virtio: fix race in enable_cb
[wrt350n-kernel.git] / mm / slub.c
blob96d63eb3ab179528efd1ea8c64cbc6358212a967
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
26 * Lock order:
27 * 1. slab_lock(page)
28 * 2. slab->list_lock
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
47 * the list lock.
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
80 * Overloading of page flags that are otherwise used for LRU management.
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
94 * freelist that allows lockless access to
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
100 * the fast path and disables lockless freelists.
103 #define FROZEN (1 << PG_active)
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
107 #else
108 #define SLABDEBUG 0
109 #endif
111 static inline int SlabFrozen(struct page *page)
113 return page->flags & FROZEN;
116 static inline void SetSlabFrozen(struct page *page)
118 page->flags |= FROZEN;
121 static inline void ClearSlabFrozen(struct page *page)
123 page->flags &= ~FROZEN;
126 static inline int SlabDebug(struct page *page)
128 return page->flags & SLABDEBUG;
131 static inline void SetSlabDebug(struct page *page)
133 page->flags |= SLABDEBUG;
136 static inline void ClearSlabDebug(struct page *page)
138 page->flags &= ~SLABDEBUG;
142 * Issues still to be resolved:
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
146 * - Variable sizing of the per node arrays
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
152 #if PAGE_SHIFT <= 12
155 * Small page size. Make sure that we do not fragment memory
157 #define DEFAULT_MAX_ORDER 1
158 #define DEFAULT_MIN_OBJECTS 4
160 #else
163 * Large page machines are customarily able to handle larger
164 * page orders.
166 #define DEFAULT_MAX_ORDER 2
167 #define DEFAULT_MIN_OBJECTS 8
169 #endif
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
175 #define MIN_PARTIAL 5
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
182 #define MAX_PARTIAL 10
184 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
188 * Set of flags that will prevent slab merging
190 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
193 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
194 SLAB_CACHE_DMA)
196 #ifndef ARCH_KMALLOC_MINALIGN
197 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
198 #endif
200 #ifndef ARCH_SLAB_MINALIGN
201 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
202 #endif
204 /* Internal SLUB flags */
205 #define __OBJECT_POISON 0x80000000 /* Poison object */
206 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
207 #define __KMALLOC_CACHE 0x20000000 /* objects freed using kfree */
208 #define __PAGE_ALLOC_FALLBACK 0x10000000 /* Allow fallback to page alloc */
210 /* Not all arches define cache_line_size */
211 #ifndef cache_line_size
212 #define cache_line_size() L1_CACHE_BYTES
213 #endif
215 static int kmem_size = sizeof(struct kmem_cache);
217 #ifdef CONFIG_SMP
218 static struct notifier_block slab_notifier;
219 #endif
221 static enum {
222 DOWN, /* No slab functionality available */
223 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
224 UP, /* Everything works but does not show up in sysfs */
225 SYSFS /* Sysfs up */
226 } slab_state = DOWN;
228 /* A list of all slab caches on the system */
229 static DECLARE_RWSEM(slub_lock);
230 static LIST_HEAD(slab_caches);
233 * Tracking user of a slab.
235 struct track {
236 void *addr; /* Called from address */
237 int cpu; /* Was running on cpu */
238 int pid; /* Pid context */
239 unsigned long when; /* When did the operation occur */
242 enum track_item { TRACK_ALLOC, TRACK_FREE };
244 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
245 static int sysfs_slab_add(struct kmem_cache *);
246 static int sysfs_slab_alias(struct kmem_cache *, const char *);
247 static void sysfs_slab_remove(struct kmem_cache *);
249 #else
250 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
251 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
252 { return 0; }
253 static inline void sysfs_slab_remove(struct kmem_cache *s)
255 kfree(s);
258 #endif
260 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
262 #ifdef CONFIG_SLUB_STATS
263 c->stat[si]++;
264 #endif
267 /********************************************************************
268 * Core slab cache functions
269 *******************************************************************/
271 int slab_is_available(void)
273 return slab_state >= UP;
276 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
278 #ifdef CONFIG_NUMA
279 return s->node[node];
280 #else
281 return &s->local_node;
282 #endif
285 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
287 #ifdef CONFIG_SMP
288 return s->cpu_slab[cpu];
289 #else
290 return &s->cpu_slab;
291 #endif
294 /* Verify that a pointer has an address that is valid within a slab page */
295 static inline int check_valid_pointer(struct kmem_cache *s,
296 struct page *page, const void *object)
298 void *base;
300 if (!object)
301 return 1;
303 base = page_address(page);
304 if (object < base || object >= base + s->objects * s->size ||
305 (object - base) % s->size) {
306 return 0;
309 return 1;
313 * Slow version of get and set free pointer.
315 * This version requires touching the cache lines of kmem_cache which
316 * we avoid to do in the fast alloc free paths. There we obtain the offset
317 * from the page struct.
319 static inline void *get_freepointer(struct kmem_cache *s, void *object)
321 return *(void **)(object + s->offset);
324 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
326 *(void **)(object + s->offset) = fp;
329 /* Loop over all objects in a slab */
330 #define for_each_object(__p, __s, __addr) \
331 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
332 __p += (__s)->size)
334 /* Scan freelist */
335 #define for_each_free_object(__p, __s, __free) \
336 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
338 /* Determine object index from a given position */
339 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
341 return (p - addr) / s->size;
344 #ifdef CONFIG_SLUB_DEBUG
346 * Debug settings:
348 #ifdef CONFIG_SLUB_DEBUG_ON
349 static int slub_debug = DEBUG_DEFAULT_FLAGS;
350 #else
351 static int slub_debug;
352 #endif
354 static char *slub_debug_slabs;
357 * Object debugging
359 static void print_section(char *text, u8 *addr, unsigned int length)
361 int i, offset;
362 int newline = 1;
363 char ascii[17];
365 ascii[16] = 0;
367 for (i = 0; i < length; i++) {
368 if (newline) {
369 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
370 newline = 0;
372 printk(KERN_CONT " %02x", addr[i]);
373 offset = i % 16;
374 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
375 if (offset == 15) {
376 printk(KERN_CONT " %s\n", ascii);
377 newline = 1;
380 if (!newline) {
381 i %= 16;
382 while (i < 16) {
383 printk(KERN_CONT " ");
384 ascii[i] = ' ';
385 i++;
387 printk(KERN_CONT " %s\n", ascii);
391 static struct track *get_track(struct kmem_cache *s, void *object,
392 enum track_item alloc)
394 struct track *p;
396 if (s->offset)
397 p = object + s->offset + sizeof(void *);
398 else
399 p = object + s->inuse;
401 return p + alloc;
404 static void set_track(struct kmem_cache *s, void *object,
405 enum track_item alloc, void *addr)
407 struct track *p;
409 if (s->offset)
410 p = object + s->offset + sizeof(void *);
411 else
412 p = object + s->inuse;
414 p += alloc;
415 if (addr) {
416 p->addr = addr;
417 p->cpu = smp_processor_id();
418 p->pid = current ? current->pid : -1;
419 p->when = jiffies;
420 } else
421 memset(p, 0, sizeof(struct track));
424 static void init_tracking(struct kmem_cache *s, void *object)
426 if (!(s->flags & SLAB_STORE_USER))
427 return;
429 set_track(s, object, TRACK_FREE, NULL);
430 set_track(s, object, TRACK_ALLOC, NULL);
433 static void print_track(const char *s, struct track *t)
435 if (!t->addr)
436 return;
438 printk(KERN_ERR "INFO: %s in ", s);
439 __print_symbol("%s", (unsigned long)t->addr);
440 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
443 static void print_tracking(struct kmem_cache *s, void *object)
445 if (!(s->flags & SLAB_STORE_USER))
446 return;
448 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
449 print_track("Freed", get_track(s, object, TRACK_FREE));
452 static void print_page_info(struct page *page)
454 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
455 page, page->inuse, page->freelist, page->flags);
459 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
461 va_list args;
462 char buf[100];
464 va_start(args, fmt);
465 vsnprintf(buf, sizeof(buf), fmt, args);
466 va_end(args);
467 printk(KERN_ERR "========================================"
468 "=====================================\n");
469 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
470 printk(KERN_ERR "----------------------------------------"
471 "-------------------------------------\n\n");
474 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
476 va_list args;
477 char buf[100];
479 va_start(args, fmt);
480 vsnprintf(buf, sizeof(buf), fmt, args);
481 va_end(args);
482 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
485 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
487 unsigned int off; /* Offset of last byte */
488 u8 *addr = page_address(page);
490 print_tracking(s, p);
492 print_page_info(page);
494 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
495 p, p - addr, get_freepointer(s, p));
497 if (p > addr + 16)
498 print_section("Bytes b4", p - 16, 16);
500 print_section("Object", p, min(s->objsize, 128));
502 if (s->flags & SLAB_RED_ZONE)
503 print_section("Redzone", p + s->objsize,
504 s->inuse - s->objsize);
506 if (s->offset)
507 off = s->offset + sizeof(void *);
508 else
509 off = s->inuse;
511 if (s->flags & SLAB_STORE_USER)
512 off += 2 * sizeof(struct track);
514 if (off != s->size)
515 /* Beginning of the filler is the free pointer */
516 print_section("Padding", p + off, s->size - off);
518 dump_stack();
521 static void object_err(struct kmem_cache *s, struct page *page,
522 u8 *object, char *reason)
524 slab_bug(s, reason);
525 print_trailer(s, page, object);
528 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
530 va_list args;
531 char buf[100];
533 va_start(args, fmt);
534 vsnprintf(buf, sizeof(buf), fmt, args);
535 va_end(args);
536 slab_bug(s, fmt);
537 print_page_info(page);
538 dump_stack();
541 static void init_object(struct kmem_cache *s, void *object, int active)
543 u8 *p = object;
545 if (s->flags & __OBJECT_POISON) {
546 memset(p, POISON_FREE, s->objsize - 1);
547 p[s->objsize - 1] = POISON_END;
550 if (s->flags & SLAB_RED_ZONE)
551 memset(p + s->objsize,
552 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
553 s->inuse - s->objsize);
556 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
558 while (bytes) {
559 if (*start != (u8)value)
560 return start;
561 start++;
562 bytes--;
564 return NULL;
567 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
568 void *from, void *to)
570 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
571 memset(from, data, to - from);
574 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
575 u8 *object, char *what,
576 u8 *start, unsigned int value, unsigned int bytes)
578 u8 *fault;
579 u8 *end;
581 fault = check_bytes(start, value, bytes);
582 if (!fault)
583 return 1;
585 end = start + bytes;
586 while (end > fault && end[-1] == value)
587 end--;
589 slab_bug(s, "%s overwritten", what);
590 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
591 fault, end - 1, fault[0], value);
592 print_trailer(s, page, object);
594 restore_bytes(s, what, value, fault, end);
595 return 0;
599 * Object layout:
601 * object address
602 * Bytes of the object to be managed.
603 * If the freepointer may overlay the object then the free
604 * pointer is the first word of the object.
606 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
607 * 0xa5 (POISON_END)
609 * object + s->objsize
610 * Padding to reach word boundary. This is also used for Redzoning.
611 * Padding is extended by another word if Redzoning is enabled and
612 * objsize == inuse.
614 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
615 * 0xcc (RED_ACTIVE) for objects in use.
617 * object + s->inuse
618 * Meta data starts here.
620 * A. Free pointer (if we cannot overwrite object on free)
621 * B. Tracking data for SLAB_STORE_USER
622 * C. Padding to reach required alignment boundary or at mininum
623 * one word if debugging is on to be able to detect writes
624 * before the word boundary.
626 * Padding is done using 0x5a (POISON_INUSE)
628 * object + s->size
629 * Nothing is used beyond s->size.
631 * If slabcaches are merged then the objsize and inuse boundaries are mostly
632 * ignored. And therefore no slab options that rely on these boundaries
633 * may be used with merged slabcaches.
636 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
638 unsigned long off = s->inuse; /* The end of info */
640 if (s->offset)
641 /* Freepointer is placed after the object. */
642 off += sizeof(void *);
644 if (s->flags & SLAB_STORE_USER)
645 /* We also have user information there */
646 off += 2 * sizeof(struct track);
648 if (s->size == off)
649 return 1;
651 return check_bytes_and_report(s, page, p, "Object padding",
652 p + off, POISON_INUSE, s->size - off);
655 static int slab_pad_check(struct kmem_cache *s, struct page *page)
657 u8 *start;
658 u8 *fault;
659 u8 *end;
660 int length;
661 int remainder;
663 if (!(s->flags & SLAB_POISON))
664 return 1;
666 start = page_address(page);
667 end = start + (PAGE_SIZE << s->order);
668 length = s->objects * s->size;
669 remainder = end - (start + length);
670 if (!remainder)
671 return 1;
673 fault = check_bytes(start + length, POISON_INUSE, remainder);
674 if (!fault)
675 return 1;
676 while (end > fault && end[-1] == POISON_INUSE)
677 end--;
679 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
680 print_section("Padding", start, length);
682 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
683 return 0;
686 static int check_object(struct kmem_cache *s, struct page *page,
687 void *object, int active)
689 u8 *p = object;
690 u8 *endobject = object + s->objsize;
692 if (s->flags & SLAB_RED_ZONE) {
693 unsigned int red =
694 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
696 if (!check_bytes_and_report(s, page, object, "Redzone",
697 endobject, red, s->inuse - s->objsize))
698 return 0;
699 } else {
700 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
701 check_bytes_and_report(s, page, p, "Alignment padding",
702 endobject, POISON_INUSE, s->inuse - s->objsize);
706 if (s->flags & SLAB_POISON) {
707 if (!active && (s->flags & __OBJECT_POISON) &&
708 (!check_bytes_and_report(s, page, p, "Poison", p,
709 POISON_FREE, s->objsize - 1) ||
710 !check_bytes_and_report(s, page, p, "Poison",
711 p + s->objsize - 1, POISON_END, 1)))
712 return 0;
714 * check_pad_bytes cleans up on its own.
