
741 static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
743 struct nand_chip *chip = mtd->priv;
744 struct fsl_elbc_mtd *priv = chip->priv;
745 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
746 int i;
748 if (len < 0) {
749 dev_err(ctrl->dev, "write_buf of %d bytes", len);
750 return -EINVAL;
753 if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
754 dev_err(ctrl->dev,
755 "verify_buf beyond end of buffer "
756 "(%d requested, %u available)\n",
757 len, ctrl->read_bytes - ctrl->index);
759 ctrl->index = ctrl->read_bytes;
760 return -EINVAL;
763 for (i = 0; i < len; i++)
764 if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
765 break;
767 ctrl->index += len;
768 return i == len && ctrl->status == LTESR_CC ? 0 : -EIO;
771 /* This function is called after Program and Erase Operations to
772 * check for success or failure.
774 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
776 struct fsl_elbc_mtd *priv = chip->priv;
777 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
778 struct elbc_regs __iomem *lbc = ctrl->regs;
780 if (ctrl->status != LTESR_CC)
781 return NAND_STATUS_FAIL;
783 /* Use READ_STATUS command, but wait for the device to be ready */
784 ctrl->use_mdr = 0;
785 out_be32(&lbc->fir,
786 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
787 (FIR_OP_RBW << FIR_OP1_SHIFT));
788 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
789 out_be32(&lbc->fbcr, 1);
790 set_addr(mtd, 0, 0, 0);
791 ctrl->read_bytes = 1;
793 fsl_elbc_run_command(mtd);
795 if (ctrl->status != LTESR_CC)
796 return NAND_STATUS_FAIL;
798 /* The chip always seems to report that it is
799 * write-protected, even when it is not.
801 setbits8(ctrl->addr, NAND_STATUS_WP);
802 return fsl_elbc_read_byte(mtd);
805 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
807 struct nand_chip *chip = mtd->priv;
808 struct fsl_elbc_mtd *priv = chip->priv;
809 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
810 struct elbc_regs __iomem *lbc = ctrl->regs;
811 unsigned int al;
813 /* calculate FMR Address Length field */
814 al = 0;
815 if (chip->pagemask & 0xffff0000)
816 al++;
817 if (chip->pagemask & 0xff000000)
818 al++;
820 /* add to ECCM mode set in fsl_elbc_init */
821 priv->fmr |= (12 << FMR_CWTO_SHIFT) | /* Timeout > 12 ms */
822 (al << FMR_AL_SHIFT);
824 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n",
825 chip->numchips);
826 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %ld\n",
827 chip->chipsize);
828 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
829 chip->pagemask);
830 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
831 chip->chip_delay);
832 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
833 chip->badblockpos);
834 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
835 chip->chip_shift);
836 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n",
837 chip->page_shift);
838 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
839 chip->phys_erase_shift);
840 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
841 chip->ecclayout);
842 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
843 chip->ecc.mode);
844 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
845 chip->ecc.steps);
846 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
847 chip->ecc.bytes);
848 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
849 chip->ecc.total);
850 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
851 chip->ecc.layout);
852 dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
853 dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %d\n", mtd->size);
854 dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
855 mtd->erasesize);
856 dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n",
857 mtd->writesize);
858 dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
859 mtd->oobsize);
861 /* adjust Option Register and ECC to match Flash page size */
862 if (mtd->writesize == 512) {
863 priv->page_size = 0;
864 clrbits32(&lbc->bank[priv->bank].or, ~OR_FCM_PGS);
865 } else if (mtd->writesize == 2048) {
866 priv->page_size = 1;
867 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
868 /* adjust ecc setup if needed */
869 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
870 BR_DECC_CHK_GEN) {
871 chip->ecc.size = 512;
872 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
873 &fsl_elbc_oob_lp_eccm1 :
874 &fsl_elbc_oob_lp_eccm0;
875 mtd->ecclayout = chip->ecc.layout;
876 mtd->oobavail = chip->ecc.layout->oobavail;
878 } else {
879 dev_err(ctrl->dev,
880 "fsl_elbc_init: page size %d is not supported\n",
881 mtd->writesize);
882 return -1;
885 /* The default u-boot configuration on MPC8313ERDB causes errors;
886 * more delay is needed. This should be safe for other boards
887 * as well.
889 setbits32(&lbc->bank[priv->bank].or, 0x70);
890 return 0;
893 static int fsl_elbc_read_page(struct mtd_info *mtd,
894 struct nand_chip *chip,
895 uint8_t *buf)
897 fsl_elbc_read_buf(mtd, buf, mtd->writesize);
898 fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
900 if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
901 mtd->ecc_stats.failed++;
903 return 0;
906 /* ECC will be calculated automatically, and errors will be detected in
907 * waitfunc.
