sysctl: ipv6 route flushing (kill binary path)
[wrt350n-kernel.git] / net / core / dev.c
blob38b03da5c1ca93d061cfe250195bbfc8898b9da6
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/notifier.h>
94 #include <linux/skbuff.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <linux/rtnetlink.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/stat.h>
101 #include <linux/if_bridge.h>
102 #include <linux/if_macvlan.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/kmod.h>
109 #include <linux/module.h>
110 #include <linux/kallsyms.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
124 * The list of packet types we will receive (as opposed to discard)
125 * and the routines to invoke.
127 * Why 16. Because with 16 the only overlap we get on a hash of the
128 * low nibble of the protocol value is RARP/SNAP/X.25.
130 * NOTE: That is no longer true with the addition of VLAN tags. Not
131 * sure which should go first, but I bet it won't make much
132 * difference if we are running VLANs. The good news is that
133 * this protocol won't be in the list unless compiled in, so
134 * the average user (w/out VLANs) will not be adversely affected.
135 * --BLG
137 * 0800 IP
138 * 8100 802.1Q VLAN
139 * 0001 802.3
140 * 0002 AX.25
141 * 0004 802.2
142 * 8035 RARP
143 * 0005 SNAP
144 * 0805 X.25
145 * 0806 ARP
146 * 8137 IPX
147 * 0009 Localtalk
148 * 86DD IPv6
151 static DEFINE_SPINLOCK(ptype_lock);
152 static struct list_head ptype_base[16] __read_mostly; /* 16 way hashed list */
153 static struct list_head ptype_all __read_mostly; /* Taps */
155 #ifdef CONFIG_NET_DMA
156 struct net_dma {
157 struct dma_client client;
158 spinlock_t lock;
159 cpumask_t channel_mask;
160 struct dma_chan *channels[NR_CPUS];
163 static enum dma_state_client
164 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
165 enum dma_state state);
167 static struct net_dma net_dma = {
168 .client = {
169 .event_callback = netdev_dma_event,
172 #endif
175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
176 * semaphore.
178 * Pure readers hold dev_base_lock for reading.
180 * Writers must hold the rtnl semaphore while they loop through the
181 * dev_base_head list, and hold dev_base_lock for writing when they do the
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
191 * semaphore held.
193 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
197 #define NETDEV_HASHBITS 8
198 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
211 /* Device list insertion */
212 static int list_netdevice(struct net_device *dev)
214 struct net *net = dev->nd_net;
216 ASSERT_RTNL();
218 write_lock_bh(&dev_base_lock);
219 list_add_tail(&dev->dev_list, &net->dev_base_head);
220 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
221 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
222 write_unlock_bh(&dev_base_lock);
223 return 0;
226 /* Device list removal */
227 static void unlist_netdevice(struct net_device *dev)
229 ASSERT_RTNL();
231 /* Unlink dev from the device chain */
232 write_lock_bh(&dev_base_lock);
233 list_del(&dev->dev_list);
234 hlist_del(&dev->name_hlist);
235 hlist_del(&dev->index_hlist);
236 write_unlock_bh(&dev_base_lock);
240 * Our notifier list
243 static RAW_NOTIFIER_HEAD(netdev_chain);
246 * Device drivers call our routines to queue packets here. We empty the
247 * queue in the local softnet handler.
250 DEFINE_PER_CPU(struct softnet_data, softnet_data);
252 extern int netdev_kobject_init(void);
253 extern int netdev_register_kobject(struct net_device *);
254 extern void netdev_unregister_kobject(struct net_device *);
256 #ifdef CONFIG_DEBUG_LOCK_ALLOC
258 * register_netdevice() inits dev->_xmit_lock and sets lockdep class
259 * according to dev->type
261 static const unsigned short netdev_lock_type[] =
262 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
263 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
264 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
265 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
266 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
267 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
268 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
269 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
270 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
271 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
272 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
273 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
274 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
275 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
276 ARPHRD_NONE};
278 static const char *netdev_lock_name[] =
279 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
280 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
281 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
282 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
283 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
284 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
285 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
286 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
287 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
288 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
289 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
290 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
291 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
292 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
293 "_xmit_NONE"};
295 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
297 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
299 int i;
301 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
302 if (netdev_lock_type[i] == dev_type)
303 return i;
304 /* the last key is used by default */
305 return ARRAY_SIZE(netdev_lock_type) - 1;
308 static inline void netdev_set_lockdep_class(spinlock_t *lock,
309 unsigned short dev_type)
311 int i;
313 i = netdev_lock_pos(dev_type);
314 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
315 netdev_lock_name[i]);
317 #else
318 static inline void netdev_set_lockdep_class(spinlock_t *lock,
319 unsigned short dev_type)
322 #endif
324 /*******************************************************************************
326 Protocol management and registration routines
328 *******************************************************************************/
331 * Add a protocol ID to the list. Now that the input handler is
332 * smarter we can dispense with all the messy stuff that used to be
333 * here.
335 * BEWARE!!! Protocol handlers, mangling input packets,
336 * MUST BE last in hash buckets and checking protocol handlers
337 * MUST start from promiscuous ptype_all chain in net_bh.
338 * It is true now, do not change it.
339 * Explanation follows: if protocol handler, mangling packet, will
340 * be the first on list, it is not able to sense, that packet
341 * is cloned and should be copied-on-write, so that it will
342 * change it and subsequent readers will get broken packet.
343 * --ANK (980803)
347 * dev_add_pack - add packet handler
348 * @pt: packet type declaration
350 * Add a protocol handler to the networking stack. The passed &packet_type
351 * is linked into kernel lists and may not be freed until it has been
352 * removed from the kernel lists.
354 * This call does not sleep therefore it can not
355 * guarantee all CPU's that are in middle of receiving packets
356 * will see the new packet type (until the next received packet).
359 void dev_add_pack(struct packet_type *pt)
361 int hash;
363 spin_lock_bh(&ptype_lock);
364 if (pt->type == htons(ETH_P_ALL))
365 list_add_rcu(&pt->list, &ptype_all);
366 else {
367 hash = ntohs(pt->type) & 15;
368 list_add_rcu(&pt->list, &ptype_base[hash]);
370 spin_unlock_bh(&ptype_lock);
374 * __dev_remove_pack - remove packet handler
375 * @pt: packet type declaration
377 * Remove a protocol handler that was previously added to the kernel
378 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
379 * from the kernel lists and can be freed or reused once this function
380 * returns.
382 * The packet type might still be in use by receivers
383 * and must not be freed until after all the CPU's have gone
384 * through a quiescent state.
386 void __dev_remove_pack(struct packet_type *pt)
388 struct list_head *head;
389 struct packet_type *pt1;
391 spin_lock_bh(&ptype_lock);
393 if (pt->type == htons(ETH_P_ALL))
394 head = &ptype_all;
395 else
396 head = &ptype_base[ntohs(pt->type) & 15];
398 list_for_each_entry(pt1, head, list) {
399 if (pt == pt1) {
400 list_del_rcu(&pt->list);
401 goto out;
405 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
406 out:
407 spin_unlock_bh(&ptype_lock);
410 * dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
416 * returns.
418 * This call sleeps to guarantee that no CPU is looking at the packet
419 * type after return.
421 void dev_remove_pack(struct packet_type *pt)
423 __dev_remove_pack(pt);
425 synchronize_net();
428 /******************************************************************************
430 Device Boot-time Settings Routines
432 *******************************************************************************/
434 /* Boot time configuration table */
435 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
438 * netdev_boot_setup_add - add new setup entry
439 * @name: name of the device
440 * @map: configured settings for the device
442 * Adds new setup entry to the dev_boot_setup list. The function
443 * returns 0 on error and 1 on success. This is a generic routine to
444 * all netdevices.
446 static int netdev_boot_setup_add(char *name, struct ifmap *map)
448 struct netdev_boot_setup *s;
449 int i;
451 s = dev_boot_setup;
452 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
453 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
454 memset(s[i].name, 0, sizeof(s[i].name));
455 strcpy(s[i].name, name);
456 memcpy(&s[i].map, map, sizeof(s[i].map));
457 break;
461 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
465 * netdev_boot_setup_check - check boot time settings
466 * @dev: the netdevice
468 * Check boot time settings for the device.
469 * The found settings are set for the device to be used
470 * later in the device probing.
471 * Returns 0 if no settings found, 1 if they are.
