[IA64] arch/ia64/sn/kernel/mca.c: undo lock when sn_oemdata can't be extended
[wrt350n-kernel.git] / kernel / signal.c
blob12006308c7eba5f920ba417bcff27a42312399af
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
37 * SLAB caches for signal bits.
40 static struct kmem_cache *sigqueue_cachep;
43 static int sig_ignored(struct task_struct *t, int sig)
45 void __user * handler;
48 * Tracers always want to know about signals..
50 if (t->ptrace & PT_PTRACED)
51 return 0;
54 * Blocked signals are never ignored, since the
55 * signal handler may change by the time it is
56 * unblocked.
58 if (sigismember(&t->blocked, sig))
59 return 0;
61 /* Is it explicitly or implicitly ignored? */
62 handler = t->sighand->action[sig-1].sa.sa_handler;
63 return handler == SIG_IGN ||
64 (handler == SIG_DFL && sig_kernel_ignore(sig));
68 * Re-calculate pending state from the set of locally pending
69 * signals, globally pending signals, and blocked signals.
71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
73 unsigned long ready;
74 long i;
76 switch (_NSIG_WORDS) {
77 default:
78 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
79 ready |= signal->sig[i] &~ blocked->sig[i];
80 break;
82 case 4: ready = signal->sig[3] &~ blocked->sig[3];
83 ready |= signal->sig[2] &~ blocked->sig[2];
84 ready |= signal->sig[1] &~ blocked->sig[1];
85 ready |= signal->sig[0] &~ blocked->sig[0];
86 break;
88 case 2: ready = signal->sig[1] &~ blocked->sig[1];
89 ready |= signal->sig[0] &~ blocked->sig[0];
90 break;
92 case 1: ready = signal->sig[0] &~ blocked->sig[0];
94 return ready != 0;
97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
99 static int recalc_sigpending_tsk(struct task_struct *t)
101 if (t->signal->group_stop_count > 0 ||
102 PENDING(&t->pending, &t->blocked) ||
103 PENDING(&t->signal->shared_pending, &t->blocked)) {
104 set_tsk_thread_flag(t, TIF_SIGPENDING);
105 return 1;
108 * We must never clear the flag in another thread, or in current
109 * when it's possible the current syscall is returning -ERESTART*.
110 * So we don't clear it here, and only callers who know they should do.
112 return 0;
116 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
117 * This is superfluous when called on current, the wakeup is a harmless no-op.
119 void recalc_sigpending_and_wake(struct task_struct *t)
121 if (recalc_sigpending_tsk(t))
122 signal_wake_up(t, 0);
125 void recalc_sigpending(void)
127 if (!recalc_sigpending_tsk(current))
128 clear_thread_flag(TIF_SIGPENDING);
132 /* Given the mask, find the first available signal that should be serviced. */
134 int next_signal(struct sigpending *pending, sigset_t *mask)
136 unsigned long i, *s, *m, x;
137 int sig = 0;
139 s = pending->signal.sig;
140 m = mask->sig;
141 switch (_NSIG_WORDS) {
142 default:
143 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
144 if ((x = *s &~ *m) != 0) {
145 sig = ffz(~x) + i*_NSIG_BPW + 1;
146 break;
148 break;
150 case 2: if ((x = s[0] &~ m[0]) != 0)
151 sig = 1;
152 else if ((x = s[1] &~ m[1]) != 0)
153 sig = _NSIG_BPW + 1;
154 else
155 break;
156 sig += ffz(~x);
157 break;
159 case 1: if ((x = *s &~ *m) != 0)
160 sig = ffz(~x) + 1;
161 break;
164 return sig;
167 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
168 int override_rlimit)
170 struct sigqueue *q = NULL;
171 struct user_struct *user;
174 * In order to avoid problems with "switch_user()", we want to make
175 * sure that the compiler doesn't re-load "t->user"
177 user = t->user;
178 barrier();
179 atomic_inc(&user->sigpending);
180 if (override_rlimit ||
181 atomic_read(&user->sigpending) <=
182 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
183 q = kmem_cache_alloc(sigqueue_cachep, flags);
184 if (unlikely(q == NULL)) {
185 atomic_dec(&user->sigpending);
186 } else {
187 INIT_LIST_HEAD(&q->list);
188 q->flags = 0;
189 q->user = get_uid(user);
191 return(q);
194 static void __sigqueue_free(struct sigqueue *q)
196 if (q->flags & SIGQUEUE_PREALLOC)
197 return;
198 atomic_dec(&q->user->sigpending);
199 free_uid(q->user);
200 kmem_cache_free(sigqueue_cachep, q);
203 void flush_sigqueue(struct sigpending *queue)
205 struct sigqueue *q;
207 sigemptyset(&queue->signal);
208 while (!list_empty(&queue->list)) {
209 q = list_entry(queue->list.next, struct sigqueue , list);
210 list_del_init(&q->list);
211 __sigqueue_free(q);
216 * Flush all pending signals for a task.
218 void flush_signals(struct task_struct *t)
220 unsigned long flags;
222 spin_lock_irqsave(&t->sighand->siglock, flags);
223 clear_tsk_thread_flag(t,TIF_SIGPENDING);
224 flush_sigqueue(&t->pending);
225 flush_sigqueue(&t->signal->shared_pending);
226 spin_unlock_irqrestore(&t->sighand->siglock, flags);
229 void ignore_signals(struct task_struct *t)
231 int i;
233 for (i = 0; i < _NSIG; ++i)
234 t->sighand->action[i].sa.sa_handler = SIG_IGN;
236 flush_signals(t);
240 * Flush all handlers for a task.
243 void
244 flush_signal_handlers(struct task_struct *t, int force_default)
246 int i;
247 struct k_sigaction *ka = &t->sighand->action[0];
248 for (i = _NSIG ; i != 0 ; i--) {
249 if (force_default || ka->sa.sa_handler != SIG_IGN)
250 ka->sa.sa_handler = SIG_DFL;
251 ka->sa.sa_flags = 0;
252 sigemptyset(&ka->sa.sa_mask);
253 ka++;
257 int unhandled_signal(struct task_struct *tsk, int sig)
259 if (is_global_init(tsk))
260 return 1;
261 if (tsk->ptrace & PT_PTRACED)
262 return 0;
263 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
264 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
268 /* Notify the system that a driver wants to block all signals for this
269 * process, and wants to be notified if any signals at all were to be
270 * sent/acted upon. If the notifier routine returns non-zero, then the
271 * signal will be acted upon after all. If the notifier routine returns 0,
272 * then then signal will be blocked. Only one block per process is
273 * allowed. priv is a pointer to private data that the notifier routine
274 * can use to determine if the signal should be blocked or not. */
276 void
277 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
279 unsigned long flags;
281 spin_lock_irqsave(&current->sighand->siglock, flags);
282 current->notifier_mask = mask;
283 current->notifier_data = priv;
284 current->notifier = notifier;
285 spin_unlock_irqrestore(&current->sighand->siglock, flags);
288 /* Notify the system that blocking has ended. */
290 void
291 unblock_all_signals(void)
293 unsigned long flags;
295 spin_lock_irqsave(&current->sighand->siglock, flags);
296 current->notifier = NULL;
297 current->notifier_data = NULL;
298 recalc_sigpending();
299 spin_unlock_irqrestore(&current->sighand->siglock, flags);
302 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
304 struct sigqueue *q, *first = NULL;
305 int still_pending = 0;
307 if (unlikely(!sigismember(&list->signal, sig)))
308 return 0;
311 * Collect the siginfo appropriate to this signal. Check if
312 * there is another siginfo for the same signal.
314 list_for_each_entry(q, &list->list, list) {
315 if (q->info.si_signo == sig) {
316 if (first) {
317 still_pending = 1;
318 break;
320 first = q;
323 if (first) {
324 list_del_init(&first->list);
325 copy_siginfo(info, &first->info);
326 __sigqueue_free(first);
327 if (!still_pending)
328 sigdelset(&list->signal, sig);
329 } else {
331 /* Ok, it wasn't in the queue. This must be
332 a fast-pathed signal or we must have been
333 out of queue space. So zero out the info.
335 sigdelset(&list->signal, sig);
336 info->si_signo = sig;
337 info->si_errno = 0;
338 info->si_code = 0;
339 info->si_pid = 0;
340 info->si_uid = 0;
342 return 1;
345 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
346 siginfo_t *info)
348 int sig = next_signal(pending, mask);
350 if (sig) {
351 if (current->notifier) {
352 if (sigismember(current->notifier_mask, sig)) {
353 if (!(current->notifier)(current->notifier_data)) {
354 clear_thread_flag(TIF_SIGPENDING);
355 return 0;
360 if (!collect_signal(sig, pending, info))
361 sig = 0;
364 return sig;
368 * Dequeue a signal and return the element to the caller, which is
369 * expected to free it.