716 check_pad_bytes(s, page, p);
719 if (!s->offset && active)
721 * Object and freepointer overlap. Cannot check
722 * freepointer while object is allocated.
724 return 1;
726 /* Check free pointer validity */
727 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
728 object_err(s, page, p, "Freepointer corrupt");
730 * No choice but to zap it and thus loose the remainder
731 * of the free objects in this slab. May cause
732 * another error because the object count is now wrong.
734 set_freepointer(s, p, NULL);
735 return 0;
737 return 1;
740 static int check_slab(struct kmem_cache *s, struct page *page)
742 VM_BUG_ON(!irqs_disabled());
744 if (!PageSlab(page)) {
745 slab_err(s, page, "Not a valid slab page");
746 return 0;
748 if (page->inuse > s->objects) {
749 slab_err(s, page, "inuse %u > max %u",
750 s->name, page->inuse, s->objects);
751 return 0;
753 /* Slab_pad_check fixes things up after itself */
754 slab_pad_check(s, page);
755 return 1;
759 * Determine if a certain object on a page is on the freelist. Must hold the
760 * slab lock to guarantee that the chains are in a consistent state.
762 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
764 int nr = 0;
765 void *fp = page->freelist;
766 void *object = NULL;
768 while (fp && nr <= s->objects) {
769 if (fp == search)
770 return 1;
771 if (!check_valid_pointer(s, page, fp)) {
772 if (object) {
773 object_err(s, page, object,
774 "Freechain corrupt");
775 set_freepointer(s, object, NULL);
776 break;
777 } else {
778 slab_err(s, page, "Freepointer corrupt");
779 page->freelist = NULL;
780 page->inuse = s->objects;
781 slab_fix(s, "Freelist cleared");
782 return 0;
784 break;
786 object = fp;
787 fp = get_freepointer(s, object);
788 nr++;
791 if (page->inuse != s->objects - nr) {
792 slab_err(s, page, "Wrong object count. Counter is %d but "
793 "counted were %d", page->inuse, s->objects - nr);
794 page->inuse = s->objects - nr;
795 slab_fix(s, "Object count adjusted.");
797 return search == NULL;
800 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
802 if (s->flags & SLAB_TRACE) {
803 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
804 s->name,
805 alloc ? "alloc" : "free",
806 object, page->inuse,
807 page->freelist);
809 if (!alloc)
810 print_section("Object", (void *)object, s->objsize);
812 dump_stack();
817 * Tracking of fully allocated slabs for debugging purposes.
819 static void add_full(struct kmem_cache_node *n, struct page *page)
821 spin_lock(&n->list_lock);
822 list_add(&page->lru, &n->full);
823 spin_unlock(&n->list_lock);
826 static void remove_full(struct kmem_cache *s, struct page *page)
828 struct kmem_cache_node *n;
830 if (!(s->flags & SLAB_STORE_USER))
831 return;
833 n = get_node(s, page_to_nid(page));
835 spin_lock(&n->list_lock);
836 list_del(&page->lru);
837 spin_unlock(&n->list_lock);
840 static void setup_object_debug(struct kmem_cache *s, struct page *page,
841 void *object)
843 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
844 return;
846 init_object(s, object, 0);
847 init_tracking(s, object);
850 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
851 void *object, void *addr)
853 if (!check_slab(s, page))
854 goto bad;
856 if (!on_freelist(s, page, object)) {
857 object_err(s, page, object, "Object already allocated");
858 goto bad;
861 if (!check_valid_pointer(s, page, object)) {
862 object_err(s, page, object, "Freelist Pointer check fails");
863 goto bad;
866 if (!check_object(s, page, object, 0))
867 goto bad;
869 /* Success perform special debug activities for allocs */
870 if (s->flags & SLAB_STORE_USER)
871 set_track(s, object, TRACK_ALLOC, addr);
872 trace(s, page, object, 1);
873 init_object(s, object, 1);
874 return 1;
876 bad:
877 if (PageSlab(page)) {
879 * If this is a slab page then lets do the best we can
880 * to avoid issues in the future. Marking all objects
881 * as used avoids touching the remaining objects.
883 slab_fix(s, "Marking all objects used");
884 page->inuse = s->objects;
885 page->freelist = NULL;
887 return 0;
890 static int free_debug_processing(struct kmem_cache *s, struct page *page,
891 void *object, void *addr)
893 if (!check_slab(s, page))
894 goto fail;
896 if (!check_valid_pointer(s, page, object)) {
897 slab_err(s, page, "Invalid object pointer 0x%p", object);
898 goto fail;
901 if (on_freelist(s, page, object)) {
902 object_err(s, page, object, "Object already free");
903 goto fail;
906 if (!check_object(s, page, object, 1))
907 return 0;
909 if (unlikely(s != page->slab)) {
910 if (!PageSlab(page)) {
911 slab_err(s, page, "Attempt to free object(0x%p) "
912 "outside of slab", object);
913 } else if (!page->slab) {
914 printk(KERN_ERR
915 "SLUB <none>: no slab for object 0x%p.\n",
916 object);
917 dump_stack();
918 } else
919 object_err(s, page, object,
920 "page slab pointer corrupt.");
921 goto fail;
924 /* Special debug activities for freeing objects */
925 if (!SlabFrozen(page) && !page->freelist)
926 remove_full(s, page);
927 if (s->flags & SLAB_STORE_USER)
928 set_track(s, object, TRACK_FREE, addr);
929 trace(s, page, object, 0);
930 init_object(s, object, 0);
931 return 1;
933 fail:
934 slab_fix(s, "Object at 0x%p not freed", object);
935 return 0;
938 static int __init setup_slub_debug(char *str)
940 slub_debug = DEBUG_DEFAULT_FLAGS;
941 if (*str++ != '=' || !*str)
943 * No options specified. Switch on full debugging.
945 goto out;
947 if (*str == ',')
949 * No options but restriction on slabs. This means full
950 * debugging for slabs matching a pattern.
952 goto check_slabs;
954 slub_debug = 0;
955 if (*str == '-')
957 * Switch off all debugging measures.
959 goto out;
962 * Determine which debug features should be switched on
964 for (; *str && *str != ','; str++) {
965 switch (tolower(*str)) {
966 case 'f':
967 slub_debug |= SLAB_DEBUG_FREE;
968 break;
969 case 'z':
970 slub_debug |= SLAB_RED_ZONE;
971 break;
972 case 'p':
973 slub_debug |= SLAB_POISON;
974 break;
975 case 'u':
976 slub_debug |= SLAB_STORE_USER;
977 break;
978 case 't':
979 slub_debug |= SLAB_TRACE;
980 break;
981 default:
982 printk(KERN_ERR "slub_debug option '%c' "
983 "unknown. skipped\n", *str);
987 check_slabs:
988 if (*str == ',')
989 slub_debug_slabs = str + 1;
990 out:
991 return 1;
994 __setup("slub_debug", setup_slub_debug);
996 static unsigned long kmem_cache_flags(unsigned long objsize,
997 unsigned long flags, const char *name,
998 void (*ctor)(struct kmem_cache *, void *))
1001 * Enable debugging if selected on the kernel commandline.
1003 if (slub_debug && (!slub_debug_slabs ||
1004 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1005 flags |= slub_debug;
1007 return flags;
1009 #else
1010 static inline void setup_object_debug(struct kmem_cache *s,
1011 struct page *page, void *object) {}
1013 static inline int alloc_debug_processing(struct kmem_cache *s,
1014 struct page *page, void *object, void *addr) { return 0; }
1016 static inline int free_debug_processing(struct kmem_cache *s,
1017 struct page *page, void *object, void *addr) { return 0; }
1019 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1020 { return 1; }
1021 static inline int check_object(struct kmem_cache *s, struct page *page,
1022 void *object, int active) { return 1; }
1023 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1024 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1025 unsigned long flags, const char *name,
1026 void (*ctor)(struct kmem_cache *, void *))
1028 return flags;
1030 #define slub_debug 0
1031 #endif
1033 * Slab allocation and freeing
1035 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1037 struct page *page;
1038 int pages = 1 << s->order;
1040 flags |= s->allocflags;
1042 if (node == -1)
1043 page = alloc_pages(flags, s->order);
1044 else
1045 page = alloc_pages_node(node, flags, s->order);
1047 if (!page)
1048 return NULL;
1050 mod_zone_page_state(page_zone(page),
1051 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1052 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1053 pages);
1055 return page;
1058 static void setup_object(struct kmem_cache *s, struct page *page,
1059 void *object)
1061 setup_object_debug(s, page, object);
1062 if (unlikely(s->ctor))
1063 s->ctor(s, object);
1066 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1068 struct page *page;
1069 struct kmem_cache_node *n;
1070 void *start;
1071 void *last;
1072 void *p;
1074 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1076 page = allocate_slab(s,
1077 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1078 if (!page)
1079 goto out;
1081 n = get_node(s, page_to_nid(page));
1082 if (n)
1083 atomic_long_inc(&n->nr_slabs);
1084 page->slab = s;
1085 page->flags |= 1 << PG_slab;
1086 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1087 SLAB_STORE_USER | SLAB_TRACE))
1088 SetSlabDebug(page);
1090 start = page_address(page);
1092 if (unlikely(s->flags & SLAB_POISON))
1093 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1095 last = start;
1096 for_each_object(p, s, start) {
1097 setup_object(s, page, last);
1098 set_freepointer(s, last, p);
1099 last = p;
1101 setup_object(s, page, last);
1102 set_freepointer(s, last, NULL);
1104 page->freelist = start;
1105 page->inuse = 0;
1106 out:
1107 return page;
1110 static void __free_slab(struct kmem_cache *s, struct page *page)
1112 int pages = 1 << s->order;
1114 if (unlikely(SlabDebug(page))) {
1115 void *p;
1117 slab_pad_check(s, page);
1118 for_each_object(p, s, page_address(page))
1119 check_object(s, page, p, 0);
1120 ClearSlabDebug(page);
1123 mod_zone_page_state(page_zone(page),
1124 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1125 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1126 -pages);
1128 __free_pages(page, s->order);
1131 static void rcu_free_slab(struct rcu_head *h)
1133 struct page *page;
1135 page = container_of((struct list_head *)h, struct page, lru);
1136 __free_slab(page->slab, page);
1139 static void free_slab(struct kmem_cache *s, struct page *page)
1141 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1143 * RCU free overloads the RCU head over the LRU
1145 struct rcu_head *head = (void *)&page->lru;
1147 call_rcu(head, rcu_free_slab);
1148 } else
1149 __free_slab(s, page);
1152 static void discard_slab(struct kmem_cache *s, struct page *page)
1154 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1156 atomic_long_dec(&n->nr_slabs);
1157 reset_page_mapcount(page);
1158 __ClearPageSlab(page);
1159 free_slab(s, page);
1163 * Per slab locking using the pagelock
1165 static __always_inline void slab_lock(struct page *page)
1167 bit_spin_lock(PG_locked, &page->flags);
1170 static __always_inline void slab_unlock(struct page *page)
1172 __bit_spin_unlock(PG_locked, &page->flags);
1175 static __always_inline int slab_trylock(struct page *page)
1177 int rc = 1;
1179 rc = bit_spin_trylock(PG_locked, &page->flags);
1180 return rc;
1184 * Management of partially allocated slabs
1186 static void add_partial(struct kmem_cache_node *n,
1187 struct page *page, int tail)
1189 spin_lock(&n->list_lock);
1190 n->nr_partial++;
1191 if (tail)
1192 list_add_tail(&page->lru, &n->partial);
1193 else
1194 list_add(&page->lru, &n->partial);
1195 spin_unlock(&n->list_lock);
1198 static void remove_partial(struct kmem_cache *s,
1199 struct page *page)
1201 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1203 spin_lock(&n->list_lock);
1204 list_del(&page->lru);
1205 n->nr_partial--;
1206 spin_unlock(&n->list_lock);
1210 * Lock slab and remove from the partial list.
1212 * Must hold list_lock.
1214 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1216 if (slab_trylock(page)) {
1217 list_del(&page->lru);
1218 n->nr_partial--;
1219 SetSlabFrozen(page);
1220 return 1;
1222 return 0;
1226 * Try to allocate a partial slab from a specific node.
1228 static struct page *get_partial_node(struct kmem_cache_node *n)
1230 struct page *page;
1233 * Racy check. If we mistakenly see no partial slabs then we
1234 * just allocate an empty slab. If we mistakenly try to get a
1235 * partial slab and there is none available then get_partials()
1236 * will return NULL.
1238 if (!n || !n->nr_partial)
1239 return NULL;
1241 spin_lock(&n->list_lock);
1242 list_for_each_entry(page, &n->partial, lru)
1243 if (lock_and_freeze_slab(n, page))
1244 goto out;
1245 page = NULL;
1246 out:
1247 spin_unlock(&n->list_lock);
1248 return page;
1252 * Get a page from somewhere. Search in increasing NUMA distances.