473 int netdev_boot_setup_check(struct net_device *dev)
475 struct netdev_boot_setup *s = dev_boot_setup;
476 int i;
478 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
479 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
480 !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
481 dev->irq = s[i].map.irq;
482 dev->base_addr = s[i].map.base_addr;
483 dev->mem_start = s[i].map.mem_start;
484 dev->mem_end = s[i].map.mem_end;
485 return 1;
488 return 0;
493 * netdev_boot_base - get address from boot time settings
494 * @prefix: prefix for network device
495 * @unit: id for network device
497 * Check boot time settings for the base address of device.
498 * The found settings are set for the device to be used
499 * later in the device probing.
500 * Returns 0 if no settings found.
502 unsigned long netdev_boot_base(const char *prefix, int unit)
504 const struct netdev_boot_setup *s = dev_boot_setup;
505 char name[IFNAMSIZ];
506 int i;
508 sprintf(name, "%s%d", prefix, unit);
511 * If device already registered then return base of 1
512 * to indicate not to probe for this interface
514 if (__dev_get_by_name(&init_net, name))
515 return 1;
517 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
518 if (!strcmp(name, s[i].name))
519 return s[i].map.base_addr;
520 return 0;
524 * Saves at boot time configured settings for any netdevice.
526 int __init netdev_boot_setup(char *str)
528 int ints[5];
529 struct ifmap map;
531 str = get_options(str, ARRAY_SIZE(ints), ints);
532 if (!str || !*str)
533 return 0;
535 /* Save settings */
536 memset(&map, 0, sizeof(map));
537 if (ints[0] > 0)
538 map.irq = ints[1];
539 if (ints[0] > 1)
540 map.base_addr = ints[2];
541 if (ints[0] > 2)
542 map.mem_start = ints[3];
543 if (ints[0] > 3)
544 map.mem_end = ints[4];
546 /* Add new entry to the list */
547 return netdev_boot_setup_add(str, &map);
550 __setup("netdev=", netdev_boot_setup);
552 /*******************************************************************************
554 Device Interface Subroutines
556 *******************************************************************************/
559 * __dev_get_by_name - find a device by its name
560 * @net: the applicable net namespace
561 * @name: name to find
563 * Find an interface by name. Must be called under RTNL semaphore
564 * or @dev_base_lock. If the name is found a pointer to the device
565 * is returned. If the name is not found then %NULL is returned. The
566 * reference counters are not incremented so the caller must be
567 * careful with locks.
570 struct net_device *__dev_get_by_name(struct net *net, const char *name)
572 struct hlist_node *p;
574 hlist_for_each(p, dev_name_hash(net, name)) {
575 struct net_device *dev
576 = hlist_entry(p, struct net_device, name_hlist);
577 if (!strncmp(dev->name, name, IFNAMSIZ))
578 return dev;
580 return NULL;
584 * dev_get_by_name - find a device by its name
585 * @net: the applicable net namespace
586 * @name: name to find
588 * Find an interface by name. This can be called from any
589 * context and does its own locking. The returned handle has
590 * the usage count incremented and the caller must use dev_put() to
591 * release it when it is no longer needed. %NULL is returned if no
592 * matching device is found.
595 struct net_device *dev_get_by_name(struct net *net, const char *name)
597 struct net_device *dev;
599 read_lock(&dev_base_lock);
600 dev = __dev_get_by_name(net, name);
601 if (dev)
602 dev_hold(dev);
603 read_unlock(&dev_base_lock);
604 return dev;
608 * __dev_get_by_index - find a device by its ifindex
609 * @net: the applicable net namespace
610 * @ifindex: index of device
612 * Search for an interface by index. Returns %NULL if the device
613 * is not found or a pointer to the device. The device has not
614 * had its reference counter increased so the caller must be careful
615 * about locking. The caller must hold either the RTNL semaphore
616 * or @dev_base_lock.
619 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
621 struct hlist_node *p;
623 hlist_for_each(p, dev_index_hash(net, ifindex)) {
624 struct net_device *dev
625 = hlist_entry(p, struct net_device, index_hlist);
626 if (dev->ifindex == ifindex)
627 return dev;
629 return NULL;
634 * dev_get_by_index - find a device by its ifindex
635 * @net: the applicable net namespace
636 * @ifindex: index of device
638 * Search for an interface by index. Returns NULL if the device
639 * is not found or a pointer to the device. The device returned has
640 * had a reference added and the pointer is safe until the user calls
641 * dev_put to indicate they have finished with it.
644 struct net_device *dev_get_by_index(struct net *net, int ifindex)
646 struct net_device *dev;
648 read_lock(&dev_base_lock);
649 dev = __dev_get_by_index(net, ifindex);
650 if (dev)
651 dev_hold(dev);
652 read_unlock(&dev_base_lock);
653 return dev;
657 * dev_getbyhwaddr - find a device by its hardware address
658 * @net: the applicable net namespace
659 * @type: media type of device
660 * @ha: hardware address
662 * Search for an interface by MAC address. Returns NULL if the device
663 * is not found or a pointer to the device. The caller must hold the
664 * rtnl semaphore. The returned device has not had its ref count increased
665 * and the caller must therefore be careful about locking
667 * BUGS:
668 * If the API was consistent this would be __dev_get_by_hwaddr
671 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
673 struct net_device *dev;
675 ASSERT_RTNL();
677 for_each_netdev(&init_net, dev)
678 if (dev->type == type &&
679 !memcmp(dev->dev_addr, ha, dev->addr_len))
680 return dev;
682 return NULL;
685 EXPORT_SYMBOL(dev_getbyhwaddr);
687 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
689 struct net_device *dev;
691 ASSERT_RTNL();
692 for_each_netdev(net, dev)
693 if (dev->type == type)
694 return dev;
696 return NULL;
699 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
701 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
703 struct net_device *dev;
705 rtnl_lock();
706 dev = __dev_getfirstbyhwtype(net, type);
707 if (dev)
708 dev_hold(dev);
709 rtnl_unlock();
710 return dev;
713 EXPORT_SYMBOL(dev_getfirstbyhwtype);
716 * dev_get_by_flags - find any device with given flags
717 * @net: the applicable net namespace
718 * @if_flags: IFF_* values
719 * @mask: bitmask of bits in if_flags to check
721 * Search for any interface with the given flags. Returns NULL if a device
722 * is not found or a pointer to the device. The device returned has
723 * had a reference added and the pointer is safe until the user calls
724 * dev_put to indicate they have finished with it.
727 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
729 struct net_device *dev, *ret;
731 ret = NULL;
732 read_lock(&dev_base_lock);
733 for_each_netdev(net, dev) {
734 if (((dev->flags ^ if_flags) & mask) == 0) {
735 dev_hold(dev);
736 ret = dev;
737 break;
740 read_unlock(&dev_base_lock);
741 return ret;
745 * dev_valid_name - check if name is okay for network device
746 * @name: name string
748 * Network device names need to be valid file names to
749 * to allow sysfs to work. We also disallow any kind of
750 * whitespace.
752 int dev_valid_name(const char *name)
754 if (*name == '\0')
755 return 0;
756 if (strlen(name) >= IFNAMSIZ)
757 return 0;
758 if (!strcmp(name, ".") || !strcmp(name, ".."))
759 return 0;
761 while (*name) {
762 if (*name == '/' || isspace(*name))
763 return 0;
764 name++;
766 return 1;
770 * __dev_alloc_name - allocate a name for a device
771 * @net: network namespace to allocate the device name in
772 * @name: name format string
773 * @buf: scratch buffer and result name string
775 * Passed a format string - eg "lt%d" it will try and find a suitable
776 * id. It scans list of devices to build up a free map, then chooses
777 * the first empty slot. The caller must hold the dev_base or rtnl lock
778 * while allocating the name and adding the device in order to avoid
779 * duplicates.
780 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
781 * Returns the number of the unit assigned or a negative errno code.
784 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
786 int i = 0;
787 const char *p;
788 const int max_netdevices = 8*PAGE_SIZE;
789 unsigned long *inuse;
790 struct net_device *d;
792 p = strnchr(name, IFNAMSIZ-1, '%');
793 if (p) {
795 * Verify the string as this thing may have come from
796 * the user. There must be either one "%d" and no other "%"
797 * characters.