371 * All callers have to hold the siglock.
373 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
375 int signr = 0;
377 /* We only dequeue private signals from ourselves, we don't let
378 * signalfd steal them
380 signr = __dequeue_signal(&tsk->pending, mask, info);
381 if (!signr) {
382 signr = __dequeue_signal(&tsk->signal->shared_pending,
383 mask, info);
385 * itimer signal ?
387 * itimers are process shared and we restart periodic
388 * itimers in the signal delivery path to prevent DoS
389 * attacks in the high resolution timer case. This is
390 * compliant with the old way of self restarting
391 * itimers, as the SIGALRM is a legacy signal and only
392 * queued once. Changing the restart behaviour to
393 * restart the timer in the signal dequeue path is
394 * reducing the timer noise on heavy loaded !highres
395 * systems too.
397 if (unlikely(signr == SIGALRM)) {
398 struct hrtimer *tmr = &tsk->signal->real_timer;
400 if (!hrtimer_is_queued(tmr) &&
401 tsk->signal->it_real_incr.tv64 != 0) {
402 hrtimer_forward(tmr, tmr->base->get_time(),
403 tsk->signal->it_real_incr);
404 hrtimer_restart(tmr);
408 recalc_sigpending();
409 if (signr && unlikely(sig_kernel_stop(signr))) {
411 * Set a marker that we have dequeued a stop signal. Our
412 * caller might release the siglock and then the pending
413 * stop signal it is about to process is no longer in the
414 * pending bitmasks, but must still be cleared by a SIGCONT
415 * (and overruled by a SIGKILL). So those cases clear this
416 * shared flag after we've set it. Note that this flag may
417 * remain set after the signal we return is ignored or
418 * handled. That doesn't matter because its only purpose
419 * is to alert stop-signal processing code when another
420 * processor has come along and cleared the flag.
422 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
423 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
425 if (signr &&
426 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
427 info->si_sys_private){
429 * Release the siglock to ensure proper locking order
430 * of timer locks outside of siglocks. Note, we leave
431 * irqs disabled here, since the posix-timers code is
432 * about to disable them again anyway.
434 spin_unlock(&tsk->sighand->siglock);
435 do_schedule_next_timer(info);
436 spin_lock(&tsk->sighand->siglock);
438 return signr;
442 * Tell a process that it has a new active signal..
444 * NOTE! we rely on the previous spin_lock to
445 * lock interrupts for us! We can only be called with
446 * "siglock" held, and the local interrupt must
447 * have been disabled when that got acquired!
449 * No need to set need_resched since signal event passing
450 * goes through ->blocked
452 void signal_wake_up(struct task_struct *t, int resume)
454 unsigned int mask;
456 set_tsk_thread_flag(t, TIF_SIGPENDING);
459 * For SIGKILL, we want to wake it up in the stopped/traced case.
460 * We don't check t->state here because there is a race with it
461 * executing another processor and just now entering stopped state.
462 * By using wake_up_state, we ensure the process will wake up and
463 * handle its death signal.
465 mask = TASK_INTERRUPTIBLE;
466 if (resume)
467 mask |= TASK_STOPPED | TASK_TRACED;
468 if (!wake_up_state(t, mask))
469 kick_process(t);
473 * Remove signals in mask from the pending set and queue.
474 * Returns 1 if any signals were found.
476 * All callers must be holding the siglock.
478 * This version takes a sigset mask and looks at all signals,
479 * not just those in the first mask word.
481 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
483 struct sigqueue *q, *n;
484 sigset_t m;
486 sigandsets(&m, mask, &s->signal);
487 if (sigisemptyset(&m))
488 return 0;
490 signandsets(&s->signal, &s->signal, mask);
491 list_for_each_entry_safe(q, n, &s->list, list) {
492 if (sigismember(mask, q->info.si_signo)) {
493 list_del_init(&q->list);
494 __sigqueue_free(q);
497 return 1;
500 * Remove signals in mask from the pending set and queue.
501 * Returns 1 if any signals were found.
503 * All callers must be holding the siglock.
505 static int rm_from_queue(unsigned long mask, struct sigpending *s)
507 struct sigqueue *q, *n;
509 if (!sigtestsetmask(&s->signal, mask))
510 return 0;
512 sigdelsetmask(&s->signal, mask);
513 list_for_each_entry_safe(q, n, &s->list, list) {
514 if (q->info.si_signo < SIGRTMIN &&
515 (mask & sigmask(q->info.si_signo))) {
516 list_del_init(&q->list);
517 __sigqueue_free(q);
520 return 1;
524 * Bad permissions for sending the signal
526 static int check_kill_permission(int sig, struct siginfo *info,
527 struct task_struct *t)
529 int error = -EINVAL;
530 if (!valid_signal(sig))
531 return error;
533 if (info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) {
534 error = audit_signal_info(sig, t); /* Let audit system see the signal */
535 if (error)
536 return error;
537 error = -EPERM;
538 if (((sig != SIGCONT) ||
539 (task_session_nr(current) != task_session_nr(t)))
540 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
541 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
542 && !capable(CAP_KILL))
543 return error;
546 return security_task_kill(t, info, sig, 0);
549 /* forward decl */
550 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
553 * Handle magic process-wide effects of stop/continue signals.
554 * Unlike the signal actions, these happen immediately at signal-generation
555 * time regardless of blocking, ignoring, or handling. This does the
556 * actual continuing for SIGCONT, but not the actual stopping for stop
557 * signals. The process stop is done as a signal action for SIG_DFL.
559 static void handle_stop_signal(int sig, struct task_struct *p)
561 struct task_struct *t;
563 if (p->signal->flags & SIGNAL_GROUP_EXIT)
565 * The process is in the middle of dying already.
567 return;
569 if (sig_kernel_stop(sig)) {
571 * This is a stop signal. Remove SIGCONT from all queues.
573 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
574 t = p;
575 do {
576 rm_from_queue(sigmask(SIGCONT), &t->pending);
577 t = next_thread(t);
578 } while (t != p);
579 } else if (sig == SIGCONT) {
581 * Remove all stop signals from all queues,
582 * and wake all threads.
584 if (unlikely(p->signal->group_stop_count > 0)) {
586 * There was a group stop in progress. We'll
587 * pretend it finished before we got here. We are
588 * obliged to report it to the parent: if the
589 * SIGSTOP happened "after" this SIGCONT, then it
590 * would have cleared this pending SIGCONT. If it
591 * happened "before" this SIGCONT, then the parent
592 * got the SIGCHLD about the stop finishing before
593 * the continue happened. We do the notification
594 * now, and it's as if the stop had finished and
595 * the SIGCHLD was pending on entry to this kill.
597 p->signal->group_stop_count = 0;
598 p->signal->flags = SIGNAL_STOP_CONTINUED;
599 spin_unlock(&p->sighand->siglock);
600 do_notify_parent_cldstop(p, CLD_STOPPED);
601 spin_lock(&p->sighand->siglock);
603 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
604 t = p;
605 do {
606 unsigned int state;
607 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
610 * If there is a handler for SIGCONT, we must make
611 * sure that no thread returns to user mode before
612 * we post the signal, in case it was the only
613 * thread eligible to run the signal handler--then
614 * it must not do anything between resuming and
615 * running the handler. With the TIF_SIGPENDING
616 * flag set, the thread will pause and acquire the
617 * siglock that we hold now and until we've queued
618 * the pending signal.
620 * Wake up the stopped thread _after_ setting
621 * TIF_SIGPENDING
623 state = TASK_STOPPED;
624 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
625 set_tsk_thread_flag(t, TIF_SIGPENDING);
626 state |= TASK_INTERRUPTIBLE;
628 wake_up_state(t, state);
630 t = next_thread(t);
631 } while (t != p);
633 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
635 * We were in fact stopped, and are now continued.
636 * Notify the parent with CLD_CONTINUED.
638 p->signal->flags = SIGNAL_STOP_CONTINUED;
639 p->signal->group_exit_code = 0;
640 spin_unlock(&p->sighand->siglock);
641 do_notify_parent_cldstop(p, CLD_CONTINUED);
642 spin_lock(&p->sighand->siglock);
643 } else {
645 * We are not stopped, but there could be a stop
646 * signal in the middle of being processed after
647 * being removed from the queue. Clear that too.
649 p->signal->flags = 0;
651 } else if (sig == SIGKILL) {
653 * Make sure that any pending stop signal already dequeued
654 * is undone by the wakeup for SIGKILL.
656 p->signal->flags = 0;
660 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
661 struct sigpending *signals)
663 struct sigqueue * q = NULL;
664 int ret = 0;
667 * Deliver the signal to listening signalfds. This must be called
668 * with the sighand lock held.
670 signalfd_notify(t, sig);
673 * fast-pathed signals for kernel-internal things like SIGSTOP
674 * or SIGKILL.
