1 /* linux/drivers/mtd/nand/s3c2410.c
3 * Copyright (c) 2004,2005 Simtec Electronics
4 * http://www.simtec.co.uk/products/SWLINUX/
5 * Ben Dooks <ben@simtec.co.uk>
7 * Samsung S3C2410/S3C240 NAND driver
10 * 21-Sep-2004 BJD Initial version
11 * 23-Sep-2004 BJD Multiple device support
12 * 28-Sep-2004 BJD Fixed ECC placement for Hardware mode
13 * 12-Oct-2004 BJD Fixed errors in use of platform data
14 * 18-Feb-2005 BJD Fix sparse errors
15 * 14-Mar-2005 BJD Applied tglx's code reduction patch
16 * 02-May-2005 BJD Fixed s3c2440 support
17 * 02-May-2005 BJD Reduced hwcontrol decode
18 * 20-Jun-2005 BJD Updated s3c2440 support, fixed timing bug
19 * 08-Jul-2005 BJD Fix OOPS when no platform data supplied
20 * 20-Oct-2005 BJD Fix timing calculation bug
21 * 14-Jan-2006 BJD Allow clock to be stopped when idle
23 * $Id: s3c2410.c,v 1.23 2006/04/01 18:06:29 bjd Exp $
25 * This program is free software; you can redistribute it and/or modify
26 * it under the terms of the GNU General Public License as published by
27 * the Free Software Foundation; either version 2 of the License, or
28 * (at your option) any later version.
30 * This program is distributed in the hope that it will be useful,
31 * but WITHOUT ANY WARRANTY; without even the implied warranty of
32 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
33 * GNU General Public License for more details.
35 * You should have received a copy of the GNU General Public License
36 * along with this program; if not, write to the Free Software
37 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
40 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
44 #include <linux/module.h>
45 #include <linux/types.h>
46 #include <linux/init.h>
47 #include <linux/kernel.h>
48 #include <linux/string.h>
49 #include <linux/ioport.h>
50 #include <linux/platform_device.h>
51 #include <linux/delay.h>
52 #include <linux/err.h>
53 #include <linux/slab.h>
54 #include <linux/clk.h>
56 #include <linux/mtd/mtd.h>
57 #include <linux/mtd/nand.h>
58 #include <linux/mtd/nand_ecc.h>
59 #include <linux/mtd/partitions.h>
63 #include <asm/plat-s3c/regs-nand.h>
64 #include <asm/plat-s3c/nand.h>
66 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
67 static int hardware_ecc
= 1;
69 static int hardware_ecc
= 0;
72 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
73 static int clock_stop
= 1;
75 static const int clock_stop
= 0;
79 /* new oob placement block for use with hardware ecc generation
82 static struct nand_ecclayout nand_hw_eccoob
= {
88 /* controller and mtd information */
90 struct s3c2410_nand_info
;
92 struct s3c2410_nand_mtd
{
94 struct nand_chip chip
;
95 struct s3c2410_nand_set
*set
;
96 struct s3c2410_nand_info
*info
;
106 /* overview of the s3c2410 nand state */
108 struct s3c2410_nand_info
{
110 struct nand_hw_control controller
;
111 struct s3c2410_nand_mtd
*mtds
;
112 struct s3c2410_platform_nand
*platform
;
115 struct device
*device
;
116 struct resource
*area
;
119 void __iomem
*sel_reg
;
123 unsigned long save_nfconf
;
125 enum s3c_cpu_type cpu_type
;
128 /* conversion functions */
130 static struct s3c2410_nand_mtd
