2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include "ecryptfs_kernel.h"
39 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
40 struct page
*dst_page
, int dst_offset
,
41 struct page
*src_page
, int src_offset
, int size
,
44 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
45 struct page
*dst_page
, int dst_offset
,
46 struct page
*src_page
, int src_offset
, int size
,
51 * @dst: Buffer to take hex character representation of contents of
52 * src; must be at least of size (src_size * 2)
53 * @src: Buffer to be converted to a hex string respresentation
54 * @src_size: number of bytes to convert
56 void ecryptfs_to_hex(char *dst
, char *src
, size_t src_size
)
60 for (x
= 0; x
< src_size
; x
++)
61 sprintf(&dst
[x
* 2], "%.2x", (unsigned char)src
[x
]);
66 * @dst: Buffer to take the bytes from src hex; must be at least of
68 * @src: Buffer to be converted from a hex string respresentation to raw value
69 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
71 void ecryptfs_from_hex(char *dst
, char *src
, int dst_size
)
76 for (x
= 0; x
< dst_size
; x
++) {
78 tmp
[1] = src
[x
* 2 + 1];
79 dst
[x
] = (unsigned char)simple_strtol(tmp
, NULL
, 16);
84 * ecryptfs_calculate_md5 - calculates the md5 of @src
85 * @dst: Pointer to 16 bytes of allocated memory
86 * @crypt_stat: Pointer to crypt_stat struct for the current inode
87 * @src: Data to be md5'd
88 * @len: Length of @src
90 * Uses the allocated crypto context that crypt_stat references to
91 * generate the MD5 sum of the contents of src.
93 static int ecryptfs_calculate_md5(char *dst
,
94 struct ecryptfs_crypt_stat
*crypt_stat
,
97 struct scatterlist sg
;
98 struct hash_desc desc
= {
99 .tfm
= crypt_stat
->hash_tfm
,
100 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
104 mutex_lock(&crypt_stat
->cs_hash_tfm_mutex
);
105 sg_init_one(&sg
, (u8
*)src
, len
);
107 desc
.tfm
= crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH
, 0,
109 if (IS_ERR(desc
.tfm
)) {
110 rc
= PTR_ERR(desc
.tfm
);
111 ecryptfs_printk(KERN_ERR
, "Error attempting to "
112 "allocate crypto context; rc = [%d]\n",
116 crypt_stat
->hash_tfm
= desc
.tfm
;
118 crypto_hash_init(&desc
);
119 crypto_hash_update(&desc
, &sg
, len
);
120 crypto_hash_final(&desc
, dst
);
121 mutex_unlock(&crypt_stat
->cs_hash_tfm_mutex
);
126 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name
,
128 char *chaining_modifier
)
130 int cipher_name_len
= strlen(cipher_name
);
131 int chaining_modifier_len
= strlen(chaining_modifier
);
132 int algified_name_len
;
135 algified_name_len
= (chaining_modifier_len
+ cipher_name_len
+ 3);
136 (*algified_name
) = kmalloc(algified_name_len
, GFP_KERNEL
);
137 if (!(*algified_name
)) {
141 snprintf((*algified_name
), algified_name_len
, "%s(%s)",
142 chaining_modifier
, cipher_name
);
150 * @iv: destination for the derived iv vale
151 * @crypt_stat: Pointer to crypt_stat struct for the current inode
152 * @offset: Offset of the extent whose IV we are to derive
154 * Generate the initialization vector from the given root IV and page
157 * Returns zero on success; non-zero on error.
159 static int ecryptfs_derive_iv(char *iv
, struct ecryptfs_crypt_stat
*crypt_stat
,
163 char dst
[MD5_DIGEST_SIZE
];
164 char src
[ECRYPTFS_MAX_IV_BYTES
+ 16];
166 if (unlikely(ecryptfs_verbosity
> 0)) {
167 ecryptfs_printk(KERN_DEBUG
, "root iv:\n");
168 ecryptfs_dump_hex(crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
170 /* TODO: It is probably secure to just cast the least
171 * significant bits of the root IV into an unsigned long and
172 * add the offset to that rather than go through all this
173 * hashing business. -Halcrow */
174 memcpy(src
, crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
175 memset((src
+ crypt_stat
->iv_bytes
), 0, 16);
176 snprintf((src
+ crypt_stat
->iv_bytes
), 16, "%lld", offset
);
177 if (unlikely(ecryptfs_verbosity
> 0)) {
178 ecryptfs_printk(KERN_DEBUG
, "source:\n");
179 ecryptfs_dump_hex(src
, (crypt_stat
->iv_bytes
+ 16));
181 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, src
,
182 (crypt_stat
->iv_bytes
+ 16));
184 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
185 "MD5 while generating IV for a page\n");
188 memcpy(iv
, dst
, crypt_stat
->iv_bytes
);
189 if (unlikely(ecryptfs_verbosity
> 0)) {
190 ecryptfs_printk(KERN_DEBUG
, "derived iv:\n");
191 ecryptfs_dump_hex(iv
, crypt_stat
->iv_bytes
);
198 * ecryptfs_init_crypt_stat
199 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
201 * Initialize the crypt_stat structure.
204 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
206 memset((void *)crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
207 INIT_LIST_HEAD(&crypt_stat
->keysig_list
);
208 mutex_init(&crypt_stat
->keysig_list_mutex
);
209 mutex_init(&crypt_stat
->cs_mutex
);
210 mutex_init(&crypt_stat
->cs_tfm_mutex
);
211 mutex_init(&crypt_stat
->cs_hash_tfm_mutex
);
212 crypt_stat
->flags
|= ECRYPTFS_STRUCT_INITIALIZED
;
216 * ecryptfs_destroy_crypt_stat
217 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
219 * Releases all memory associated with a crypt_stat struct.