676 if (info == SEND_SIG_FORCED)
677 goto out_set;
679 /* Real-time signals must be queued if sent by sigqueue, or
680 some other real-time mechanism. It is implementation
681 defined whether kill() does so. We attempt to do so, on
682 the principle of least surprise, but since kill is not
683 allowed to fail with EAGAIN when low on memory we just
684 make sure at least one signal gets delivered and don't
685 pass on the info struct. */
687 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
688 (is_si_special(info) ||
689 info->si_code >= 0)));
690 if (q) {
691 list_add_tail(&q->list, &signals->list);
692 switch ((unsigned long) info) {
693 case (unsigned long) SEND_SIG_NOINFO:
694 q->info.si_signo = sig;
695 q->info.si_errno = 0;
696 q->info.si_code = SI_USER;
697 q->info.si_pid = task_pid_vnr(current);
698 q->info.si_uid = current->uid;
699 break;
700 case (unsigned long) SEND_SIG_PRIV:
701 q->info.si_signo = sig;
702 q->info.si_errno = 0;
703 q->info.si_code = SI_KERNEL;
704 q->info.si_pid = 0;
705 q->info.si_uid = 0;
706 break;
707 default:
708 copy_siginfo(&q->info, info);
709 break;
711 } else if (!is_si_special(info)) {
712 if (sig >= SIGRTMIN && info->si_code != SI_USER)
714 * Queue overflow, abort. We may abort if the signal was rt
715 * and sent by user using something other than kill().
717 return -EAGAIN;
720 out_set:
721 sigaddset(&signals->signal, sig);
722 return ret;
725 #define LEGACY_QUEUE(sigptr, sig) \
726 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
728 int print_fatal_signals;
730 static void print_fatal_signal(struct pt_regs *regs, int signr)
732 printk("%s/%d: potentially unexpected fatal signal %d.\n",
733 current->comm, task_pid_nr(current), signr);
735 #ifdef __i386__
736 printk("code at %08lx: ", regs->eip);
738 int i;
739 for (i = 0; i < 16; i++) {
740 unsigned char insn;
742 __get_user(insn, (unsigned char *)(regs->eip + i));
743 printk("%02x ", insn);
746 #endif
747 printk("\n");
748 show_regs(regs);
751 static int __init setup_print_fatal_signals(char *str)
753 get_option (&str, &print_fatal_signals);
755 return 1;
758 __setup("print-fatal-signals=", setup_print_fatal_signals);
760 static int
761 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
763 int ret = 0;
765 BUG_ON(!irqs_disabled());
766 assert_spin_locked(&t->sighand->siglock);
768 /* Short-circuit ignored signals. */
769 if (sig_ignored(t, sig))
770 goto out;
772 /* Support queueing exactly one non-rt signal, so that we
773 can get more detailed information about the cause of
774 the signal. */
775 if (LEGACY_QUEUE(&t->pending, sig))
776 goto out;
778 ret = send_signal(sig, info, t, &t->pending);
779 if (!ret && !sigismember(&t->blocked, sig))
780 signal_wake_up(t, sig == SIGKILL);
781 out:
782 return ret;
786 * Force a signal that the process can't ignore: if necessary
787 * we unblock the signal and change any SIG_IGN to SIG_DFL.
789 * Note: If we unblock the signal, we always reset it to SIG_DFL,
790 * since we do not want to have a signal handler that was blocked
791 * be invoked when user space had explicitly blocked it.
793 * We don't want to have recursive SIGSEGV's etc, for example.
796 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
798 unsigned long int flags;
799 int ret, blocked, ignored;
800 struct k_sigaction *action;
802 spin_lock_irqsave(&t->sighand->siglock, flags);
803 action = &t->sighand->action[sig-1];
804 ignored = action->sa.sa_handler == SIG_IGN;
805 blocked = sigismember(&t->blocked, sig);
806 if (blocked || ignored) {
807 action->sa.sa_handler = SIG_DFL;
808 if (blocked) {
809 sigdelset(&t->blocked, sig);
810 recalc_sigpending_and_wake(t);
813 ret = specific_send_sig_info(sig, info, t);
814 spin_unlock_irqrestore(&t->sighand->siglock, flags);
816 return ret;
819 void
820 force_sig_specific(int sig, struct task_struct *t)
822 force_sig_info(sig, SEND_SIG_FORCED, t);
826 * Test if P wants to take SIG. After we've checked all threads with this,
827 * it's equivalent to finding no threads not blocking SIG. Any threads not
828 * blocking SIG were ruled out because they are not running and already
829 * have pending signals. Such threads will dequeue from the shared queue
830 * as soon as they're available, so putting the signal on the shared queue
831 * will be equivalent to sending it to one such thread.
833 static inline int wants_signal(int sig, struct task_struct *p)
835 if (sigismember(&p->blocked, sig))
836 return 0;
837 if (p->flags & PF_EXITING)
838 return 0;
839 if (sig == SIGKILL)
840 return 1;
841 if (p->state & (TASK_STOPPED | TASK_TRACED))
842 return 0;
843 return task_curr(p) || !signal_pending(p);
846 static void
847 __group_complete_signal(int sig, struct task_struct *p)
849 struct task_struct *t;
852 * Now find a thread we can wake up to take the signal off the queue.
854 * If the main thread wants the signal, it gets first crack.
855 * Probably the least surprising to the average bear.
857 if (wants_signal(sig, p))
858 t = p;
859 else if (thread_group_empty(p))
861 * There is just one thread and it does not need to be woken.
862 * It will dequeue unblocked signals before it runs again.
864 return;
865 else {
867 * Otherwise try to find a suitable thread.
869 t = p->signal->curr_target;
870 if (t == NULL)
871 /* restart balancing at this thread */
872 t = p->signal->curr_target = p;
874 while (!wants_signal(sig, t)) {
875 t = next_thread(t);
876 if (t == p->signal->curr_target)
878 * No thread needs to be woken.
879 * Any eligible threads will see
880 * the signal in the queue soon.
882 return;
884 p->signal->curr_target = t;
888 * Found a killable thread. If the signal will be fatal,
889 * then start taking the whole group down immediately.
891 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
892 !sigismember(&t->real_blocked, sig) &&
893 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
895 * This signal will be fatal to the whole group.
897 if (!sig_kernel_coredump(sig)) {
899 * Start a group exit and wake everybody up.
900 * This way we don't have other threads
901 * running and doing things after a slower
902 * thread has the fatal signal pending.
904 p->signal->flags = SIGNAL_GROUP_EXIT;
905 p->signal->group_exit_code = sig;
906 p->signal->group_stop_count = 0;
907 t = p;
908 do {
909 sigaddset(&t->pending.signal, SIGKILL);
910 signal_wake_up(t, 1);
911 } while_each_thread(p, t);
912 return;
916 * There will be a core dump. We make all threads other
917 * than the chosen one go into a group stop so that nothing
918 * happens until it gets scheduled, takes the signal off
919 * the shared queue, and does the core dump. This is a
920 * little more complicated than strictly necessary, but it
921 * keeps the signal state that winds up in the core dump
922 * unchanged from the death state, e.g. which thread had
923 * the core-dump signal unblocked.
925 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
926 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
927 p->signal->group_stop_count = 0;
928 p->signal->group_exit_task = t;
929 p = t;
930 do {
931 p->signal->group_stop_count++;
932 signal_wake_up(t, t == p);
933 } while_each_thread(p, t);
934 return;
938 * The signal is already in the shared-pending queue.
939 * Tell the chosen thread to wake up and dequeue it.
941 signal_wake_up(t, sig == SIGKILL);
942 return;
946 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
948 int ret = 0;
950 assert_spin_locked(&p->sighand->siglock);
951 handle_stop_signal(sig, p);
953 /* Short-circuit ignored signals. */
954 if (sig_ignored(p, sig))
955 return ret;
957 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
958 /* This is a non-RT signal and we already have one queued. */
959 return ret;
962 * Put this signal on the shared-pending queue, or fail with EAGAIN.
963 * We always use the shared queue for process-wide signals,
964 * to avoid several races.
966 ret = send_signal(sig, info, p, &p->signal->shared_pending);
967 if (unlikely(ret))
968 return ret;
970 __group_complete_signal(sig, p);
971 return 0;
975 * Nuke all other threads in the group.