799 if (p[1] != 'd' || strchr(p + 2, '%'))
800 return -EINVAL;
802 /* Use one page as a bit array of possible slots */
803 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
804 if (!inuse)
805 return -ENOMEM;
807 for_each_netdev(net, d) {
808 if (!sscanf(d->name, name, &i))
809 continue;
810 if (i < 0 || i >= max_netdevices)
811 continue;
813 /* avoid cases where sscanf is not exact inverse of printf */
814 snprintf(buf, IFNAMSIZ, name, i);
815 if (!strncmp(buf, d->name, IFNAMSIZ))
816 set_bit(i, inuse);
819 i = find_first_zero_bit(inuse, max_netdevices);
820 free_page((unsigned long) inuse);
823 snprintf(buf, IFNAMSIZ, name, i);
824 if (!__dev_get_by_name(net, buf))
825 return i;
827 /* It is possible to run out of possible slots
828 * when the name is long and there isn't enough space left
829 * for the digits, or if all bits are used.
831 return -ENFILE;
835 * dev_alloc_name - allocate a name for a device
836 * @dev: device
837 * @name: name format string
839 * Passed a format string - eg "lt%d" it will try and find a suitable
840 * id. It scans list of devices to build up a free map, then chooses
841 * the first empty slot. The caller must hold the dev_base or rtnl lock
842 * while allocating the name and adding the device in order to avoid
843 * duplicates.
844 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
845 * Returns the number of the unit assigned or a negative errno code.
848 int dev_alloc_name(struct net_device *dev, const char *name)
850 char buf[IFNAMSIZ];
851 struct net *net;
852 int ret;
854 BUG_ON(!dev->nd_net);
855 net = dev->nd_net;
856 ret = __dev_alloc_name(net, name, buf);
857 if (ret >= 0)
858 strlcpy(dev->name, buf, IFNAMSIZ);
859 return ret;
864 * dev_change_name - change name of a device
865 * @dev: device
866 * @newname: name (or format string) must be at least IFNAMSIZ
868 * Change name of a device, can pass format strings "eth%d".
869 * for wildcarding.
871 int dev_change_name(struct net_device *dev, char *newname)
873 char oldname[IFNAMSIZ];
874 int err = 0;
875 int ret;
876 struct net *net;
878 ASSERT_RTNL();
879 BUG_ON(!dev->nd_net);
881 net = dev->nd_net;
882 if (dev->flags & IFF_UP)
883 return -EBUSY;
885 if (!dev_valid_name(newname))
886 return -EINVAL;
888 memcpy(oldname, dev->name, IFNAMSIZ);
890 if (strchr(newname, '%')) {
891 err = dev_alloc_name(dev, newname);
892 if (err < 0)
893 return err;
894 strcpy(newname, dev->name);
896 else if (__dev_get_by_name(net, newname))
897 return -EEXIST;
898 else
899 strlcpy(dev->name, newname, IFNAMSIZ);
901 rollback:
902 device_rename(&dev->dev, dev->name);
904 write_lock_bh(&dev_base_lock);
905 hlist_del(&dev->name_hlist);
906 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
907 write_unlock_bh(&dev_base_lock);
909 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
910 ret = notifier_to_errno(ret);
912 if (ret) {
913 if (err) {
914 printk(KERN_ERR
915 "%s: name change rollback failed: %d.\n",
916 dev->name, ret);
917 } else {
918 err = ret;
919 memcpy(dev->name, oldname, IFNAMSIZ);
920 goto rollback;
924 return err;
928 * netdev_features_change - device changes features
929 * @dev: device to cause notification
931 * Called to indicate a device has changed features.
933 void netdev_features_change(struct net_device *dev)
935 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
937 EXPORT_SYMBOL(netdev_features_change);
940 * netdev_state_change - device changes state
941 * @dev: device to cause notification
943 * Called to indicate a device has changed state. This function calls
944 * the notifier chains for netdev_chain and sends a NEWLINK message
945 * to the routing socket.
947 void netdev_state_change(struct net_device *dev)
949 if (dev->flags & IFF_UP) {
950 call_netdevice_notifiers(NETDEV_CHANGE, dev);
951 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
956 * dev_load - load a network module
957 * @net: the applicable net namespace
958 * @name: name of interface
960 * If a network interface is not present and the process has suitable
961 * privileges this function loads the module. If module loading is not
962 * available in this kernel then it becomes a nop.
965 void dev_load(struct net *net, const char *name)
967 struct net_device *dev;
969 read_lock(&dev_base_lock);
970 dev = __dev_get_by_name(net, name);
971 read_unlock(&dev_base_lock);
973 if (!dev && capable(CAP_SYS_MODULE))
974 request_module("%s", name);
978 * dev_open - prepare an interface for use.
979 * @dev: device to open
981 * Takes a device from down to up state. The device's private open
982 * function is invoked and then the multicast lists are loaded. Finally
983 * the device is moved into the up state and a %NETDEV_UP message is
984 * sent to the netdev notifier chain.
986 * Calling this function on an active interface is a nop. On a failure
987 * a negative errno code is returned.
989 int dev_open(struct net_device *dev)
991 int ret = 0;
994 * Is it already up?
997 if (dev->flags & IFF_UP)
998 return 0;
1001 * Is it even present?
1003 if (!netif_device_present(dev))
1004 return -ENODEV;
1007 * Call device private open method
1009 set_bit(__LINK_STATE_START, &dev->state);
1010 if (dev->open) {
1011 ret = dev->open(dev);
1012 if (ret)
1013 clear_bit(__LINK_STATE_START, &dev->state);
1017 * If it went open OK then:
1020 if (!ret) {
1022 * Set the flags.
1024 dev->flags |= IFF_UP;
1027 * Initialize multicasting status
1029 dev_set_rx_mode(dev);
1032 * Wakeup transmit queue engine
1034 dev_activate(dev);
1037 * ... and announce new interface.
1039 call_netdevice_notifiers(NETDEV_UP, dev);
1041 return ret;
1045 * dev_close - shutdown an interface.
1046 * @dev: device to shutdown
1048 * This function moves an active device into down state. A
1049 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1050 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1051 * chain.
1053 int dev_close(struct net_device *dev)
1055 might_sleep();
1057 if (!(dev->flags & IFF_UP))
1058 return 0;
1061 * Tell people we are going down, so that they can
1062 * prepare to death, when device is still operating.
1064 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1066 dev_deactivate(dev);
1068 clear_bit(__LINK_STATE_START, &dev->state);
1070 /* Synchronize to scheduled poll. We cannot touch poll list,
1071 * it can be even on different cpu. So just clear netif_running().
1073 * dev->stop() will invoke napi_disable() on all of it's
1074 * napi_struct instances on this device.
1076 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1079 * Call the device specific close. This cannot fail.
1080 * Only if device is UP
1082 * We allow it to be called even after a DETACH hot-plug
1083 * event.
1085 if (dev->stop)
1086 dev->stop(dev);
1089 * Device is now down.
1092 dev->flags &= ~IFF_UP;
1095 * Tell people we are down
1097 call_netdevice_notifiers(NETDEV_DOWN, dev);
1099 return 0;
1103 static int dev_boot_phase = 1;
1106 * Device change register/unregister. These are not inline or static
1107 * as we export them to the world.
1111 * register_netdevice_notifier - register a network notifier block
1112 * @nb: notifier
1114 * Register a notifier to be called when network device events occur.
1115 * The notifier passed is linked into the kernel structures and must
1116 * not be reused until it has been unregistered. A negative errno code
1117 * is returned on a failure.
1119 * When registered all registration and up events are replayed
1120 * to the new notifier to allow device to have a race free
1121 * view of the network device list.
1124 int register_netdevice_notifier(struct notifier_block *nb)
1126 struct net_device *dev;
1127 struct net_device *last;
1128 struct net *net;
1129 int err;
1131 rtnl_lock();
1132 err = raw_notifier_chain_register(&netdev_chain, nb);
1133 if (err)
1134 goto unlock;
1135 if (dev_boot_phase)
1136 goto unlock;
1137 for_each_net(net) {
1138 for_each_netdev(net, dev) {
1139 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1140 err = notifier_to_errno(err);
1141 if (err)
1142 goto rollback;
1144 if (!(dev->flags & IFF_UP))
1145 continue;
1147 nb->notifier_call(nb, NETDEV_UP, dev);
1151 unlock:
1152 rtnl_unlock();
1153 return err;
1155 rollback:
1156 last = dev;
1157 for_each_net(net) {
1158 for_each_netdev(net, dev) {
1159 if (dev == last)
1160 break;
1162 if (dev->flags & IFF_UP) {
1163 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1164 nb->notifier_call(nb, NETDEV_DOWN, dev);
1166 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1169 goto unlock;
1173 * unregister_netdevice_notifier - unregister a network notifier block
1174 * @nb: notifier
1176 * Unregister a notifier previously registered by
1177 * register_netdevice_notifier(). The notifier is unlinked into the
1178 * kernel structures and may then be reused. A negative errno code
1179 * is returned on a failure.