*s3c2410_nand_mtd_toours(struct mtd_info
*mtd
)
132 return container_of(mtd
, struct s3c2410_nand_mtd
, mtd
);
135 static struct s3c2410_nand_info
*s3c2410_nand_mtd_toinfo(struct mtd_info
*mtd
)
137 return s3c2410_nand_mtd_toours(mtd
)->info
;
140 static struct s3c2410_nand_info
*to_nand_info(struct platform_device
*dev
)
142 return platform_get_drvdata(dev
);
145 static struct s3c2410_platform_nand
*to_nand_plat(struct platform_device
*dev
)
147 return dev
->dev
.platform_data
;
150 static inline int allow_clk_stop(struct s3c2410_nand_info
*info
)
155 /* timing calculations */
157 #define NS_IN_KHZ 1000000
159 static int s3c_nand_calc_rate(int wanted
, unsigned long clk
, int max
)
163 result
= (wanted
* clk
) / NS_IN_KHZ
;
166 pr_debug("result %d from %ld, %d\n", result
, clk
, wanted
);
169 printk("%d ns is too big for current clock rate %ld\n", wanted
, clk
);
179 #define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
181 /* controller setup */
183 static int s3c2410_nand_inithw(struct s3c2410_nand_info
*info
,
184 struct platform_device
*pdev
)
186 struct s3c2410_platform_nand
*plat
= to_nand_plat(pdev
);
187 unsigned long clkrate
= clk_get_rate(info
->clk
);
188 int tacls_max
= (info
->cpu_type
== TYPE_S3C2412
) ? 8 : 4;
189 int tacls
, twrph0
, twrph1
;
190 unsigned long cfg
= 0;
192 /* calculate the timing information for the controller */
194 clkrate
/= 1000; /* turn clock into kHz for ease of use */
197 tacls
= s3c_nand_calc_rate(plat
->tacls
, clkrate
, tacls_max
);
198 twrph0
= s3c_nand_calc_rate(plat
->twrph0
, clkrate
, 8);
199 twrph1
= s3c_nand_calc_rate(plat
->twrph1
, clkrate
, 8);
201 /* default timings */
207 if (tacls
< 0 || twrph0
< 0 || twrph1
< 0) {
208 dev_err(info
->device
, "cannot get suitable timings\n");
212 dev_info(info
->device
, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
213 tacls
, to_ns(tacls
, clkrate
), twrph0
, to_ns(twrph0
, clkrate
), twrph1
, to_ns(twrph1
, clkrate
));
215 switch (info
->cpu_type
) {
217 cfg
= S3C2410_NFCONF_EN
;
218 cfg
|= S3C2410_NFCONF_TACLS(tacls
- 1);
219 cfg
|= S3C2410_NFCONF_TWRPH0(twrph0
- 1);
220 cfg
|= S3C2410_NFCONF_TWRPH1(twrph1
- 1);
225 cfg
= S3C2440_NFCONF_TACLS(tacls
- 1);
226 cfg
|= S3C2440_NFCONF_TWRPH0(twrph0
- 1);
227 cfg
|= S3C2440_NFCONF_TWRPH1(twrph1
- 1);
229 /* enable the controller and de-assert nFCE */
231 writel(S3C2440_NFCONT_ENABLE
, info
->regs
+ S3C2440_NFCONT
);
234 dev_dbg(info
->device
, "NF_CONF is 0x%lx\n", cfg
);
236 writel(cfg
, info
->regs
+ S3C2410_NFCONF
);
242 static void s3c2410_nand_select_chip(struct mtd_info
*mtd
, int chip
)
244 struct s3c2410_nand_info
*info
;
245 struct s3c2410_nand_mtd
*nmtd
;
246 struct nand_chip
*this = mtd
->priv
;
252 if (chip
!= -1 && allow_clk_stop(info
))
253 clk_enable(info
->clk
);
255 cur
= readl(info
->sel_reg
);
258 cur
|= info
->sel_bit
;
260 if (nmtd
->set
!= NULL
&& chip
> nmtd
->set
->nr_chips
) {
261 dev_err(info
->device
, "invalid chip %d\n", chip
);
265 if (info
->platform
!= NULL
) {
266 if (info
->platform
->select_chip
!= NULL
)
267 (info
->platform
->select_chip
) (nmtd
->set
, chip
);