221 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
223 struct ecryptfs_key_sig
*key_sig
, *key_sig_tmp
;
226 crypto_free_blkcipher(crypt_stat
->tfm
);
227 if (crypt_stat
->hash_tfm
)
228 crypto_free_hash(crypt_stat
->hash_tfm
);
229 mutex_lock(&crypt_stat
->keysig_list_mutex
);
230 list_for_each_entry_safe(key_sig
, key_sig_tmp
,
231 &crypt_stat
->keysig_list
, crypt_stat_list
) {
232 list_del(&key_sig
->crypt_stat_list
);
233 kmem_cache_free(ecryptfs_key_sig_cache
, key_sig
);
235 mutex_unlock(&crypt_stat
->keysig_list_mutex
);
236 memset(crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
239 void ecryptfs_destroy_mount_crypt_stat(
240 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
242 struct ecryptfs_global_auth_tok
*auth_tok
, *auth_tok_tmp
;
244 if (!(mount_crypt_stat
->flags
& ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED
))
246 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
247 list_for_each_entry_safe(auth_tok
, auth_tok_tmp
,
248 &mount_crypt_stat
->global_auth_tok_list
,
249 mount_crypt_stat_list
) {
250 list_del(&auth_tok
->mount_crypt_stat_list
);
251 mount_crypt_stat
->num_global_auth_toks
--;
252 if (auth_tok
->global_auth_tok_key
253 && !(auth_tok
->flags
& ECRYPTFS_AUTH_TOK_INVALID
))
254 key_put(auth_tok
->global_auth_tok_key
);
255 kmem_cache_free(ecryptfs_global_auth_tok_cache
, auth_tok
);
257 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
258 memset(mount_crypt_stat
, 0, sizeof(struct ecryptfs_mount_crypt_stat
));
262 * virt_to_scatterlist
263 * @addr: Virtual address
264 * @size: Size of data; should be an even multiple of the block size
265 * @sg: Pointer to scatterlist array; set to NULL to obtain only
266 * the number of scatterlist structs required in array
267 * @sg_size: Max array size
269 * Fills in a scatterlist array with page references for a passed
272 * Returns the number of scatterlist structs in array used
274 int virt_to_scatterlist(const void *addr
, int size
, struct scatterlist
*sg
,
280 int remainder_of_page
;
282 sg_init_table(sg
, sg_size
);
284 while (size
> 0 && i
< sg_size
) {
285 pg
= virt_to_page(addr
);
286 offset
= offset_in_page(addr
);
288 sg_set_page(&sg
[i
], pg
, 0, offset
);
289 remainder_of_page
= PAGE_CACHE_SIZE
- offset
;
290 if (size
>= remainder_of_page
) {
292 sg
[i
].length
= remainder_of_page
;
293 addr
+= remainder_of_page
;
294 size
-= remainder_of_page
;
309 * encrypt_scatterlist
310 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
311 * @dest_sg: Destination of encrypted data
312 * @src_sg: Data to be encrypted
313 * @size: Length of data to be encrypted
314 * @iv: iv to use during encryption
316 * Returns the number of bytes encrypted; negative value on error
318 static int encrypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
319 struct scatterlist
*dest_sg
,
320 struct scatterlist
*src_sg
, int size
,
323 struct blkcipher_desc desc
= {
324 .tfm
= crypt_stat
->tfm
,
326 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
330 BUG_ON(!crypt_stat
|| !crypt_stat
->tfm
331 || !(crypt_stat
->flags
& ECRYPTFS_STRUCT_INITIALIZED
));
332 if (unlikely(ecryptfs_verbosity
> 0)) {
333 ecryptfs_printk(KERN_DEBUG
, "Key size [%d]; key:\n",
334 crypt_stat
->key_size
);
335 ecryptfs_dump_hex(crypt_stat
->key
,
336 crypt_stat
->key_size
);
338 /* Consider doing this once, when the file is opened */
339 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
340 rc
= crypto_blkcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
341 crypt_stat
->key_size
);
343 ecryptfs_printk(KERN_ERR
, "Error setting key; rc = [%d]\n",
345 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
349 ecryptfs_printk(KERN_DEBUG
, "Encrypting [%d] bytes.\n", size
);
350 crypto_blkcipher_encrypt_iv(&desc
, dest_sg
, src_sg
, size
);
351 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
357 * ecryptfs_lower_offset_for_extent
359 * Convert an eCryptfs page index into a lower byte offset
361 void ecryptfs_lower_offset_for_extent(loff_t
*offset
, loff_t extent_num
,
362 struct ecryptfs_crypt_stat
*crypt_stat
)
364 (*offset
) = ((crypt_stat
->extent_size
365 * crypt_stat
->num_header_extents_at_front
)
366 + (crypt_stat
->extent_size
* extent_num
));
370 * ecryptfs_encrypt_extent
371 * @enc_extent_page: Allocated page into which to encrypt the data in
373 * @crypt_stat: crypt_stat containing cryptographic context for the
374 * encryption operation
375 * @page: Page containing plaintext data extent to encrypt
376 * @extent_offset: Page extent offset for use in generating IV
378 * Encrypts one extent of data.
380 * Return zero on success; non-zero otherwise
382 static int ecryptfs_encrypt_extent(struct page
*enc_extent_page
,
383 struct ecryptfs_crypt_stat
*crypt_stat
,
385 unsigned long extent_offset
)
388 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
391 extent_base
= (((loff_t
)page
->index
)
392 * (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
));
393 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
394 (extent_base
+ extent_offset
));
396 ecryptfs_printk(KERN_ERR
, "Error attempting to "
397 "derive IV for extent [0x%.16x]; "
398 "rc = [%d]\n", (extent_base
+ extent_offset
),
402 if (unlikely(ecryptfs_verbosity
> 0)) {
403 ecryptfs_printk(KERN_DEBUG
, "Encrypting extent "
405 ecryptfs_dump_hex(extent_iv
, crypt_stat
->iv_bytes
);
406 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes before "
408 ecryptfs_dump_hex((char *)
410 + (extent_offset
* crypt_stat
->extent_size
)),
413 rc
= ecryptfs_encrypt_page_offset(crypt_stat
, enc_extent_page
, 0,
415 * crypt_stat
->extent_size
),
416 crypt_stat
->extent_size
, extent_iv
);
418 printk(KERN_ERR
"%s: Error attempting to encrypt page with "
419 "page->index = [%ld], extent_offset = [%ld]; "
420 "rc = [%d]\n", __FUNCTION__
, page
->index
, extent_offset
,
425 if (unlikely(ecryptfs_verbosity
> 0)) {
426 ecryptfs_printk(KERN_DEBUG
, "Encrypt extent [0x%.16x]; "
427 "rc = [%d]\n", (extent_base
+ extent_offset
),
429 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes after "
431 ecryptfs_dump_hex((char *)(page_address(enc_extent_page
)), 8);
438 * ecryptfs_encrypt_page
439 * @page: Page mapped from the eCryptfs inode for the file; contains
440 * decrypted content that needs to be encrypted (to a temporary
441 * page; not in place) and written out to the lower file
443 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
444 * that eCryptfs pages may straddle the lower pages -- for instance,
445 * if the file was created on a machine with an 8K page size
446 * (resulting in an 8K header), and then the file is copied onto a
447 * host with a 32K page size, then when reading page 0 of the eCryptfs
448 * file, 24K of page 0 of the lower file will be read and decrypted,
449 * and then 8K of page 1 of the lower file will be read and decrypted.