1182 int unregister_netdevice_notifier(struct notifier_block *nb)
1184 int err;
1186 rtnl_lock();
1187 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1188 rtnl_unlock();
1189 return err;
1193 * call_netdevice_notifiers - call all network notifier blocks
1194 * @val: value passed unmodified to notifier function
1195 * @dev: net_device pointer passed unmodified to notifier function
1197 * Call all network notifier blocks. Parameters and return value
1198 * are as for raw_notifier_call_chain().
1201 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1203 return raw_notifier_call_chain(&netdev_chain, val, dev);
1206 /* When > 0 there are consumers of rx skb time stamps */
1207 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1209 void net_enable_timestamp(void)
1211 atomic_inc(&netstamp_needed);
1214 void net_disable_timestamp(void)
1216 atomic_dec(&netstamp_needed);
1219 static inline void net_timestamp(struct sk_buff *skb)
1221 if (atomic_read(&netstamp_needed))
1222 __net_timestamp(skb);
1223 else
1224 skb->tstamp.tv64 = 0;
1228 * Support routine. Sends outgoing frames to any network
1229 * taps currently in use.
1232 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1234 struct packet_type *ptype;
1236 net_timestamp(skb);
1238 rcu_read_lock();
1239 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1240 /* Never send packets back to the socket
1241 * they originated from - MvS (miquels@drinkel.ow.org)
1243 if ((ptype->dev == dev || !ptype->dev) &&
1244 (ptype->af_packet_priv == NULL ||
1245 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1246 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1247 if (!skb2)
1248 break;
1250 /* skb->nh should be correctly
1251 set by sender, so that the second statement is
1252 just protection against buggy protocols.
1254 skb_reset_mac_header(skb2);
1256 if (skb_network_header(skb2) < skb2->data ||
1257 skb2->network_header > skb2->tail) {
1258 if (net_ratelimit())
1259 printk(KERN_CRIT "protocol %04x is "
1260 "buggy, dev %s\n",
1261 skb2->protocol, dev->name);
1262 skb_reset_network_header(skb2);
1265 skb2->transport_header = skb2->network_header;
1266 skb2->pkt_type = PACKET_OUTGOING;
1267 ptype->func(skb2, skb->dev, ptype, skb->dev);
1270 rcu_read_unlock();
1274 void __netif_schedule(struct net_device *dev)
1276 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1277 unsigned long flags;
1278 struct softnet_data *sd;
1280 local_irq_save(flags);
1281 sd = &__get_cpu_var(softnet_data);
1282 dev->next_sched = sd->output_queue;
1283 sd->output_queue = dev;
1284 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1285 local_irq_restore(flags);
1288 EXPORT_SYMBOL(__netif_schedule);
1290 void dev_kfree_skb_irq(struct sk_buff *skb)
1292 if (atomic_dec_and_test(&skb->users)) {
1293 struct softnet_data *sd;
1294 unsigned long flags;
1296 local_irq_save(flags);
1297 sd = &__get_cpu_var(softnet_data);
1298 skb->next = sd->completion_queue;
1299 sd->completion_queue = skb;
1300 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1301 local_irq_restore(flags);
1304 EXPORT_SYMBOL(dev_kfree_skb_irq);
1306 void dev_kfree_skb_any(struct sk_buff *skb)
1308 if (in_irq() || irqs_disabled())
1309 dev_kfree_skb_irq(skb);
1310 else
1311 dev_kfree_skb(skb);
1313 EXPORT_SYMBOL(dev_kfree_skb_any);
1317 * netif_device_detach - mark device as removed
1318 * @dev: network device
1320 * Mark device as removed from system and therefore no longer available.
1322 void netif_device_detach(struct net_device *dev)
1324 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1325 netif_running(dev)) {
1326 netif_stop_queue(dev);
1329 EXPORT_SYMBOL(netif_device_detach);
1332 * netif_device_attach - mark device as attached
1333 * @dev: network device
1335 * Mark device as attached from system and restart if needed.
1337 void netif_device_attach(struct net_device *dev)
1339 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1340 netif_running(dev)) {
1341 netif_wake_queue(dev);
1342 __netdev_watchdog_up(dev);
1345 EXPORT_SYMBOL(netif_device_attach);
1349 * Invalidate hardware checksum when packet is to be mangled, and
1350 * complete checksum manually on outgoing path.
1352 int skb_checksum_help(struct sk_buff *skb)
1354 __wsum csum;
1355 int ret = 0, offset;
1357 if (skb->ip_summed == CHECKSUM_COMPLETE)
1358 goto out_set_summed;
1360 if (unlikely(skb_shinfo(skb)->gso_size)) {
1361 /* Let GSO fix up the checksum. */
1362 goto out_set_summed;
1365 offset = skb->csum_start - skb_headroom(skb);
1366 BUG_ON(offset >= skb_headlen(skb));
1367 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1369 offset += skb->csum_offset;
1370 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1372 if (skb_cloned(skb) &&
1373 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1374 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1375 if (ret)
1376 goto out;
1379 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1380 out_set_summed:
1381 skb->ip_summed = CHECKSUM_NONE;
1382 out:
1383 return ret;
1387 * skb_gso_segment - Perform segmentation on skb.
1388 * @skb: buffer to segment
1389 * @features: features for the output path (see dev->features)
1391 * This function segments the given skb and returns a list of segments.
1393 * It may return NULL if the skb requires no segmentation. This is
1394 * only possible when GSO is used for verifying header integrity.
1396 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1398 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1399 struct packet_type *ptype;
1400 __be16 type = skb->protocol;
1401 int err;
1403 BUG_ON(skb_shinfo(skb)->frag_list);
1405 skb_reset_mac_header(skb);
1406 skb->mac_len = skb->network_header - skb->mac_header;
1407 __skb_pull(skb, skb->mac_len);
1409 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1410 if (skb_header_cloned(skb) &&
1411 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1412 return ERR_PTR(err);
1415 rcu_read_lock();
1416 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) {
1417 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1418 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1419 err = ptype->gso_send_check(skb);
1420 segs = ERR_PTR(err);
1421 if (err || skb_gso_ok(skb, features))
1422 break;
1423 __skb_push(skb, (skb->data -
1424 skb_network_header(skb)));
1426 segs = ptype->gso_segment(skb, features);
1427 break;
1430 rcu_read_unlock();
1432 __skb_push(skb, skb->data - skb_mac_header(skb));
1434 return segs;
1437 EXPORT_SYMBOL(skb_gso_segment);
1439 /* Take action when hardware reception checksum errors are detected. */
1440 #ifdef CONFIG_BUG
1441 void netdev_rx_csum_fault(struct net_device *dev)
1443 if (net_ratelimit()) {
1444 printk(KERN_ERR "%s: hw csum failure.\n",
1445 dev ? dev->name : "<unknown>");
1446 dump_stack();
1449 EXPORT_SYMBOL(netdev_rx_csum_fault);
1450 #endif
1452 /* Actually, we should eliminate this check as soon as we know, that:
1453 * 1. IOMMU is present and allows to map all the memory.
1454 * 2. No high memory really exists on this machine.
1457 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1459 #ifdef CONFIG_HIGHMEM
1460 int i;
1462 if (dev->features & NETIF_F_HIGHDMA)
1463 return 0;
1465 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1466 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1467 return 1;
1469 #endif
1470 return 0;
1473 struct dev_gso_cb {
1474 void (*destructor)(struct sk_buff *skb);
1477 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1479 static void dev_gso_skb_destructor(struct sk_buff *skb)
1481 struct dev_gso_cb *cb;
1483 do {
1484 struct sk_buff *nskb = skb->next;
1486 skb->next = nskb->next;
1487 nskb->next = NULL;
1488 kfree_skb(nskb);
1489 } while (skb->next);
1491 cb = DEV_GSO_CB(skb);
1492 if (cb->destructor)
1493 cb->destructor(skb);
1497 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1498 * @skb: buffer to segment
1500 * This function segments the given skb and stores the list of segments
1501 * in skb->next.