1254 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1256 #ifdef CONFIG_NUMA
1257 struct zonelist *zonelist;
1258 struct zone **z;
1259 struct page *page;
1262 * The defrag ratio allows a configuration of the tradeoffs between
1263 * inter node defragmentation and node local allocations. A lower
1264 * defrag_ratio increases the tendency to do local allocations
1265 * instead of attempting to obtain partial slabs from other nodes.
1267 * If the defrag_ratio is set to 0 then kmalloc() always
1268 * returns node local objects. If the ratio is higher then kmalloc()
1269 * may return off node objects because partial slabs are obtained
1270 * from other nodes and filled up.
1272 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1273 * defrag_ratio = 1000) then every (well almost) allocation will
1274 * first attempt to defrag slab caches on other nodes. This means
1275 * scanning over all nodes to look for partial slabs which may be
1276 * expensive if we do it every time we are trying to find a slab
1277 * with available objects.
1279 if (!s->remote_node_defrag_ratio ||
1280 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1281 return NULL;
1283 zonelist = &NODE_DATA(
1284 slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
1285 for (z = zonelist->zones; *z; z++) {
1286 struct kmem_cache_node *n;
1288 n = get_node(s, zone_to_nid(*z));
1290 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1291 n->nr_partial > MIN_PARTIAL) {
1292 page = get_partial_node(n);
1293 if (page)
1294 return page;
1297 #endif
1298 return NULL;
1302 * Get a partial page, lock it and return it.
1304 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1306 struct page *page;
1307 int searchnode = (node == -1) ? numa_node_id() : node;
1309 page = get_partial_node(get_node(s, searchnode));
1310 if (page || (flags & __GFP_THISNODE))
1311 return page;
1313 return get_any_partial(s, flags);
1317 * Move a page back to the lists.
1319 * Must be called with the slab lock held.
1321 * On exit the slab lock will have been dropped.
1323 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1325 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1326 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1328 ClearSlabFrozen(page);
1329 if (page->inuse) {
1331 if (page->freelist) {
1332 add_partial(n, page, tail);
1333 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1334 } else {
1335 stat(c, DEACTIVATE_FULL);
1336 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1337 add_full(n, page);
1339 slab_unlock(page);
1340 } else {
1341 stat(c, DEACTIVATE_EMPTY);
1342 if (n->nr_partial < MIN_PARTIAL) {
1344 * Adding an empty slab to the partial slabs in order
1345 * to avoid page allocator overhead. This slab needs
1346 * to come after the other slabs with objects in
1347 * so that the others get filled first. That way the
1348 * size of the partial list stays small.
1350 * kmem_cache_shrink can reclaim any empty slabs from the
1351 * partial list.
1353 add_partial(n, page, 1);
1354 slab_unlock(page);
1355 } else {
1356 slab_unlock(page);
1357 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1358 discard_slab(s, page);
1364 * Remove the cpu slab
1366 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1368 struct page *page = c->page;
1369 int tail = 1;
1371 if (page->freelist)
1372 stat(c, DEACTIVATE_REMOTE_FREES);
1374 * Merge cpu freelist into slab freelist. Typically we get here
1375 * because both freelists are empty. So this is unlikely
1376 * to occur.
1378 while (unlikely(c->freelist)) {
1379 void **object;
1381 tail = 0; /* Hot objects. Put the slab first */
1383 /* Retrieve object from cpu_freelist */
1384 object = c->freelist;
1385 c->freelist = c->freelist[c->offset];
1387 /* And put onto the regular freelist */
1388 object[c->offset] = page->freelist;
1389 page->freelist = object;
1390 page->inuse--;
1392 c->page = NULL;
1393 unfreeze_slab(s, page, tail);
1396 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1398 stat(c, CPUSLAB_FLUSH);
1399 slab_lock(c->page);
1400 deactivate_slab(s, c);
1404 * Flush cpu slab.
1406 * Called from IPI handler with interrupts disabled.
1408 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1410 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1412 if (likely(c && c->page))
1413 flush_slab(s, c);
1416 static void flush_cpu_slab(void *d)
1418 struct kmem_cache *s = d;
1420 __flush_cpu_slab(s, smp_processor_id());
1423 static void flush_all(struct kmem_cache *s)
1425 #ifdef CONFIG_SMP
1426 on_each_cpu(flush_cpu_slab, s, 1, 1);
1427 #else
1428 unsigned long flags;
1430 local_irq_save(flags);
1431 flush_cpu_slab(s);
1432 local_irq_restore(flags);
1433 #endif
1437 * Check if the objects in a per cpu structure fit numa
1438 * locality expectations.
1440 static inline int node_match(struct kmem_cache_cpu *c, int node)
1442 #ifdef CONFIG_NUMA
1443 if (node != -1 && c->node != node)
1444 return 0;
1445 #endif
1446 return 1;
1450 * Slow path. The lockless freelist is empty or we need to perform
1451 * debugging duties.
1453 * Interrupts are disabled.
1455 * Processing is still very fast if new objects have been freed to the
1456 * regular freelist. In that case we simply take over the regular freelist
1457 * as the lockless freelist and zap the regular freelist.
1459 * If that is not working then we fall back to the partial lists. We take the
1460 * first element of the freelist as the object to allocate now and move the
1461 * rest of the freelist to the lockless freelist.
1463 * And if we were unable to get a new slab from the partial slab lists then
1464 * we need to allocate a new slab. This is the slowest path since it involves
1465 * a call to the page allocator and the setup of a new slab.
1467 static void *__slab_alloc(struct kmem_cache *s,
1468 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1470 void **object;
1471 struct page *new;
1473 if (!c->page)
1474 goto new_slab;
1476 slab_lock(c->page);
1477 if (unlikely(!node_match(c, node)))
1478 goto another_slab;
1480 stat(c, ALLOC_REFILL);
1482 load_freelist:
1483 object = c->page->freelist;
1484 if (unlikely(!object))
1485 goto another_slab;
1486 if (unlikely(SlabDebug(c->page)))
1487 goto debug;
1489 c->freelist = object[c->offset];
1490 c->page->inuse = s->objects;
1491 c->page->freelist = NULL;
1492 c->node = page_to_nid(c->page);
1493 unlock_out:
1494 slab_unlock(c->page);
1495 stat(c, ALLOC_SLOWPATH);
1496 return object;
1498 another_slab:
1499 deactivate_slab(s, c);
1501 new_slab:
1502 new = get_partial(s, gfpflags, node);
1503 if (new) {
1504 c->page = new;
1505 stat(c, ALLOC_FROM_PARTIAL);
1506 goto load_freelist;
1509 if (gfpflags & __GFP_WAIT)
1510 local_irq_enable();
1512 new = new_slab(s, gfpflags, node);
1514 if (gfpflags & __GFP_WAIT)
1515 local_irq_disable();
1517 if (new) {
1518 c = get_cpu_slab(s, smp_processor_id());
1519 stat(c, ALLOC_SLAB);
1520 if (c->page)
1521 flush_slab(s, c);
1522 slab_lock(new);
1523 SetSlabFrozen(new);
1524 c->page = new;
1525 goto load_freelist;
1529 * No memory available.
1531 * If the slab uses higher order allocs but the object is
1532 * smaller than a page size then we can fallback in emergencies
1533 * to the page allocator via kmalloc_large. The page allocator may
1534 * have failed to obtain a higher order page and we can try to
1535 * allocate a single page if the object fits into a single page.
1536 * That is only possible if certain conditions are met that are being
1537 * checked when a slab is created.
1539 if (!(gfpflags & __GFP_NORETRY) && (s->flags & __PAGE_ALLOC_FALLBACK))
1540 return kmalloc_large(s->objsize, gfpflags);
1542 return NULL;
1543 debug:
1544 if (!alloc_debug_processing(s, c->page, object, addr))
1545 goto another_slab;
1547 c->page->inuse++;
1548 c->page->freelist = object[c->offset];
1549 c->node = -1;
1550 goto unlock_out;
1554 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1555 * have the fastpath folded into their functions. So no function call
1556 * overhead for requests that can be satisfied on the fastpath.
1558 * The fastpath works by first checking if the lockless freelist can be used.
1559 * If not then __slab_alloc is called for slow processing.
1561 * Otherwise we can simply pick the next object from the lockless free list.
1563 static __always_inline void *slab_alloc(struct kmem_cache *s,
1564 gfp_t gfpflags, int node, void *addr)
1566 void **object;
1567 struct kmem_cache_cpu *c;
1568 unsigned long flags;
1570 local_irq_save(flags);
1571 c = get_cpu_slab(s, smp_processor_id());
1572 if (unlikely(!c->freelist || !node_match(c, node)))
1574 object = __slab_alloc(s, gfpflags, node, addr, c);
1576 else {
1577 object = c->freelist;
1578 c->freelist = object[c->offset];
1579 stat(c, ALLOC_FASTPATH);
1581 local_irq_restore(flags);
1583 if (unlikely((gfpflags & __GFP_ZERO) && object))
1584 memset(object, 0, c->objsize);
1586 return object;
1589 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1591 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1593 EXPORT_SYMBOL(kmem_cache_alloc);
1595 #ifdef CONFIG_NUMA
1596 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1598 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1600 EXPORT_SYMBOL(kmem_cache_alloc_node);
1601 #endif
1604 * Slow patch handling. This may still be called frequently since objects
1605 * have a longer lifetime than the cpu slabs in most processing loads.
1607 * So we still attempt to reduce cache line usage. Just take the slab
1608 * lock and free the item. If there is no additional partial page
1609 * handling required then we can return immediately.
1611 static void __slab_free(struct kmem_cache *s, struct page *page,
1612 void *x, void *addr, unsigned int offset)
1614 void *prior;
1615 void **object = (void *)x;
1616 struct kmem_cache_cpu *c;
1618 c = get_cpu_slab(s, raw_smp_processor_id());
1619 stat(c, FREE_SLOWPATH);
1620 slab_lock(page);
1622 if (unlikely(SlabDebug(page)))
1623 goto debug;
1625 checks_ok:
1626 prior = object[offset] = page->freelist;
1627 page->freelist = object;
1628 page->inuse--;
1630 if (unlikely(SlabFrozen(page))) {
1631 stat(c, FREE_FROZEN);
1632 goto out_unlock;
1635 if (unlikely(!page->inuse))
1636 goto slab_empty;
1639 * Objects left in the slab. If it was not on the partial list before
1640 * then add it.
1642 if (unlikely(!prior)) {
1643 add_partial(get_node(s, page_to_nid(page)), page, 1);
1644 stat(c, FREE_ADD_PARTIAL);
1647 out_unlock:
1648 slab_unlock(page);
1649 return;
1651 slab_empty:
1652 if (prior) {
1654 * Slab still on the partial list.
1656 remove_partial(s, page);
1657 stat(c, FREE_REMOVE_PARTIAL);
1659 slab_unlock(page);
1660 stat(c, FREE_SLAB);
1661 discard_slab(s, page);
1662 return;
1664 debug:
1665 if (!free_debug_processing(s, page, x, addr))
1666 goto out_unlock;
1667 goto checks_ok;
1671 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1672 * can perform fastpath freeing without additional function calls.
1674 * The fastpath is only possible if we are freeing to the current cpu slab
1675 * of this processor. This typically the case if we have just allocated
1676 * the item before.
1678 * If fastpath is not possible then fall back to __slab_free where we deal
1679 * with all sorts of special processing.
1681 static __always_inline void slab_free(struct kmem_cache *s,
1682 struct page *page, void *x, void *addr)
1684 void **object = (void *)x;
1685 struct kmem_cache_cpu *c;
1686 unsigned long flags;
1688 local_irq_save(flags);
1689 c = get_cpu_slab(s, smp_processor_id());
1690 debug_check_no_locks_freed(object, c->objsize);
1691 if (likely(page == c->page && c->node >= 0)) {
1692 object[c->offset] = c->freelist;
1693 c->freelist = object;
1694 stat(c, FREE_FASTPATH);
1695 } else
1696 __slab_free(s, page, x, addr, c->offset);
1698 local_irq_restore(flags);
1701 void kmem_cache_free(struct kmem_cache *s, void *x)
1703 struct page *page;
1705 page = virt_to_head_page(x);
1707 slab_free(s, page, x, __builtin_return_address(0));
1709 EXPORT_SYMBOL(kmem_cache_free);
1711 /* Figure out on which slab object the object resides */
1712 static struct page *get_object_page(const void *x)
1714 struct page *page = virt_to_head_page(x);
1716 if (!PageSlab(page))
1717 return NULL;
1719 return page;
1723 * Object placement in a slab is made very easy because we always start at
1724 * offset 0. If we tune the size of the object to the alignment then we can
1725 * get the required alignment by putting one properly sized object after
1726 * another.
1728 * Notice that the allocation order determines the sizes of the per cpu
1729 * caches. Each processor has always one slab available for allocations.
1730 * Increasing the allocation order reduces the number of times that slabs
1731 * must be moved on and off the partial lists and is therefore a factor in
1732 * locking overhead.
1736 * Mininum / Maximum order of slab pages. This influences locking overhead
1737 * and slab fragmentation. A higher order reduces the number of partial slabs
1738 * and increases the number of allocations possible without having to
1739 * take the list_lock.
1741 static int slub_min_order;
1742 static int slub_max_order = DEFAULT_MAX_ORDER;
1743 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1746 * Merge control. If this is set then no merging of slab caches will occur.
