2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
14 * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
17 * Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials provided
20 * with the distribution.
22 * Neither the name of the Network Appliance, Inc. nor the names of
23 * its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
43 * This file contains the guts of the RPC RDMA protocol, and
44 * does marshaling/unmarshaling, etc. It is also where interfacing
45 * to the Linux RPC framework lives.
48 #include "xprt_rdma.h"
50 #include <linux/highmem.h>
53 # define RPCDBG_FACILITY RPCDBG_TRANS
56 enum rpcrdma_chunktype
{
65 static const char transfertypes
[][12] = {
66 "pure inline", /* no chunks */
67 " read chunk", /* some argument via rdma read */
68 "*read chunk", /* entire request via rdma read */
69 "write chunk", /* some result via rdma write */
70 "reply chunk" /* entire reply via rdma write */
75 * Chunk assembly from upper layer xdr_buf.
77 * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
78 * elements. Segments are then coalesced when registered, if possible
79 * within the selected memreg mode.
81 * Note, this routine is never called if the connection's memory
82 * registration strategy is 0 (bounce buffers).
86 rpcrdma_convert_iovs(struct xdr_buf
*xdrbuf
, int pos
,
87 enum rpcrdma_chunktype type
, struct rpcrdma_mr_seg
*seg
, int nsegs
)
91 if (pos
== 0 && xdrbuf
->head
[0].iov_len
) {
92 seg
[n
].mr_page
= NULL
;
93 seg
[n
].mr_offset
= xdrbuf
->head
[0].iov_base
;
94 seg
[n
].mr_len
= xdrbuf
->head
[0].iov_len
;
95 pos
+= xdrbuf
->head
[0].iov_len
;
99 if (xdrbuf
->page_len
&& (xdrbuf
->pages
[0] != NULL
)) {
102 seg
[n
].mr_page
= xdrbuf
->pages
[0];
103 seg
[n
].mr_offset
= (void *)(unsigned long) xdrbuf
->page_base
;
104 seg
[n
].mr_len
= min_t(u32
,
105 PAGE_SIZE
- xdrbuf
->page_base
, xdrbuf
->page_len
);
106 len
= xdrbuf
->page_len
- seg
[n
].mr_len
;
113 seg
[n
].mr_page
= xdrbuf
->pages
[p
];
114 seg
[n
].mr_offset
= NULL
;
115 seg
[n
].mr_len
= min_t(u32
, PAGE_SIZE
, len
);
116 len
-= seg
[n
].mr_len
;
122 if (pos
< xdrbuf
->len
&& xdrbuf
->tail
[0].iov_len
) {
125 seg
[n
].mr_page
= NULL
;
126 seg
[n
].mr_offset
= xdrbuf
->tail
[0].iov_base
;
127 seg
[n
].mr_len
= xdrbuf
->tail
[0].iov_len
;
128 pos
+= xdrbuf
->tail
[0].iov_len
;
132 if (pos
< xdrbuf
->len
)
133 dprintk("RPC: %s: marshaled only %d of %d\n",
134 __func__
, pos
, xdrbuf
->len
);
140 * Create read/write chunk lists, and reply chunks, for RDMA
142 * Assume check against THRESHOLD has been done, and chunks are required.
143 * Assume only encoding one list entry for read|write chunks. The NFSv3
144 * protocol is simple enough to allow this as it only has a single "bulk
145 * result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
146 * RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
148 * When used for a single reply chunk (which is a special write
149 * chunk used for the entire reply, rather than just the data), it
150 * is used primarily for READDIR and READLINK which would otherwise
151 * be severely size-limited by a small rdma inline read max. The server
152 * response will come back as an RDMA Write, followed by a message
153 * of type RDMA_NOMSG carrying the xid and length. As a result, reply
154 * chunks do not provide data alignment, however they do not require
155 * "fixup" (moving the response to the upper layer buffer) either.