977 void zap_other_threads(struct task_struct *p)
979 struct task_struct *t;
981 p->signal->flags = SIGNAL_GROUP_EXIT;
982 p->signal->group_stop_count = 0;
984 for (t = next_thread(p); t != p; t = next_thread(t)) {
986 * Don't bother with already dead threads
988 if (t->exit_state)
989 continue;
991 /* SIGKILL will be handled before any pending SIGSTOP */
992 sigaddset(&t->pending.signal, SIGKILL);
993 signal_wake_up(t, 1);
998 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1000 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1002 struct sighand_struct *sighand;
1004 for (;;) {
1005 sighand = rcu_dereference(tsk->sighand);
1006 if (unlikely(sighand == NULL))
1007 break;
1009 spin_lock_irqsave(&sighand->siglock, *flags);
1010 if (likely(sighand == tsk->sighand))
1011 break;
1012 spin_unlock_irqrestore(&sighand->siglock, *flags);
1015 return sighand;
1018 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1020 unsigned long flags;
1021 int ret;
1023 ret = check_kill_permission(sig, info, p);
1025 if (!ret && sig) {
1026 ret = -ESRCH;
1027 if (lock_task_sighand(p, &flags)) {
1028 ret = __group_send_sig_info(sig, info, p);
1029 unlock_task_sighand(p, &flags);
1033 return ret;
1037 * kill_pgrp_info() sends a signal to a process group: this is what the tty
1038 * control characters do (^C, ^Z etc)
1041 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1043 struct task_struct *p = NULL;
1044 int retval, success;
1046 success = 0;
1047 retval = -ESRCH;
1048 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1049 int err = group_send_sig_info(sig, info, p);
1050 success |= !err;
1051 retval = err;
1052 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1053 return success ? 0 : retval;
1056 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1058 int retval;
1060 read_lock(&tasklist_lock);
1061 retval = __kill_pgrp_info(sig, info, pgrp);
1062 read_unlock(&tasklist_lock);
1064 return retval;
1067 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1069 int error;
1070 struct task_struct *p;
1072 rcu_read_lock();
1073 if (unlikely(sig_needs_tasklist(sig)))
1074 read_lock(&tasklist_lock);
1076 p = pid_task(pid, PIDTYPE_PID);
1077 error = -ESRCH;
1078 if (p)
1079 error = group_send_sig_info(sig, info, p);
1081 if (unlikely(sig_needs_tasklist(sig)))
1082 read_unlock(&tasklist_lock);
1083 rcu_read_unlock();
1084 return error;
1088 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1090 int error;
1091 rcu_read_lock();
1092 error = kill_pid_info(sig, info, find_vpid(pid));
1093 rcu_read_unlock();
1094 return error;
1097 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1098 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1099 uid_t uid, uid_t euid, u32 secid)
1101 int ret = -EINVAL;
1102 struct task_struct *p;
1104 if (!valid_signal(sig))
1105 return ret;
1107 read_lock(&tasklist_lock);
1108 p = pid_task(pid, PIDTYPE_PID);
1109 if (!p) {
1110 ret = -ESRCH;
1111 goto out_unlock;
1113 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1114 && (euid != p->suid) && (euid != p->uid)
1115 && (uid != p->suid) && (uid != p->uid)) {
1116 ret = -EPERM;
1117 goto out_unlock;
1119 ret = security_task_kill(p, info, sig, secid);
1120 if (ret)
1121 goto out_unlock;
1122 if (sig && p->sighand) {
1123 unsigned long flags;
1124 spin_lock_irqsave(&p->sighand->siglock, flags);
1125 ret = __group_send_sig_info(sig, info, p);
1126 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1128 out_unlock:
1129 read_unlock(&tasklist_lock);
1130 return ret;
1132 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1135 * kill_something_info() interprets pid in interesting ways just like kill(2).
1137 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1138 * is probably wrong. Should make it like BSD or SYSV.
1141 static int kill_something_info(int sig, struct siginfo *info, int pid)
1143 int ret;
1144 rcu_read_lock();
1145 if (!pid) {
1146 ret = kill_pgrp_info(sig, info, task_pgrp(current));
1147 } else if (pid == -1) {
1148 int retval = 0, count = 0;
1149 struct task_struct * p;
1151 read_lock(&tasklist_lock);
1152 for_each_process(p) {
1153 if (p->pid > 1 && !same_thread_group(p, current)) {
1154 int err = group_send_sig_info(sig, info, p);
1155 ++count;
1156 if (err != -EPERM)
1157 retval = err;
1160 read_unlock(&tasklist_lock);
1161 ret = count ? retval : -ESRCH;
1162 } else if (pid < 0) {
1163 ret = kill_pgrp_info(sig, info, find_vpid(-pid));
1164 } else {
1165 ret = kill_pid_info(sig, info, find_vpid(pid));
1167 rcu_read_unlock();
1168 return ret;
1172 * These are for backward compatibility with the rest of the kernel source.
1176 * These two are the most common entry points. They send a signal
1177 * just to the specific thread.
1180 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1182 int ret;
1183 unsigned long flags;
1186 * Make sure legacy kernel users don't send in bad values
1187 * (normal paths check this in check_kill_permission).
1189 if (!valid_signal(sig))
1190 return -EINVAL;
1193 * We need the tasklist lock even for the specific
1194 * thread case (when we don't need to follow the group
1195 * lists) in order to avoid races with "p->sighand"
1196 * going away or changing from under us.
1198 read_lock(&tasklist_lock);
1199 spin_lock_irqsave(&p->sighand->siglock, flags);
1200 ret = specific_send_sig_info(sig, info, p);
1201 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1202 read_unlock(&tasklist_lock);
1203 return ret;
1206 #define __si_special(priv) \
1207 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1210 send_sig(int sig, struct task_struct *p, int priv)
1212 return send_sig_info(sig, __si_special(priv), p);
1216 * This is the entry point for "process-wide" signals.
1217 * They will go to an appropriate thread in the thread group.
1220 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1222 int ret;
1223 read_lock(&tasklist_lock);
1224 ret = group_send_sig_info(sig, info, p);
1225 read_unlock(&tasklist_lock);
1226 return ret;
1229 void
1230 force_sig(int sig, struct task_struct *p)
1232 force_sig_info(sig, SEND_SIG_PRIV, p);
1236 * When things go south during signal handling, we
1237 * will force a SIGSEGV. And if the signal that caused
1238 * the problem was already a SIGSEGV, we'll want to
1239 * make sure we don't even try to deliver the signal..
1242 force_sigsegv(int sig, struct task_struct *p)
1244 if (sig == SIGSEGV) {
1245 unsigned long flags;
1246 spin_lock_irqsave(&p->sighand->siglock, flags);
1247 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1248 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1250 force_sig(SIGSEGV, p);
1251 return 0;
1254 int kill_pgrp(struct pid *pid, int sig, int priv)
1256 return kill_pgrp_info(sig, __si_special(priv), pid);
1258 EXPORT_SYMBOL(kill_pgrp);
1260 int kill_pid(struct pid *pid, int sig, int priv)
1262 return kill_pid_info(sig, __si_special(priv), pid);
1264 EXPORT_SYMBOL(kill_pid);
1267 kill_proc(pid_t pid, int sig, int priv)
1269 int ret;
1271 rcu_read_lock();
1272 ret = kill_pid_info(sig, __si_special(priv), find_pid(pid));
1273 rcu_read_unlock();
1274 return ret;
1278 * These functions support sending signals using preallocated sigqueue
1279 * structures. This is needed "because realtime applications cannot
1280 * afford to lose notifications of asynchronous events, like timer
1281 * expirations or I/O completions". In the case of Posix Timers
1282 * we allocate the sigqueue structure from the timer_create. If this
1283 * allocation fails we are able to report the failure to the application
1284 * with an EAGAIN error.
1287 struct sigqueue *sigqueue_alloc(void)
1289 struct sigqueue *q;
1291 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1292 q->flags |= SIGQUEUE_PREALLOC;
1293 return(q);
1296 void sigqueue_free(struct sigqueue *q)
1298 unsigned long flags;
1299 spinlock_t *lock = &current->sighand->siglock;
1301 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1303 * If the signal is still pending remove it from the
1304 * pending queue. We must hold ->siglock while testing
1305 * q->list to serialize with collect_signal().
1307 spin_lock_irqsave(lock, flags);
1308 if (!list_empty(&q->list))
1309 list_del_init(&q->list);
1310 spin_unlock_irqrestore(lock, flags);
1312 q->flags &= ~SIGQUEUE_PREALLOC;
1313 __sigqueue_free(q);
1316 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1318 unsigned long flags;
1319 int ret = 0;
1321 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1324 * The rcu based delayed sighand destroy makes it possible to
1325 * run this without tasklist lock held. The task struct itself
1326 * cannot go away as create_timer did get_task_struct().
1328 * We return -1, when the task is marked exiting, so
1329 * posix_timer_event can redirect it to the group leader
1331 rcu_read_lock();
1333 if (!likely(lock_task_sighand(p, &flags))) {
1334 ret = -1;
1335 goto out_err;
1338 if (unlikely(!list_empty(&q->list))) {
1340 * If an SI_TIMER entry is already queue just increment
1341 * the overrun count.