1747 * (Could be removed. This was introduced to pacify the merge skeptics.)
1749 static int slub_nomerge;
1752 * Calculate the order of allocation given an slab object size.
1754 * The order of allocation has significant impact on performance and other
1755 * system components. Generally order 0 allocations should be preferred since
1756 * order 0 does not cause fragmentation in the page allocator. Larger objects
1757 * be problematic to put into order 0 slabs because there may be too much
1758 * unused space left. We go to a higher order if more than 1/8th of the slab
1759 * would be wasted.
1761 * In order to reach satisfactory performance we must ensure that a minimum
1762 * number of objects is in one slab. Otherwise we may generate too much
1763 * activity on the partial lists which requires taking the list_lock. This is
1764 * less a concern for large slabs though which are rarely used.
1766 * slub_max_order specifies the order where we begin to stop considering the
1767 * number of objects in a slab as critical. If we reach slub_max_order then
1768 * we try to keep the page order as low as possible. So we accept more waste
1769 * of space in favor of a small page order.
1771 * Higher order allocations also allow the placement of more objects in a
1772 * slab and thereby reduce object handling overhead. If the user has
1773 * requested a higher mininum order then we start with that one instead of
1774 * the smallest order which will fit the object.
1776 static inline int slab_order(int size, int min_objects,
1777 int max_order, int fract_leftover)
1779 int order;
1780 int rem;
1781 int min_order = slub_min_order;
1783 for (order = max(min_order,
1784 fls(min_objects * size - 1) - PAGE_SHIFT);
1785 order <= max_order; order++) {
1787 unsigned long slab_size = PAGE_SIZE << order;
1789 if (slab_size < min_objects * size)
1790 continue;
1792 rem = slab_size % size;
1794 if (rem <= slab_size / fract_leftover)
1795 break;
1799 return order;
1802 static inline int calculate_order(int size)
1804 int order;
1805 int min_objects;
1806 int fraction;
1809 * Attempt to find best configuration for a slab. This
1810 * works by first attempting to generate a layout with
1811 * the best configuration and backing off gradually.
1813 * First we reduce the acceptable waste in a slab. Then
1814 * we reduce the minimum objects required in a slab.
1816 min_objects = slub_min_objects;
1817 while (min_objects > 1) {
1818 fraction = 8;
1819 while (fraction >= 4) {
1820 order = slab_order(size, min_objects,
1821 slub_max_order, fraction);
1822 if (order <= slub_max_order)
1823 return order;
1824 fraction /= 2;
1826 min_objects /= 2;
1830 * We were unable to place multiple objects in a slab. Now
1831 * lets see if we can place a single object there.
1833 order = slab_order(size, 1, slub_max_order, 1);
1834 if (order <= slub_max_order)
1835 return order;
1838 * Doh this slab cannot be placed using slub_max_order.
1840 order = slab_order(size, 1, MAX_ORDER, 1);
1841 if (order <= MAX_ORDER)
1842 return order;
1843 return -ENOSYS;
1847 * Figure out what the alignment of the objects will be.
1849 static unsigned long calculate_alignment(unsigned long flags,
1850 unsigned long align, unsigned long size)
1853 * If the user wants hardware cache aligned objects then follow that
1854 * suggestion if the object is sufficiently large.
1856 * The hardware cache alignment cannot override the specified
1857 * alignment though. If that is greater then use it.
1859 if (flags & SLAB_HWCACHE_ALIGN) {
1860 unsigned long ralign = cache_line_size();
1861 while (size <= ralign / 2)
1862 ralign /= 2;
1863 align = max(align, ralign);
1866 if (align < ARCH_SLAB_MINALIGN)
1867 align = ARCH_SLAB_MINALIGN;
1869 return ALIGN(align, sizeof(void *));
1872 static void init_kmem_cache_cpu(struct kmem_cache *s,
1873 struct kmem_cache_cpu *c)
1875 c->page = NULL;
1876 c->freelist = NULL;
1877 c->node = 0;
1878 c->offset = s->offset / sizeof(void *);
1879 c->objsize = s->objsize;
1882 static void init_kmem_cache_node(struct kmem_cache_node *n)
1884 n->nr_partial = 0;
1885 atomic_long_set(&n->nr_slabs, 0);
1886 spin_lock_init(&n->list_lock);
1887 INIT_LIST_HEAD(&n->partial);
1888 #ifdef CONFIG_SLUB_DEBUG
1889 INIT_LIST_HEAD(&n->full);
1890 #endif
1893 #ifdef CONFIG_SMP
1895 * Per cpu array for per cpu structures.
1897 * The per cpu array places all kmem_cache_cpu structures from one processor
1898 * close together meaning that it becomes possible that multiple per cpu
1899 * structures are contained in one cacheline. This may be particularly
1900 * beneficial for the kmalloc caches.
1902 * A desktop system typically has around 60-80 slabs. With 100 here we are
1903 * likely able to get per cpu structures for all caches from the array defined
1904 * here. We must be able to cover all kmalloc caches during bootstrap.
1906 * If the per cpu array is exhausted then fall back to kmalloc
1907 * of individual cachelines. No sharing is possible then.
1909 #define NR_KMEM_CACHE_CPU 100
1911 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1912 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1914 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1915 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1917 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1918 int cpu, gfp_t flags)
1920 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1922 if (c)
1923 per_cpu(kmem_cache_cpu_free, cpu) =
1924 (void *)c->freelist;
1925 else {
1926 /* Table overflow: So allocate ourselves */
1927 c = kmalloc_node(
1928 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1929 flags, cpu_to_node(cpu));
1930 if (!c)
1931 return NULL;
1934 init_kmem_cache_cpu(s, c);
1935 return c;
1938 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1940 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1941 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1942 kfree(c);
1943 return;
1945 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1946 per_cpu(kmem_cache_cpu_free, cpu) = c;
1949 static void free_kmem_cache_cpus(struct kmem_cache *s)
1951 int cpu;
1953 for_each_online_cpu(cpu) {
1954 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1956 if (c) {
1957 s->cpu_slab[cpu] = NULL;
1958 free_kmem_cache_cpu(c, cpu);
1963 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1965 int cpu;
1967 for_each_online_cpu(cpu) {
1968 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1970 if (c)
1971 continue;
1973 c = alloc_kmem_cache_cpu(s, cpu, flags);
1974 if (!c) {
1975 free_kmem_cache_cpus(s);
1976 return 0;
1978 s->cpu_slab[cpu] = c;
1980 return 1;
1984 * Initialize the per cpu array.
1986 static void init_alloc_cpu_cpu(int cpu)
1988 int i;
1990 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
1991 return;
1993 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
1994 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
1996 cpu_set(cpu, kmem_cach_cpu_free_init_once);
1999 static void __init init_alloc_cpu(void)
2001 int cpu;
2003 for_each_online_cpu(cpu)
2004 init_alloc_cpu_cpu(cpu);
2007 #else
2008 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2009 static inline void init_alloc_cpu(void) {}
2011 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2013 init_kmem_cache_cpu(s, &s->cpu_slab);
2014 return 1;
2016 #endif
2018 #ifdef CONFIG_NUMA
2020 * No kmalloc_node yet so do it by hand. We know that this is the first
2021 * slab on the node for this slabcache. There are no concurrent accesses
2022 * possible.
2024 * Note that this function only works on the kmalloc_node_cache
2025 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2026 * memory on a fresh node that has no slab structures yet.
2028 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2029 int node)
2031 struct page *page;
2032 struct kmem_cache_node *n;
2033 unsigned long flags;
2035 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2037 page = new_slab(kmalloc_caches, gfpflags, node);
2039 BUG_ON(!page);
2040 if (page_to_nid(page) != node) {
2041 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2042 "node %d\n", node);
2043 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2044 "in order to be able to continue\n");
2047 n = page->freelist;
2048 BUG_ON(!n);
2049 page->freelist = get_freepointer(kmalloc_caches, n);
2050 page->inuse++;
2051 kmalloc_caches->node[node] = n;
2052 #ifdef CONFIG_SLUB_DEBUG
2053 init_object(kmalloc_caches, n, 1);
2054 init_tracking(kmalloc_caches, n);
2055 #endif
2056 init_kmem_cache_node(n);
2057 atomic_long_inc(&n->nr_slabs);
2060 * lockdep requires consistent irq usage for each lock
2061 * so even though there cannot be a race this early in
2062 * the boot sequence, we still disable irqs.
2064 local_irq_save(flags);
2065 add_partial(n, page, 0);
2066 local_irq_restore(flags);
2067 return n;
2070 static void free_kmem_cache_nodes(struct kmem_cache *s)
2072 int node;
2074 for_each_node_state(node, N_NORMAL_MEMORY) {
2075 struct kmem_cache_node *n = s->node[node];
2076 if (n && n != &s->local_node)
2077 kmem_cache_free(kmalloc_caches, n);
2078 s->node[node] = NULL;
2082 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2084 int node;
2085 int local_node;
2087 if (slab_state >= UP)
2088 local_node = page_to_nid(virt_to_page(s));
2089 else
2090 local_node = 0;
2092 for_each_node_state(node, N_NORMAL_MEMORY) {
2093 struct kmem_cache_node *n;
2095 if (local_node == node)
2096 n = &s->local_node;
2097 else {
2098 if (slab_state == DOWN) {
2099 n = early_kmem_cache_node_alloc(gfpflags,
2100 node);
2101 continue;
2103 n = kmem_cache_alloc_node(kmalloc_caches,
2104 gfpflags, node);
2106 if (!n) {
2107 free_kmem_cache_nodes(s);
2108 return 0;
2112 s->node[node] = n;
2113 init_kmem_cache_node(n);
2115 return 1;
2117 #else
2118 static void free_kmem_cache_nodes(struct kmem_cache *s)
2122 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2124 init_kmem_cache_node(&s->local_node);
2125 return 1;
2127 #endif
2130 * calculate_sizes() determines the order and the distribution of data within
2131 * a slab object.
2133 static int calculate_sizes(struct kmem_cache *s)
2135 unsigned long flags = s->flags;
2136 unsigned long size = s->objsize;
2137 unsigned long align = s->align;
2140 * Round up object size to the next word boundary. We can only
2141 * place the free pointer at word boundaries and this determines
2142 * the possible location of the free pointer.
2144 size = ALIGN(size, sizeof(void *));
2146 #ifdef CONFIG_SLUB_DEBUG
2148 * Determine if we can poison the object itself. If the user of
2149 * the slab may touch the object after free or before allocation
2150 * then we should never poison the object itself.
2152 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2153 !s->ctor)
2154 s->flags |= __OBJECT_POISON;
2155 else
2156 s->flags &= ~__OBJECT_POISON;
2160 * If we are Redzoning then check if there is some space between the
2161 * end of the object and the free pointer. If not then add an
2162 * additional word to have some bytes to store Redzone information.
2164 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2165 size += sizeof(void *);
2166 #endif
2169 * With that we have determined the number of bytes in actual use
2170 * by the object. This is the potential offset to the free pointer.
2172 s->inuse = size;
2174 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2175 s->ctor)) {
2177 * Relocate free pointer after the object if it is not
2178 * permitted to overwrite the first word of the object on
2179 * kmem_cache_free.
2181 * This is the case if we do RCU, have a constructor or
2182 * destructor or are poisoning the objects.
2184 s->offset = size;
2185 size += sizeof(void *);
2188 #ifdef CONFIG_SLUB_DEBUG
2189 if (flags & SLAB_STORE_USER)
2191 * Need to store information about allocs and frees after
2192 * the object.
2194 size += 2 * sizeof(struct track);
2196 if (flags & SLAB_RED_ZONE)
2198 * Add some empty padding so that we can catch
2199 * overwrites from earlier objects rather than let
2200 * tracking information or the free pointer be
2201 * corrupted if an user writes before the start
2202 * of the object.
2204 size += sizeof(void *);
2205 #endif
2208 * Determine the alignment based on various parameters that the
2209 * user specified and the dynamic determination of cache line size
2210 * on bootup.
2212 align = calculate_alignment(flags, align, s->objsize);
2215 * SLUB stores one object immediately after another beginning from
2216 * offset 0. In order to align the objects we have to simply size
2217 * each object to conform to the alignment.
2219 size = ALIGN(size, align);
2220 s->size = size;
2222 if ((flags & __KMALLOC_CACHE) &&
2223 PAGE_SIZE / size < slub_min_objects) {
2225 * Kmalloc cache that would not have enough objects in
2226 * an order 0 page. Kmalloc slabs can fallback to
2227 * page allocator order 0 allocs so take a reasonably large
2228 * order that will allows us a good number of objects.