157 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
159 * Read chunklist (a linked list):
160 * N elements, position P (same P for all chunks of same arg!):
161 * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
163 * Write chunklist (a list of (one) counted array):
165 * 1 - N - HLOO - HLOO - ... - HLOO - 0
167 * Reply chunk (a counted array):
169 * 1 - N - HLOO - HLOO - ... - HLOO
173 rpcrdma_create_chunks(struct rpc_rqst
*rqst
, struct xdr_buf
*target
,
174 struct rpcrdma_msg
*headerp
, enum rpcrdma_chunktype type
)
176 struct rpcrdma_req
*req
= rpcr_to_rdmar(rqst
);
177 struct rpcrdma_xprt
*r_xprt
= rpcx_to_rdmax(rqst
->rq_task
->tk_xprt
);
178 int nsegs
, nchunks
= 0;
180 struct rpcrdma_mr_seg
*seg
= req
->rl_segments
;
181 struct rpcrdma_read_chunk
*cur_rchunk
= NULL
;
182 struct rpcrdma_write_array
*warray
= NULL
;
183 struct rpcrdma_write_chunk
*cur_wchunk
= NULL
;
184 u32
*iptr
= headerp
->rm_body
.rm_chunks
;
186 if (type
== rpcrdma_readch
|| type
== rpcrdma_areadch
) {
187 /* a read chunk - server will RDMA Read our memory */
188 cur_rchunk
= (struct rpcrdma_read_chunk
*) iptr
;
190 /* a write or reply chunk - server will RDMA Write our memory */
191 *iptr
++ = xdr_zero
; /* encode a NULL read chunk list */
192 if (type
== rpcrdma_replych
)
193 *iptr
++ = xdr_zero
; /* a NULL write chunk list */
194 warray
= (struct rpcrdma_write_array
*) iptr
;
195 cur_wchunk
= (struct rpcrdma_write_chunk
*) (warray
+ 1);
198 if (type
== rpcrdma_replych
|| type
== rpcrdma_areadch
)
201 pos
= target
->head
[0].iov_len
;
203 nsegs
= rpcrdma_convert_iovs(target
, pos
, type
, seg
, RPCRDMA_MAX_SEGS
);
208 /* bind/register the memory, then build chunk from result. */
209 int n
= rpcrdma_register_external(seg
, nsegs
,
210 cur_wchunk
!= NULL
, r_xprt
);
213 if (cur_rchunk
) { /* read */
214 cur_rchunk
->rc_discrim
= xdr_one
;
215 /* all read chunks have the same "position" */
216 cur_rchunk
->rc_position
= htonl(pos
);
217 cur_rchunk
->rc_target
.rs_handle
= htonl(seg
->mr_rkey
);
218 cur_rchunk
->rc_target
.rs_length
= htonl(seg
->mr_len
);
220 (u32
*)&cur_rchunk
->rc_target
.rs_offset
,
222 dprintk("RPC: %s: read chunk "
223 "elem %d@0x%llx:0x%x pos %d (%s)\n", __func__
,
224 seg
->mr_len
, seg
->mr_base
, seg
->mr_rkey
, pos
,
225 n
< nsegs
? "more" : "last");
227 r_xprt
->rx_stats
.read_chunk_count
++;
228 } else { /* write/reply */
229 cur_wchunk
->wc_target
.rs_handle
= htonl(seg
->mr_rkey
);
230 cur_wchunk
->wc_target
.rs_length
= htonl(seg
->mr_len
);
232 (u32
*)&cur_wchunk
->wc_target
.rs_offset
,
234 dprintk("RPC: %s: %s chunk "
235 "elem %d@0x%llx:0x%x (%s)\n", __func__
,
236 (type
== rpcrdma_replych
) ? "reply" : "write",
237 seg
->mr_len
, seg
->mr_base
, seg
->mr_rkey
,
238 n
< nsegs
? "more" : "last");
240 if (type
== rpcrdma_replych
)
241 r_xprt
->rx_stats
.reply_chunk_count
++;
243 r_xprt
->rx_stats
.write_chunk_count
++;
244 r_xprt
->rx_stats
.total_rdma_request
+= seg
->mr_len
;
251 /* success. all failures return above */
252 req
->rl_nchunks
= nchunks
;
254 BUG_ON(nchunks
== 0);
257 * finish off header. If write, marshal discrim and nchunks.