270 cur
&= ~info
->sel_bit
;
273 writel(cur
, info
->sel_reg
);
275 if (chip
== -1 && allow_clk_stop(info
))
276 clk_disable(info
->clk
);
279 /* s3c2410_nand_hwcontrol
281 * Issue command and address cycles to the chip
284 static void s3c2410_nand_hwcontrol(struct mtd_info
*mtd
, int cmd
,
287 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
289 if (cmd
== NAND_CMD_NONE
)
293 writeb(cmd
, info
->regs
+ S3C2410_NFCMD
);
295 writeb(cmd
, info
->regs
+ S3C2410_NFADDR
);
298 /* command and control functions */
300 static void s3c2440_nand_hwcontrol(struct mtd_info
*mtd
, int cmd
,
303 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
305 if (cmd
== NAND_CMD_NONE
)
309 writeb(cmd
, info
->regs
+ S3C2440_NFCMD
);
311 writeb(cmd
, info
->regs
+ S3C2440_NFADDR
);
314 /* s3c2410_nand_devready()
316 * returns 0 if the nand is busy, 1 if it is ready
319 static int s3c2410_nand_devready(struct mtd_info
*mtd
)
321 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
322 return readb(info
->regs
+ S3C2410_NFSTAT
) & S3C2410_NFSTAT_BUSY
;
325 static int s3c2440_nand_devready(struct mtd_info
*mtd
)
327 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
328 return readb(info
->regs
+ S3C2440_NFSTAT
) & S3C2440_NFSTAT_READY
;
331 static int s3c2412_nand_devready(struct mtd_info
*mtd
)
333 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
334 return readb(info
->regs
+ S3C2412_NFSTAT
) & S3C2412_NFSTAT_READY
;
337 /* ECC handling functions */
339 static int s3c2410_nand_correct_data(struct mtd_info
*mtd
, u_char
*dat
,
340 u_char
*read_ecc
, u_char
*calc_ecc
)
342 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
343 unsigned int diff0
, diff1
, diff2
;
344 unsigned int bit
, byte
;
346 pr_debug("%s(%p,%p,%p,%p)\n", __func__
, mtd
, dat
, read_ecc
, calc_ecc
);
348 diff0
= read_ecc
[0] ^ calc_ecc
[0];
349 diff1
= read_ecc
[1] ^ calc_ecc
[1];
350 diff2
= read_ecc
[2] ^ calc_ecc
[2];
352 pr_debug("%s: rd %02x%02x%02x calc %02x%02x%02x diff %02x%02x%02x\n",
354 read_ecc
[0], read_ecc
[1], read_ecc
[2],
355 calc_ecc
[0], calc_ecc
[1], calc_ecc
[2],
356 diff0
, diff1
, diff2
);
358 if (diff0
== 0 && diff1
== 0 && diff2
== 0)
359 return 0; /* ECC is ok */
361 /* Can we correct this ECC (ie, one row and column change).
362 * Note, this is similar to the 256 error code on smartmedia */
364 if (((diff0
^ (diff0
>> 1)) & 0x55) == 0x55 &&
365 ((diff1
^ (diff1
>> 1)) & 0x55) == 0x55 &&
366 ((diff2
^ (diff2
>> 1)) & 0x55) == 0x55) {
367 /* calculate the bit position of the error */
369 bit
= ((diff2
>> 3) & 1) |
373 /* calculate the byte position of the error */
375 byte
= ((diff2
<< 7) & 0x100) |
376 ((diff1
<< 0) & 0x80) |
377 ((diff1
<< 1) & 0x40) |
378 ((diff1
<< 2) & 0x20) |
379 ((diff1
<< 3) & 0x10) |
380 ((diff0
>> 4) & 0x08) |
381 ((diff0
>> 3) & 0x04) |
382 ((diff0
>> 2) & 0x02) |
383 ((diff0
>> 1) & 0x01);
385 dev_dbg(info
->device
, "correcting error bit %d, byte %d\n",
388 dat
[byte
] ^= (1 << bit
);
392 /* if there is only one bit difference in the ECC, then
393 * one of only a row or column parity has changed, which
394 * means the error is most probably in the ECC itself */