2230 s->order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER);
2231 s->flags |= __PAGE_ALLOC_FALLBACK;
2232 s->allocflags |= __GFP_NOWARN;
2233 } else
2234 s->order = calculate_order(size);
2236 if (s->order < 0)
2237 return 0;
2239 s->allocflags = 0;
2240 if (s->order)
2241 s->allocflags |= __GFP_COMP;
2243 if (s->flags & SLAB_CACHE_DMA)
2244 s->allocflags |= SLUB_DMA;
2246 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2247 s->allocflags |= __GFP_RECLAIMABLE;
2250 * Determine the number of objects per slab
2252 s->objects = (PAGE_SIZE << s->order) / size;
2254 return !!s->objects;
2258 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2259 const char *name, size_t size,
2260 size_t align, unsigned long flags,
2261 void (*ctor)(struct kmem_cache *, void *))
2263 memset(s, 0, kmem_size);
2264 s->name = name;
2265 s->ctor = ctor;
2266 s->objsize = size;
2267 s->align = align;
2268 s->flags = kmem_cache_flags(size, flags, name, ctor);
2270 if (!calculate_sizes(s))
2271 goto error;
2273 s->refcount = 1;
2274 #ifdef CONFIG_NUMA
2275 s->remote_node_defrag_ratio = 100;
2276 #endif
2277 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2278 goto error;
2280 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2281 return 1;
2282 free_kmem_cache_nodes(s);
2283 error:
2284 if (flags & SLAB_PANIC)
2285 panic("Cannot create slab %s size=%lu realsize=%u "
2286 "order=%u offset=%u flags=%lx\n",
2287 s->name, (unsigned long)size, s->size, s->order,
2288 s->offset, flags);
2289 return 0;
2293 * Check if a given pointer is valid
2295 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2297 struct page *page;
2299 page = get_object_page(object);
2301 if (!page || s != page->slab)
2302 /* No slab or wrong slab */
2303 return 0;
2305 if (!check_valid_pointer(s, page, object))
2306 return 0;
2309 * We could also check if the object is on the slabs freelist.
2310 * But this would be too expensive and it seems that the main
2311 * purpose of kmem_ptr_valid() is to check if the object belongs
2312 * to a certain slab.
2314 return 1;
2316 EXPORT_SYMBOL(kmem_ptr_validate);
2319 * Determine the size of a slab object
2321 unsigned int kmem_cache_size(struct kmem_cache *s)
2323 return s->objsize;
2325 EXPORT_SYMBOL(kmem_cache_size);
2327 const char *kmem_cache_name(struct kmem_cache *s)
2329 return s->name;
2331 EXPORT_SYMBOL(kmem_cache_name);
2334 * Attempt to free all slabs on a node. Return the number of slabs we
2335 * were unable to free.
2337 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2338 struct list_head *list)
2340 int slabs_inuse = 0;
2341 unsigned long flags;
2342 struct page *page, *h;
2344 spin_lock_irqsave(&n->list_lock, flags);
2345 list_for_each_entry_safe(page, h, list, lru)
2346 if (!page->inuse) {
2347 list_del(&page->lru);
2348 discard_slab(s, page);
2349 } else
2350 slabs_inuse++;
2351 spin_unlock_irqrestore(&n->list_lock, flags);
2352 return slabs_inuse;
2356 * Release all resources used by a slab cache.
2358 static inline int kmem_cache_close(struct kmem_cache *s)
2360 int node;
2362 flush_all(s);
2364 /* Attempt to free all objects */
2365 free_kmem_cache_cpus(s);
2366 for_each_node_state(node, N_NORMAL_MEMORY) {
2367 struct kmem_cache_node *n = get_node(s, node);
2369 n->nr_partial -= free_list(s, n, &n->partial);
2370 if (atomic_long_read(&n->nr_slabs))
2371 return 1;
2373 free_kmem_cache_nodes(s);
2374 return 0;
2378 * Close a cache and release the kmem_cache structure
2379 * (must be used for caches created using kmem_cache_create)
2381 void kmem_cache_destroy(struct kmem_cache *s)
2383 down_write(&slub_lock);
2384 s->refcount--;
2385 if (!s->refcount) {
2386 list_del(&s->list);
2387 up_write(&slub_lock);
2388 if (kmem_cache_close(s))
2389 WARN_ON(1);
2390 sysfs_slab_remove(s);
2391 } else
2392 up_write(&slub_lock);
2394 EXPORT_SYMBOL(kmem_cache_destroy);
2396 /********************************************************************
2397 * Kmalloc subsystem
2398 *******************************************************************/
2400 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2401 EXPORT_SYMBOL(kmalloc_caches);
2403 #ifdef CONFIG_ZONE_DMA
2404 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2405 #endif
2407 static int __init setup_slub_min_order(char *str)
2409 get_option(&str, &slub_min_order);
2411 return 1;
2414 __setup("slub_min_order=", setup_slub_min_order);
2416 static int __init setup_slub_max_order(char *str)
2418 get_option(&str, &slub_max_order);
2420 return 1;
2423 __setup("slub_max_order=", setup_slub_max_order);
2425 static int __init setup_slub_min_objects(char *str)
2427 get_option(&str, &slub_min_objects);
2429 return 1;
2432 __setup("slub_min_objects=", setup_slub_min_objects);
2434 static int __init setup_slub_nomerge(char *str)
2436 slub_nomerge = 1;
2437 return 1;
2440 __setup("slub_nomerge", setup_slub_nomerge);
2442 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2443 const char *name, int size, gfp_t gfp_flags)
2445 unsigned int flags = 0;
2447 if (gfp_flags & SLUB_DMA)
2448 flags = SLAB_CACHE_DMA;
2450 down_write(&slub_lock);
2451 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2452 flags | __KMALLOC_CACHE, NULL))
2453 goto panic;
2455 list_add(&s->list, &slab_caches);
2456 up_write(&slub_lock);
2457 if (sysfs_slab_add(s))
2458 goto panic;
2459 return s;
2461 panic:
2462 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2465 #ifdef CONFIG_ZONE_DMA
2467 static void sysfs_add_func(struct work_struct *w)
2469 struct kmem_cache *s;
2471 down_write(&slub_lock);
2472 list_for_each_entry(s, &slab_caches, list) {
2473 if (s->flags & __SYSFS_ADD_DEFERRED) {
2474 s->flags &= ~__SYSFS_ADD_DEFERRED;
2475 sysfs_slab_add(s);
2478 up_write(&slub_lock);
2481 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2483 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2485 struct kmem_cache *s;
2486 char *text;
2487 size_t realsize;
2489 s = kmalloc_caches_dma[index];
2490 if (s)
2491 return s;
2493 /* Dynamically create dma cache */
2494 if (flags & __GFP_WAIT)
2495 down_write(&slub_lock);
2496 else {
2497 if (!down_write_trylock(&slub_lock))
2498 goto out;
2501 if (kmalloc_caches_dma[index])
2502 goto unlock_out;
2504 realsize = kmalloc_caches[index].objsize;
2505 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2506 (unsigned int)realsize);
2507 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2509 if (!s || !text || !kmem_cache_open(s, flags, text,
2510 realsize, ARCH_KMALLOC_MINALIGN,
2511 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2512 kfree(s);
2513 kfree(text);
2514 goto unlock_out;
2517 list_add(&s->list, &slab_caches);
2518 kmalloc_caches_dma[index] = s;
2520 schedule_work(&sysfs_add_work);
2522 unlock_out:
2523 up_write(&slub_lock);
2524 out:
2525 return kmalloc_caches_dma[index];
2527 #endif
2530 * Conversion table for small slabs sizes / 8 to the index in the
2531 * kmalloc array. This is necessary for slabs < 192 since we have non power
2532 * of two cache sizes there. The size of larger slabs can be determined using
2533 * fls.
2535 static s8 size_index[24] = {
2536 3, /* 8 */
2537 4, /* 16 */
2538 5, /* 24 */
2539 5, /* 32 */
2540 6, /* 40 */
2541 6, /* 48 */
2542 6, /* 56 */
2543 6, /* 64 */
2544 1, /* 72 */
2545 1, /* 80 */
2546 1, /* 88 */
2547 1, /* 96 */
2548 7, /* 104 */
2549 7, /* 112 */
2550 7, /* 120 */
2551 7, /* 128 */
2552 2, /* 136 */
2553 2, /* 144 */
2554 2, /* 152 */
2555 2, /* 160 */
2556 2, /* 168 */
2557 2, /* 176 */
2558 2, /* 184 */
2559 2 /* 192 */
2562 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2564 int index;
2566 if (size <= 192) {
2567 if (!size)
2568 return ZERO_SIZE_PTR;
2570 index = size_index[(size - 1) / 8];
2571 } else
2572 index = fls(size - 1);
2574 #ifdef CONFIG_ZONE_DMA
2575 if (unlikely((flags & SLUB_DMA)))
2576 return dma_kmalloc_cache(index, flags);
2578 #endif
2579 return &kmalloc_caches[index];
2582 void *__kmalloc(size_t size, gfp_t flags)
2584 struct kmem_cache *s;
2586 if (unlikely(size > PAGE_SIZE))
2587 return kmalloc_large(size, flags);
2589 s = get_slab(size, flags);
2591 if (unlikely(ZERO_OR_NULL_PTR(s)))
2592 return s;
2594 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2596 EXPORT_SYMBOL(__kmalloc);
2598 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2600 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2601 get_order(size));
2603 if (page)
2604 return page_address(page);
2605 else
2606 return NULL;
2609 #ifdef CONFIG_NUMA
2610 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2612 struct kmem_cache *s;
2614 if (unlikely(size > PAGE_SIZE))
2615 return kmalloc_large_node(size, flags, node);
2617 s = get_slab(size, flags);
2619 if (unlikely(ZERO_OR_NULL_PTR(s)))
2620 return s;
2622 return slab_alloc(s, flags, node, __builtin_return_address(0));
2624 EXPORT_SYMBOL(__kmalloc_node);
2625 #endif
2627 size_t ksize(const void *object)
2629 struct page *page;
2630 struct kmem_cache *s;
2632 if (unlikely(object == ZERO_SIZE_PTR))
2633 return 0;
2635 page = virt_to_head_page(object);
2637 if (unlikely(!PageSlab(page)))
2638 return PAGE_SIZE << compound_order(page);
2640 s = page->slab;
2642 #ifdef CONFIG_SLUB_DEBUG
2644 * Debugging requires use of the padding between object
2645 * and whatever may come after it.
2647 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2648 return s->objsize;
2650 #endif
2652 * If we have the need to store the freelist pointer
2653 * back there or track user information then we can
2654 * only use the space before that information.
2656 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2657 return s->inuse;
2659 * Else we can use all the padding etc for the allocation
2661 return s->size;
2663 EXPORT_SYMBOL(ksize);
2665 void kfree(const void *x)
2667 struct page *page;
2668 void *object = (void *)x;
2670 if (unlikely(ZERO_OR_NULL_PTR(x)))
2671 return;
2673 page = virt_to_head_page(x);
2674 if (unlikely(!PageSlab(page))) {
2675 put_page(page);
2676 return;
2678 slab_free(page->slab, page, object, __builtin_return_address(0));
2680 EXPORT_SYMBOL(kfree);
2682 static unsigned long count_partial(struct kmem_cache_node *n)
2684 unsigned long flags;
2685 unsigned long x = 0;
2686 struct page *page;
2688 spin_lock_irqsave(&n->list_lock, flags);
2689 list_for_each_entry(page, &n->partial, lru)
2690 x += page->inuse;
2691 spin_unlock_irqrestore(&n->list_lock, flags);
2692 return x;
2696 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2697 * the remaining slabs by the number of items in use. The slabs with the
2698 * most items in use come first. New allocations will then fill those up
2699 * and thus they can be removed from the partial lists.
2701 * The slabs with the least items are placed last. This results in them
2702 * being allocated from last increasing the chance that the last objects
2703 * are freed in them.
2705 int kmem_cache_shrink(struct kmem_cache *s)
2707 int node;
2708 int i;
2709 struct kmem_cache_node *n;
2710 struct page *page;
2711 struct page *t;
2712 struct list_head *slabs_by_inuse =
2713 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2714 unsigned long flags;
2716 if (!slabs_by_inuse)
2717 return -ENOMEM;
2719 flush_all(s);
2720 for_each_node_state(node, N_NORMAL_MEMORY) {
2721 n = get_node(s, node);
2723 if (!n->nr_partial)
2724 continue;
2726 for (i = 0; i < s->objects; i++)
2727 INIT_LIST_HEAD(slabs_by_inuse + i);
2729 spin_lock_irqsave(&n->list_lock, flags);
2732 * Build lists indexed by the items in use in each slab.
2734 * Note that concurrent frees may occur while we hold the
2735 * list_lock. page->inuse here is the upper limit.
2737 list_for_each_entry_safe(page, t, &n->partial, lru) {
2738 if (!page->inuse && slab_trylock(page)) {
2740 * Must hold slab lock here because slab_free
2741 * may have freed the last object and be
2742 * waiting to release the slab.
2744 list_del(&page->lru);
2745 n->nr_partial--;
2746 slab_unlock(page);
2747 discard_slab(s, page);
2748 } else {
2749 list_move(&page->lru,
2750 slabs_by_inuse + page->inuse);
2755 * Rebuild the partial list with the slabs filled up most
2756 * first and the least used slabs at the end.
2758 for (i = s->objects - 1; i >= 0; i--)
2759 list_splice(slabs_by_inuse + i, n->partial.prev);
2761 spin_unlock_irqrestore(&n->list_lock, flags);
2764 kfree(slabs_by_inuse);
2765 return 0;
2767 EXPORT_SYMBOL(kmem_cache_shrink);
2769 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2770 static int slab_mem_going_offline_callback(void *arg)
2772 struct kmem_cache *s;
2774 down_read(&slub_lock);
2775 list_for_each_entry(s, &slab_caches, list)
2776 kmem_cache_shrink(s);
2777 up_read(&slub_lock);
2779 return 0;
2782 static void slab_mem_offline_callback(void *arg)
2784 struct kmem_cache_node *n;
2785 struct kmem_cache *s;
2786 struct memory_notify *marg = arg;
2787 int offline_node;
2789 offline_node = marg->status_change_nid;
2792 * If the node still has available memory. we need kmem_cache_node
2793 * for it yet.