451 * Returns zero on success; negative on error
453 int ecryptfs_encrypt_page(struct page
*page
)
455 struct inode
*ecryptfs_inode
;
456 struct ecryptfs_crypt_stat
*crypt_stat
;
457 char *enc_extent_virt
= NULL
;
458 struct page
*enc_extent_page
;
459 loff_t extent_offset
;
462 ecryptfs_inode
= page
->mapping
->host
;
464 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
465 if (!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
)) {
466 rc
= ecryptfs_write_lower_page_segment(ecryptfs_inode
, page
,
469 printk(KERN_ERR
"%s: Error attempting to copy "
470 "page at index [%ld]\n", __FUNCTION__
,
474 enc_extent_virt
= kmalloc(PAGE_CACHE_SIZE
, GFP_USER
);
475 if (!enc_extent_virt
) {
477 ecryptfs_printk(KERN_ERR
, "Error allocating memory for "
478 "encrypted extent\n");
481 enc_extent_page
= virt_to_page(enc_extent_virt
);
482 for (extent_offset
= 0;
483 extent_offset
< (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
);
487 rc
= ecryptfs_encrypt_extent(enc_extent_page
, crypt_stat
, page
,
490 printk(KERN_ERR
"%s: Error encrypting extent; "
491 "rc = [%d]\n", __FUNCTION__
, rc
);
494 ecryptfs_lower_offset_for_extent(
495 &offset
, ((((loff_t
)page
->index
)
497 / crypt_stat
->extent_size
))
498 + extent_offset
), crypt_stat
);
499 rc
= ecryptfs_write_lower(ecryptfs_inode
, enc_extent_virt
,
500 offset
, crypt_stat
->extent_size
);
502 ecryptfs_printk(KERN_ERR
, "Error attempting "
503 "to write lower page; rc = [%d]"
510 kfree(enc_extent_virt
);
514 static int ecryptfs_decrypt_extent(struct page
*page
,
515 struct ecryptfs_crypt_stat
*crypt_stat
,
516 struct page
*enc_extent_page
,
517 unsigned long extent_offset
)
520 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
523 extent_base
= (((loff_t
)page
->index
)
524 * (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
));
525 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
526 (extent_base
+ extent_offset
));
528 ecryptfs_printk(KERN_ERR
, "Error attempting to "
529 "derive IV for extent [0x%.16x]; "
530 "rc = [%d]\n", (extent_base
+ extent_offset
),
534 if (unlikely(ecryptfs_verbosity
> 0)) {
535 ecryptfs_printk(KERN_DEBUG
, "Decrypting extent "
537 ecryptfs_dump_hex(extent_iv
, crypt_stat
->iv_bytes
);
538 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes before "
540 ecryptfs_dump_hex((char *)
541 (page_address(enc_extent_page
)
542 + (extent_offset
* crypt_stat
->extent_size
)),
545 rc
= ecryptfs_decrypt_page_offset(crypt_stat
, page
,
547 * crypt_stat
->extent_size
),
549 crypt_stat
->extent_size
, extent_iv
);
551 printk(KERN_ERR
"%s: Error attempting to decrypt to page with "
552 "page->index = [%ld], extent_offset = [%ld]; "
553 "rc = [%d]\n", __FUNCTION__
, page
->index
, extent_offset
,
558 if (unlikely(ecryptfs_verbosity
> 0)) {
559 ecryptfs_printk(KERN_DEBUG
, "Decrypt extent [0x%.16x]; "
560 "rc = [%d]\n", (extent_base
+ extent_offset
),
562 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes after "
564 ecryptfs_dump_hex((char *)(page_address(page
)
566 * crypt_stat
->extent_size
)), 8);
573 * ecryptfs_decrypt_page
574 * @page: Page mapped from the eCryptfs inode for the file; data read
575 * and decrypted from the lower file will be written into this
578 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
579 * that eCryptfs pages may straddle the lower pages -- for instance,
580 * if the file was created on a machine with an 8K page size
581 * (resulting in an 8K header), and then the file is copied onto a
582 * host with a 32K page size, then when reading page 0 of the eCryptfs
583 * file, 24K of page 0 of the lower file will be read and decrypted,
584 * and then 8K of page 1 of the lower file will be read and decrypted.
586 * Returns zero on success; negative on error
588 int ecryptfs_decrypt_page(struct page
*page
)
590 struct inode
*ecryptfs_inode
;
591 struct ecryptfs_crypt_stat
*crypt_stat
;
592 char *enc_extent_virt
= NULL
;
593 struct page
*enc_extent_page
;
594 unsigned long extent_offset
;
597 ecryptfs_inode
= page
->mapping
->host
;
599 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
600 if (!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
)) {
601 rc
= ecryptfs_read_lower_page_segment(page
, page
->index
, 0,
605 printk(KERN_ERR
"%s: Error attempting to copy "
606 "page at index [%ld]\n", __FUNCTION__
,
610 enc_extent_virt
= kmalloc(PAGE_CACHE_SIZE
, GFP_USER
);
611 if (!enc_extent_virt
) {
613 ecryptfs_printk(KERN_ERR
, "Error allocating memory for "
614 "encrypted extent\n");
617 enc_extent_page
= virt_to_page(enc_extent_virt
);
618 for (extent_offset
= 0;
619 extent_offset
< (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
);
623 ecryptfs_lower_offset_for_extent(
624 &offset
, ((page
->index
* (PAGE_CACHE_SIZE
625 / crypt_stat
->extent_size
))
626 + extent_offset
), crypt_stat
);
627 rc
= ecryptfs_read_lower(enc_extent_virt
, offset
,
628 crypt_stat
->extent_size
,
631 ecryptfs_printk(KERN_ERR
, "Error attempting "
632 "to read lower page; rc = [%d]"
636 rc
= ecryptfs_decrypt_extent(page
, crypt_stat
, enc_extent_page
,
639 printk(KERN_ERR
"%s: Error encrypting extent; "
640 "rc = [%d]\n", __FUNCTION__
, rc
);
646 kfree(enc_extent_virt
);
651 * decrypt_scatterlist
652 * @crypt_stat: Cryptographic context
653 * @dest_sg: The destination scatterlist to decrypt into
654 * @src_sg: The source scatterlist to decrypt from
655 * @size: The number of bytes to decrypt
656 * @iv: The initialization vector to use for the decryption
658 * Returns the number of bytes decrypted; negative value on error
660 static int decrypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
661 struct scatterlist
*dest_sg
,
662 struct scatterlist
*src_sg
, int size
,
665 struct blkcipher_desc desc
= {
666 .tfm
= crypt_stat
->tfm
,
668 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
672 /* Consider doing this once, when the file is opened */
673 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
674 rc
= crypto_blkcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
675 crypt_stat
->key_size
);
677 ecryptfs_printk(KERN_ERR
, "Error setting key; rc = [%d]\n",
679 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
683 ecryptfs_printk(KERN_DEBUG
, "Decrypting [%d] bytes.\n", size
);
684 rc
= crypto_blkcipher_decrypt_iv(&desc
, dest_sg
, src_sg
, size
);
685 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
687 ecryptfs_printk(KERN_ERR
, "Error decrypting; rc = [%d]\n",
697 * ecryptfs_encrypt_page_offset
698 * @crypt_stat: The cryptographic context
699 * @dst_page: The page to encrypt into
700 * @dst_offset: The offset in the page to encrypt into
701 * @src_page: The page to encrypt from
702 * @src_offset: The offset in the page to encrypt from
703 * @size: The number of bytes to encrypt
704 * @iv: The initialization vector to use for the encryption
706 * Returns the number of bytes encrypted
709 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
710 struct page
*dst_page
, int dst_offset
,
711 struct page
*src_page
, int src_offset
, int size
,
714 struct scatterlist src_sg
, dst_sg
;
716 sg_init_table(&src_sg
, 1);
717 sg_init_table(&dst_sg
, 1);
719 sg_set_page(&src_sg
, src_page
, size
, src_offset
);
720 sg_set_page(&dst_sg
, dst_page
, size
, dst_offset
);
721 return encrypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, size
, iv
);
725 * ecryptfs_decrypt_page_offset
726 * @crypt_stat: The cryptographic context
727 * @dst_page: The page to decrypt into
728 * @dst_offset: The offset in the page to decrypt into
729 * @src_page: The page to decrypt from
730 * @src_offset: The offset in the page to decrypt from
731 * @size: The number of bytes to decrypt
732 * @iv: The initialization vector to use for the decryption
734 * Returns the number of bytes decrypted
737 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
738 struct page
*dst_page
, int dst_offset
,
739 struct page
*src_page
, int src_offset
, int size
,
742 struct scatterlist src_sg
, dst_sg
;
744 sg_init_table(&src_sg
, 1);
745 sg_set_page(&src_sg
, src_page
, size
, src_offset
);
747 sg_init_table(&dst_sg
, 1);
748 sg_set_page(&dst_sg
, dst_page
, size
, dst_offset
);
750 return decrypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, size
, iv
);
753 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
756 * ecryptfs_init_crypt_ctx
757 * @crypt_stat: Uninitilized crypt stats structure
759 * Initialize the crypto context.