1503 static int dev_gso_segment(struct sk_buff *skb)
1505 struct net_device *dev = skb->dev;
1506 struct sk_buff *segs;
1507 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1508 NETIF_F_SG : 0);
1510 segs = skb_gso_segment(skb, features);
1512 /* Verifying header integrity only. */
1513 if (!segs)
1514 return 0;
1516 if (unlikely(IS_ERR(segs)))
1517 return PTR_ERR(segs);
1519 skb->next = segs;
1520 DEV_GSO_CB(skb)->destructor = skb->destructor;
1521 skb->destructor = dev_gso_skb_destructor;
1523 return 0;
1526 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1528 if (likely(!skb->next)) {
1529 if (!list_empty(&ptype_all))
1530 dev_queue_xmit_nit(skb, dev);
1532 if (netif_needs_gso(dev, skb)) {
1533 if (unlikely(dev_gso_segment(skb)))
1534 goto out_kfree_skb;
1535 if (skb->next)
1536 goto gso;
1539 return dev->hard_start_xmit(skb, dev);
1542 gso:
1543 do {
1544 struct sk_buff *nskb = skb->next;
1545 int rc;
1547 skb->next = nskb->next;
1548 nskb->next = NULL;
1549 rc = dev->hard_start_xmit(nskb, dev);
1550 if (unlikely(rc)) {
1551 nskb->next = skb->next;
1552 skb->next = nskb;
1553 return rc;
1555 if (unlikely((netif_queue_stopped(dev) ||
1556 netif_subqueue_stopped(dev, skb->queue_mapping)) &&
1557 skb->next))
1558 return NETDEV_TX_BUSY;
1559 } while (skb->next);
1561 skb->destructor = DEV_GSO_CB(skb)->destructor;
1563 out_kfree_skb:
1564 kfree_skb(skb);
1565 return 0;
1569 * dev_queue_xmit - transmit a buffer
1570 * @skb: buffer to transmit
1572 * Queue a buffer for transmission to a network device. The caller must
1573 * have set the device and priority and built the buffer before calling
1574 * this function. The function can be called from an interrupt.
1576 * A negative errno code is returned on a failure. A success does not
1577 * guarantee the frame will be transmitted as it may be dropped due
1578 * to congestion or traffic shaping.
1580 * -----------------------------------------------------------------------------------
1581 * I notice this method can also return errors from the queue disciplines,
1582 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1583 * be positive.
1585 * Regardless of the return value, the skb is consumed, so it is currently
1586 * difficult to retry a send to this method. (You can bump the ref count
1587 * before sending to hold a reference for retry if you are careful.)
1589 * When calling this method, interrupts MUST be enabled. This is because
1590 * the BH enable code must have IRQs enabled so that it will not deadlock.
1591 * --BLG
1594 int dev_queue_xmit(struct sk_buff *skb)
1596 struct net_device *dev = skb->dev;
1597 struct Qdisc *q;
1598 int rc = -ENOMEM;
1600 /* GSO will handle the following emulations directly. */
1601 if (netif_needs_gso(dev, skb))
1602 goto gso;
1604 if (skb_shinfo(skb)->frag_list &&
1605 !(dev->features & NETIF_F_FRAGLIST) &&
1606 __skb_linearize(skb))
1607 goto out_kfree_skb;
1609 /* Fragmented skb is linearized if device does not support SG,
1610 * or if at least one of fragments is in highmem and device
1611 * does not support DMA from it.
1613 if (skb_shinfo(skb)->nr_frags &&
1614 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1615 __skb_linearize(skb))
1616 goto out_kfree_skb;
1618 /* If packet is not checksummed and device does not support
1619 * checksumming for this protocol, complete checksumming here.
1621 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1622 skb_set_transport_header(skb, skb->csum_start -
1623 skb_headroom(skb));
1625 if (!(dev->features & NETIF_F_GEN_CSUM) &&
1626 !((dev->features & NETIF_F_IP_CSUM) &&
1627 skb->protocol == htons(ETH_P_IP)) &&
1628 !((dev->features & NETIF_F_IPV6_CSUM) &&
1629 skb->protocol == htons(ETH_P_IPV6)))
1630 if (skb_checksum_help(skb))
1631 goto out_kfree_skb;
1634 gso:
1635 spin_lock_prefetch(&dev->queue_lock);
1637 /* Disable soft irqs for various locks below. Also
1638 * stops preemption for RCU.
1640 rcu_read_lock_bh();
1642 /* Updates of qdisc are serialized by queue_lock.
1643 * The struct Qdisc which is pointed to by qdisc is now a
1644 * rcu structure - it may be accessed without acquiring
1645 * a lock (but the structure may be stale.) The freeing of the
1646 * qdisc will be deferred until it's known that there are no
1647 * more references to it.
1649 * If the qdisc has an enqueue function, we still need to
1650 * hold the queue_lock before calling it, since queue_lock
1651 * also serializes access to the device queue.
1654 q = rcu_dereference(dev->qdisc);
1655 #ifdef CONFIG_NET_CLS_ACT
1656 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1657 #endif
1658 if (q->enqueue) {
1659 /* Grab device queue */
1660 spin_lock(&dev->queue_lock);
1661 q = dev->qdisc;
1662 if (q->enqueue) {
1663 /* reset queue_mapping to zero */
1664 skb->queue_mapping = 0;
1665 rc = q->enqueue(skb, q);
1666 qdisc_run(dev);
1667 spin_unlock(&dev->queue_lock);
1669 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1670 goto out;
1672 spin_unlock(&dev->queue_lock);
1675 /* The device has no queue. Common case for software devices:
1676 loopback, all the sorts of tunnels...
1678 Really, it is unlikely that netif_tx_lock protection is necessary
1679 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1680 counters.)
1681 However, it is possible, that they rely on protection
1682 made by us here.
1684 Check this and shot the lock. It is not prone from deadlocks.
1685 Either shot noqueue qdisc, it is even simpler 8)
1687 if (dev->flags & IFF_UP) {
1688 int cpu = smp_processor_id(); /* ok because BHs are off */
1690 if (dev->xmit_lock_owner != cpu) {
1692 HARD_TX_LOCK(dev, cpu);
1694 if (!netif_queue_stopped(dev) &&
1695 !netif_subqueue_stopped(dev, skb->queue_mapping)) {
1696 rc = 0;
1697 if (!dev_hard_start_xmit(skb, dev)) {
1698 HARD_TX_UNLOCK(dev);
1699 goto out;
1702 HARD_TX_UNLOCK(dev);
1703 if (net_ratelimit())
1704 printk(KERN_CRIT "Virtual device %s asks to "
1705 "queue packet!\n", dev->name);
1706 } else {
1707 /* Recursion is detected! It is possible,
1708 * unfortunately */
1709 if (net_ratelimit())
1710 printk(KERN_CRIT "Dead loop on virtual device "
1711 "%s, fix it urgently!\n", dev->name);
1715 rc = -ENETDOWN;
1716 rcu_read_unlock_bh();
1718 out_kfree_skb:
1719 kfree_skb(skb);
1720 return rc;
1721 out:
1722 rcu_read_unlock_bh();
1723 return rc;
1727 /*=======================================================================
1728 Receiver routines
1729 =======================================================================*/
1731 int netdev_max_backlog __read_mostly = 1000;
1732 int netdev_budget __read_mostly = 300;
1733 int weight_p __read_mostly = 64; /* old backlog weight */
1735 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1739 * netif_rx - post buffer to the network code
1740 * @skb: buffer to post
1742 * This function receives a packet from a device driver and queues it for
1743 * the upper (protocol) levels to process. It always succeeds. The buffer
1744 * may be dropped during processing for congestion control or by the
1745 * protocol layers.
1747 * return values:
1748 * NET_RX_SUCCESS (no congestion)
1749 * NET_RX_CN_LOW (low congestion)
1750 * NET_RX_CN_MOD (moderate congestion)
1751 * NET_RX_CN_HIGH (high congestion)
1752 * NET_RX_DROP (packet was dropped)
1756 int netif_rx(struct sk_buff *skb)
1758 struct softnet_data *queue;
1759 unsigned long flags;
1761 /* if netpoll wants it, pretend we never saw it */
1762 if (netpoll_rx(skb))
1763 return NET_RX_DROP;
1765 if (!skb->tstamp.tv64)
1766 net_timestamp(skb);
1769 * The code is rearranged so that the path is the most
1770 * short when CPU is congested, but is still operating.