909 static void fsl_elbc_write_page(struct mtd_info *mtd,
910 struct nand_chip *chip,
911 const uint8_t *buf)
913 struct fsl_elbc_mtd *priv = chip->priv;
914 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
916 fsl_elbc_write_buf(mtd, buf, mtd->writesize);
917 fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
919 ctrl->oob_poi = chip->oob_poi;
922 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
924 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
925 struct elbc_regs __iomem *lbc = ctrl->regs;
926 struct nand_chip *chip = &priv->chip;
928 dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
930 /* Fill in fsl_elbc_mtd structure */
931 priv->mtd.priv = chip;
932 priv->mtd.owner = THIS_MODULE;
933 priv->fmr = 0; /* rest filled in later */
935 /* fill in nand_chip structure */
936 /* set up function call table */
937 chip->read_byte = fsl_elbc_read_byte;
938 chip->write_buf = fsl_elbc_write_buf;
939 chip->read_buf = fsl_elbc_read_buf;
940 chip->verify_buf = fsl_elbc_verify_buf;
941 chip->select_chip = fsl_elbc_select_chip;
942 chip->cmdfunc = fsl_elbc_cmdfunc;
943 chip->waitfunc = fsl_elbc_wait;
945 /* set up nand options */
946 chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR;
948 chip->controller = &ctrl->controller;
949 chip->priv = priv;
951 chip->ecc.read_page = fsl_elbc_read_page;
952 chip->ecc.write_page = fsl_elbc_write_page;
954 /* If CS Base Register selects full hardware ECC then use it */
955 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
956 BR_DECC_CHK_GEN) {
957 chip->ecc.mode = NAND_ECC_HW;
958 /* put in small page settings and adjust later if needed */
959 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
960 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
961 chip->ecc.size = 512;
962 chip->ecc.bytes = 3;
963 } else {
964 /* otherwise fall back to default software ECC */
965 chip->ecc.mode = NAND_ECC_SOFT;
968 return 0;
971 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
973 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
975 nand_release(&priv->mtd);
977 if (priv->vbase)
978 iounmap(priv->vbase);
980 ctrl->chips[priv->bank] = NULL;
981 kfree(priv);
983 return 0;
986 static int fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl,
987 struct device_node *node)
989 struct elbc_regs __iomem *lbc = ctrl->regs;
990 struct fsl_elbc_mtd *priv;
991 struct resource res;
992 #ifdef CONFIG_MTD_PARTITIONS
993 static const char *part_probe_types[]
994 = { "cmdlinepart", "RedBoot", NULL };
995 struct mtd_partition *parts;
996 #endif
997 int ret;
998 int bank;
1000 /* get, allocate and map the memory resource */
1001 ret = of_address_to_resource(node, 0, &res);
1002 if (ret) {
1003 dev_err(ctrl->dev, "failed to get resource\n");
1004 return ret;
1007 /* find which chip select it is connected to */
1008 for (bank = 0; bank < MAX_BANKS; bank++)
1009 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
1010 (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
1011 (in_be32(&lbc->bank[bank].br) &
1012 in_be32(&lbc->bank[bank].or) & BR_BA)
1013 == res.start)
1014 break;
1016 if (bank >= MAX_BANKS) {
1017 dev_err(ctrl->dev, "address did not match any chip selects\n");
1018 return -ENODEV;
1021 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1022 if (!priv)
1023 return -ENOMEM;
1025 ctrl->chips[bank] = priv;
1026 priv->bank = bank;
1027 priv->ctrl = ctrl;
1028 priv->dev = ctrl->dev;
1030 priv->vbase = ioremap(res.start, res.end - res.start + 1);
1031 if (!priv->vbase) {
1032 dev_err(ctrl->dev, "failed to map chip region\n");
1033 ret = -ENOMEM;
1034 goto err;
1037 ret = fsl_elbc_chip_init(priv);
1038 if (ret)
1039 goto err;
1041 ret = nand_scan_ident(&priv->mtd, 1);
1042 if (ret)
1043 goto err;
1045 ret = fsl_elbc_chip_init_tail(&priv->mtd);
1046 if (ret)
1047 goto err;
1049 ret = nand_scan_tail(&priv->mtd);
1050 if (ret)
1051 goto err;
1053 #ifdef CONFIG_MTD_PARTITIONS
1054 /* First look for RedBoot table or partitions on the command
1055 * line, these take precedence over device tree information */
1056 ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
1057 if (ret < 0)
1058 goto err;
1060 #ifdef CONFIG_MTD_OF_PARTS
1061 if (ret == 0) {
1062 ret = of_mtd_parse_partitions(priv->dev, &priv->mtd,
1063 node, &parts);
1064 if (ret < 0)
1065 goto err;
1067 #endif
1069 if (ret > 0)
1070 add_mtd_partitions(&priv->mtd, parts, ret);
1071 else
1072 #endif
1073 add_mtd_device(&priv->mtd);
1075 printk(KERN_INFO "eLBC NAND device at 0x%zx, bank %d\n",
1076 res.start, priv->bank);
1077 return 0;
1079 err:
1080 fsl_elbc_chip_remove(priv);
1081 return ret;
1084 static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl)
1086 struct elbc_regs __iomem *lbc = ctrl->regs;
1088 /* clear event registers */
1089 setbits32(&lbc->ltesr, LTESR_NAND_MASK);
1090 out_be32(&lbc->lteatr, 0);
1092 /* Enable interrupts for any detected events */
1093 out_be32(&lbc->lteir, LTESR_NAND_MASK);
1095 ctrl->read_bytes = 0;
1096 ctrl->index = 0;
1097 ctrl->addr = NULL;
1099 return 0;
1102 static int __devexit fsl_elbc_ctrl_remove(struct of_device *ofdev)
1104 struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev);
1105 int i;
1107 for (i = 0; i < MAX_BANKS; i++)
1108 if (ctrl->chips[i])
1109 fsl_elbc_chip_remove(ctrl->chips[i]);
1111 if (ctrl->irq)
1112 free_irq(ctrl->irq, ctrl);
1114 if (ctrl->regs)
1115 iounmap(ctrl->regs);
1117 dev_set_drvdata(&ofdev->dev, NULL);
1118 kfree(ctrl);
1119 return 0;
1122 /* NOTE: This interrupt is also used to report other localbus events,
1123 * such as transaction errors on other chipselects. If we want to
1124 * capture those, we'll need to move the IRQ code into a shared
1125 * LBC driver.