761 * TODO: Performance: Keep a cache of initialized cipher contexts;
762 * only init if needed
764 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat
*crypt_stat
)
769 if (!crypt_stat
->cipher
) {
770 ecryptfs_printk(KERN_ERR
, "No cipher specified\n");
773 ecryptfs_printk(KERN_DEBUG
,
774 "Initializing cipher [%s]; strlen = [%d]; "
775 "key_size_bits = [%d]\n",
776 crypt_stat
->cipher
, (int)strlen(crypt_stat
->cipher
),
777 crypt_stat
->key_size
<< 3);
778 if (crypt_stat
->tfm
) {
782 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
783 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
,
784 crypt_stat
->cipher
, "cbc");
787 crypt_stat
->tfm
= crypto_alloc_blkcipher(full_alg_name
, 0,
789 kfree(full_alg_name
);
790 if (IS_ERR(crypt_stat
->tfm
)) {
791 rc
= PTR_ERR(crypt_stat
->tfm
);
792 ecryptfs_printk(KERN_ERR
, "cryptfs: init_crypt_ctx(): "
793 "Error initializing cipher [%s]\n",
795 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
798 crypto_blkcipher_set_flags(crypt_stat
->tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
799 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
805 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat
*crypt_stat
)
809 crypt_stat
->extent_mask
= 0xFFFFFFFF;
810 crypt_stat
->extent_shift
= 0;
811 if (crypt_stat
->extent_size
== 0)
813 extent_size_tmp
= crypt_stat
->extent_size
;
814 while ((extent_size_tmp
& 0x01) == 0) {
815 extent_size_tmp
>>= 1;
816 crypt_stat
->extent_mask
<<= 1;
817 crypt_stat
->extent_shift
++;
821 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat
*crypt_stat
)
823 /* Default values; may be overwritten as we are parsing the
825 crypt_stat
->extent_size
= ECRYPTFS_DEFAULT_EXTENT_SIZE
;
826 set_extent_mask_and_shift(crypt_stat
);
827 crypt_stat
->iv_bytes
= ECRYPTFS_DEFAULT_IV_BYTES
;
828 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
829 crypt_stat
->num_header_extents_at_front
= 0;
831 if (PAGE_CACHE_SIZE
<= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)
832 crypt_stat
->num_header_extents_at_front
=
833 (ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
834 / crypt_stat
->extent_size
);
836 crypt_stat
->num_header_extents_at_front
=
837 (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
);
842 * ecryptfs_compute_root_iv
845 * On error, sets the root IV to all 0's.
847 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat
*crypt_stat
)
850 char dst
[MD5_DIGEST_SIZE
];
852 BUG_ON(crypt_stat
->iv_bytes
> MD5_DIGEST_SIZE
);
853 BUG_ON(crypt_stat
->iv_bytes
<= 0);
854 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
856 ecryptfs_printk(KERN_WARNING
, "Session key not valid; "
857 "cannot generate root IV\n");
860 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, crypt_stat
->key
,
861 crypt_stat
->key_size
);
863 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
864 "MD5 while generating root IV\n");
867 memcpy(crypt_stat
->root_iv
, dst
, crypt_stat
->iv_bytes
);
870 memset(crypt_stat
->root_iv
, 0, crypt_stat
->iv_bytes
);
871 crypt_stat
->flags
|= ECRYPTFS_SECURITY_WARNING
;
876 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat
*crypt_stat
)
878 get_random_bytes(crypt_stat
->key
, crypt_stat
->key_size
);
879 crypt_stat
->flags
|= ECRYPTFS_KEY_VALID
;
880 ecryptfs_compute_root_iv(crypt_stat
);
881 if (unlikely(ecryptfs_verbosity
> 0)) {
882 ecryptfs_printk(KERN_DEBUG
, "Generated new session key:\n");
883 ecryptfs_dump_hex(crypt_stat
->key
,
884 crypt_stat
->key_size
);
889 * ecryptfs_copy_mount_wide_flags_to_inode_flags
890 * @crypt_stat: The inode's cryptographic context
891 * @mount_crypt_stat: The mount point's cryptographic context
893 * This function propagates the mount-wide flags to individual inode
896 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
897 struct ecryptfs_crypt_stat
*crypt_stat
,
898 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
900 if (mount_crypt_stat
->flags
& ECRYPTFS_XATTR_METADATA_ENABLED
)
901 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
902 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
903 crypt_stat
->flags
|= ECRYPTFS_VIEW_AS_ENCRYPTED
;
906 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
907 struct ecryptfs_crypt_stat
*crypt_stat
,
908 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
910 struct ecryptfs_global_auth_tok
*global_auth_tok
;
913 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
914 list_for_each_entry(global_auth_tok
,
915 &mount_crypt_stat
->global_auth_tok_list
,
916 mount_crypt_stat_list
) {
917 rc
= ecryptfs_add_keysig(crypt_stat
, global_auth_tok
->sig
);
919 printk(KERN_ERR
"Error adding keysig; rc = [%d]\n", rc
);
921 &mount_crypt_stat
->global_auth_tok_list_mutex
);
925 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
931 * ecryptfs_set_default_crypt_stat_vals
932 * @crypt_stat: The inode's cryptographic context
933 * @mount_crypt_stat: The mount point's cryptographic context
935 * Default values in the event that policy does not override them.
937 static void ecryptfs_set_default_crypt_stat_vals(
938 struct ecryptfs_crypt_stat
*crypt_stat
,
939 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
941 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
943 ecryptfs_set_default_sizes(crypt_stat
);
944 strcpy(crypt_stat
->cipher
, ECRYPTFS_DEFAULT_CIPHER
);
945 crypt_stat
->key_size
= ECRYPTFS_DEFAULT_KEY_BYTES
;
946 crypt_stat
->flags
&= ~(ECRYPTFS_KEY_VALID
);
947 crypt_stat
->file_version
= ECRYPTFS_FILE_VERSION
;
948 crypt_stat
->mount_crypt_stat
= mount_crypt_stat
;
952 * ecryptfs_new_file_context
953 * @ecryptfs_dentry: The eCryptfs dentry
955 * If the crypto context for the file has not yet been established,
956 * this is where we do that. Establishing a new crypto context
957 * involves the following decisions:
958 * - What cipher to use?
959 * - What set of authentication tokens to use?
960 * Here we just worry about getting enough information into the
961 * authentication tokens so that we know that they are available.
962 * We associate the available authentication tokens with the new file
963 * via the set of signatures in the crypt_stat struct. Later, when
964 * the headers are actually written out, we may again defer to
965 * userspace to perform the encryption of the session key; for the
966 * foreseeable future, this will be the case with public key packets.