1343 BUG_ON(q->info.si_code != SI_TIMER);
1344 q->info.si_overrun++;
1345 goto out;
1347 /* Short-circuit ignored signals. */
1348 if (sig_ignored(p, sig)) {
1349 ret = 1;
1350 goto out;
1353 * Deliver the signal to listening signalfds. This must be called
1354 * with the sighand lock held.
1356 signalfd_notify(p, sig);
1358 list_add_tail(&q->list, &p->pending.list);
1359 sigaddset(&p->pending.signal, sig);
1360 if (!sigismember(&p->blocked, sig))
1361 signal_wake_up(p, sig == SIGKILL);
1363 out:
1364 unlock_task_sighand(p, &flags);
1365 out_err:
1366 rcu_read_unlock();
1368 return ret;
1372 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1374 unsigned long flags;
1375 int ret = 0;
1377 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1379 read_lock(&tasklist_lock);
1380 /* Since it_lock is held, p->sighand cannot be NULL. */
1381 spin_lock_irqsave(&p->sighand->siglock, flags);
1382 handle_stop_signal(sig, p);
1384 /* Short-circuit ignored signals. */
1385 if (sig_ignored(p, sig)) {
1386 ret = 1;
1387 goto out;
1390 if (unlikely(!list_empty(&q->list))) {
1392 * If an SI_TIMER entry is already queue just increment
1393 * the overrun count. Other uses should not try to
1394 * send the signal multiple times.
1396 BUG_ON(q->info.si_code != SI_TIMER);
1397 q->info.si_overrun++;
1398 goto out;
1401 * Deliver the signal to listening signalfds. This must be called
1402 * with the sighand lock held.
1404 signalfd_notify(p, sig);
1407 * Put this signal on the shared-pending queue.
1408 * We always use the shared queue for process-wide signals,
1409 * to avoid several races.
1411 list_add_tail(&q->list, &p->signal->shared_pending.list);
1412 sigaddset(&p->signal->shared_pending.signal, sig);
1414 __group_complete_signal(sig, p);
1415 out:
1416 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1417 read_unlock(&tasklist_lock);
1418 return ret;
1422 * Wake up any threads in the parent blocked in wait* syscalls.
1424 static inline void __wake_up_parent(struct task_struct *p,
1425 struct task_struct *parent)
1427 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1431 * Let a parent know about the death of a child.
1432 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1435 void do_notify_parent(struct task_struct *tsk, int sig)
1437 struct siginfo info;
1438 unsigned long flags;
1439 struct sighand_struct *psig;
1441 BUG_ON(sig == -1);
1443 /* do_notify_parent_cldstop should have been called instead. */
1444 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1446 BUG_ON(!tsk->ptrace &&
1447 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1449 info.si_signo = sig;
1450 info.si_errno = 0;
1452 * we are under tasklist_lock here so our parent is tied to
1453 * us and cannot exit and release its namespace.
1455 * the only it can is to switch its nsproxy with sys_unshare,
1456 * bu uncharing pid namespaces is not allowed, so we'll always
1457 * see relevant namespace
1459 * write_lock() currently calls preempt_disable() which is the
1460 * same as rcu_read_lock(), but according to Oleg, this is not
1461 * correct to rely on this
1463 rcu_read_lock();
1464 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1465 rcu_read_unlock();
1467 info.si_uid = tsk->uid;
1469 /* FIXME: find out whether or not this is supposed to be c*time. */
1470 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1471 tsk->signal->utime));
1472 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1473 tsk->signal->stime));
1475 info.si_status = tsk->exit_code & 0x7f;
1476 if (tsk->exit_code & 0x80)
1477 info.si_code = CLD_DUMPED;
1478 else if (tsk->exit_code & 0x7f)
1479 info.si_code = CLD_KILLED;
1480 else {
1481 info.si_code = CLD_EXITED;
1482 info.si_status = tsk->exit_code >> 8;
1485 psig = tsk->parent->sighand;
1486 spin_lock_irqsave(&psig->siglock, flags);
1487 if (!tsk->ptrace && sig == SIGCHLD &&
1488 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1489 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1491 * We are exiting and our parent doesn't care. POSIX.1
1492 * defines special semantics for setting SIGCHLD to SIG_IGN
1493 * or setting the SA_NOCLDWAIT flag: we should be reaped
1494 * automatically and not left for our parent's wait4 call.
1495 * Rather than having the parent do it as a magic kind of
1496 * signal handler, we just set this to tell do_exit that we
1497 * can be cleaned up without becoming a zombie. Note that
1498 * we still call __wake_up_parent in this case, because a
1499 * blocked sys_wait4 might now return -ECHILD.
1501 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1502 * is implementation-defined: we do (if you don't want
1503 * it, just use SIG_IGN instead).
1505 tsk->exit_signal = -1;
1506 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1507 sig = 0;
1509 if (valid_signal(sig) && sig > 0)
1510 __group_send_sig_info(sig, &info, tsk->parent);
1511 __wake_up_parent(tsk, tsk->parent);
1512 spin_unlock_irqrestore(&psig->siglock, flags);
1515 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1517 struct siginfo info;
1518 unsigned long flags;
1519 struct task_struct *parent;
1520 struct sighand_struct *sighand;
1522 if (tsk->ptrace & PT_PTRACED)
1523 parent = tsk->parent;
1524 else {
1525 tsk = tsk->group_leader;
1526 parent = tsk->real_parent;
1529 info.si_signo = SIGCHLD;
1530 info.si_errno = 0;
1532 * see comment in do_notify_parent() abot the following 3 lines
1534 rcu_read_lock();
1535 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1536 rcu_read_unlock();
1538 info.si_uid = tsk->uid;
1540 /* FIXME: find out whether or not this is supposed to be c*time. */
1541 info.si_utime = cputime_to_jiffies(tsk->utime);
1542 info.si_stime = cputime_to_jiffies(tsk->stime);
1544 info.si_code = why;
1545 switch (why) {
1546 case CLD_CONTINUED:
1547 info.si_status = SIGCONT;
1548 break;
1549 case CLD_STOPPED:
1550 info.si_status = tsk->signal->group_exit_code & 0x7f;
1551 break;
1552 case CLD_TRAPPED:
1553 info.si_status = tsk->exit_code & 0x7f;
1554 break;
1555 default:
1556 BUG();
1559 sighand = parent->sighand;
1560 spin_lock_irqsave(&sighand->siglock, flags);
1561 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1562 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1563 __group_send_sig_info(SIGCHLD, &info, parent);
1565 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1567 __wake_up_parent(tsk, parent);
1568 spin_unlock_irqrestore(&sighand->siglock, flags);
1571 static inline int may_ptrace_stop(void)
1573 if (!likely(current->ptrace & PT_PTRACED))
1574 return 0;
1576 if (unlikely(current->parent == current->real_parent &&
1577 (current->ptrace & PT_ATTACHED)))
1578 return 0;
1581 * Are we in the middle of do_coredump?
1582 * If so and our tracer is also part of the coredump stopping
1583 * is a deadlock situation, and pointless because our tracer
1584 * is dead so don't allow us to stop.
1585 * If SIGKILL was already sent before the caller unlocked
1586 * ->siglock we must see ->core_waiters != 0. Otherwise it
1587 * is safe to enter schedule().
1589 if (unlikely(current->mm->core_waiters) &&
1590 unlikely(current->mm == current->parent->mm))
1591 return 0;
1593 return 1;
1597 * This must be called with current->sighand->siglock held.
1599 * This should be the path for all ptrace stops.
1600 * We always set current->last_siginfo while stopped here.
1601 * That makes it a way to test a stopped process for
1602 * being ptrace-stopped vs being job-control-stopped.
1604 * If we actually decide not to stop at all because the tracer is gone,
1605 * we leave nostop_code in current->exit_code.
1607 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1610 * If there is a group stop in progress,
1611 * we must participate in the bookkeeping.
1613 if (current->signal->group_stop_count > 0)
1614 --current->signal->group_stop_count;
1616 current->last_siginfo = info;
1617 current->exit_code = exit_code;
1619 /* Let the debugger run. */
1620 set_current_state(TASK_TRACED);
1621 spin_unlock_irq(&current->sighand->siglock);
1622 try_to_freeze();
1623 read_lock(&tasklist_lock);
1624 if (may_ptrace_stop()) {
1625 do_notify_parent_cldstop(current, CLD_TRAPPED);
1626 read_unlock(&tasklist_lock);
1627 schedule();
1628 } else {
1630 * By the time we got the lock, our tracer went away.
1631 * Don't stop here.
1633 read_unlock(&tasklist_lock);
1634 set_current_state(TASK_RUNNING);
1635 current->exit_code = nostop_code;
1639 * We are back. Now reacquire the siglock before touching
1640 * last_siginfo, so that we are sure to have synchronized with
1641 * any signal-sending on another CPU that wants to examine it.
1643 spin_lock_irq(&current->sighand->siglock);
1644 current->last_siginfo = NULL;
1647 * Queued signals ignored us while we were stopped for tracing.