1128 static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data)
1130 struct fsl_elbc_ctrl *ctrl = data;
1131 struct elbc_regs __iomem *lbc = ctrl->regs;
1132 __be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK;
1134 if (status) {
1135 out_be32(&lbc->ltesr, status);
1136 out_be32(&lbc->lteatr, 0);
1138 ctrl->irq_status = status;
1139 smp_wmb();
1140 wake_up(&ctrl->irq_wait);
1142 return IRQ_HANDLED;
1145 return IRQ_NONE;
1148 /* fsl_elbc_ctrl_probe
1150 * called by device layer when it finds a device matching
1151 * one our driver can handled. This code allocates all of
1152 * the resources needed for the controller only. The
1153 * resources for the NAND banks themselves are allocated
1154 * in the chip probe function.
1157 static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev,
1158 const struct of_device_id *match)
1160 struct device_node *child;
1161 struct fsl_elbc_ctrl *ctrl;
1162 int ret;
1164 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1165 if (!ctrl)
1166 return -ENOMEM;
1168 dev_set_drvdata(&ofdev->dev, ctrl);
1170 spin_lock_init(&ctrl->controller.lock);
1171 init_waitqueue_head(&ctrl->controller.wq);
1172 init_waitqueue_head(&ctrl->irq_wait);
1174 ctrl->regs = of_iomap(ofdev->node, 0);
1175 if (!ctrl->regs) {
1176 dev_err(&ofdev->dev, "failed to get memory region\n");
1177 ret = -ENODEV;
1178 goto err;
1181 ctrl->irq = of_irq_to_resource(ofdev->node, 0, NULL);
1182 if (ctrl->irq == NO_IRQ) {
1183 dev_err(&ofdev->dev, "failed to get irq resource\n");
1184 ret = -ENODEV;
1185 goto err;
1188 ctrl->dev = &ofdev->dev;
1190 ret = fsl_elbc_ctrl_init(ctrl);
1191 if (ret < 0)
1192 goto err;
1194 ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl);
1195 if (ret != 0) {
1196 dev_err(&ofdev->dev, "failed to install irq (%d)\n",
1197 ctrl->irq);
1198 ret = ctrl->irq;
1199 goto err;
1202 for_each_child_of_node(ofdev->node, child)
1203 if (of_device_is_compatible(child, "fsl,elbc-fcm-nand"))
1204 fsl_elbc_chip_probe(ctrl, child);
1206 return 0;
1208 err:
1209 fsl_elbc_ctrl_remove(ofdev);
1210 return ret;
1213 static const struct of_device_id fsl_elbc_match[] = {
1215 .compatible = "fsl,elbc",
1220 static struct of_platform_driver fsl_elbc_ctrl_driver = {
1221 .driver = {
1222 .name = "fsl-elbc",
1224 .match_table = fsl_elbc_match,
1225 .probe = fsl_elbc_ctrl_probe,
1226 .remove = __devexit_p(fsl_elbc_ctrl_remove),
1229 static int __init fsl_elbc_init(void)
1231 return of_register_platform_driver(&fsl_elbc_ctrl_driver);
1234 static void __exit fsl_elbc_exit(void)
1236 of_unregister_platform_driver(&fsl_elbc_ctrl_driver);
1239 module_init(fsl_elbc_init);
1240 module_exit(fsl_elbc_exit);
1242 MODULE_LICENSE("GPL");
1243 MODULE_AUTHOR("Freescale");
1244 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");