968 * Returns zero on success; non-zero otherwise
970 int ecryptfs_new_file_context(struct dentry
*ecryptfs_dentry
)
972 struct ecryptfs_crypt_stat
*crypt_stat
=
973 &ecryptfs_inode_to_private(ecryptfs_dentry
->d_inode
)->crypt_stat
;
974 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
975 &ecryptfs_superblock_to_private(
976 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
980 ecryptfs_set_default_crypt_stat_vals(crypt_stat
, mount_crypt_stat
);
981 crypt_stat
->flags
|= (ECRYPTFS_ENCRYPTED
| ECRYPTFS_KEY_VALID
);
982 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
984 rc
= ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat
,
987 printk(KERN_ERR
"Error attempting to copy mount-wide key sigs "
988 "to the inode key sigs; rc = [%d]\n", rc
);
992 strlen(mount_crypt_stat
->global_default_cipher_name
);
993 memcpy(crypt_stat
->cipher
,
994 mount_crypt_stat
->global_default_cipher_name
,
996 crypt_stat
->cipher
[cipher_name_len
] = '\0';
997 crypt_stat
->key_size
=
998 mount_crypt_stat
->global_default_cipher_key_size
;
999 ecryptfs_generate_new_key(crypt_stat
);
1000 rc
= ecryptfs_init_crypt_ctx(crypt_stat
);
1002 ecryptfs_printk(KERN_ERR
, "Error initializing cryptographic "
1003 "context for cipher [%s]: rc = [%d]\n",
1004 crypt_stat
->cipher
, rc
);
1010 * contains_ecryptfs_marker - check for the ecryptfs marker
1011 * @data: The data block in which to check
1013 * Returns one if marker found; zero if not found
1015 static int contains_ecryptfs_marker(char *data
)
1019 memcpy(&m_1
, data
, 4);
1020 m_1
= be32_to_cpu(m_1
);
1021 memcpy(&m_2
, (data
+ 4), 4);
1022 m_2
= be32_to_cpu(m_2
);
1023 if ((m_1
^ MAGIC_ECRYPTFS_MARKER
) == m_2
)
1025 ecryptfs_printk(KERN_DEBUG
, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1026 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1
, m_2
,
1027 MAGIC_ECRYPTFS_MARKER
);
1028 ecryptfs_printk(KERN_DEBUG
, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1029 "[0x%.8x]\n", (m_1
^ MAGIC_ECRYPTFS_MARKER
));
1033 struct ecryptfs_flag_map_elem
{
1038 /* Add support for additional flags by adding elements here. */
1039 static struct ecryptfs_flag_map_elem ecryptfs_flag_map
[] = {
1040 {0x00000001, ECRYPTFS_ENABLE_HMAC
},
1041 {0x00000002, ECRYPTFS_ENCRYPTED
},
1042 {0x00000004, ECRYPTFS_METADATA_IN_XATTR
}
1046 * ecryptfs_process_flags
1047 * @crypt_stat: The cryptographic context
1048 * @page_virt: Source data to be parsed
1049 * @bytes_read: Updated with the number of bytes read
1051 * Returns zero on success; non-zero if the flag set is invalid
1053 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat
*crypt_stat
,
1054 char *page_virt
, int *bytes_read
)
1060 memcpy(&flags
, page_virt
, 4);
1061 flags
= be32_to_cpu(flags
);
1062 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
1063 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
1064 if (flags
& ecryptfs_flag_map
[i
].file_flag
) {
1065 crypt_stat
->flags
|= ecryptfs_flag_map
[i
].local_flag
;
1067 crypt_stat
->flags
&= ~(ecryptfs_flag_map
[i
].local_flag
);
1068 /* Version is in top 8 bits of the 32-bit flag vector */
1069 crypt_stat
->file_version
= ((flags
>> 24) & 0xFF);
1075 * write_ecryptfs_marker
1076 * @page_virt: The pointer to in a page to begin writing the marker
1077 * @written: Number of bytes written
1079 * Marker = 0x3c81b7f5
1081 static void write_ecryptfs_marker(char *page_virt
, size_t *written
)
1085 get_random_bytes(&m_1
, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2));
1086 m_2
= (m_1
^ MAGIC_ECRYPTFS_MARKER
);
1087 m_1
= cpu_to_be32(m_1
);
1088 memcpy(page_virt
, &m_1
, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2));
1089 m_2
= cpu_to_be32(m_2
);
1090 memcpy(page_virt
+ (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2), &m_2
,
1091 (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2));
1092 (*written
) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1096 write_ecryptfs_flags(char *page_virt
, struct ecryptfs_crypt_stat
*crypt_stat
,
1102 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
1103 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
1104 if (crypt_stat
->flags
& ecryptfs_flag_map
[i
].local_flag
)
1105 flags
|= ecryptfs_flag_map
[i
].file_flag
;
1106 /* Version is in top 8 bits of the 32-bit flag vector */
1107 flags
|= ((((u8
)crypt_stat
->file_version
) << 24) & 0xFF000000);
1108 flags
= cpu_to_be32(flags
);
1109 memcpy(page_virt
, &flags
, 4);
1113 struct ecryptfs_cipher_code_str_map_elem
{
1114 char cipher_str
[16];
1118 /* Add support for additional ciphers by adding elements here. The
1119 * cipher_code is whatever OpenPGP applicatoins use to identify the
1120 * ciphers. List in order of probability. */
1121 static struct ecryptfs_cipher_code_str_map_elem
1122 ecryptfs_cipher_code_str_map
[] = {
1123 {"aes",RFC2440_CIPHER_AES_128
},
1124 {"blowfish", RFC2440_CIPHER_BLOWFISH
},
1125 {"des3_ede", RFC2440_CIPHER_DES3_EDE
},
1126 {"cast5", RFC2440_CIPHER_CAST_5
},
1127 {"twofish", RFC2440_CIPHER_TWOFISH
},
1128 {"cast6", RFC2440_CIPHER_CAST_6
},
1129 {"aes", RFC2440_CIPHER_AES_192
},
1130 {"aes", RFC2440_CIPHER_AES_256
}
1134 * ecryptfs_code_for_cipher_string
1135 * @crypt_stat: The cryptographic context
1137 * Returns zero on no match, or the cipher code on match
1139 u16
ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat
*crypt_stat
)
1143 struct ecryptfs_cipher_code_str_map_elem
*map
=
1144 ecryptfs_cipher_code_str_map
;
1146 if (strcmp(crypt_stat
->cipher
, "aes") == 0) {
1147 switch (crypt_stat
->key_size
) {
1149 code
= RFC2440_CIPHER_AES_128
;
1152 code
= RFC2440_CIPHER_AES_192
;
1155 code
= RFC2440_CIPHER_AES_256
;
1158 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1159 if (strcmp(crypt_stat
->cipher
, map
[i
].cipher_str
) == 0){
1160 code
= map
[i
].cipher_code
;
1168 * ecryptfs_cipher_code_to_string
1169 * @str: Destination to write out the cipher name
1170 * @cipher_code: The code to convert to cipher name string
1172 * Returns zero on success
1174 int ecryptfs_cipher_code_to_string(char *str
, u16 cipher_code
)
1180 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1181 if (cipher_code
== ecryptfs_cipher_code_str_map
[i
].cipher_code
)
1182 strcpy(str
, ecryptfs_cipher_code_str_map
[i
].cipher_str
);
1183 if (str
[0] == '\0') {
1184 ecryptfs_printk(KERN_WARNING
, "Cipher code not recognized: "
1185 "[%d]\n", cipher_code
);
1191 int ecryptfs_read_and_validate_header_region(char *data
,
1192 struct inode
*ecryptfs_inode
)
1194 struct ecryptfs_crypt_stat
*crypt_stat
=
1195 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
1198 rc
= ecryptfs_read_lower(data
, 0, crypt_stat
->extent_size
,
1201 printk(KERN_ERR
"%s: Error reading header region; rc = [%d]\n",
1205 if (!contains_ecryptfs_marker(data
+ ECRYPTFS_FILE_SIZE_BYTES
)) {
1207 ecryptfs_printk(KERN_DEBUG