1772 local_irq_save(flags);
1773 queue = &__get_cpu_var(softnet_data);
1775 __get_cpu_var(netdev_rx_stat).total++;
1776 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1777 if (queue->input_pkt_queue.qlen) {
1778 enqueue:
1779 dev_hold(skb->dev);
1780 __skb_queue_tail(&queue->input_pkt_queue, skb);
1781 local_irq_restore(flags);
1782 return NET_RX_SUCCESS;
1785 napi_schedule(&queue->backlog);
1786 goto enqueue;
1789 __get_cpu_var(netdev_rx_stat).dropped++;
1790 local_irq_restore(flags);
1792 kfree_skb(skb);
1793 return NET_RX_DROP;
1796 int netif_rx_ni(struct sk_buff *skb)
1798 int err;
1800 preempt_disable();
1801 err = netif_rx(skb);
1802 if (local_softirq_pending())
1803 do_softirq();
1804 preempt_enable();
1806 return err;
1809 EXPORT_SYMBOL(netif_rx_ni);
1811 static inline struct net_device *skb_bond(struct sk_buff *skb)
1813 struct net_device *dev = skb->dev;
1815 if (dev->master) {
1816 if (skb_bond_should_drop(skb)) {
1817 kfree_skb(skb);
1818 return NULL;
1820 skb->dev = dev->master;
1823 return dev;
1827 static void net_tx_action(struct softirq_action *h)
1829 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1831 if (sd->completion_queue) {
1832 struct sk_buff *clist;
1834 local_irq_disable();
1835 clist = sd->completion_queue;
1836 sd->completion_queue = NULL;
1837 local_irq_enable();
1839 while (clist) {
1840 struct sk_buff *skb = clist;
1841 clist = clist->next;
1843 BUG_TRAP(!atomic_read(&skb->users));
1844 __kfree_skb(skb);
1848 if (sd->output_queue) {
1849 struct net_device *head;
1851 local_irq_disable();
1852 head = sd->output_queue;
1853 sd->output_queue = NULL;
1854 local_irq_enable();
1856 while (head) {
1857 struct net_device *dev = head;
1858 head = head->next_sched;
1860 smp_mb__before_clear_bit();
1861 clear_bit(__LINK_STATE_SCHED, &dev->state);
1863 if (spin_trylock(&dev->queue_lock)) {
1864 qdisc_run(dev);
1865 spin_unlock(&dev->queue_lock);
1866 } else {
1867 netif_schedule(dev);
1873 static inline int deliver_skb(struct sk_buff *skb,
1874 struct packet_type *pt_prev,
1875 struct net_device *orig_dev)
1877 atomic_inc(&skb->users);
1878 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1881 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1882 /* These hooks defined here for ATM */
1883 struct net_bridge;
1884 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1885 unsigned char *addr);
1886 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1889 * If bridge module is loaded call bridging hook.
1890 * returns NULL if packet was consumed.
1892 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1893 struct sk_buff *skb) __read_mostly;
1894 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1895 struct packet_type **pt_prev, int *ret,
1896 struct net_device *orig_dev)
1898 struct net_bridge_port *port;
1900 if (skb->pkt_type == PACKET_LOOPBACK ||
1901 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1902 return skb;
1904 if (*pt_prev) {
1905 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1906 *pt_prev = NULL;
1909 return br_handle_frame_hook(port, skb);
1911 #else
1912 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1913 #endif
1915 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1916 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1917 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1919 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1920 struct packet_type **pt_prev,
1921 int *ret,
1922 struct net_device *orig_dev)
1924 if (skb->dev->macvlan_port == NULL)
1925 return skb;
1927 if (*pt_prev) {
1928 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1929 *pt_prev = NULL;
1931 return macvlan_handle_frame_hook(skb);
1933 #else
1934 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
1935 #endif
1937 #ifdef CONFIG_NET_CLS_ACT
1938 /* TODO: Maybe we should just force sch_ingress to be compiled in
1939 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1940 * a compare and 2 stores extra right now if we dont have it on
1941 * but have CONFIG_NET_CLS_ACT
1942 * NOTE: This doesnt stop any functionality; if you dont have
1943 * the ingress scheduler, you just cant add policies on ingress.
1946 static int ing_filter(struct sk_buff *skb)
1948 struct Qdisc *q;
1949 struct net_device *dev = skb->dev;
1950 int result = TC_ACT_OK;
1951 u32 ttl = G_TC_RTTL(skb->tc_verd);
1953 if (MAX_RED_LOOP < ttl++) {
1954 printk(KERN_WARNING
1955 "Redir loop detected Dropping packet (%d->%d)\n",
1956 skb->iif, dev->ifindex);
1957 return TC_ACT_SHOT;
1960 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
1961 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1963 spin_lock(&dev->ingress_lock);
1964 if ((q = dev->qdisc_ingress) != NULL)
1965 result = q->enqueue(skb, q);
1966 spin_unlock(&dev->ingress_lock);
1968 return result;
1971 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
1972 struct packet_type **pt_prev,
1973 int *ret, struct net_device *orig_dev)
1975 if (!skb->dev->qdisc_ingress)
1976 goto out;
1978 if (*pt_prev) {
1979 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1980 *pt_prev = NULL;
1981 } else {
1982 /* Huh? Why does turning on AF_PACKET affect this? */
1983 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1986 switch (ing_filter(skb)) {
1987 case TC_ACT_SHOT:
1988 case TC_ACT_STOLEN:
1989 kfree_skb(skb);
1990 return NULL;
1993 out:
1994 skb->tc_verd = 0;
1995 return skb;
1997 #endif
1999 int netif_receive_skb(struct sk_buff *skb)
2001 struct packet_type *ptype, *pt_prev;
2002 struct net_device *orig_dev;
2003 int ret = NET_RX_DROP;
2004 __be16 type;
2006 /* if we've gotten here through NAPI, check netpoll */
2007 if (netpoll_receive_skb(skb))
2008 return NET_RX_DROP;
2010 if (!skb->tstamp.tv64)
2011 net_timestamp(skb);
2013 if (!skb->iif)
2014 skb->iif = skb->dev->ifindex;
2016 orig_dev = skb_bond(skb);
2018 if (!orig_dev)
2019 return NET_RX_DROP;
2021 __get_cpu_var(netdev_rx_stat).total++;
2023 skb_reset_network_header(skb);
2024 skb_reset_transport_header(skb);
2025 skb->mac_len = skb->network_header - skb->mac_header;
2027 pt_prev = NULL;
2029 rcu_read_lock();
2031 #ifdef CONFIG_NET_CLS_ACT
2032 if (skb->tc_verd & TC_NCLS) {
2033 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2034 goto ncls;
2036 #endif
2038 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2039 if (!ptype->dev || ptype->dev == skb->dev) {
2040 if (pt_prev)
2041 ret = deliver_skb(skb, pt_prev, orig_dev);
2042 pt_prev = ptype;
2046 #ifdef CONFIG_NET_CLS_ACT
2047 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2048 if (!skb)
2049 goto out;
2050 ncls:
2051 #endif
2053 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2054 if (!skb)
2055 goto out;
2056 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2057 if (!skb)
2058 goto out;
2060 type = skb->protocol;
2061 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) {
2062 if (ptype->type == type &&
2063 (!ptype->dev || ptype->dev == skb->dev)) {
2064 if (pt_prev)
2065 ret = deliver_skb(skb, pt_prev, orig_dev);
2066 pt_prev = ptype;
2070 if (pt_prev) {
2071 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2072 } else {
2073 kfree_skb(skb);
2074 /* Jamal, now you will not able to escape explaining
2075 * me how you were going to use this. :-)
2077 ret = NET_RX_DROP;
2080 out:
2081 rcu_read_unlock();
2082 return ret;
2085 static int process_backlog(struct napi_struct *napi, int quota)
2087 int work = 0;
2088 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2089 unsigned long start_time = jiffies;
2091 napi->weight = weight_p;
2092 do {
2093 struct sk_buff *skb;
2094 struct net_device *dev;
2096 local_irq_disable();
2097 skb = __skb_dequeue(&queue->input_pkt_queue);
2098 if (!skb) {
2099 __napi_complete(napi);
2100 local_irq_enable();
2101 break;
2104 local_irq_enable();
2106 dev = skb->dev;
2108 netif_receive_skb(skb);
2110 dev_put(dev);
2111 } while (++work < quota && jiffies == start_time);
2113 return work;
2117 * __napi_schedule - schedule for receive
2118 * @n: entry to schedule
2120 * The entry's receive function will be scheduled to run
2122 void fastcall __napi_schedule(struct napi_struct *n)
2124 unsigned long flags;
2126 local_irq_save(flags);
2127 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2128 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2129 local_irq_restore(flags);
2131 EXPORT_SYMBOL(__napi_schedule);
2134 static void net_rx_action(struct softirq_action *h)
2136 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2137 unsigned long start_time = jiffies;
2138 int budget = netdev_budget;
2139 void *have;
2141 local_irq_disable();
2143 while (!list_empty(list)) {
2144 struct napi_struct *n;
2145 int work, weight;
2147 /* If softirq window is exhuasted then punt.