260 iptr
= (u32
*) cur_rchunk
;
261 *iptr
++ = xdr_zero
; /* finish the read chunk list */
262 *iptr
++ = xdr_zero
; /* encode a NULL write chunk list */
263 *iptr
++ = xdr_zero
; /* encode a NULL reply chunk */
265 warray
->wc_discrim
= xdr_one
;
266 warray
->wc_nchunks
= htonl(nchunks
);
267 iptr
= (u32
*) cur_wchunk
;
268 if (type
== rpcrdma_writech
) {
269 *iptr
++ = xdr_zero
; /* finish the write chunk list */
270 *iptr
++ = xdr_zero
; /* encode a NULL reply chunk */
275 * Return header size.
277 return (unsigned char *)iptr
- (unsigned char *)headerp
;
280 for (pos
= 0; nchunks
--;)
281 pos
+= rpcrdma_deregister_external(
282 &req
->rl_segments
[pos
], r_xprt
, NULL
);
287 * Copy write data inline.
288 * This function is used for "small" requests. Data which is passed
289 * to RPC via iovecs (or page list) is copied directly into the
290 * pre-registered memory buffer for this request. For small amounts
291 * of data, this is efficient. The cutoff value is tunable.
294 rpcrdma_inline_pullup(struct rpc_rqst
*rqst
, int pad
)
296 int i
, npages
, curlen
;
298 unsigned char *srcp
, *destp
;
299 struct rpcrdma_xprt
*r_xprt
= rpcx_to_rdmax(rqst
->rq_xprt
);
301 destp
= rqst
->rq_svec
[0].iov_base
;
302 curlen
= rqst
->rq_svec
[0].iov_len
;
305 * Do optional padding where it makes sense. Alignment of write
306 * payload can help the server, if our setting is accurate.
308 pad
-= (curlen
+ 36/*sizeof(struct rpcrdma_msg_padded)*/);
309 if (pad
< 0 || rqst
->rq_slen
- curlen
< RPCRDMA_INLINE_PAD_THRESH
)
310 pad
= 0; /* don't pad this request */
312 dprintk("RPC: %s: pad %d destp 0x%p len %d hdrlen %d\n",
313 __func__
, pad
, destp
, rqst
->rq_slen
, curlen
);
315 copy_len
= rqst
->rq_snd_buf
.page_len
;
316 r_xprt
->rx_stats
.pullup_copy_count
+= copy_len
;
317 npages
= PAGE_ALIGN(rqst
->rq_snd_buf
.page_base
+copy_len
) >> PAGE_SHIFT
;
318 for (i
= 0; copy_len
&& i
< npages
; i
++) {
320 curlen
= PAGE_SIZE
- rqst
->rq_snd_buf
.page_base
;
323 if (curlen
> copy_len
)
325 dprintk("RPC: %s: page %d destp 0x%p len %d curlen %d\n",
326 __func__
, i
, destp
, copy_len
, curlen
);
327 srcp
= kmap_atomic(rqst
->rq_snd_buf
.pages
[i
],
330 memcpy(destp
, srcp
+rqst
->rq_snd_buf
.page_base
, curlen
);
332 memcpy(destp
, srcp
, curlen
);
333 kunmap_atomic(srcp
, KM_SKB_SUNRPC_DATA
);
334 rqst
->rq_svec
[0].iov_len
+= curlen
;
338 if (rqst
->rq_snd_buf
.tail
[0].iov_len
) {
339 curlen
= rqst
->rq_snd_buf
.tail
[0].iov_len
;
340 if (destp
!= rqst
->rq_snd_buf
.tail
[0].iov_base
) {
342 rqst
->rq_snd_buf
.tail
[0].iov_base
, curlen
);
343 r_xprt
->rx_stats
.pullup_copy_count
+= curlen
;
345 dprintk("RPC: %s: tail destp 0x%p len %d curlen %d\n",
346 __func__
, destp
, copy_len
, curlen
);
347 rqst
->rq_svec
[0].iov_len
+= curlen
;
349 /* header now contains entire send message */
354 * Marshal a request: the primary job of this routine is to choose
355 * the transfer modes. See comments below.
357 * Uses multiple RDMA IOVs for a request:
358 * [0] -- RPC RDMA header, which uses memory from the *start* of the
359 * preregistered buffer that already holds the RPC data in
361 * [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
362 * [2] -- optional padding.