2795 if (offline_node < 0)
2796 return;
2798 down_read(&slub_lock);
2799 list_for_each_entry(s, &slab_caches, list) {
2800 n = get_node(s, offline_node);
2801 if (n) {
2803 * if n->nr_slabs > 0, slabs still exist on the node
2804 * that is going down. We were unable to free them,
2805 * and offline_pages() function shoudn't call this
2806 * callback. So, we must fail.
2808 BUG_ON(atomic_long_read(&n->nr_slabs));
2810 s->node[offline_node] = NULL;
2811 kmem_cache_free(kmalloc_caches, n);
2814 up_read(&slub_lock);
2817 static int slab_mem_going_online_callback(void *arg)
2819 struct kmem_cache_node *n;
2820 struct kmem_cache *s;
2821 struct memory_notify *marg = arg;
2822 int nid = marg->status_change_nid;
2823 int ret = 0;
2826 * If the node's memory is already available, then kmem_cache_node is
2827 * already created. Nothing to do.
2829 if (nid < 0)
2830 return 0;
2833 * We are bringing a node online. No memory is availabe yet. We must
2834 * allocate a kmem_cache_node structure in order to bring the node
2835 * online.
2837 down_read(&slub_lock);
2838 list_for_each_entry(s, &slab_caches, list) {
2840 * XXX: kmem_cache_alloc_node will fallback to other nodes
2841 * since memory is not yet available from the node that
2842 * is brought up.
2844 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2845 if (!n) {
2846 ret = -ENOMEM;
2847 goto out;
2849 init_kmem_cache_node(n);
2850 s->node[nid] = n;
2852 out:
2853 up_read(&slub_lock);
2854 return ret;
2857 static int slab_memory_callback(struct notifier_block *self,
2858 unsigned long action, void *arg)
2860 int ret = 0;
2862 switch (action) {
2863 case MEM_GOING_ONLINE:
2864 ret = slab_mem_going_online_callback(arg);
2865 break;
2866 case MEM_GOING_OFFLINE:
2867 ret = slab_mem_going_offline_callback(arg);
2868 break;
2869 case MEM_OFFLINE:
2870 case MEM_CANCEL_ONLINE:
2871 slab_mem_offline_callback(arg);
2872 break;
2873 case MEM_ONLINE:
2874 case MEM_CANCEL_OFFLINE:
2875 break;
2878 ret = notifier_from_errno(ret);
2879 return ret;
2882 #endif /* CONFIG_MEMORY_HOTPLUG */
2884 /********************************************************************
2885 * Basic setup of slabs
2886 *******************************************************************/
2888 void __init kmem_cache_init(void)
2890 int i;
2891 int caches = 0;
2893 init_alloc_cpu();
2895 #ifdef CONFIG_NUMA
2897 * Must first have the slab cache available for the allocations of the
2898 * struct kmem_cache_node's. There is special bootstrap code in
2899 * kmem_cache_open for slab_state == DOWN.
2901 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2902 sizeof(struct kmem_cache_node), GFP_KERNEL);
2903 kmalloc_caches[0].refcount = -1;
2904 caches++;
2906 hotplug_memory_notifier(slab_memory_callback, 1);
2907 #endif
2909 /* Able to allocate the per node structures */
2910 slab_state = PARTIAL;
2912 /* Caches that are not of the two-to-the-power-of size */
2913 if (KMALLOC_MIN_SIZE <= 64) {
2914 create_kmalloc_cache(&kmalloc_caches[1],
2915 "kmalloc-96", 96, GFP_KERNEL);
2916 caches++;
2918 if (KMALLOC_MIN_SIZE <= 128) {
2919 create_kmalloc_cache(&kmalloc_caches[2],
2920 "kmalloc-192", 192, GFP_KERNEL);
2921 caches++;
2924 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2925 create_kmalloc_cache(&kmalloc_caches[i],
2926 "kmalloc", 1 << i, GFP_KERNEL);
2927 caches++;
2932 * Patch up the size_index table if we have strange large alignment
2933 * requirements for the kmalloc array. This is only the case for
2934 * MIPS it seems. The standard arches will not generate any code here.
2936 * Largest permitted alignment is 256 bytes due to the way we
2937 * handle the index determination for the smaller caches.
2939 * Make sure that nothing crazy happens if someone starts tinkering
2940 * around with ARCH_KMALLOC_MINALIGN
2942 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2943 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2945 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2946 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2948 slab_state = UP;
2950 /* Provide the correct kmalloc names now that the caches are up */
2951 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
2952 kmalloc_caches[i]. name =
2953 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2955 #ifdef CONFIG_SMP
2956 register_cpu_notifier(&slab_notifier);
2957 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2958 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
2959 #else
2960 kmem_size = sizeof(struct kmem_cache);
2961 #endif
2963 printk(KERN_INFO
2964 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2965 " CPUs=%d, Nodes=%d\n",
2966 caches, cache_line_size(),
2967 slub_min_order, slub_max_order, slub_min_objects,
2968 nr_cpu_ids, nr_node_ids);
2972 * Find a mergeable slab cache
2974 static int slab_unmergeable(struct kmem_cache *s)
2976 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2977 return 1;
2979 if ((s->flags & __PAGE_ALLOC_FALLBACK))
2980 return 1;
2982 if (s->ctor)
2983 return 1;
2986 * We may have set a slab to be unmergeable during bootstrap.
2988 if (s->refcount < 0)
2989 return 1;
2991 return 0;
2994 static struct kmem_cache *find_mergeable(size_t size,
2995 size_t align, unsigned long flags, const char *name,
2996 void (*ctor)(struct kmem_cache *, void *))
2998 struct kmem_cache *s;
3000 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3001 return NULL;
3003 if (ctor)
3004 return NULL;
3006 size = ALIGN(size, sizeof(void *));
3007 align = calculate_alignment(flags, align, size);
3008 size = ALIGN(size, align);
3009 flags = kmem_cache_flags(size, flags, name, NULL);
3011 list_for_each_entry(s, &slab_caches, list) {
3012 if (slab_unmergeable(s))
3013 continue;
3015 if (size > s->size)
3016 continue;
3018 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3019 continue;
3021 * Check if alignment is compatible.
3022 * Courtesy of Adrian Drzewiecki
3024 if ((s->size & ~(align - 1)) != s->size)
3025 continue;
3027 if (s->size - size >= sizeof(void *))
3028 continue;
3030 return s;
3032 return NULL;
3035 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3036 size_t align, unsigned long flags,
3037 void (*ctor)(struct kmem_cache *, void *))
3039 struct kmem_cache *s;
3041 down_write(&slub_lock);
3042 s = find_mergeable(size, align, flags, name, ctor);
3043 if (s) {
3044 int cpu;
3046 s->refcount++;
3048 * Adjust the object sizes so that we clear
3049 * the complete object on kzalloc.
3051 s->objsize = max(s->objsize, (int)size);
3054 * And then we need to update the object size in the
3055 * per cpu structures
3057 for_each_online_cpu(cpu)
3058 get_cpu_slab(s, cpu)->objsize = s->objsize;
3060 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3061 up_write(&slub_lock);
3063 if (sysfs_slab_alias(s, name))
3064 goto err;
3065 return s;
3068 s = kmalloc(kmem_size, GFP_KERNEL);
3069 if (s) {
3070 if (kmem_cache_open(s, GFP_KERNEL, name,
3071 size, align, flags, ctor)) {
3072 list_add(&s->list, &slab_caches);
3073 up_write(&slub_lock);
3074 if (sysfs_slab_add(s))
3075 goto err;
3076 return s;
3078 kfree(s);
3080 up_write(&slub_lock);
3082 err:
3083 if (flags & SLAB_PANIC)
3084 panic("Cannot create slabcache %s\n", name);
3085 else
3086 s = NULL;
3087 return s;
3089 EXPORT_SYMBOL(kmem_cache_create);
3091 #ifdef CONFIG_SMP
3093 * Use the cpu notifier to insure that the cpu slabs are flushed when
3094 * necessary.
3096 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3097 unsigned long action, void *hcpu)
3099 long cpu = (long)hcpu;
3100 struct kmem_cache *s;
3101 unsigned long flags;
3103 switch (action) {
3104 case CPU_UP_PREPARE:
3105 case CPU_UP_PREPARE_FROZEN:
3106 init_alloc_cpu_cpu(cpu);
3107 down_read(&slub_lock);
3108 list_for_each_entry(s, &slab_caches, list)
3109 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3110 GFP_KERNEL);
3111 up_read(&slub_lock);
3112 break;
3114 case CPU_UP_CANCELED:
3115 case CPU_UP_CANCELED_FROZEN:
3116 case CPU_DEAD:
3117 case CPU_DEAD_FROZEN:
3118 down_read(&slub_lock);
3119 list_for_each_entry(s, &slab_caches, list) {
3120 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3122 local_irq_save(flags);
3123 __flush_cpu_slab(s, cpu);
3124 local_irq_restore(flags);
3125 free_kmem_cache_cpu(c, cpu);
3126 s->cpu_slab[cpu] = NULL;
3128 up_read(&slub_lock);
3129 break;
3130 default:
3131 break;
3133 return NOTIFY_OK;
3136 static struct notifier_block __cpuinitdata slab_notifier = {
3137 .notifier_call = slab_cpuup_callback
3140 #endif
3142 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3144 struct kmem_cache *s;
3146 if (unlikely(size > PAGE_SIZE))
3147 return kmalloc_large(size, gfpflags);
3149 s = get_slab(size, gfpflags);
3151 if (unlikely(ZERO_OR_NULL_PTR(s)))
3152 return s;
3154 return slab_alloc(s, gfpflags, -1, caller);
3157 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3158 int node, void *caller)
3160 struct kmem_cache *s;
3162 if (unlikely(size > PAGE_SIZE))
3163 return kmalloc_large_node(size, gfpflags, node);
3165 s = get_slab(size, gfpflags);
3167 if (unlikely(ZERO_OR_NULL_PTR(s)))
3168 return s;
3170 return slab_alloc(s, gfpflags, node, caller);
3173 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3174 static int validate_slab(struct kmem_cache *s, struct page *page,
3175 unsigned long *map)
3177 void *p;
3178 void *addr = page_address(page);
3180 if (!check_slab(s, page) ||
3181 !on_freelist(s, page, NULL))
3182 return 0;
3184 /* Now we know that a valid freelist exists */
3185 bitmap_zero(map, s->objects);
3187 for_each_free_object(p, s, page->freelist) {
3188 set_bit(slab_index(p, s, addr), map);
3189 if (!check_object(s, page, p, 0))
3190 return 0;
3193 for_each_object(p, s, addr)
3194 if (!test_bit(slab_index(p, s, addr), map))
3195 if (!check_object(s, page, p, 1))
3196 return 0;
3197 return 1;
3200 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3201 unsigned long *map)
3203 if (slab_trylock(page)) {
3204 validate_slab(s, page, map);
3205 slab_unlock(page);
3206 } else
3207 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3208 s->name, page);
3210 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3211 if (!SlabDebug(page))
3212 printk(KERN_ERR "SLUB %s: SlabDebug not set "
3213 "on slab 0x%p\n", s->name, page);
3214 } else {
3215 if (SlabDebug(page))
3216 printk(KERN_ERR "SLUB %s: SlabDebug set on "
3217 "slab 0x%p\n", s->name, page);
3221 static int validate_slab_node(struct kmem_cache *s,
3222 struct kmem_cache_node *n, unsigned long *map)
3224 unsigned long count = 0;
3225 struct page *page;
3226 unsigned long flags;
3228 spin_lock_irqsave(&n->list_lock, flags);
3230 list_for_each_entry(page, &n->partial, lru) {
3231 validate_slab_slab(s, page, map);
3232 count++;
3234 if (count != n->nr_partial)
3235 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3236 "counter=%ld\n", s->name, count, n->nr_partial);
3238 if (!(s->flags & SLAB_STORE_USER))
3239 goto out;
3241 list_for_each_entry(page, &n->full, lru) {
3242 validate_slab_slab(s, page, map);
3243 count++;
3245 if (count != atomic_long_read(&n->nr_slabs))
3246 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3247 "counter=%ld\n", s->name, count,
3248 atomic_long_read(&n->nr_slabs));
3250 out:
3251 spin_unlock_irqrestore(&n->list_lock, flags);
3252 return count;
3255 static long validate_slab_cache(struct kmem_cache *s)
3257 int node;
3258 unsigned long count = 0;
3259 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3260 sizeof(unsigned long), GFP_KERNEL);
3262 if (!map)
3263 return -ENOMEM;
3265 flush_all(s);
3266 for_each_node_state(node, N_NORMAL_MEMORY) {
3267 struct kmem_cache_node *n = get_node(s, node);
3269 count += validate_slab_node(s, n, map);
3271 kfree(map);
3272 return count;
3275 #ifdef SLUB_RESILIENCY_TEST
3276 static void resiliency_test(void)
3278 u8 *p;
3280 printk(KERN_ERR "SLUB resiliency testing\n");
3281 printk(KERN_ERR "-----------------------\n");
3282 printk(KERN_ERR "A. Corruption after allocation\n");
3284 p = kzalloc(16, GFP_KERNEL);
3285 p[16] = 0x12;
3286 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3287 " 0x12->0x%p\n\n", p + 16);
3289 validate_slab_cache(kmalloc_caches + 4);
3291 /* Hmmm... The next two are dangerous */
3292 p = kzalloc(32, GFP_KERNEL);
3293 p[32 + sizeof(void *)] = 0x34;
3294 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3295 " 0x34 -> -0x%p\n", p);
3296 printk(KERN_ERR
3297 "If allocated object is overwritten then not detectable\n\n");
3299 validate_slab_cache(kmalloc_caches + 5);
3300 p = kzalloc(64, GFP_KERNEL);
3301 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3302 *p = 0x56;
3303 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3305 printk(KERN_ERR
3306 "If allocated object is overwritten then not detectable\n\n");
3307 validate_slab_cache(kmalloc_caches + 6);
3309 printk(KERN_ERR "\nB. Corruption after free\n");
3310 p = kzalloc(128, GFP_KERNEL);
3311 kfree(p);
3312 *p = 0x78;
3313 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3314 validate_slab_cache(kmalloc_caches + 7);
3316 p = kzalloc(256, GFP_KERNEL);
3317 kfree(p);
3318 p[50] = 0x9a;
3319 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3321 validate_slab_cache(kmalloc_caches + 8);
3323 p = kzalloc(512, GFP_KERNEL);
3324 kfree(p);
3325 p[512] = 0xab;
3326 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3327 validate_slab_cache(kmalloc_caches + 9);
3329 #else
3330 static void resiliency_test(void) {};
3331 #endif
3334 * Generate lists of code addresses where slabcache objects are allocated
3335 * and freed.