1648 * So check for any that we should take before resuming user mode.
1649 * This sets TIF_SIGPENDING, but never clears it.
1651 recalc_sigpending_tsk(current);
1654 void ptrace_notify(int exit_code)
1656 siginfo_t info;
1658 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1660 memset(&info, 0, sizeof info);
1661 info.si_signo = SIGTRAP;
1662 info.si_code = exit_code;
1663 info.si_pid = task_pid_vnr(current);
1664 info.si_uid = current->uid;
1666 /* Let the debugger run. */
1667 spin_lock_irq(&current->sighand->siglock);
1668 ptrace_stop(exit_code, 0, &info);
1669 spin_unlock_irq(&current->sighand->siglock);
1672 static void
1673 finish_stop(int stop_count)
1676 * If there are no other threads in the group, or if there is
1677 * a group stop in progress and we are the last to stop,
1678 * report to the parent. When ptraced, every thread reports itself.
1680 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1681 read_lock(&tasklist_lock);
1682 do_notify_parent_cldstop(current, CLD_STOPPED);
1683 read_unlock(&tasklist_lock);
1686 do {
1687 schedule();
1688 } while (try_to_freeze());
1690 * Now we don't run again until continued.
1692 current->exit_code = 0;
1696 * This performs the stopping for SIGSTOP and other stop signals.
1697 * We have to stop all threads in the thread group.
1698 * Returns nonzero if we've actually stopped and released the siglock.
1699 * Returns zero if we didn't stop and still hold the siglock.
1701 static int do_signal_stop(int signr)
1703 struct signal_struct *sig = current->signal;
1704 int stop_count;
1706 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1707 return 0;
1709 if (sig->group_stop_count > 0) {
1711 * There is a group stop in progress. We don't need to
1712 * start another one.
1714 stop_count = --sig->group_stop_count;
1715 } else {
1717 * There is no group stop already in progress.
1718 * We must initiate one now.
1720 struct task_struct *t;
1722 sig->group_exit_code = signr;
1724 stop_count = 0;
1725 for (t = next_thread(current); t != current; t = next_thread(t))
1727 * Setting state to TASK_STOPPED for a group
1728 * stop is always done with the siglock held,
1729 * so this check has no races.
1731 if (!t->exit_state &&
1732 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1733 stop_count++;
1734 signal_wake_up(t, 0);
1736 sig->group_stop_count = stop_count;
1739 if (stop_count == 0)
1740 sig->flags = SIGNAL_STOP_STOPPED;
1741 current->exit_code = sig->group_exit_code;
1742 __set_current_state(TASK_STOPPED);
1744 spin_unlock_irq(&current->sighand->siglock);
1745 finish_stop(stop_count);
1746 return 1;
1750 * Do appropriate magic when group_stop_count > 0.
1751 * We return nonzero if we stopped, after releasing the siglock.
1752 * We return zero if we still hold the siglock and should look
1753 * for another signal without checking group_stop_count again.
1755 static int handle_group_stop(void)
1757 int stop_count;
1759 if (current->signal->group_exit_task == current) {
1761 * Group stop is so we can do a core dump,
1762 * We are the initiating thread, so get on with it.
1764 current->signal->group_exit_task = NULL;
1765 return 0;
1768 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1770 * Group stop is so another thread can do a core dump,
1771 * or else we are racing against a death signal.
1772 * Just punt the stop so we can get the next signal.
1774 return 0;
1777 * There is a group stop in progress. We stop
1778 * without any associated signal being in our queue.
1780 stop_count = --current->signal->group_stop_count;
1781 if (stop_count == 0)
1782 current->signal->flags = SIGNAL_STOP_STOPPED;
1783 current->exit_code = current->signal->group_exit_code;
1784 set_current_state(TASK_STOPPED);
1785 spin_unlock_irq(&current->sighand->siglock);
1786 finish_stop(stop_count);
1787 return 1;
1790 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1791 struct pt_regs *regs, void *cookie)
1793 sigset_t *mask = &current->blocked;
1794 int signr = 0;
1796 try_to_freeze();
1798 relock:
1799 spin_lock_irq(&current->sighand->siglock);
1800 for (;;) {
1801 struct k_sigaction *ka;
1803 if (unlikely(current->signal->group_stop_count > 0) &&
1804 handle_group_stop())
1805 goto relock;
1807 signr = dequeue_signal(current, mask, info);
1809 if (!signr)
1810 break; /* will return 0 */
1812 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1813 ptrace_signal_deliver(regs, cookie);
1815 /* Let the debugger run. */
1816 ptrace_stop(signr, signr, info);
1818 /* We're back. Did the debugger cancel the sig? */
1819 signr = current->exit_code;
1820 if (signr == 0)
1821 continue;
1823 current->exit_code = 0;
1825 /* Update the siginfo structure if the signal has
1826 changed. If the debugger wanted something
1827 specific in the siginfo structure then it should
1828 have updated *info via PTRACE_SETSIGINFO. */
1829 if (signr != info->si_signo) {
1830 info->si_signo = signr;
1831 info->si_errno = 0;
1832 info->si_code = SI_USER;
1833 info->si_pid = task_pid_vnr(current->parent);
1834 info->si_uid = current->parent->uid;
1837 /* If the (new) signal is now blocked, requeue it. */
1838 if (sigismember(&current->blocked, signr)) {
1839 specific_send_sig_info(signr, info, current);
1840 continue;
1844 ka = &current->sighand->action[signr-1];
1845 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1846 continue;
1847 if (ka->sa.sa_handler != SIG_DFL) {
1848 /* Run the handler. */
1849 *return_ka = *ka;
1851 if (ka->sa.sa_flags & SA_ONESHOT)
1852 ka->sa.sa_handler = SIG_DFL;
1854 break; /* will return non-zero "signr" value */
1858 * Now we are doing the default action for this signal.
1860 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1861 continue;
1864 * Global init gets no signals it doesn't want.
1866 if (is_global_init(current))
1867 continue;
1869 if (sig_kernel_stop(signr)) {
1871 * The default action is to stop all threads in
1872 * the thread group. The job control signals
1873 * do nothing in an orphaned pgrp, but SIGSTOP
1874 * always works. Note that siglock needs to be
1875 * dropped during the call to is_orphaned_pgrp()
1876 * because of lock ordering with tasklist_lock.
1877 * This allows an intervening SIGCONT to be posted.
1878 * We need to check for that and bail out if necessary.
1880 if (signr != SIGSTOP) {
1881 spin_unlock_irq(&current->sighand->siglock);
1883 /* signals can be posted during this window */
1885 if (is_current_pgrp_orphaned())
1886 goto relock;
1888 spin_lock_irq(&current->sighand->siglock);
1891 if (likely(do_signal_stop(signr))) {
1892 /* It released the siglock. */
1893 goto relock;
1897 * We didn't actually stop, due to a race
1898 * with SIGCONT or something like that.
1900 continue;
1903 spin_unlock_irq(&current->sighand->siglock);
1906 * Anything else is fatal, maybe with a core dump.
1908 current->flags |= PF_SIGNALED;
1909 if ((signr != SIGKILL) && print_fatal_signals)
1910 print_fatal_signal(regs, signr);
1911 if (sig_kernel_coredump(signr)) {
1913 * If it was able to dump core, this kills all
1914 * other threads in the group and synchronizes with
1915 * their demise. If we lost the race with another
1916 * thread getting here, it set group_exit_code
1917 * first and our do_group_exit call below will use
1918 * that value and ignore the one we pass it.
1920 do_coredump((long)signr, signr, regs);
1924 * Death signals, no core dump.
1926 do_group_exit(signr);
1927 /* NOTREACHED */
1929 spin_unlock_irq(&current->sighand->siglock);
1930 return signr;
1933 EXPORT_SYMBOL(recalc_sigpending);
1934 EXPORT_SYMBOL_GPL(dequeue_signal);
1935 EXPORT_SYMBOL(flush_signals);
1936 EXPORT_SYMBOL(force_sig);
1937 EXPORT_SYMBOL(kill_proc);
1938 EXPORT_SYMBOL(ptrace_notify);
1939 EXPORT_SYMBOL(send_sig);
1940 EXPORT_SYMBOL(send_sig_info);
1941 EXPORT_SYMBOL(sigprocmask);
1942 EXPORT_SYMBOL(block_all_signals);
1943 EXPORT_SYMBOL(unblock_all_signals);
1947 * System call entry points.
1950 asmlinkage long sys_restart_syscall(void)
1952 struct restart_block *restart = &current_thread_info()->restart_block;
1953 return restart->fn(restart);
1956 long do_no_restart_syscall(struct restart_block *param)
1958 return -EINTR;
1962 * We don't need to get the kernel lock - this is all local to this
1963 * particular thread.. (and that's good, because this is _heavily_
1964 * used by various programs)
1968 * This is also useful for kernel threads that want to temporarily
1969 * (or permanently) block certain signals.