363 * [3] -- if padded, header only in [1] and data here.
367 rpcrdma_marshal_req(struct rpc_rqst
*rqst
)
369 struct rpc_xprt
*xprt
= rqst
->rq_task
->tk_xprt
;
370 struct rpcrdma_xprt
*r_xprt
= rpcx_to_rdmax(xprt
);
371 struct rpcrdma_req
*req
= rpcr_to_rdmar(rqst
);
373 size_t hdrlen
, rpclen
, padlen
;
374 enum rpcrdma_chunktype rtype
, wtype
;
375 struct rpcrdma_msg
*headerp
;
378 * rpclen gets amount of data in first buffer, which is the
379 * pre-registered buffer.
381 base
= rqst
->rq_svec
[0].iov_base
;
382 rpclen
= rqst
->rq_svec
[0].iov_len
;
384 /* build RDMA header in private area at front */
385 headerp
= (struct rpcrdma_msg
*) req
->rl_base
;
386 /* don't htonl XID, it's already done in request */
387 headerp
->rm_xid
= rqst
->rq_xid
;
388 headerp
->rm_vers
= xdr_one
;
389 headerp
->rm_credit
= htonl(r_xprt
->rx_buf
.rb_max_requests
);
390 headerp
->rm_type
= __constant_htonl(RDMA_MSG
);
393 * Chunks needed for results?
395 * o If the expected result is under the inline threshold, all ops
396 * return as inline (but see later).
397 * o Large non-read ops return as a single reply chunk.
398 * o Large read ops return data as write chunk(s), header as inline.
400 * Note: the NFS code sending down multiple result segments implies
401 * the op is one of read, readdir[plus], readlink or NFSv4 getacl.
405 * This code can handle read chunks, write chunks OR reply
406 * chunks -- only one type. If the request is too big to fit
407 * inline, then we will choose read chunks. If the request is
408 * a READ, then use write chunks to separate the file data
409 * into pages; otherwise use reply chunks.
411 if (rqst
->rq_rcv_buf
.buflen
<= RPCRDMA_INLINE_READ_THRESHOLD(rqst
))
412 wtype
= rpcrdma_noch
;
413 else if (rqst
->rq_rcv_buf
.page_len
== 0)
414 wtype
= rpcrdma_replych
;
415 else if (rqst
->rq_rcv_buf
.flags
& XDRBUF_READ
)
416 wtype
= rpcrdma_writech
;
418 wtype
= rpcrdma_replych
;
421 * Chunks needed for arguments?
423 * o If the total request is under the inline threshold, all ops
424 * are sent as inline.
425 * o Large non-write ops are sent with the entire message as a
426 * single read chunk (protocol 0-position special case).
427 * o Large write ops transmit data as read chunk(s), header as
430 * Note: the NFS code sending down multiple argument segments
431 * implies the op is a write.
432 * TBD check NFSv4 setacl
434 if (rqst
->rq_snd_buf
.len
<= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst
))
435 rtype
= rpcrdma_noch
;
436 else if (rqst
->rq_snd_buf
.page_len
== 0)
437 rtype
= rpcrdma_areadch
;
439 rtype
= rpcrdma_readch
;
441 /* The following simplification is not true forever */
442 if (rtype
!= rpcrdma_noch
&& wtype
== rpcrdma_replych
)
443 wtype
= rpcrdma_noch
;
444 BUG_ON(rtype
!= rpcrdma_noch
&& wtype
!= rpcrdma_noch
);
446 if (r_xprt
->rx_ia
.ri_memreg_strategy
== RPCRDMA_BOUNCEBUFFERS
&&
447 (rtype
!= rpcrdma_noch
|| wtype
!= rpcrdma_noch
)) {
448 /* forced to "pure inline"? */
449 dprintk("RPC: %s: too much data (%d/%d) for inline\n",
450 __func__
, rqst
->rq_rcv_buf
.len
, rqst
->rq_snd_buf
.len
);
454 hdrlen
= 28; /*sizeof *headerp;*/
458 * Pull up any extra send data into the preregistered buffer.
459 * When padding is in use and applies to the transfer, insert
460 * it and change the message type.