396 diff0
|= (diff1
<< 8);
397 diff0
|= (diff2
<< 16);
399 if ((diff0
& ~(1<<fls(diff0
))) == 0)
407 * These allow the s3c2410 and s3c2440 to use the controller's ECC
408 * generator block to ECC the data as it passes through]
411 static void s3c2410_nand_enable_hwecc(struct mtd_info
*mtd
, int mode
)
413 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
416 ctrl
= readl(info
->regs
+ S3C2410_NFCONF
);
417 ctrl
|= S3C2410_NFCONF_INITECC
;
418 writel(ctrl
, info
->regs
+ S3C2410_NFCONF
);
421 static void s3c2412_nand_enable_hwecc(struct mtd_info
*mtd
, int mode
)
423 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
426 ctrl
= readl(info
->regs
+ S3C2440_NFCONT
);
427 writel(ctrl
| S3C2412_NFCONT_INIT_MAIN_ECC
, info
->regs
+ S3C2440_NFCONT
);
430 static void s3c2440_nand_enable_hwecc(struct mtd_info
*mtd
, int mode
)
432 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
435 ctrl
= readl(info
->regs
+ S3C2440_NFCONT
);
436 writel(ctrl
| S3C2440_NFCONT_INITECC
, info
->regs
+ S3C2440_NFCONT
);
439 static int s3c2410_nand_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
, u_char
*ecc_code
)
441 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
443 ecc_code
[0] = readb(info
->regs
+ S3C2410_NFECC
+ 0);
444 ecc_code
[1] = readb(info
->regs
+ S3C2410_NFECC
+ 1);
445 ecc_code
[2] = readb(info
->regs
+ S3C2410_NFECC
+ 2);
447 pr_debug("%s: returning ecc %02x%02x%02x\n", __func__
,
448 ecc_code
[0], ecc_code
[1], ecc_code
[2]);
453 static int s3c2412_nand_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
, u_char
*ecc_code
)
455 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
456 unsigned long ecc
= readl(info
->regs
+ S3C2412_NFMECC0
);
459 ecc_code
[1] = ecc
>> 8;
460 ecc_code
[2] = ecc
>> 16;
462 pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code
[0], ecc_code
[1], ecc_code
[2]);
467 static int s3c2440_nand_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
, u_char
*ecc_code
)
469 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
470 unsigned long ecc
= readl(info
->regs
+ S3C2440_NFMECC0
);
473 ecc_code
[1] = ecc
>> 8;
474 ecc_code
[2] = ecc
>> 16;
476 pr_debug("%s: returning ecc %06lx\n", __func__
, ecc
);
481 /* over-ride the standard functions for a little more speed. We can
482 * use read/write block to move the data buffers to/from the controller
485 static void s3c2410_nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
487 struct nand_chip
*this = mtd
->priv
;
488 readsb(this->IO_ADDR_R
, buf
, len
);
491 static void s3c2440_nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
493 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
494 readsl(info
->regs
+ S3C2440_NFDATA
, buf
, len
/ 4);
497 static void s3c2410_nand_write_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
499 struct nand_chip
*this = mtd
->priv
;
500 writesb(this->IO_ADDR_W
, buf
, len
);
503 static void s3c2440_nand_write_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
505 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
506 writesl(info
->regs
+ S3C2440_NFDATA
, buf
, len
/ 4);
509 /* device management functions */