1971 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1972 * interface happily blocks "unblockable" signals like SIGKILL
1973 * and friends.
1975 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1977 int error;
1979 spin_lock_irq(&current->sighand->siglock);
1980 if (oldset)
1981 *oldset = current->blocked;
1983 error = 0;
1984 switch (how) {
1985 case SIG_BLOCK:
1986 sigorsets(&current->blocked, &current->blocked, set);
1987 break;
1988 case SIG_UNBLOCK:
1989 signandsets(&current->blocked, &current->blocked, set);
1990 break;
1991 case SIG_SETMASK:
1992 current->blocked = *set;
1993 break;
1994 default:
1995 error = -EINVAL;
1997 recalc_sigpending();
1998 spin_unlock_irq(&current->sighand->siglock);
2000 return error;
2003 asmlinkage long
2004 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2006 int error = -EINVAL;
2007 sigset_t old_set, new_set;
2009 /* XXX: Don't preclude handling different sized sigset_t's. */
2010 if (sigsetsize != sizeof(sigset_t))
2011 goto out;
2013 if (set) {
2014 error = -EFAULT;
2015 if (copy_from_user(&new_set, set, sizeof(*set)))
2016 goto out;
2017 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2019 error = sigprocmask(how, &new_set, &old_set);
2020 if (error)
2021 goto out;
2022 if (oset)
2023 goto set_old;
2024 } else if (oset) {
2025 spin_lock_irq(&current->sighand->siglock);
2026 old_set = current->blocked;
2027 spin_unlock_irq(&current->sighand->siglock);
2029 set_old:
2030 error = -EFAULT;
2031 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2032 goto out;
2034 error = 0;
2035 out:
2036 return error;
2039 long do_sigpending(void __user *set, unsigned long sigsetsize)
2041 long error = -EINVAL;
2042 sigset_t pending;
2044 if (sigsetsize > sizeof(sigset_t))
2045 goto out;
2047 spin_lock_irq(&current->sighand->siglock);
2048 sigorsets(&pending, &current->pending.signal,
2049 &current->signal->shared_pending.signal);
2050 spin_unlock_irq(&current->sighand->siglock);
2052 /* Outside the lock because only this thread touches it. */
2053 sigandsets(&pending, &current->blocked, &pending);
2055 error = -EFAULT;
2056 if (!copy_to_user(set, &pending, sigsetsize))
2057 error = 0;
2059 out:
2060 return error;
2063 asmlinkage long
2064 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2066 return do_sigpending(set, sigsetsize);
2069 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2071 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2073 int err;
2075 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2076 return -EFAULT;
2077 if (from->si_code < 0)
2078 return __copy_to_user(to, from, sizeof(siginfo_t))
2079 ? -EFAULT : 0;
2081 * If you change siginfo_t structure, please be sure
2082 * this code is fixed accordingly.
2083 * Please remember to update the signalfd_copyinfo() function
2084 * inside fs/signalfd.c too, in case siginfo_t changes.
2085 * It should never copy any pad contained in the structure
2086 * to avoid security leaks, but must copy the generic
2087 * 3 ints plus the relevant union member.
2089 err = __put_user(from->si_signo, &to->si_signo);
2090 err |= __put_user(from->si_errno, &to->si_errno);
2091 err |= __put_user((short)from->si_code, &to->si_code);
2092 switch (from->si_code & __SI_MASK) {
2093 case __SI_KILL:
2094 err |= __put_user(from->si_pid, &to->si_pid);
2095 err |= __put_user(from->si_uid, &to->si_uid);
2096 break;
2097 case __SI_TIMER:
2098 err |= __put_user(from->si_tid, &to->si_tid);
2099 err |= __put_user(from->si_overrun, &to->si_overrun);
2100 err |= __put_user(from->si_ptr, &to->si_ptr);
2101 break;
2102 case __SI_POLL:
2103 err |= __put_user(from->si_band, &to->si_band);
2104 err |= __put_user(from->si_fd, &to->si_fd);
2105 break;
2106 case __SI_FAULT:
2107 err |= __put_user(from->si_addr, &to->si_addr);
2108 #ifdef __ARCH_SI_TRAPNO
2109 err |= __put_user(from->si_trapno, &to->si_trapno);
2110 #endif
2111 break;
2112 case __SI_CHLD:
2113 err |= __put_user(from->si_pid, &to->si_pid);
2114 err |= __put_user(from->si_uid, &to->si_uid);
2115 err |= __put_user(from->si_status, &to->si_status);
2116 err |= __put_user(from->si_utime, &to->si_utime);
2117 err |= __put_user(from->si_stime, &to->si_stime);
2118 break;
2119 case __SI_RT: /* This is not generated by the kernel as of now. */
2120 case __SI_MESGQ: /* But this is */
2121 err |= __put_user(from->si_pid, &to->si_pid);
2122 err |= __put_user(from->si_uid, &to->si_uid);
2123 err |= __put_user(from->si_ptr, &to->si_ptr);
2124 break;
2125 default: /* this is just in case for now ... */
2126 err |= __put_user(from->si_pid, &to->si_pid);
2127 err |= __put_user(from->si_uid, &to->si_uid);
2128 break;
2130 return err;
2133 #endif
2135 asmlinkage long
2136 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2137 siginfo_t __user *uinfo,
2138 const struct timespec __user *uts,
2139 size_t sigsetsize)
2141 int ret, sig;
2142 sigset_t these;
2143 struct timespec ts;
2144 siginfo_t info;
2145 long timeout = 0;
2147 /* XXX: Don't preclude handling different sized sigset_t's. */
2148 if (sigsetsize != sizeof(sigset_t))
2149 return -EINVAL;
2151 if (copy_from_user(&these, uthese, sizeof(these)))
2152 return -EFAULT;
2155 * Invert the set of allowed signals to get those we
2156 * want to block.
2158 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2159 signotset(&these);
2161 if (uts) {
2162 if (copy_from_user(&ts, uts, sizeof(ts)))
2163 return -EFAULT;
2164 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2165 || ts.tv_sec < 0)
2166 return -EINVAL;
2169 spin_lock_irq(&current->sighand->siglock);
2170 sig = dequeue_signal(current, &these, &info);
2171 if (!sig) {
2172 timeout = MAX_SCHEDULE_TIMEOUT;
2173 if (uts)
2174 timeout = (timespec_to_jiffies(&ts)
2175 + (ts.tv_sec || ts.tv_nsec));
2177 if (timeout) {
2178 /* None ready -- temporarily unblock those we're
2179 * interested while we are sleeping in so that we'll
2180 * be awakened when they arrive. */
2181 current->real_blocked = current->blocked;
2182 sigandsets(&current->blocked, &current->blocked, &these);
2183 recalc_sigpending();
2184 spin_unlock_irq(&current->sighand->siglock);
2186 timeout = schedule_timeout_interruptible(timeout);
2188 spin_lock_irq(&current->sighand->siglock);
2189 sig = dequeue_signal(current, &these, &info);
2190 current->blocked = current->real_blocked;
2191 siginitset(&current->real_blocked, 0);
2192 recalc_sigpending();
2195 spin_unlock_irq(&current->sighand->siglock);
2197 if (sig) {
2198 ret = sig;
2199 if (uinfo) {
2200 if (copy_siginfo_to_user(uinfo, &info))
2201 ret = -EFAULT;
2203 } else {
2204 ret = -EAGAIN;
2205 if (timeout)
2206 ret = -EINTR;
2209 return ret;
2212 asmlinkage long
2213 sys_kill(int pid, int sig)
2215 struct siginfo info;
2217 info.si_signo = sig;
2218 info.si_errno = 0;
2219 info.si_code = SI_USER;
2220 info.si_pid = task_tgid_vnr(current);
2221 info.si_uid = current->uid;
2223 return kill_something_info(sig, &info, pid);
2226 static int do_tkill(int tgid, int pid, int sig)
2228 int error;
2229 struct siginfo info;
2230 struct task_struct *p;
2232 error = -ESRCH;
2233 info.si_signo = sig;
2234 info.si_errno = 0;
2235 info.si_code = SI_TKILL;
2236 info.si_pid = task_tgid_vnr(current);
2237 info.si_uid = current->uid;
2239 read_lock(&tasklist_lock);
2240 p = find_task_by_vpid(pid);
2241 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2242 error = check_kill_permission(sig, &info, p);
2244 * The null signal is a permissions and process existence
2245 * probe. No signal is actually delivered.