3338 struct location {
3339 unsigned long count;
3340 void *addr;
3341 long long sum_time;
3342 long min_time;
3343 long max_time;
3344 long min_pid;
3345 long max_pid;
3346 cpumask_t cpus;
3347 nodemask_t nodes;
3350 struct loc_track {
3351 unsigned long max;
3352 unsigned long count;
3353 struct location *loc;
3356 static void free_loc_track(struct loc_track *t)
3358 if (t->max)
3359 free_pages((unsigned long)t->loc,
3360 get_order(sizeof(struct location) * t->max));
3363 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3365 struct location *l;
3366 int order;
3368 order = get_order(sizeof(struct location) * max);
3370 l = (void *)__get_free_pages(flags, order);
3371 if (!l)
3372 return 0;
3374 if (t->count) {
3375 memcpy(l, t->loc, sizeof(struct location) * t->count);
3376 free_loc_track(t);
3378 t->max = max;
3379 t->loc = l;
3380 return 1;
3383 static int add_location(struct loc_track *t, struct kmem_cache *s,
3384 const struct track *track)
3386 long start, end, pos;
3387 struct location *l;
3388 void *caddr;
3389 unsigned long age = jiffies - track->when;
3391 start = -1;
3392 end = t->count;
3394 for ( ; ; ) {
3395 pos = start + (end - start + 1) / 2;
3398 * There is nothing at "end". If we end up there
3399 * we need to add something to before end.
3401 if (pos == end)
3402 break;
3404 caddr = t->loc[pos].addr;
3405 if (track->addr == caddr) {
3407 l = &t->loc[pos];
3408 l->count++;
3409 if (track->when) {
3410 l->sum_time += age;
3411 if (age < l->min_time)
3412 l->min_time = age;
3413 if (age > l->max_time)
3414 l->max_time = age;
3416 if (track->pid < l->min_pid)
3417 l->min_pid = track->pid;
3418 if (track->pid > l->max_pid)
3419 l->max_pid = track->pid;
3421 cpu_set(track->cpu, l->cpus);
3423 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3424 return 1;
3427 if (track->addr < caddr)
3428 end = pos;
3429 else
3430 start = pos;
3434 * Not found. Insert new tracking element.
3436 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3437 return 0;
3439 l = t->loc + pos;
3440 if (pos < t->count)
3441 memmove(l + 1, l,
3442 (t->count - pos) * sizeof(struct location));
3443 t->count++;
3444 l->count = 1;
3445 l->addr = track->addr;
3446 l->sum_time = age;
3447 l->min_time = age;
3448 l->max_time = age;
3449 l->min_pid = track->pid;
3450 l->max_pid = track->pid;
3451 cpus_clear(l->cpus);
3452 cpu_set(track->cpu, l->cpus);
3453 nodes_clear(l->nodes);
3454 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3455 return 1;
3458 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3459 struct page *page, enum track_item alloc)
3461 void *addr = page_address(page);
3462 DECLARE_BITMAP(map, s->objects);
3463 void *p;
3465 bitmap_zero(map, s->objects);
3466 for_each_free_object(p, s, page->freelist)
3467 set_bit(slab_index(p, s, addr), map);
3469 for_each_object(p, s, addr)
3470 if (!test_bit(slab_index(p, s, addr), map))
3471 add_location(t, s, get_track(s, p, alloc));
3474 static int list_locations(struct kmem_cache *s, char *buf,
3475 enum track_item alloc)
3477 int len = 0;
3478 unsigned long i;
3479 struct loc_track t = { 0, 0, NULL };
3480 int node;
3482 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3483 GFP_TEMPORARY))
3484 return sprintf(buf, "Out of memory\n");
3486 /* Push back cpu slabs */
3487 flush_all(s);
3489 for_each_node_state(node, N_NORMAL_MEMORY) {
3490 struct kmem_cache_node *n = get_node(s, node);
3491 unsigned long flags;
3492 struct page *page;
3494 if (!atomic_long_read(&n->nr_slabs))
3495 continue;
3497 spin_lock_irqsave(&n->list_lock, flags);
3498 list_for_each_entry(page, &n->partial, lru)
3499 process_slab(&t, s, page, alloc);
3500 list_for_each_entry(page, &n->full, lru)
3501 process_slab(&t, s, page, alloc);
3502 spin_unlock_irqrestore(&n->list_lock, flags);
3505 for (i = 0; i < t.count; i++) {
3506 struct location *l = &t.loc[i];
3508 if (len > PAGE_SIZE - 100)
3509 break;
3510 len += sprintf(buf + len, "%7ld ", l->count);
3512 if (l->addr)
3513 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3514 else
3515 len += sprintf(buf + len, "<not-available>");
3517 if (l->sum_time != l->min_time) {
3518 unsigned long remainder;
3520 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3521 l->min_time,
3522 div_long_long_rem(l->sum_time, l->count, &remainder),
3523 l->max_time);
3524 } else
3525 len += sprintf(buf + len, " age=%ld",
3526 l->min_time);
3528 if (l->min_pid != l->max_pid)
3529 len += sprintf(buf + len, " pid=%ld-%ld",
3530 l->min_pid, l->max_pid);
3531 else
3532 len += sprintf(buf + len, " pid=%ld",
3533 l->min_pid);
3535 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3536 len < PAGE_SIZE - 60) {
3537 len += sprintf(buf + len, " cpus=");
3538 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3539 l->cpus);
3542 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3543 len < PAGE_SIZE - 60) {
3544 len += sprintf(buf + len, " nodes=");
3545 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3546 l->nodes);
3549 len += sprintf(buf + len, "\n");
3552 free_loc_track(&t);
3553 if (!t.count)
3554 len += sprintf(buf, "No data\n");
3555 return len;
3558 enum slab_stat_type {
3559 SL_FULL,
3560 SL_PARTIAL,
3561 SL_CPU,
3562 SL_OBJECTS
3565 #define SO_FULL (1 << SL_FULL)
3566 #define SO_PARTIAL (1 << SL_PARTIAL)
3567 #define SO_CPU (1 << SL_CPU)
3568 #define SO_OBJECTS (1 << SL_OBJECTS)
3570 static ssize_t show_slab_objects(struct kmem_cache *s,
3571 char *buf, unsigned long flags)
3573 unsigned long total = 0;
3574 int cpu;
3575 int node;
3576 int x;
3577 unsigned long *nodes;
3578 unsigned long *per_cpu;
3580 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3581 if (!nodes)
3582 return -ENOMEM;
3583 per_cpu = nodes + nr_node_ids;
3585 for_each_possible_cpu(cpu) {
3586 struct page *page;
3587 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3589 if (!c)
3590 continue;
3592 page = c->page;
3593 node = c->node;
3594 if (node < 0)
3595 continue;
3596 if (page) {
3597 if (flags & SO_CPU) {
3598 if (flags & SO_OBJECTS)
3599 x = page->inuse;
3600 else
3601 x = 1;
3602 total += x;
3603 nodes[node] += x;
3605 per_cpu[node]++;
3609 for_each_node_state(node, N_NORMAL_MEMORY) {
3610 struct kmem_cache_node *n = get_node(s, node);
3612 if (flags & SO_PARTIAL) {
3613 if (flags & SO_OBJECTS)
3614 x = count_partial(n);
3615 else
3616 x = n->nr_partial;
3617 total += x;
3618 nodes[node] += x;
3621 if (flags & SO_FULL) {
3622 int full_slabs = atomic_long_read(&n->nr_slabs)
3623 - per_cpu[node]
3624 - n->nr_partial;
3626 if (flags & SO_OBJECTS)
3627 x = full_slabs * s->objects;
3628 else
3629 x = full_slabs;
3630 total += x;
3631 nodes[node] += x;
3635 x = sprintf(buf, "%lu", total);
3636 #ifdef CONFIG_NUMA
3637 for_each_node_state(node, N_NORMAL_MEMORY)
3638 if (nodes[node])
3639 x += sprintf(buf + x, " N%d=%lu",
3640 node, nodes[node]);
3641 #endif
3642 kfree(nodes);
3643 return x + sprintf(buf + x, "\n");
3646 static int any_slab_objects(struct kmem_cache *s)
3648 int node;
3649 int cpu;
3651 for_each_possible_cpu(cpu) {
3652 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3654 if (c && c->page)
3655 return 1;
3658 for_each_online_node(node) {
3659 struct kmem_cache_node *n = get_node(s, node);
3661 if (!n)
3662 continue;
3664 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3665 return 1;
3667 return 0;
3670 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3671 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3673 struct slab_attribute {
3674 struct attribute attr;
3675 ssize_t (*show)(struct kmem_cache *s, char *buf);
3676 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3679 #define SLAB_ATTR_RO(_name) \
3680 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3682 #define SLAB_ATTR(_name) \
3683 static struct slab_attribute _name##_attr = \
3684 __ATTR(_name, 0644, _name##_show, _name##_store)
3686 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3688 return sprintf(buf, "%d\n", s->size);
3690 SLAB_ATTR_RO(slab_size);
3692 static ssize_t align_show(struct kmem_cache *s, char *buf)
3694 return sprintf(buf, "%d\n", s->align);
3696 SLAB_ATTR_RO(align);
3698 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3700 return sprintf(buf, "%d\n", s->objsize);
3702 SLAB_ATTR_RO(object_size);
3704 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3706 return sprintf(buf, "%d\n", s->objects);
3708 SLAB_ATTR_RO(objs_per_slab);
3710 static ssize_t order_show(struct kmem_cache *s, char *buf)
3712 return sprintf(buf, "%d\n", s->order);
3714 SLAB_ATTR_RO(order);
3716 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3718 if (s->ctor) {
3719 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3721 return n + sprintf(buf + n, "\n");
3723 return 0;
3725 SLAB_ATTR_RO(ctor);
3727 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3729 return sprintf(buf, "%d\n", s->refcount - 1);
3731 SLAB_ATTR_RO(aliases);
3733 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3735 return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3737 SLAB_ATTR_RO(slabs);
3739 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3741 return show_slab_objects(s, buf, SO_PARTIAL);
3743 SLAB_ATTR_RO(partial);
3745 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3747 return show_slab_objects(s, buf, SO_CPU);
3749 SLAB_ATTR_RO(cpu_slabs);
3751 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3753 return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3755 SLAB_ATTR_RO(objects);
3757 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3759 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3762 static ssize_t sanity_checks_store(struct kmem_cache *s,
3763 const char *buf, size_t length)
3765 s->flags &= ~SLAB_DEBUG_FREE;
3766 if (buf[0] == '1')
3767 s->flags |= SLAB_DEBUG_FREE;
3768 return length;
3770 SLAB_ATTR(sanity_checks);
3772 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3774 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3777 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3778 size_t length)
3780 s->flags &= ~SLAB_TRACE;
3781 if (buf[0] == '1')
3782 s->flags |= SLAB_TRACE;
3783 return length;
3785 SLAB_ATTR(trace);
3787 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3789 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3792 static ssize_t reclaim_account_store(struct kmem_cache *s,
3793 const char *buf, size_t length)
3795 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3796 if (buf[0] == '1')
3797 s->flags |= SLAB_RECLAIM_ACCOUNT;
3798 return length;
3800 SLAB_ATTR(reclaim_account);
3802 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3804 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3806 SLAB_ATTR_RO(hwcache_align);
3808 #ifdef CONFIG_ZONE_DMA
3809 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3811 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3813 SLAB_ATTR_RO(cache_dma);
3814 #endif
3816 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3818 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3820 SLAB_ATTR_RO(destroy_by_rcu);
3822 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3824 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3827 static ssize_t red_zone_store(struct kmem_cache *s,
3828 const char *buf, size_t length)
3830 if (any_slab_objects(s))
3831 return -EBUSY;
3833 s->flags &= ~SLAB_RED_ZONE;
3834 if (buf[0] == '1')
3835 s->flags |= SLAB_RED_ZONE;
3836 calculate_sizes(s);
3837 return length;
3839 SLAB_ATTR(red_zone);
3841 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3843 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3846 static ssize_t poison_store(struct kmem_cache *s,
3847 const char *buf, size_t length)
3849 if (any_slab_objects(s))
3850 return -EBUSY;
3852 s->flags &= ~SLAB_POISON;
3853 if (buf[0] == '1')
3854 s->flags |= SLAB_POISON;
3855 calculate_sizes(s);
3856 return length;
3858 SLAB_ATTR(poison);
3860 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3862 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3865 static ssize_t store_user_store(struct kmem_cache *s,