511 static int s3c2410_nand_remove(struct platform_device
*pdev
)
513 struct s3c2410_nand_info
*info
= to_nand_info(pdev
);
515 platform_set_drvdata(pdev
, NULL
);
520 /* first thing we need to do is release all our mtds
521 * and their partitions, then go through freeing the
525 if (info
->mtds
!= NULL
) {
526 struct s3c2410_nand_mtd
*ptr
= info
->mtds
;
529 for (mtdno
= 0; mtdno
< info
->mtd_count
; mtdno
++, ptr
++) {
530 pr_debug("releasing mtd %d (%p)\n", mtdno
, ptr
);
531 nand_release(&ptr
->mtd
);
537 /* free the common resources */
539 if (info
->clk
!= NULL
&& !IS_ERR(info
->clk
)) {
540 if (!allow_clk_stop(info
))
541 clk_disable(info
->clk
);
545 if (info
->regs
!= NULL
) {
550 if (info
->area
!= NULL
) {
551 release_resource(info
->area
);
561 #ifdef CONFIG_MTD_PARTITIONS
562 static int s3c2410_nand_add_partition(struct s3c2410_nand_info
*info
,
563 struct s3c2410_nand_mtd
*mtd
,
564 struct s3c2410_nand_set
*set
)
567 return add_mtd_device(&mtd
->mtd
);
569 if (set
->nr_partitions
> 0 && set
->partitions
!= NULL
) {
570 return add_mtd_partitions(&mtd
->mtd
, set
->partitions
, set
->nr_partitions
);
573 return add_mtd_device(&mtd
->mtd
);
576 static int s3c2410_nand_add_partition(struct s3c2410_nand_info
*info
,
577 struct s3c2410_nand_mtd
*mtd
,
578 struct s3c2410_nand_set
*set
)
580 return add_mtd_device(&mtd
->mtd
);
584 /* s3c2410_nand_init_chip
586 * init a single instance of an chip
589 static void s3c2410_nand_init_chip(struct s3c2410_nand_info
*info
,
590 struct s3c2410_nand_mtd
*nmtd
,
591 struct s3c2410_nand_set
*set
)
593 struct nand_chip
*chip
= &nmtd
->chip
;
594 void __iomem
*regs
= info
->regs
;
596 chip
->write_buf
= s3c2410_nand_write_buf
;
597 chip
->read_buf
= s3c2410_nand_read_buf
;
598 chip
->select_chip
= s3c2410_nand_select_chip
;
599 chip
->chip_delay
= 50;
602 chip
->controller
= &info
->controller
;
604 switch (info
->cpu_type
) {
606 chip
->IO_ADDR_W
= regs
+ S3C2410_NFDATA
;
607 info
->sel_reg
= regs
+ S3C2410_NFCONF
;
608 info
->sel_bit
= S3C2410_NFCONF_nFCE
;
609 chip
->cmd_ctrl
= s3c2410_nand_hwcontrol
;
610 chip
->dev_ready
= s3c2410_nand_devready
;
614 chip
->IO_ADDR_W
= regs
+ S3C2440_NFDATA
;
615 info
->sel_reg
= regs
+ S3C2440_NFCONT
;
616 info
->sel_bit
= S3C2440_NFCONT_nFCE
;
617 chip
->cmd_ctrl
= s3c2440_nand_hwcontrol
;
618 chip
->dev_ready
= s3c2440_nand_devready
;
619 chip
->read_buf
= s3c2440_nand_read_buf
;
620 chip
->write_buf
= s3c2440_nand_write_buf
;
624 chip
->IO_ADDR_W
= regs
+ S3C2440_NFDATA
;
625 info
->sel_reg
= regs
+ S3C2440_NFCONT
;
626 info
->sel_bit
= S3C2412_NFCONT_nFCE0
;
627 chip
->cmd_ctrl
= s3c2440_nand_hwcontrol
;
628 chip
->dev_ready
= s3c2412_nand_devready
;
630 if (readl(regs
+ S3C2410_NFCONF
) & S3C2412_NFCONF_NANDBOOT
)
631 dev_info(info
->device
, "System booted from NAND\n");
636 chip
->IO_ADDR_R
= chip
->IO_ADDR_W
;
639 nmtd
->mtd
.priv
= chip
;
640 nmtd
->mtd
.owner
= THIS_MODULE
;
644 chip
->ecc
.calculate
= s3c2410_nand_calculate_ecc
;
645 chip
->ecc
.correct
= s3c2410_nand_correct_data
;
646 chip
->ecc
.mode
= NAND_ECC_HW
;
647 chip
->ecc
.size
= 512;