2247 if (!error && sig && p->sighand) {
2248 spin_lock_irq(&p->sighand->siglock);
2249 handle_stop_signal(sig, p);
2250 error = specific_send_sig_info(sig, &info, p);
2251 spin_unlock_irq(&p->sighand->siglock);
2254 read_unlock(&tasklist_lock);
2256 return error;
2260 * sys_tgkill - send signal to one specific thread
2261 * @tgid: the thread group ID of the thread
2262 * @pid: the PID of the thread
2263 * @sig: signal to be sent
2265 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2266 * exists but it's not belonging to the target process anymore. This
2267 * method solves the problem of threads exiting and PIDs getting reused.
2269 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2271 /* This is only valid for single tasks */
2272 if (pid <= 0 || tgid <= 0)
2273 return -EINVAL;
2275 return do_tkill(tgid, pid, sig);
2279 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2281 asmlinkage long
2282 sys_tkill(int pid, int sig)
2284 /* This is only valid for single tasks */
2285 if (pid <= 0)
2286 return -EINVAL;
2288 return do_tkill(0, pid, sig);
2291 asmlinkage long
2292 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2294 siginfo_t info;
2296 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2297 return -EFAULT;
2299 /* Not even root can pretend to send signals from the kernel.
2300 Nor can they impersonate a kill(), which adds source info. */
2301 if (info.si_code >= 0)
2302 return -EPERM;
2303 info.si_signo = sig;
2305 /* POSIX.1b doesn't mention process groups. */
2306 return kill_proc_info(sig, &info, pid);
2309 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2311 struct k_sigaction *k;
2312 sigset_t mask;
2314 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2315 return -EINVAL;
2317 k = &current->sighand->action[sig-1];
2319 spin_lock_irq(&current->sighand->siglock);
2320 if (oact)
2321 *oact = *k;
2323 if (act) {
2324 sigdelsetmask(&act->sa.sa_mask,
2325 sigmask(SIGKILL) | sigmask(SIGSTOP));
2326 *k = *act;
2328 * POSIX 3.3.1.3:
2329 * "Setting a signal action to SIG_IGN for a signal that is
2330 * pending shall cause the pending signal to be discarded,
2331 * whether or not it is blocked."
2333 * "Setting a signal action to SIG_DFL for a signal that is
2334 * pending and whose default action is to ignore the signal
2335 * (for example, SIGCHLD), shall cause the pending signal to
2336 * be discarded, whether or not it is blocked"
2338 if (act->sa.sa_handler == SIG_IGN ||
2339 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2340 struct task_struct *t = current;
2341 sigemptyset(&mask);
2342 sigaddset(&mask, sig);
2343 rm_from_queue_full(&mask, &t->signal->shared_pending);
2344 do {
2345 rm_from_queue_full(&mask, &t->pending);
2346 t = next_thread(t);
2347 } while (t != current);
2351 spin_unlock_irq(&current->sighand->siglock);
2352 return 0;
2355 int
2356 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2358 stack_t oss;
2359 int error;
2361 if (uoss) {
2362 oss.ss_sp = (void __user *) current->sas_ss_sp;
2363 oss.ss_size = current->sas_ss_size;
2364 oss.ss_flags = sas_ss_flags(sp);
2367 if (uss) {
2368 void __user *ss_sp;
2369 size_t ss_size;
2370 int ss_flags;
2372 error = -EFAULT;
2373 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2374 || __get_user(ss_sp, &uss->ss_sp)
2375 || __get_user(ss_flags, &uss->ss_flags)
2376 || __get_user(ss_size, &uss->ss_size))
2377 goto out;
2379 error = -EPERM;
2380 if (on_sig_stack(sp))
2381 goto out;
2383 error = -EINVAL;
2386 * Note - this code used to test ss_flags incorrectly
2387 * old code may have been written using ss_flags==0
2388 * to mean ss_flags==SS_ONSTACK (as this was the only
2389 * way that worked) - this fix preserves that older
2390 * mechanism
2392 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2393 goto out;
2395 if (ss_flags == SS_DISABLE) {
2396 ss_size = 0;
2397 ss_sp = NULL;
2398 } else {
2399 error = -ENOMEM;
2400 if (ss_size < MINSIGSTKSZ)
2401 goto out;
2404 current->sas_ss_sp = (unsigned long) ss_sp;
2405 current->sas_ss_size = ss_size;
2408 if (uoss) {
2409 error = -EFAULT;
2410 if (copy_to_user(uoss, &oss, sizeof(oss)))
2411 goto out;
2414 error = 0;
2415 out:
2416 return error;
2419 #ifdef __ARCH_WANT_SYS_SIGPENDING
2421 asmlinkage long
2422 sys_sigpending(old_sigset_t __user *set)
2424 return do_sigpending(set, sizeof(*set));
2427 #endif
2429 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2430 /* Some platforms have their own version with special arguments others
2431 support only sys_rt_sigprocmask. */
2433 asmlinkage long
2434 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2436 int error;
2437 old_sigset_t old_set, new_set;
2439 if (set) {
2440 error = -EFAULT;
2441 if (copy_from_user(&new_set, set, sizeof(*set)))
2442 goto out;
2443 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2445 spin_lock_irq(&current->sighand->siglock);
2446 old_set = current->blocked.sig[0];
2448 error = 0;
2449 switch (how) {
2450 default:
2451 error = -EINVAL;
2452 break;
2453 case SIG_BLOCK:
2454 sigaddsetmask(&current->blocked, new_set);
2455 break;
2456 case SIG_UNBLOCK:
2457 sigdelsetmask(&current->blocked, new_set);
2458 break;
2459 case SIG_SETMASK:
2460 current->blocked.sig[0] = new_set;
2461 break;
2464 recalc_sigpending();
2465 spin_unlock_irq(&current->sighand->siglock);
2466 if (error)
2467 goto out;
2468 if (oset)
2469 goto set_old;
2470 } else if (oset) {
2471 old_set = current->blocked.sig[0];
2472 set_old:
2473 error = -EFAULT;
2474 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2475 goto out;
2477 error = 0;
2478 out:
2479 return error;
2481 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2483 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2484 asmlinkage long
2485 sys_rt_sigaction(int sig,
2486 const struct sigaction __user *act,
2487 struct sigaction __user *oact,
2488 size_t sigsetsize)
2490 struct k_sigaction new_sa, old_sa;
2491 int ret = -EINVAL;
2493 /* XXX: Don't preclude handling different sized sigset_t's. */
2494 if (sigsetsize != sizeof(sigset_t))
2495 goto out;
2497 if (act) {
2498 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2499 return -EFAULT;
2502 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2504 if (!ret && oact) {
2505 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2506 return -EFAULT;
2508 out:
2509 return ret;
2511 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2513 #ifdef __ARCH_WANT_SYS_SGETMASK
2516 * For backwards compatibility. Functionality superseded by sigprocmask.
2518 asmlinkage long
2519 sys_sgetmask(void)
2521 /* SMP safe */
2522 return current->blocked.sig[0];
2525 asmlinkage long
2526 sys_ssetmask(int newmask)
2528 int old;
2530 spin_lock_irq(&current->sighand->siglock);
2531 old = current->blocked.sig[0];
2533 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2534 sigmask(SIGSTOP)));
2535 recalc_sigpending();
2536 spin_unlock_irq(&current->sighand->siglock);
2538 return old;
2540 #endif /* __ARCH_WANT_SGETMASK */
2542 #ifdef __ARCH_WANT_SYS_SIGNAL
2544 * For backwards compatibility. Functionality superseded by sigaction.
2546 asmlinkage unsigned long
2547 sys_signal(int sig, __sighandler_t handler)
2549 struct k_sigaction new_sa, old_sa;
2550 int ret;
2552 new_sa.sa.sa_handler = handler;
2553 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2554 sigemptyset(&new_sa.sa.sa_mask);
2556 ret = do_sigaction(sig, &new_sa, &old_sa);
2558 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2560 #endif /* __ARCH_WANT_SYS_SIGNAL */
2562 #ifdef __ARCH_WANT_SYS_PAUSE
2564 asmlinkage long
2565 sys_pause(void)
2567 current->state = TASK_INTERRUPTIBLE;
2568 schedule();
2569 return -ERESTARTNOHAND;
2572 #endif
2574 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2575 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2577 sigset_t newset;
2579 /* XXX: Don't preclude handling different sized sigset_t's. */
2580 if (sigsetsize != sizeof(sigset_t))
2581 return -EINVAL;
2583 if (copy_from_user(&newset, unewset, sizeof(newset)))
2584 return -EFAULT;
2585 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2587 spin_lock_irq(&current->sighand->siglock);
2588 current->saved_sigmask = current->blocked;
2589 current->blocked = newset;
2590 recalc_sigpending();
2591 spin_unlock_irq(&current->sighand->siglock);
2593 current->state = TASK_INTERRUPTIBLE;
2594 schedule();
2595 set_thread_flag(TIF_RESTORE_SIGMASK);
2596 return -ERESTARTNOHAND;
2598 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2600 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2602 return NULL;
2605 void __init signals_init(void)
2607 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);