2149 * Note that this is a slight policy change from the
2150 * previous NAPI code, which would allow up to 2
2151 * jiffies to pass before breaking out. The test
2152 * used to be "jiffies - start_time > 1".
2154 if (unlikely(budget <= 0 || jiffies != start_time))
2155 goto softnet_break;
2157 local_irq_enable();
2159 /* Even though interrupts have been re-enabled, this
2160 * access is safe because interrupts can only add new
2161 * entries to the tail of this list, and only ->poll()
2162 * calls can remove this head entry from the list.
2164 n = list_entry(list->next, struct napi_struct, poll_list);
2166 have = netpoll_poll_lock(n);
2168 weight = n->weight;
2170 work = n->poll(n, weight);
2172 WARN_ON_ONCE(work > weight);
2174 budget -= work;
2176 local_irq_disable();
2178 /* Drivers must not modify the NAPI state if they
2179 * consume the entire weight. In such cases this code
2180 * still "owns" the NAPI instance and therefore can
2181 * move the instance around on the list at-will.
2183 if (unlikely(work == weight))
2184 list_move_tail(&n->poll_list, list);
2186 netpoll_poll_unlock(have);
2188 out:
2189 local_irq_enable();
2191 #ifdef CONFIG_NET_DMA
2193 * There may not be any more sk_buffs coming right now, so push
2194 * any pending DMA copies to hardware
2196 if (!cpus_empty(net_dma.channel_mask)) {
2197 int chan_idx;
2198 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2199 struct dma_chan *chan = net_dma.channels[chan_idx];
2200 if (chan)
2201 dma_async_memcpy_issue_pending(chan);
2204 #endif
2206 return;
2208 softnet_break:
2209 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2210 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2211 goto out;
2214 static gifconf_func_t * gifconf_list [NPROTO];
2217 * register_gifconf - register a SIOCGIF handler
2218 * @family: Address family
2219 * @gifconf: Function handler
2221 * Register protocol dependent address dumping routines. The handler
2222 * that is passed must not be freed or reused until it has been replaced
2223 * by another handler.
2225 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2227 if (family >= NPROTO)
2228 return -EINVAL;
2229 gifconf_list[family] = gifconf;
2230 return 0;
2235 * Map an interface index to its name (SIOCGIFNAME)
2239 * We need this ioctl for efficient implementation of the
2240 * if_indextoname() function required by the IPv6 API. Without
2241 * it, we would have to search all the interfaces to find a
2242 * match. --pb
2245 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2247 struct net_device *dev;
2248 struct ifreq ifr;
2251 * Fetch the caller's info block.
2254 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2255 return -EFAULT;
2257 read_lock(&dev_base_lock);
2258 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2259 if (!dev) {
2260 read_unlock(&dev_base_lock);
2261 return -ENODEV;
2264 strcpy(ifr.ifr_name, dev->name);
2265 read_unlock(&dev_base_lock);
2267 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2268 return -EFAULT;
2269 return 0;
2273 * Perform a SIOCGIFCONF call. This structure will change
2274 * size eventually, and there is nothing I can do about it.
2275 * Thus we will need a 'compatibility mode'.
2278 static int dev_ifconf(struct net *net, char __user *arg)
2280 struct ifconf ifc;
2281 struct net_device *dev;
2282 char __user *pos;
2283 int len;
2284 int total;
2285 int i;
2288 * Fetch the caller's info block.
2291 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2292 return -EFAULT;
2294 pos = ifc.ifc_buf;
2295 len = ifc.ifc_len;
2298 * Loop over the interfaces, and write an info block for each.
2301 total = 0;
2302 for_each_netdev(net, dev) {
2303 for (i = 0; i < NPROTO; i++) {
2304 if (gifconf_list[i]) {
2305 int done;
2306 if (!pos)
2307 done = gifconf_list[i](dev, NULL, 0);
2308 else
2309 done = gifconf_list[i](dev, pos + total,
2310 len - total);
2311 if (done < 0)
2312 return -EFAULT;
2313 total += done;
2319 * All done. Write the updated control block back to the caller.
2321 ifc.ifc_len = total;
2324 * Both BSD and Solaris return 0 here, so we do too.
2326 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2329 #ifdef CONFIG_PROC_FS
2331 * This is invoked by the /proc filesystem handler to display a device
2332 * in detail.
2334 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2336 struct net *net = seq->private;
2337 loff_t off;
2338 struct net_device *dev;
2340 read_lock(&dev_base_lock);
2341 if (!*pos)
2342 return SEQ_START_TOKEN;
2344 off = 1;
2345 for_each_netdev(net, dev)
2346 if (off++ == *pos)
2347 return dev;
2349 return NULL;
2352 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2354 struct net *net = seq->private;
2355 ++*pos;
2356 return v == SEQ_START_TOKEN ?
2357 first_net_device(net) : next_net_device((struct net_device *)v);
2360 void dev_seq_stop(struct seq_file *seq, void *v)
2362 read_unlock(&dev_base_lock);
2365 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2367 struct net_device_stats *stats = dev->get_stats(dev);
2369 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2370 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2371 dev->name, stats->rx_bytes, stats->rx_packets,
2372 stats->rx_errors,
2373 stats->rx_dropped + stats->rx_missed_errors,
2374 stats->rx_fifo_errors,
2375 stats->rx_length_errors + stats->rx_over_errors +
2376 stats->rx_crc_errors + stats->rx_frame_errors,
2377 stats->rx_compressed, stats->multicast,
2378 stats->tx_bytes, stats->tx_packets,
2379 stats->tx_errors, stats->tx_dropped,
2380 stats->tx_fifo_errors, stats->collisions,
2381 stats->tx_carrier_errors +
2382 stats->tx_aborted_errors +
2383 stats->tx_window_errors +
2384 stats->tx_heartbeat_errors,
2385 stats->tx_compressed);
2389 * Called from the PROCfs module. This now uses the new arbitrary sized
2390 * /proc/net interface to create /proc/net/dev
2392 static int dev_seq_show(struct seq_file *seq, void *v)
2394 if (v == SEQ_START_TOKEN)
2395 seq_puts(seq, "Inter-| Receive "
2396 " | Transmit\n"
2397 " face |bytes packets errs drop fifo frame "
2398 "compressed multicast|bytes packets errs "
2399 "drop fifo colls carrier compressed\n");
2400 else
2401 dev_seq_printf_stats(seq, v);
2402 return 0;
2405 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2407 struct netif_rx_stats *rc = NULL;
2409 while (*pos < NR_CPUS)
2410 if (cpu_online(*pos)) {
2411 rc = &per_cpu(netdev_rx_stat, *pos);
2412 break;
2413 } else
2414 ++*pos;
2415 return rc;
2418 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2420 return softnet_get_online(pos);
2423 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2425 ++*pos;
2426 return softnet_get_online(pos);
2429 static void softnet_seq_stop(struct seq_file *seq, void *v)
2433 static int softnet_seq_show(struct seq_file *seq, void *v)
2435 struct netif_rx_stats *s = v;
2437 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2438 s->total, s->dropped, s->time_squeeze, 0,
2439 0, 0, 0, 0, /* was fastroute */
2440 s->cpu_collision );
2441 return 0;
2444 static const struct seq_operations dev_seq_ops = {
2445 .start = dev_seq_start,
2446 .next = dev_seq_next,
2447 .stop = dev_seq_stop,
2448 .show = dev_seq_show,
2451 static int dev_seq_open(struct inode *inode, struct file *file)
2453 struct seq_file *seq;
2454 int res;
2455 res = seq_open(file, &dev_seq_ops);
2456 if (!res) {
2457 seq = file->private_data;
2458 seq->private = get_proc_net(inode);
2459 if (!seq->private) {
2460 seq_release(inode, file);
2461 res = -ENXIO;
2464 return res;
2467 static int dev_seq_release(struct inode *inode, struct file *file)
2469 struct seq_file *seq = file->private_data;
2470 struct net *net = seq->private;
2471 put_net(net);
2472 return seq_release(inode, file);