462 if (rtype
== rpcrdma_noch
) {
464 padlen
= rpcrdma_inline_pullup(rqst
,
465 RPCRDMA_INLINE_PAD_VALUE(rqst
));
468 headerp
->rm_type
= __constant_htonl(RDMA_MSGP
);
469 headerp
->rm_body
.rm_padded
.rm_align
=
470 htonl(RPCRDMA_INLINE_PAD_VALUE(rqst
));
471 headerp
->rm_body
.rm_padded
.rm_thresh
=
472 __constant_htonl(RPCRDMA_INLINE_PAD_THRESH
);
473 headerp
->rm_body
.rm_padded
.rm_pempty
[0] = xdr_zero
;
474 headerp
->rm_body
.rm_padded
.rm_pempty
[1] = xdr_zero
;
475 headerp
->rm_body
.rm_padded
.rm_pempty
[2] = xdr_zero
;
476 hdrlen
+= 2 * sizeof(u32
); /* extra words in padhdr */
477 BUG_ON(wtype
!= rpcrdma_noch
);
480 headerp
->rm_body
.rm_nochunks
.rm_empty
[0] = xdr_zero
;
481 headerp
->rm_body
.rm_nochunks
.rm_empty
[1] = xdr_zero
;
482 headerp
->rm_body
.rm_nochunks
.rm_empty
[2] = xdr_zero
;
483 /* new length after pullup */
484 rpclen
= rqst
->rq_svec
[0].iov_len
;
486 * Currently we try to not actually use read inline.
487 * Reply chunks have the desirable property that
488 * they land, packed, directly in the target buffers
489 * without headers, so they require no fixup. The
490 * additional RDMA Write op sends the same amount
491 * of data, streams on-the-wire and adds no overhead
492 * on receive. Therefore, we request a reply chunk
493 * for non-writes wherever feasible and efficient.
495 if (wtype
== rpcrdma_noch
&&
496 r_xprt
->rx_ia
.ri_memreg_strategy
> RPCRDMA_REGISTER
)
497 wtype
= rpcrdma_replych
;
502 * Marshal chunks. This routine will return the header length
503 * consumed by marshaling.
505 if (rtype
!= rpcrdma_noch
) {
506 hdrlen
= rpcrdma_create_chunks(rqst
,
507 &rqst
->rq_snd_buf
, headerp
, rtype
);
508 wtype
= rtype
; /* simplify dprintk */
510 } else if (wtype
!= rpcrdma_noch
) {
511 hdrlen
= rpcrdma_create_chunks(rqst
,
512 &rqst
->rq_rcv_buf
, headerp
, wtype
);
518 dprintk("RPC: %s: %s: hdrlen %zd rpclen %zd padlen %zd\n"
519 " headerp 0x%p base 0x%p lkey 0x%x\n",
520 __func__
, transfertypes
[wtype
], hdrlen
, rpclen
, padlen
,
521 headerp
, base
, req
->rl_iov
.lkey
);
524 * initialize send_iov's - normally only two: rdma chunk header and
525 * single preregistered RPC header buffer, but if padding is present,
526 * then use a preregistered (and zeroed) pad buffer between the RPC
527 * header and any write data. In all non-rdma cases, any following
528 * data has been copied into the RPC header buffer.