, "Valid marker not found\n");
1214 ecryptfs_write_header_metadata(char *virt
,
1215 struct ecryptfs_crypt_stat
*crypt_stat
,
1218 u32 header_extent_size
;
1219 u16 num_header_extents_at_front
;
1221 header_extent_size
= (u32
)crypt_stat
->extent_size
;
1222 num_header_extents_at_front
=
1223 (u16
)crypt_stat
->num_header_extents_at_front
;
1224 header_extent_size
= cpu_to_be32(header_extent_size
);
1225 memcpy(virt
, &header_extent_size
, 4);
1227 num_header_extents_at_front
= cpu_to_be16(num_header_extents_at_front
);
1228 memcpy(virt
, &num_header_extents_at_front
, 2);
1232 struct kmem_cache
*ecryptfs_header_cache_0
;
1233 struct kmem_cache
*ecryptfs_header_cache_1
;
1234 struct kmem_cache
*ecryptfs_header_cache_2
;
1237 * ecryptfs_write_headers_virt
1238 * @page_virt: The virtual address to write the headers to
1239 * @size: Set to the number of bytes written by this function
1240 * @crypt_stat: The cryptographic context
1241 * @ecryptfs_dentry: The eCryptfs dentry
1246 * Octets 0-7: Unencrypted file size (big-endian)
1247 * Octets 8-15: eCryptfs special marker
1248 * Octets 16-19: Flags
1249 * Octet 16: File format version number (between 0 and 255)
1250 * Octets 17-18: Reserved
1251 * Octet 19: Bit 1 (lsb): Reserved
1253 * Bits 3-8: Reserved
1254 * Octets 20-23: Header extent size (big-endian)
1255 * Octets 24-25: Number of header extents at front of file
1257 * Octet 26: Begin RFC 2440 authentication token packet set
1259 * Lower data (CBC encrypted)
1261 * Lower data (CBC encrypted)
1264 * Returns zero on success
1266 static int ecryptfs_write_headers_virt(char *page_virt
, size_t *size
,
1267 struct ecryptfs_crypt_stat
*crypt_stat
,
1268 struct dentry
*ecryptfs_dentry
)
1274 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1275 write_ecryptfs_marker((page_virt
+ offset
), &written
);
1277 write_ecryptfs_flags((page_virt
+ offset
), crypt_stat
, &written
);
1279 ecryptfs_write_header_metadata((page_virt
+ offset
), crypt_stat
,
1282 rc
= ecryptfs_generate_key_packet_set((page_virt
+ offset
), crypt_stat
,
1283 ecryptfs_dentry
, &written
,
1284 PAGE_CACHE_SIZE
- offset
);
1286 ecryptfs_printk(KERN_WARNING
, "Error generating key packet "
1287 "set; rc = [%d]\n", rc
);
1296 ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat
*crypt_stat
,
1297 struct dentry
*ecryptfs_dentry
,
1300 int current_header_page
;
1304 rc
= ecryptfs_write_lower(ecryptfs_dentry
->d_inode
, page_virt
,
1305 0, PAGE_CACHE_SIZE
);
1307 printk(KERN_ERR
"%s: Error attempting to write header "
1308 "information to lower file; rc = [%d]\n", __FUNCTION__
,
1312 header_pages
= ((crypt_stat
->extent_size
1313 * crypt_stat
->num_header_extents_at_front
)
1315 memset(page_virt
, 0, PAGE_CACHE_SIZE
);
1316 current_header_page
= 1;
1317 while (current_header_page
< header_pages
) {
1320 offset
= (((loff_t
)current_header_page
) << PAGE_CACHE_SHIFT
);
1321 if ((rc
= ecryptfs_write_lower(ecryptfs_dentry
->d_inode
,
1323 PAGE_CACHE_SIZE
))) {
1324 printk(KERN_ERR
"%s: Error attempting to write header "
1325 "information to lower file; rc = [%d]\n",
1329 current_header_page
++;
1336 ecryptfs_write_metadata_to_xattr(struct dentry
*ecryptfs_dentry
,
1337 struct ecryptfs_crypt_stat
*crypt_stat
,
1338 char *page_virt
, size_t size
)
1342 rc
= ecryptfs_setxattr(ecryptfs_dentry
, ECRYPTFS_XATTR_NAME
, page_virt
,
1348 * ecryptfs_write_metadata
1349 * @ecryptfs_dentry: The eCryptfs dentry
1351 * Write the file headers out. This will likely involve a userspace
1352 * callout, in which the session key is encrypted with one or more
1353 * public keys and/or the passphrase necessary to do the encryption is
1354 * retrieved via a prompt. Exactly what happens at this point should
1355 * be policy-dependent.
1357 * TODO: Support header information spanning multiple pages
1359 * Returns zero on success; non-zero on error
1361 int ecryptfs_write_metadata(struct dentry
*ecryptfs_dentry
)
1363 struct ecryptfs_crypt_stat
*crypt_stat
=
1364 &ecryptfs_inode_to_private(ecryptfs_dentry
->d_inode
)->crypt_stat
;
1369 if (likely(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
)) {
1370 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
1371 printk(KERN_ERR
"Key is invalid; bailing out\n");
1377 ecryptfs_printk(KERN_WARNING
,
1378 "Called with crypt_stat->encrypted == 0\n");
1381 /* Released in this function */
1382 page_virt
= kmem_cache_zalloc(ecryptfs_header_cache_0
, GFP_USER
);
1384 ecryptfs_printk(KERN_ERR
, "Out of memory\n");
1388 rc
= ecryptfs_write_headers_virt(page_virt
, &size
, crypt_stat
,
1391 ecryptfs_printk(KERN_ERR
, "Error whilst writing headers\n");
1392 memset(page_virt
, 0, PAGE_CACHE_SIZE
);
1395 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1396 rc
= ecryptfs_write_metadata_to_xattr(ecryptfs_dentry
,
1397 crypt_stat
, page_virt
,
1400 rc
= ecryptfs_write_metadata_to_contents(crypt_stat
,
1404 printk(KERN_ERR
"Error writing metadata out to lower file; "
1409 kmem_cache_free(ecryptfs_header_cache_0
, page_virt
);
1414 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1415 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1416 static int parse_header_metadata(struct ecryptfs_crypt_stat
*crypt_stat
,
1417 char *virt
, int *bytes_read
,
1418 int validate_header_size
)
1421 u32 header_extent_size
;
1422 u16 num_header_extents_at_front
;
1424 memcpy(&header_extent_size
, virt
, sizeof(u32
));
1425 header_extent_size
= be32_to_cpu(header_extent_size
);
1426 virt
+= sizeof(u32
);
1427 memcpy(&num_header_extents_at_front
, virt
, sizeof(u16
));
1428 num_header_extents_at_front
= be16_to_cpu(num_header_extents_at_front
);
1429 crypt_stat
->num_header_extents_at_front
=
1430 (int)num_header_extents_at_front
;
1431 (*bytes_read
) = (sizeof(u32
) + sizeof(u16
));
1432 if ((validate_header_size
== ECRYPTFS_VALIDATE_HEADER_SIZE
)
1433 && ((crypt_stat
->extent_size
1434 * crypt_stat
->num_header_extents_at_front
)
1435 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)) {
1437 printk(KERN_WARNING
"Invalid number of header extents: [%zd]\n",
1438 crypt_stat
->num_header_extents_at_front
);
1444 * set_default_header_data
1445 * @crypt_stat: The cryptographic context
1447 * For version 0 file format; this function is only for backwards
1448 * compatibility for files created with the prior versions of
1451 static void set_default_header_data(struct ecryptfs_crypt_stat
*crypt_stat
)
1453 crypt_stat
->num_header_extents_at_front
= 2;
1457 * ecryptfs_read_headers_virt
1458 * @page_virt: The virtual address into which to read the headers
1459 * @crypt_stat: The cryptographic context
1460 * @ecryptfs_dentry: The eCryptfs dentry
1461 * @validate_header_size: Whether to validate the header size while reading
1463 * Read/parse the header data. The header format is detailed in the
1464 * comment block for the ecryptfs_write_headers_virt() function.