3866 const char *buf, size_t length)
3868 if (any_slab_objects(s))
3869 return -EBUSY;
3871 s->flags &= ~SLAB_STORE_USER;
3872 if (buf[0] == '1')
3873 s->flags |= SLAB_STORE_USER;
3874 calculate_sizes(s);
3875 return length;
3877 SLAB_ATTR(store_user);
3879 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3881 return 0;
3884 static ssize_t validate_store(struct kmem_cache *s,
3885 const char *buf, size_t length)
3887 int ret = -EINVAL;
3889 if (buf[0] == '1') {
3890 ret = validate_slab_cache(s);
3891 if (ret >= 0)
3892 ret = length;
3894 return ret;
3896 SLAB_ATTR(validate);
3898 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3900 return 0;
3903 static ssize_t shrink_store(struct kmem_cache *s,
3904 const char *buf, size_t length)
3906 if (buf[0] == '1') {
3907 int rc = kmem_cache_shrink(s);
3909 if (rc)
3910 return rc;
3911 } else
3912 return -EINVAL;
3913 return length;
3915 SLAB_ATTR(shrink);
3917 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3919 if (!(s->flags & SLAB_STORE_USER))
3920 return -ENOSYS;
3921 return list_locations(s, buf, TRACK_ALLOC);
3923 SLAB_ATTR_RO(alloc_calls);
3925 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3927 if (!(s->flags & SLAB_STORE_USER))
3928 return -ENOSYS;
3929 return list_locations(s, buf, TRACK_FREE);
3931 SLAB_ATTR_RO(free_calls);
3933 #ifdef CONFIG_NUMA
3934 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
3936 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
3939 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
3940 const char *buf, size_t length)
3942 int n = simple_strtoul(buf, NULL, 10);
3944 if (n < 100)
3945 s->remote_node_defrag_ratio = n * 10;
3946 return length;
3948 SLAB_ATTR(remote_node_defrag_ratio);
3949 #endif
3951 #ifdef CONFIG_SLUB_STATS
3952 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
3954 unsigned long sum = 0;
3955 int cpu;
3956 int len;
3957 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
3959 if (!data)
3960 return -ENOMEM;
3962 for_each_online_cpu(cpu) {
3963 unsigned x = get_cpu_slab(s, cpu)->stat[si];
3965 data[cpu] = x;
3966 sum += x;
3969 len = sprintf(buf, "%lu", sum);
3971 for_each_online_cpu(cpu) {
3972 if (data[cpu] && len < PAGE_SIZE - 20)
3973 len += sprintf(buf + len, " c%d=%u", cpu, data[cpu]);
3975 kfree(data);
3976 return len + sprintf(buf + len, "\n");
3979 #define STAT_ATTR(si, text) \
3980 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
3982 return show_stat(s, buf, si); \
3984 SLAB_ATTR_RO(text); \
3986 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
3987 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
3988 STAT_ATTR(FREE_FASTPATH, free_fastpath);
3989 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
3990 STAT_ATTR(FREE_FROZEN, free_frozen);
3991 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
3992 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
3993 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
3994 STAT_ATTR(ALLOC_SLAB, alloc_slab);
3995 STAT_ATTR(ALLOC_REFILL, alloc_refill);
3996 STAT_ATTR(FREE_SLAB, free_slab);
3997 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
3998 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
3999 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4000 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4001 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4002 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4004 #endif
4006 static struct attribute *slab_attrs[] = {
4007 &slab_size_attr.attr,
4008 &object_size_attr.attr,
4009 &objs_per_slab_attr.attr,
4010 &order_attr.attr,
4011 &objects_attr.attr,
4012 &slabs_attr.attr,
4013 &partial_attr.attr,
4014 &cpu_slabs_attr.attr,
4015 &ctor_attr.attr,
4016 &aliases_attr.attr,
4017 &align_attr.attr,
4018 &sanity_checks_attr.attr,
4019 &trace_attr.attr,
4020 &hwcache_align_attr.attr,
4021 &reclaim_account_attr.attr,
4022 &destroy_by_rcu_attr.attr,
4023 &red_zone_attr.attr,
4024 &poison_attr.attr,
4025 &store_user_attr.attr,
4026 &validate_attr.attr,
4027 &shrink_attr.attr,
4028 &alloc_calls_attr.attr,
4029 &free_calls_attr.attr,
4030 #ifdef CONFIG_ZONE_DMA
4031 &cache_dma_attr.attr,
4032 #endif
4033 #ifdef CONFIG_NUMA
4034 &remote_node_defrag_ratio_attr.attr,
4035 #endif
4036 #ifdef CONFIG_SLUB_STATS
4037 &alloc_fastpath_attr.attr,
4038 &alloc_slowpath_attr.attr,
4039 &free_fastpath_attr.attr,
4040 &free_slowpath_attr.attr,
4041 &free_frozen_attr.attr,
4042 &free_add_partial_attr.attr,
4043 &free_remove_partial_attr.attr,
4044 &alloc_from_partial_attr.attr,
4045 &alloc_slab_attr.attr,
4046 &alloc_refill_attr.attr,
4047 &free_slab_attr.attr,
4048 &cpuslab_flush_attr.attr,
4049 &deactivate_full_attr.attr,
4050 &deactivate_empty_attr.attr,
4051 &deactivate_to_head_attr.attr,
4052 &deactivate_to_tail_attr.attr,
4053 &deactivate_remote_frees_attr.attr,
4054 #endif
4055 NULL
4058 static struct attribute_group slab_attr_group = {
4059 .attrs = slab_attrs,
4062 static ssize_t slab_attr_show(struct kobject *kobj,
4063 struct attribute *attr,
4064 char *buf)
4066 struct slab_attribute *attribute;
4067 struct kmem_cache *s;
4068 int err;
4070 attribute = to_slab_attr(attr);
4071 s = to_slab(kobj);
4073 if (!attribute->show)
4074 return -EIO;
4076 err = attribute->show(s, buf);
4078 return err;
4081 static ssize_t slab_attr_store(struct kobject *kobj,
4082 struct attribute *attr,
4083 const char *buf, size_t len)
4085 struct slab_attribute *attribute;
4086 struct kmem_cache *s;
4087 int err;
4089 attribute = to_slab_attr(attr);
4090 s = to_slab(kobj);
4092 if (!attribute->store)
4093 return -EIO;
4095 err = attribute->store(s, buf, len);
4097 return err;
4100 static void kmem_cache_release(struct kobject *kobj)
4102 struct kmem_cache *s = to_slab(kobj);
4104 kfree(s);
4107 static struct sysfs_ops slab_sysfs_ops = {
4108 .show = slab_attr_show,
4109 .store = slab_attr_store,
4112 static struct kobj_type slab_ktype = {
4113 .sysfs_ops = &slab_sysfs_ops,
4114 .release = kmem_cache_release
4117 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4119 struct kobj_type *ktype = get_ktype(kobj);
4121 if (ktype == &slab_ktype)
4122 return 1;
4123 return 0;
4126 static struct kset_uevent_ops slab_uevent_ops = {
4127 .filter = uevent_filter,
4130 static struct kset *slab_kset;
4132 #define ID_STR_LENGTH 64
4134 /* Create a unique string id for a slab cache:
4136 * Format :[flags-]size
4138 static char *create_unique_id(struct kmem_cache *s)
4140 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4141 char *p = name;
4143 BUG_ON(!name);
4145 *p++ = ':';
4147 * First flags affecting slabcache operations. We will only
4148 * get here for aliasable slabs so we do not need to support
4149 * too many flags. The flags here must cover all flags that
4150 * are matched during merging to guarantee that the id is
4151 * unique.
4153 if (s->flags & SLAB_CACHE_DMA)
4154 *p++ = 'd';
4155 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4156 *p++ = 'a';
4157 if (s->flags & SLAB_DEBUG_FREE)
4158 *p++ = 'F';
4159 if (p != name + 1)
4160 *p++ = '-';
4161 p += sprintf(p, "%07d", s->size);
4162 BUG_ON(p > name + ID_STR_LENGTH - 1);
4163 return name;
4166 static int sysfs_slab_add(struct kmem_cache *s)
4168 int err;
4169 const char *name;
4170 int unmergeable;
4172 if (slab_state < SYSFS)
4173 /* Defer until later */
4174 return 0;
4176 unmergeable = slab_unmergeable(s);
4177 if (unmergeable) {
4179 * Slabcache can never be merged so we can use the name proper.
4180 * This is typically the case for debug situations. In that
4181 * case we can catch duplicate names easily.
4183 sysfs_remove_link(&slab_kset->kobj, s->name);
4184 name = s->name;
4185 } else {
4187 * Create a unique name for the slab as a target
4188 * for the symlinks.
4190 name = create_unique_id(s);
4193 s->kobj.kset = slab_kset;
4194 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4195 if (err) {
4196 kobject_put(&s->kobj);
4197 return err;
4200 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4201 if (err)
4202 return err;
4203 kobject_uevent(&s->kobj, KOBJ_ADD);
4204 if (!unmergeable) {
4205 /* Setup first alias */
4206 sysfs_slab_alias(s, s->name);
4207 kfree(name);
4209 return 0;
4212 static void sysfs_slab_remove(struct kmem_cache *s)
4214 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4215 kobject_del(&s->kobj);
4216 kobject_put(&s->kobj);
4220 * Need to buffer aliases during bootup until sysfs becomes
4221 * available lest we loose that information.
4223 struct saved_alias {
4224 struct kmem_cache *s;
4225 const char *name;
4226 struct saved_alias *next;
4229 static struct saved_alias *alias_list;
4231 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4233 struct saved_alias *al;
4235 if (slab_state == SYSFS) {
4237 * If we have a leftover link then remove it.
4239 sysfs_remove_link(&slab_kset->kobj, name);
4240 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4243 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4244 if (!al)
4245 return -ENOMEM;
4247 al->s = s;
4248 al->name = name;
4249 al->next = alias_list;
4250 alias_list = al;
4251 return 0;
4254 static int __init slab_sysfs_init(void)
4256 struct kmem_cache *s;
4257 int err;
4259 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4260 if (!slab_kset) {
4261 printk(KERN_ERR "Cannot register slab subsystem.\n");
4262 return -ENOSYS;
4265 slab_state = SYSFS;
4267 list_for_each_entry(s, &slab_caches, list) {
4268 err = sysfs_slab_add(s);
4269 if (err)
4270 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4271 " to sysfs\n", s->name);
4274 while (alias_list) {
4275 struct saved_alias *al = alias_list;
4277 alias_list = alias_list->next;
4278 err = sysfs_slab_alias(al->s, al->name);
4279 if (err)
4280 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4281 " %s to sysfs\n", s->name);
4282 kfree(al);
4285 resiliency_test();
4286 return 0;
4289 __initcall(slab_sysfs_init);
4290 #endif
4293 * The /proc/slabinfo ABI
4295 #ifdef CONFIG_SLABINFO
4297 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4298 size_t count, loff_t *ppos)
4300 return -EINVAL;
4304 static void print_slabinfo_header(struct seq_file *m)
4306 seq_puts(m, "slabinfo - version: 2.1\n");
4307 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4308 "<objperslab> <pagesperslab>");
4309 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4310 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4311 seq_putc(m, '\n');
4314 static void *s_start(struct seq_file *m, loff_t *pos)
4316 loff_t n = *pos;
4318 down_read(&slub_lock);
4319 if (!n)
4320 print_slabinfo_header(m);
4322 return seq_list_start(&slab_caches, *pos);
4325 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4327 return seq_list_next(p, &slab_caches, pos);
4330 static void s_stop(struct seq_file *m, void *p)
4332 up_read(&slub_lock);
4335 static int s_show(struct seq_file *m, void *p)
4337 unsigned long nr_partials = 0;
4338 unsigned long nr_slabs = 0;
4339 unsigned long nr_inuse = 0;
4340 unsigned long nr_objs;
4341 struct kmem_cache *s;
4342 int node;
4344 s = list_entry(p, struct kmem_cache, list);
4346 for_each_online_node(node) {
4347 struct kmem_cache_node *n = get_node(s, node);
4349 if (!n)
4350 continue;
4352 nr_partials += n->nr_partial;
4353 nr_slabs += atomic_long_read(&n->nr_slabs);
4354 nr_inuse += count_partial(n);
4357 nr_objs = nr_slabs * s->objects;
4358 nr_inuse += (nr_slabs - nr_partials) * s->objects;
4360 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4361 nr_objs, s->size, s->objects, (1 << s->order));
4362 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4363 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4364 0UL);
4365 seq_putc(m, '\n');
4366 return 0;
4369 const struct seq_operations slabinfo_op = {
4370 .start = s_start,
4371 .next = s_next,
4372 .stop = s_stop,
4373 .show = s_show,
4376 #endif /* CONFIG_SLABINFO */