530 req
->rl_send_iov
[0].addr
= req
->rl_iov
.addr
;
531 req
->rl_send_iov
[0].length
= hdrlen
;
532 req
->rl_send_iov
[0].lkey
= req
->rl_iov
.lkey
;
534 req
->rl_send_iov
[1].addr
= req
->rl_iov
.addr
+ (base
- req
->rl_base
);
535 req
->rl_send_iov
[1].length
= rpclen
;
536 req
->rl_send_iov
[1].lkey
= req
->rl_iov
.lkey
;
541 struct rpcrdma_ep
*ep
= &r_xprt
->rx_ep
;
543 req
->rl_send_iov
[2].addr
= ep
->rep_pad
.addr
;
544 req
->rl_send_iov
[2].length
= padlen
;
545 req
->rl_send_iov
[2].lkey
= ep
->rep_pad
.lkey
;
547 req
->rl_send_iov
[3].addr
= req
->rl_send_iov
[1].addr
+ rpclen
;
548 req
->rl_send_iov
[3].length
= rqst
->rq_slen
- rpclen
;
549 req
->rl_send_iov
[3].lkey
= req
->rl_iov
.lkey
;
558 * Chase down a received write or reply chunklist to get length
559 * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
562 rpcrdma_count_chunks(struct rpcrdma_rep
*rep
, int max
, int wrchunk
, u32
**iptrp
)
564 unsigned int i
, total_len
;
565 struct rpcrdma_write_chunk
*cur_wchunk
;
567 i
= ntohl(**iptrp
); /* get array count */
570 cur_wchunk
= (struct rpcrdma_write_chunk
*) (*iptrp
+ 1);
573 struct rpcrdma_segment
*seg
= &cur_wchunk
->wc_target
;
576 xdr_decode_hyper((u32
*)&seg
->rs_offset
, &off
);
577 dprintk("RPC: %s: chunk %d@0x%llx:0x%x\n",
579 ntohl(seg
->rs_length
),
581 ntohl(seg
->rs_handle
));
583 total_len
+= ntohl(seg
->rs_length
);
586 /* check and adjust for properly terminated write chunk */
588 u32
*w
= (u32
*) cur_wchunk
;
589 if (*w
++ != xdr_zero
)
591 cur_wchunk
= (struct rpcrdma_write_chunk
*) w
;
593 if ((char *) cur_wchunk
> rep
->rr_base
+ rep
->rr_len
)
596 *iptrp
= (u32
*) cur_wchunk
;
601 * Scatter inline received data back into provided iov's.
604 rpcrdma_inline_fixup(struct rpc_rqst
*rqst
, char *srcp
, int copy_len
)
606 int i
, npages
, curlen
, olen
;
609 curlen
= rqst
->rq_rcv_buf
.head
[0].iov_len
;
610 if (curlen
> copy_len
) { /* write chunk header fixup */
612 rqst
->rq_rcv_buf
.head
[0].iov_len
= curlen
;
615 dprintk("RPC: %s: srcp 0x%p len %d hdrlen %d\n",
616 __func__
, srcp
, copy_len
, curlen
);
618 /* Shift pointer for first receive segment only */
619 rqst
->rq_rcv_buf
.head
[0].iov_base
= srcp
;
625 rpcx_to_rdmax(rqst
->rq_xprt
)->rx_stats
.fixup_copy_count
+= olen
;
626 if (copy_len
&& rqst
->rq_rcv_buf
.page_len
) {
627 npages
= PAGE_ALIGN(rqst
->rq_rcv_buf
.page_base
+
628 rqst
->rq_rcv_buf
.page_len
) >> PAGE_SHIFT
;
629 for (; i
< npages
; i
++) {
631 curlen
= PAGE_SIZE
- rqst
->rq_rcv_buf
.page_base
;
634 if (curlen
> copy_len
)
636 dprintk("RPC: %s: page %d"
637 " srcp 0x%p len %d curlen %d\n",
638 __func__
, i
, srcp
, copy_len
, curlen
);
639 destp
= kmap_atomic(rqst
->rq_rcv_buf
.pages
[i
],
642 memcpy(destp
+ rqst
->rq_rcv_buf
.page_base
,
645 memcpy(destp
, srcp
, curlen
);
646 flush_dcache_page(rqst
->rq_rcv_buf
.pages
[i
]);
647 kunmap_atomic(destp
, KM_SKB_SUNRPC_DATA
);
653 rqst
->rq_rcv_buf
.page_len
= olen
- copy_len
;
655 rqst
->rq_rcv_buf
.page_len
= 0;
657 if (copy_len
&& rqst
->rq_rcv_buf
.tail
[0].iov_len
) {
659 if (curlen
> rqst
->rq_rcv_buf
.tail
[0].iov_len
)
660 curlen
= rqst
->rq_rcv_buf
.tail
[0].iov_len
;
661 if (rqst
->rq_rcv_buf
.tail
[0].iov_base
!= srcp
)
662 memcpy(rqst
->rq_rcv_buf
.tail
[0].iov_base
, srcp
, curlen
);
663 dprintk("RPC: %s: tail srcp 0x%p len %d curlen %d\n",
664 __func__
, srcp
, copy_len
, curlen
);
665 rqst
->rq_rcv_buf
.tail
[0].iov_len
= curlen
;
666 copy_len
-= curlen
; ++i
;
668 rqst
->rq_rcv_buf
.tail
[0].iov_len
= 0;
671 dprintk("RPC: %s: %d bytes in"
672 " %d extra segments (%d lost)\n",
673 __func__
, olen
, i
, copy_len
);
675 /* TBD avoid a warning from call_decode() */
676 rqst
->rq_private_buf
= rqst
->rq_rcv_buf
;
680 * This function is called when an async event is posted to
681 * the connection which changes the connection state. All it
682 * does at this point is mark the connection up/down, the rpc
683 * timers do the rest.