1466 * Returns zero on success
1468 static int ecryptfs_read_headers_virt(char *page_virt
,
1469 struct ecryptfs_crypt_stat
*crypt_stat
,
1470 struct dentry
*ecryptfs_dentry
,
1471 int validate_header_size
)
1477 ecryptfs_set_default_sizes(crypt_stat
);
1478 crypt_stat
->mount_crypt_stat
= &ecryptfs_superblock_to_private(
1479 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1480 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1481 rc
= contains_ecryptfs_marker(page_virt
+ offset
);
1486 offset
+= MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1487 rc
= ecryptfs_process_flags(crypt_stat
, (page_virt
+ offset
),
1490 ecryptfs_printk(KERN_WARNING
, "Error processing flags\n");
1493 if (crypt_stat
->file_version
> ECRYPTFS_SUPPORTED_FILE_VERSION
) {
1494 ecryptfs_printk(KERN_WARNING
, "File version is [%d]; only "
1495 "file version [%d] is supported by this "
1496 "version of eCryptfs\n",
1497 crypt_stat
->file_version
,
1498 ECRYPTFS_SUPPORTED_FILE_VERSION
);
1502 offset
+= bytes_read
;
1503 if (crypt_stat
->file_version
>= 1) {
1504 rc
= parse_header_metadata(crypt_stat
, (page_virt
+ offset
),
1505 &bytes_read
, validate_header_size
);
1507 ecryptfs_printk(KERN_WARNING
, "Error reading header "
1508 "metadata; rc = [%d]\n", rc
);
1510 offset
+= bytes_read
;
1512 set_default_header_data(crypt_stat
);
1513 rc
= ecryptfs_parse_packet_set(crypt_stat
, (page_virt
+ offset
),
1520 * ecryptfs_read_xattr_region
1521 * @page_virt: The vitual address into which to read the xattr data
1522 * @ecryptfs_inode: The eCryptfs inode
1524 * Attempts to read the crypto metadata from the extended attribute
1525 * region of the lower file.
1527 * Returns zero on success; non-zero on error
1529 int ecryptfs_read_xattr_region(char *page_virt
, struct inode
*ecryptfs_inode
)
1531 struct dentry
*lower_dentry
=
1532 ecryptfs_inode_to_private(ecryptfs_inode
)->lower_file
->f_dentry
;
1536 size
= ecryptfs_getxattr_lower(lower_dentry
, ECRYPTFS_XATTR_NAME
,
1537 page_virt
, ECRYPTFS_DEFAULT_EXTENT_SIZE
);
1539 printk(KERN_ERR
"Error attempting to read the [%s] "
1540 "xattr from the lower file; return value = [%zd]\n",
1541 ECRYPTFS_XATTR_NAME
, size
);
1549 int ecryptfs_read_and_validate_xattr_region(char *page_virt
,
1550 struct dentry
*ecryptfs_dentry
)
1554 rc
= ecryptfs_read_xattr_region(page_virt
, ecryptfs_dentry
->d_inode
);
1557 if (!contains_ecryptfs_marker(page_virt
+ ECRYPTFS_FILE_SIZE_BYTES
)) {
1558 printk(KERN_WARNING
"Valid data found in [%s] xattr, but "
1559 "the marker is invalid\n", ECRYPTFS_XATTR_NAME
);
1567 * ecryptfs_read_metadata
1569 * Common entry point for reading file metadata. From here, we could
1570 * retrieve the header information from the header region of the file,
1571 * the xattr region of the file, or some other repostory that is
1572 * stored separately from the file itself. The current implementation
1573 * supports retrieving the metadata information from the file contents
1574 * and from the xattr region.
1576 * Returns zero if valid headers found and parsed; non-zero otherwise
1578 int ecryptfs_read_metadata(struct dentry
*ecryptfs_dentry
)
1581 char *page_virt
= NULL
;
1582 struct inode
*ecryptfs_inode
= ecryptfs_dentry
->d_inode
;
1583 struct ecryptfs_crypt_stat
*crypt_stat
=
1584 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
1585 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
1586 &ecryptfs_superblock_to_private(
1587 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1589 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
1591 /* Read the first page from the underlying file */
1592 page_virt
= kmem_cache_alloc(ecryptfs_header_cache_1
, GFP_USER
);
1595 printk(KERN_ERR
"%s: Unable to allocate page_virt\n",
1599 rc
= ecryptfs_read_lower(page_virt
, 0, crypt_stat
->extent_size
,
1602 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1604 ECRYPTFS_VALIDATE_HEADER_SIZE
);
1606 rc
= ecryptfs_read_xattr_region(page_virt
, ecryptfs_inode
);
1608 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1609 "file header region or xattr region\n");
1613 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1615 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE
);
1617 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1618 "file xattr region either\n");
1621 if (crypt_stat
->mount_crypt_stat
->flags
1622 & ECRYPTFS_XATTR_METADATA_ENABLED
) {
1623 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
1625 printk(KERN_WARNING
"Attempt to access file with "
1626 "crypto metadata only in the extended attribute "
1627 "region, but eCryptfs was mounted without "
1628 "xattr support enabled. eCryptfs will not treat "
1629 "this like an encrypted file.\n");
1635 memset(page_virt
, 0, PAGE_CACHE_SIZE
);
1636 kmem_cache_free(ecryptfs_header_cache_1
, page_virt
);
1642 * ecryptfs_encode_filename - converts a plaintext file name to cipher text
1643 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1644 * @name: The plaintext name
1645 * @length: The length of the plaintext
1646 * @encoded_name: The encypted name
1648 * Encrypts and encodes a filename into something that constitutes a
1649 * valid filename for a filesystem, with printable characters.
1651 * We assume that we have a properly initialized crypto context,
1652 * pointed to by crypt_stat->tfm.
1654 * TODO: Implement filename decoding and decryption here, in place of
1655 * memcpy. We are keeping the framework around for now to (1)
1656 * facilitate testing of the components needed to implement filename
1657 * encryption and (2) to provide a code base from which other
1658 * developers in the community can easily implement this feature.
1660 * Returns the length of encoded filename; negative if error
1663 ecryptfs_encode_filename(struct ecryptfs_crypt_stat
*crypt_stat
,
1664 const char *name
, int length
, char **encoded_name
)
1668 (*encoded_name
) = kmalloc(length
+ 2, GFP_KERNEL
);
1669 if (!(*encoded_name
)) {
1673 /* TODO: Filename encryption is a scheduled feature for a
1674 * future version of eCryptfs. This function is here only for
1675 * the purpose of providing a framework for other developers
1676 * to easily implement filename encryption. Hint: Replace this
1677 * memcpy() with a call to encrypt and encode the
1678 * filename, the set the length accordingly. */
1679 memcpy((void *)(*encoded_name
), (void *)name
, length
);
1680 (*encoded_name
)[length
] = '\0';
1687 * ecryptfs_decode_filename - converts the cipher text name to plaintext
1688 * @crypt_stat: The crypt_stat struct associated with the file
1689 * @name: The filename in cipher text
1690 * @length: The length of the cipher text name
1691 * @decrypted_name: The plaintext name
1693 * Decodes and decrypts the filename.