649 chip
->ecc
.layout
= &nand_hw_eccoob
;
651 switch (info
->cpu_type
) {
653 chip
->ecc
.hwctl
= s3c2410_nand_enable_hwecc
;
654 chip
->ecc
.calculate
= s3c2410_nand_calculate_ecc
;
658 chip
->ecc
.hwctl
= s3c2412_nand_enable_hwecc
;
659 chip
->ecc
.calculate
= s3c2412_nand_calculate_ecc
;
663 chip
->ecc
.hwctl
= s3c2440_nand_enable_hwecc
;
664 chip
->ecc
.calculate
= s3c2440_nand_calculate_ecc
;
669 chip
->ecc
.mode
= NAND_ECC_SOFT
;
673 /* s3c2410_nand_probe
675 * called by device layer when it finds a device matching
676 * one our driver can handled. This code checks to see if
677 * it can allocate all necessary resources then calls the
678 * nand layer to look for devices
681 static int s3c24xx_nand_probe(struct platform_device
*pdev
,
682 enum s3c_cpu_type cpu_type
)
684 struct s3c2410_platform_nand
*plat
= to_nand_plat(pdev
);
685 struct s3c2410_nand_info
*info
;
686 struct s3c2410_nand_mtd
*nmtd
;
687 struct s3c2410_nand_set
*sets
;
688 struct resource
*res
;
694 pr_debug("s3c2410_nand_probe(%p)\n", pdev
);
696 info
= kmalloc(sizeof(*info
), GFP_KERNEL
);
698 dev_err(&pdev
->dev
, "no memory for flash info\n");
703 memzero(info
, sizeof(*info
));
704 platform_set_drvdata(pdev
, info
);
706 spin_lock_init(&info
->controller
.lock
);
707 init_waitqueue_head(&info
->controller
.wq
);
709 /* get the clock source and enable it */
711 info
->clk
= clk_get(&pdev
->dev
, "nand");
712 if (IS_ERR(info
->clk
)) {
713 dev_err(&pdev
->dev
, "failed to get clock\n");
718 clk_enable(info
->clk
);
720 /* allocate and map the resource */
722 /* currently we assume we have the one resource */
723 res
= pdev
->resource
;
724 size
= res
->end
- res
->start
+ 1;
726 info
->area
= request_mem_region(res
->start
, size
, pdev
->name
);
728 if (info
->area
== NULL
) {
729 dev_err(&pdev
->dev
, "cannot reserve register region\n");
734 info
->device
= &pdev
->dev
;
735 info
->platform
= plat
;
736 info
->regs
= ioremap(res
->start
, size
);
737 info
->cpu_type
= cpu_type
;
739 if (info
->regs
== NULL
) {
740 dev_err(&pdev
->dev
, "cannot reserve register region\n");
745 dev_dbg(&pdev
->dev
, "mapped registers at %p\n", info
->regs
);
747 /* initialise the hardware */
749 err
= s3c2410_nand_inithw(info
, pdev
);
753 sets
= (plat
!= NULL
) ? plat
->sets
: NULL
;
754 nr_sets
= (plat
!= NULL
) ? plat
->nr_sets
: 1;
756 info
->mtd_count
= nr_sets
;
758 /* allocate our information */
760 size
= nr_sets
* sizeof(*info
->mtds
);
761 info
->mtds
= kmalloc(size
, GFP_KERNEL
);
762 if (info
->mtds
== NULL
) {
763 dev_err(&pdev
->dev
, "failed to allocate mtd storage\n");
768 memzero(info
->mtds
, size
);
770 /* initialise all possible chips */
774 for (setno
= 0; setno
< nr_sets
; setno
++, nmtd
++) {
775 pr_debug("initialising set %d (%p, info %p)\n", setno
, nmtd
, info
);
777 s3c2410_nand_init_chip(info
, nmtd
, sets
);
779 nmtd
->scan_res
= nand_scan(&nmtd
->mtd
, (sets
) ? sets
->nr_chips
: 1);
781 if (nmtd
->scan_res
== 0) {
782 s3c2410_nand_add_partition(info
, nmtd
, sets
);
789 if (allow_clk_stop(info
)) {
790 dev_info(&pdev
->dev
, "clock idle support enabled\n");