686 rpcrdma_conn_func(struct rpcrdma_ep
*ep
)
688 struct rpc_xprt
*xprt
= ep
->rep_xprt
;
690 spin_lock_bh(&xprt
->transport_lock
);
691 if (ep
->rep_connected
> 0) {
692 if (!xprt_test_and_set_connected(xprt
))
693 xprt_wake_pending_tasks(xprt
, 0);
695 if (xprt_test_and_clear_connected(xprt
))
696 xprt_wake_pending_tasks(xprt
, ep
->rep_connected
);
698 spin_unlock_bh(&xprt
->transport_lock
);
702 * This function is called when memory window unbind which we are waiting
703 * for completes. Just use rr_func (zeroed by upcall) to signal completion.
706 rpcrdma_unbind_func(struct rpcrdma_rep
*rep
)
708 wake_up(&rep
->rr_unbind
);
712 * Called as a tasklet to do req/reply match and complete a request
713 * Errors must result in the RPC task either being awakened, or
714 * allowed to timeout, to discover the errors at that time.
717 rpcrdma_reply_handler(struct rpcrdma_rep
*rep
)
719 struct rpcrdma_msg
*headerp
;
720 struct rpcrdma_req
*req
;
721 struct rpc_rqst
*rqst
;
722 struct rpc_xprt
*xprt
= rep
->rr_xprt
;
723 struct rpcrdma_xprt
*r_xprt
= rpcx_to_rdmax(xprt
);
725 int i
, rdmalen
, status
;
727 /* Check status. If bad, signal disconnect and return rep to pool */
728 if (rep
->rr_len
== ~0U) {
729 rpcrdma_recv_buffer_put(rep
);
730 if (r_xprt
->rx_ep
.rep_connected
== 1) {
731 r_xprt
->rx_ep
.rep_connected
= -EIO
;
732 rpcrdma_conn_func(&r_xprt
->rx_ep
);
736 if (rep
->rr_len
< 28) {
737 dprintk("RPC: %s: short/invalid reply\n", __func__
);
740 headerp
= (struct rpcrdma_msg
*) rep
->rr_base
;
741 if (headerp
->rm_vers
!= xdr_one
) {
742 dprintk("RPC: %s: invalid version %d\n",
743 __func__
, ntohl(headerp
->rm_vers
));
747 /* Get XID and try for a match. */
748 spin_lock(&xprt
->transport_lock
);
749 rqst
= xprt_lookup_rqst(xprt
, headerp
->rm_xid
);
751 spin_unlock(&xprt
->transport_lock
);
752 dprintk("RPC: %s: reply 0x%p failed "
753 "to match any request xid 0x%08x len %d\n",
754 __func__
, rep
, headerp
->rm_xid
, rep
->rr_len
);
756 r_xprt
->rx_stats
.bad_reply_count
++;
757 rep
->rr_func
= rpcrdma_reply_handler
;
758 if (rpcrdma_ep_post_recv(&r_xprt
->rx_ia
, &r_xprt
->rx_ep
, rep
))
759 rpcrdma_recv_buffer_put(rep
);
764 /* get request object */
765 req
= rpcr_to_rdmar(rqst
);
767 dprintk("RPC: %s: reply 0x%p completes request 0x%p\n"
768 " RPC request 0x%p xid 0x%08x\n",
769 __func__
, rep
, req
, rqst
, headerp
->rm_xid
);
771 BUG_ON(!req
|| req
->rl_reply
);
773 /* from here on, the reply is no longer an orphan */
776 /* check for expected message types */
777 /* The order of some of these tests is important. */
778 switch (headerp
->rm_type
) {
779 case __constant_htonl(RDMA_MSG
):
780 /* never expect read chunks */
781 /* never expect reply chunks (two ways to check) */
782 /* never expect write chunks without having offered RDMA */