1695 * We assume that we have a properly initialized crypto context,
1696 * pointed to by crypt_stat->tfm.
1698 * TODO: Implement filename decoding and decryption here, in place of
1699 * memcpy. We are keeping the framework around for now to (1)
1700 * facilitate testing of the components needed to implement filename
1701 * encryption and (2) to provide a code base from which other
1702 * developers in the community can easily implement this feature.
1704 * Returns the length of decoded filename; negative if error
1707 ecryptfs_decode_filename(struct ecryptfs_crypt_stat
*crypt_stat
,
1708 const char *name
, int length
, char **decrypted_name
)
1712 (*decrypted_name
) = kmalloc(length
+ 2, GFP_KERNEL
);
1713 if (!(*decrypted_name
)) {
1717 /* TODO: Filename encryption is a scheduled feature for a
1718 * future version of eCryptfs. This function is here only for
1719 * the purpose of providing a framework for other developers
1720 * to easily implement filename encryption. Hint: Replace this
1721 * memcpy() with a call to decode and decrypt the
1722 * filename, the set the length accordingly. */
1723 memcpy((void *)(*decrypted_name
), (void *)name
, length
);
1724 (*decrypted_name
)[length
+ 1] = '\0'; /* Only for convenience
1725 * in printing out the
1734 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1735 * @key_tfm: Crypto context for key material, set by this function
1736 * @cipher_name: Name of the cipher
1737 * @key_size: Size of the key in bytes
1739 * Returns zero on success. Any crypto_tfm structs allocated here
1740 * should be released by other functions, such as on a superblock put
1741 * event, regardless of whether this function succeeds for fails.
1744 ecryptfs_process_key_cipher(struct crypto_blkcipher
**key_tfm
,
1745 char *cipher_name
, size_t *key_size
)
1747 char dummy_key
[ECRYPTFS_MAX_KEY_BYTES
];
1748 char *full_alg_name
;
1752 if (*key_size
> ECRYPTFS_MAX_KEY_BYTES
) {
1754 printk(KERN_ERR
"Requested key size is [%Zd] bytes; maximum "
1755 "allowable is [%d]\n", *key_size
, ECRYPTFS_MAX_KEY_BYTES
);
1758 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
, cipher_name
,
1762 *key_tfm
= crypto_alloc_blkcipher(full_alg_name
, 0, CRYPTO_ALG_ASYNC
);
1763 kfree(full_alg_name
);
1764 if (IS_ERR(*key_tfm
)) {
1765 rc
= PTR_ERR(*key_tfm
);
1766 printk(KERN_ERR
"Unable to allocate crypto cipher with name "
1767 "[%s]; rc = [%d]\n", cipher_name
, rc
);
1770 crypto_blkcipher_set_flags(*key_tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
1771 if (*key_size
== 0) {
1772 struct blkcipher_alg
*alg
= crypto_blkcipher_alg(*key_tfm
);
1774 *key_size
= alg
->max_keysize
;
1776 get_random_bytes(dummy_key
, *key_size
);
1777 rc
= crypto_blkcipher_setkey(*key_tfm
, dummy_key
, *key_size
);
1779 printk(KERN_ERR
"Error attempting to set key of size [%Zd] for "
1780 "cipher [%s]; rc = [%d]\n", *key_size
, cipher_name
, rc
);
1788 struct kmem_cache
*ecryptfs_key_tfm_cache
;
1789 struct list_head key_tfm_list
;
1790 struct mutex key_tfm_list_mutex
;
1792 int ecryptfs_init_crypto(void)
1794 mutex_init(&key_tfm_list_mutex
);
1795 INIT_LIST_HEAD(&key_tfm_list
);
1799 int ecryptfs_destroy_crypto(void)
1801 struct ecryptfs_key_tfm
*key_tfm
, *key_tfm_tmp
;
1803 mutex_lock(&key_tfm_list_mutex
);
1804 list_for_each_entry_safe(key_tfm
, key_tfm_tmp
, &key_tfm_list
,
1806 list_del(&key_tfm
->key_tfm_list
);
1807 if (key_tfm
->key_tfm
)
1808 crypto_free_blkcipher(key_tfm
->key_tfm
);
1809 kmem_cache_free(ecryptfs_key_tfm_cache
, key_tfm
);
1811 mutex_unlock(&key_tfm_list_mutex
);
1816 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm
**key_tfm
, char *cipher_name
,
1819 struct ecryptfs_key_tfm
*tmp_tfm
;
1822 tmp_tfm
= kmem_cache_alloc(ecryptfs_key_tfm_cache
, GFP_KERNEL
);
1823 if (key_tfm
!= NULL
)
1824 (*key_tfm
) = tmp_tfm
;
1827 printk(KERN_ERR
"Error attempting to allocate from "
1828 "ecryptfs_key_tfm_cache\n");
1831 mutex_init(&tmp_tfm
->key_tfm_mutex
);
1832 strncpy(tmp_tfm
->cipher_name
, cipher_name
,
1833 ECRYPTFS_MAX_CIPHER_NAME_SIZE
);
1834 tmp_tfm
->key_size
= key_size
;
1835 rc
= ecryptfs_process_key_cipher(&tmp_tfm
->key_tfm
,
1836 tmp_tfm
->cipher_name
,
1837 &tmp_tfm
->key_size
);
1839 printk(KERN_ERR
"Error attempting to initialize key TFM "
1840 "cipher with name = [%s]; rc = [%d]\n",
1841 tmp_tfm
->cipher_name
, rc
);
1842 kmem_cache_free(ecryptfs_key_tfm_cache
, tmp_tfm
);
1843 if (key_tfm
!= NULL
)
1847 mutex_lock(&key_tfm_list_mutex
);
1848 list_add(&tmp_tfm
->key_tfm_list
, &key_tfm_list
);
1849 mutex_unlock(&key_tfm_list_mutex
);
1854 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher
**tfm
,
1855 struct mutex
**tfm_mutex
,
1858 struct ecryptfs_key_tfm
*key_tfm
;
1862 (*tfm_mutex
) = NULL
;
1863 mutex_lock(&key_tfm_list_mutex
);
1864 list_for_each_entry(key_tfm
, &key_tfm_list
, key_tfm_list
) {
1865 if (strcmp(key_tfm
->cipher_name
, cipher_name
) == 0) {
1866 (*tfm
) = key_tfm
->key_tfm
;
1867 (*tfm_mutex
) = &key_tfm
->key_tfm_mutex
;
1868 mutex_unlock(&key_tfm_list_mutex
);
1872 mutex_unlock(&key_tfm_list_mutex
);
1873 rc
= ecryptfs_add_new_key_tfm(&key_tfm
, cipher_name
, 0);
1875 printk(KERN_ERR
"Error adding new key_tfm to list; rc = [%d]\n",
1879 (*tfm
) = key_tfm
->key_tfm
;
1880 (*tfm_mutex
) = &key_tfm
->key_tfm_mutex
;