791 clk_disable(info
->clk
);
794 pr_debug("initialised ok\n");
798 s3c2410_nand_remove(pdev
);
808 static int s3c24xx_nand_suspend(struct platform_device
*dev
, pm_message_t pm
)
810 struct s3c2410_nand_info
*info
= platform_get_drvdata(dev
);
813 info
->save_nfconf
= readl(info
->regs
+ S3C2410_NFCONF
);
815 /* For the moment, we must ensure nFCE is high during
816 * the time we are suspended. This really should be
817 * handled by suspending the MTDs we are using, but
818 * that is currently not the case. */
820 writel(info
->save_nfconf
| info
->sel_bit
,
821 info
->regs
+ S3C2410_NFCONF
);
823 if (!allow_clk_stop(info
))
824 clk_disable(info
->clk
);
830 static int s3c24xx_nand_resume(struct platform_device
*dev
)
832 struct s3c2410_nand_info
*info
= platform_get_drvdata(dev
);
833 unsigned long nfconf
;
836 clk_enable(info
->clk
);
837 s3c2410_nand_inithw(info
, dev
);
839 /* Restore the state of the nFCE line. */
841 nfconf
= readl(info
->regs
+ S3C2410_NFCONF
);
842 nfconf
&= ~info
->sel_bit
;
843 nfconf
|= info
->save_nfconf
& info
->sel_bit
;
844 writel(nfconf
, info
->regs
+ S3C2410_NFCONF
);
846 if (allow_clk_stop(info
))
847 clk_disable(info
->clk
);
854 #define s3c24xx_nand_suspend NULL
855 #define s3c24xx_nand_resume NULL
858 /* driver device registration */
860 static int s3c2410_nand_probe(struct platform_device
*dev
)
862 return s3c24xx_nand_probe(dev
, TYPE_S3C2410
);
865 static int s3c2440_nand_probe(struct platform_device
*dev
)
867 return s3c24xx_nand_probe(dev
, TYPE_S3C2440
);
870 static int s3c2412_nand_probe(struct platform_device
*dev
)
872 return s3c24xx_nand_probe(dev
, TYPE_S3C2412
);
875 static struct platform_driver s3c2410_nand_driver
= {
876 .probe
= s3c2410_nand_probe
,
877 .remove
= s3c2410_nand_remove
,
878 .suspend
= s3c24xx_nand_suspend
,
879 .resume
= s3c24xx_nand_resume
,
881 .name
= "s3c2410-nand",
882 .owner
= THIS_MODULE
,
886 static struct platform_driver s3c2440_nand_driver
= {
887 .probe
= s3c2440_nand_probe
,
888 .remove
= s3c2410_nand_remove
,
889 .suspend
= s3c24xx_nand_suspend
,
890 .resume
= s3c24xx_nand_resume
,
892 .name
= "s3c2440-nand",
893 .owner
= THIS_MODULE
,
897 static struct platform_driver s3c2412_nand_driver
= {
898 .probe
= s3c2412_nand_probe
,
899 .remove
= s3c2410_nand_remove
,
900 .suspend
= s3c24xx_nand_suspend
,
901 .resume
= s3c24xx_nand_resume
,
903 .name
= "s3c2412-nand",
904 .owner
= THIS_MODULE
,
908 static int __init
s3c2410_nand_init(void)
910 printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n");
912 platform_driver_register(&s3c2412_nand_driver
);
913 platform_driver_register(&s3c2440_nand_driver
);
914 return platform_driver_register(&s3c2410_nand_driver
);
917 static void __exit
s3c2410_nand_exit(void)
919 platform_driver_unregister(&s3c2412_nand_driver
);
920 platform_driver_unregister(&s3c2440_nand_driver
);
921 platform_driver_unregister(&s3c2410_nand_driver
);
924 module_init(s3c2410_nand_init
);
925 module_exit(s3c2410_nand_exit
);
927 MODULE_LICENSE("GPL");
928 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
929 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");