783 if (headerp
->rm_body
.rm_chunks
[0] != xdr_zero
||
784 (headerp
->rm_body
.rm_chunks
[1] == xdr_zero
&&
785 headerp
->rm_body
.rm_chunks
[2] != xdr_zero
) ||
786 (headerp
->rm_body
.rm_chunks
[1] != xdr_zero
&&
787 req
->rl_nchunks
== 0))
789 if (headerp
->rm_body
.rm_chunks
[1] != xdr_zero
) {
790 /* count any expected write chunks in read reply */
791 /* start at write chunk array count */
792 iptr
= &headerp
->rm_body
.rm_chunks
[2];
793 rdmalen
= rpcrdma_count_chunks(rep
,
794 req
->rl_nchunks
, 1, &iptr
);
795 /* check for validity, and no reply chunk after */
796 if (rdmalen
< 0 || *iptr
++ != xdr_zero
)
799 ((unsigned char *)iptr
- (unsigned char *)headerp
);
800 status
= rep
->rr_len
+ rdmalen
;
801 r_xprt
->rx_stats
.total_rdma_reply
+= rdmalen
;
803 /* else ordinary inline */
804 iptr
= (u32
*)((unsigned char *)headerp
+ 28);
805 rep
->rr_len
-= 28; /*sizeof *headerp;*/
806 status
= rep
->rr_len
;
808 /* Fix up the rpc results for upper layer */
809 rpcrdma_inline_fixup(rqst
, (char *)iptr
, rep
->rr_len
);
812 case __constant_htonl(RDMA_NOMSG
):
813 /* never expect read or write chunks, always reply chunks */
814 if (headerp
->rm_body
.rm_chunks
[0] != xdr_zero
||
815 headerp
->rm_body
.rm_chunks
[1] != xdr_zero
||
816 headerp
->rm_body
.rm_chunks
[2] != xdr_one
||
817 req
->rl_nchunks
== 0)
819 iptr
= (u32
*)((unsigned char *)headerp
+ 28);
820 rdmalen
= rpcrdma_count_chunks(rep
, req
->rl_nchunks
, 0, &iptr
);
823 r_xprt
->rx_stats
.total_rdma_reply
+= rdmalen
;
824 /* Reply chunk buffer already is the reply vector - no fixup. */
830 dprintk("%s: invalid rpcrdma reply header (type %d):"
831 " chunks[012] == %d %d %d"
832 " expected chunks <= %d\n",
833 __func__
, ntohl(headerp
->rm_type
),
834 headerp
->rm_body
.rm_chunks
[0],
835 headerp
->rm_body
.rm_chunks
[1],
836 headerp
->rm_body
.rm_chunks
[2],
839 r_xprt
->rx_stats
.bad_reply_count
++;
843 /* If using mw bind, start the deregister process now. */
844 /* (Note: if mr_free(), cannot perform it here, in tasklet context) */
845 if (req
->rl_nchunks
) switch (r_xprt
->rx_ia
.ri_memreg_strategy
) {
846 case RPCRDMA_MEMWINDOWS
:
847 for (i
= 0; req
->rl_nchunks
-- > 1;)
848 i
+= rpcrdma_deregister_external(
849 &req
->rl_segments
[i
], r_xprt
, NULL
);
850 /* Optionally wait (not here) for unbinds to complete */
851 rep
->rr_func
= rpcrdma_unbind_func
;
852 (void) rpcrdma_deregister_external(&req
->rl_segments
[i
],
855 case RPCRDMA_MEMWINDOWS_ASYNC
:
856 for (i
= 0; req
->rl_nchunks
--;)
857 i
+= rpcrdma_deregister_external(&req
->rl_segments
[i
],
864 dprintk("RPC: %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
865 __func__
, xprt
, rqst
, status
);
866 xprt_complete_rqst(rqst
->rq_task
, status
);
867 spin_unlock(&xprt
->transport_lock
);