2475 static const struct file_operations dev_seq_fops = {
2476 .owner = THIS_MODULE,
2477 .open = dev_seq_open,
2478 .read = seq_read,
2479 .llseek = seq_lseek,
2480 .release = dev_seq_release,
2483 static const struct seq_operations softnet_seq_ops = {
2484 .start = softnet_seq_start,
2485 .next = softnet_seq_next,
2486 .stop = softnet_seq_stop,
2487 .show = softnet_seq_show,
2490 static int softnet_seq_open(struct inode *inode, struct file *file)
2492 return seq_open(file, &softnet_seq_ops);
2495 static const struct file_operations softnet_seq_fops = {
2496 .owner = THIS_MODULE,
2497 .open = softnet_seq_open,
2498 .read = seq_read,
2499 .llseek = seq_lseek,
2500 .release = seq_release,
2503 static void *ptype_get_idx(loff_t pos)
2505 struct packet_type *pt = NULL;
2506 loff_t i = 0;
2507 int t;
2509 list_for_each_entry_rcu(pt, &ptype_all, list) {
2510 if (i == pos)
2511 return pt;
2512 ++i;
2515 for (t = 0; t < 16; t++) {
2516 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2517 if (i == pos)
2518 return pt;
2519 ++i;
2522 return NULL;
2525 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2527 rcu_read_lock();
2528 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2531 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2533 struct packet_type *pt;
2534 struct list_head *nxt;
2535 int hash;
2537 ++*pos;
2538 if (v == SEQ_START_TOKEN)
2539 return ptype_get_idx(0);
2541 pt = v;
2542 nxt = pt->list.next;
2543 if (pt->type == htons(ETH_P_ALL)) {
2544 if (nxt != &ptype_all)
2545 goto found;
2546 hash = 0;
2547 nxt = ptype_base[0].next;
2548 } else
2549 hash = ntohs(pt->type) & 15;
2551 while (nxt == &ptype_base[hash]) {
2552 if (++hash >= 16)
2553 return NULL;
2554 nxt = ptype_base[hash].next;
2556 found:
2557 return list_entry(nxt, struct packet_type, list);
2560 static void ptype_seq_stop(struct seq_file *seq, void *v)
2562 rcu_read_unlock();
2565 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2567 #ifdef CONFIG_KALLSYMS
2568 unsigned long offset = 0, symsize;
2569 const char *symname;
2570 char *modname;
2571 char namebuf[128];
2573 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2574 &modname, namebuf);
2576 if (symname) {
2577 char *delim = ":";
2579 if (!modname)
2580 modname = delim = "";
2581 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2582 symname, offset);
2583 return;
2585 #endif
2587 seq_printf(seq, "[%p]", sym);
2590 static int ptype_seq_show(struct seq_file *seq, void *v)
2592 struct packet_type *pt = v;
2594 if (v == SEQ_START_TOKEN)
2595 seq_puts(seq, "Type Device Function\n");
2596 else {
2597 if (pt->type == htons(ETH_P_ALL))
2598 seq_puts(seq, "ALL ");
2599 else
2600 seq_printf(seq, "%04x", ntohs(pt->type));
2602 seq_printf(seq, " %-8s ",
2603 pt->dev ? pt->dev->name : "");
2604 ptype_seq_decode(seq, pt->func);
2605 seq_putc(seq, '\n');
2608 return 0;
2611 static const struct seq_operations ptype_seq_ops = {
2612 .start = ptype_seq_start,
2613 .next = ptype_seq_next,
2614 .stop = ptype_seq_stop,
2615 .show = ptype_seq_show,
2618 static int ptype_seq_open(struct inode *inode, struct file *file)
2620 return seq_open(file, &ptype_seq_ops);
2623 static const struct file_operations ptype_seq_fops = {
2624 .owner = THIS_MODULE,
2625 .open = ptype_seq_open,
2626 .read = seq_read,
2627 .llseek = seq_lseek,
2628 .release = seq_release,
2632 static int __net_init dev_proc_net_init(struct net *net)
2634 int rc = -ENOMEM;
2636 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2637 goto out;
2638 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2639 goto out_dev;
2640 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2641 goto out_softnet;
2643 if (wext_proc_init(net))
2644 goto out_ptype;
2645 rc = 0;
2646 out:
2647 return rc;
2648 out_ptype:
2649 proc_net_remove(net, "ptype");
2650 out_softnet:
2651 proc_net_remove(net, "softnet_stat");
2652 out_dev:
2653 proc_net_remove(net, "dev");
2654 goto out;
2657 static void __net_exit dev_proc_net_exit(struct net *net)
2659 wext_proc_exit(net);
2661 proc_net_remove(net, "ptype");
2662 proc_net_remove(net, "softnet_stat");
2663 proc_net_remove(net, "dev");
2666 static struct pernet_operations __net_initdata dev_proc_ops = {
2667 .init = dev_proc_net_init,
2668 .exit = dev_proc_net_exit,
2671 static int __init dev_proc_init(void)
2673 return register_pernet_subsys(&dev_proc_ops);
2675 #else
2676 #define dev_proc_init() 0
2677 #endif /* CONFIG_PROC_FS */
2681 * netdev_set_master - set up master/slave pair
2682 * @slave: slave device
2683 * @master: new master device
2685 * Changes the master device of the slave. Pass %NULL to break the
2686 * bonding. The caller must hold the RTNL semaphore. On a failure
2687 * a negative errno code is returned. On success the reference counts
2688 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2689 * function returns zero.
2691 int netdev_set_master(struct net_device *slave, struct net_device *master)
2693 struct net_device *old = slave->master;
2695 ASSERT_RTNL();
2697 if (master) {
2698 if (old)
2699 return -EBUSY;
2700 dev_hold(master);
2703 slave->master = master;
2705 synchronize_net();
2707 if (old)
2708 dev_put(old);
2710 if (master)
2711 slave->flags |= IFF_SLAVE;
2712 else
2713 slave->flags &= ~IFF_SLAVE;
2715 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2716 return 0;
2719 static void __dev_set_promiscuity(struct net_device *dev, int inc)
2721 unsigned short old_flags = dev->flags;
2723 ASSERT_RTNL();
2725 if ((dev->promiscuity += inc) == 0)
2726 dev->flags &= ~IFF_PROMISC;
2727 else
2728 dev->flags |= IFF_PROMISC;
2729 if (dev->flags != old_flags) {
2730 printk(KERN_INFO "device %s %s promiscuous mode\n",
2731 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2732 "left");
2733 audit_log(current->audit_context, GFP_ATOMIC,
2734 AUDIT_ANOM_PROMISCUOUS,
2735 "dev=%s prom=%d old_prom=%d auid=%u",
2736 dev->name, (dev->flags & IFF_PROMISC),
2737 (old_flags & IFF_PROMISC),
2738 audit_get_loginuid(current->audit_context));
2740 if (dev->change_rx_flags)
2741 dev->change_rx_flags(dev, IFF_PROMISC);
2746 * dev_set_promiscuity - update promiscuity count on a device
2747 * @dev: device
2748 * @inc: modifier
2750 * Add or remove promiscuity from a device. While the count in the device
2751 * remains above zero the interface remains promiscuous. Once it hits zero
2752 * the device reverts back to normal filtering operation. A negative inc
2753 * value is used to drop promiscuity on the device.
2755 void dev_set_promiscuity(struct net_device *dev, int inc)
2757 unsigned short old_flags = dev->flags;
2759 __dev_set_promiscuity(dev, inc);
2760 if (dev->flags != old_flags)
2761 dev_set_rx_mode(dev);
2765 * dev_set_allmulti - update allmulti count on a device
2766 * @dev: device
2767 * @inc: modifier
2769 * Add or remove reception of all multicast frames to a device. While the
2770 * count in the device remains above zero the interface remains listening
2771 * to all interfaces. Once it hits zero the device reverts back to normal
2772 * filtering operation. A negative @inc value is used to drop the counter
2773 * when releasing a resource needing all multicasts.
2776 void dev_set_allmulti(struct net_device *dev, int inc)
2778 unsigned short old_flags = dev->flags;
2780 ASSERT_RTNL();
2782 dev->flags |= IFF_ALLMULTI;
2783 if ((dev->allmulti += inc) == 0)
2784 dev->flags &= ~IFF_ALLMULTI;
2785 if (dev->flags ^ old_flags) {
2786 if (dev->change_rx_flags)
2787 dev->change_rx_flags(dev, IFF_ALLMULTI);
2788 dev_set_rx_mode(dev);
2793 * Upload unicast and multicast address lists to device and
2794 * configure RX filtering. When the device doesn't support unicast
2795 * filtering it is put in promiscous mode while unicast addresses
2796 * are present.
2798 void __dev_set_rx_mode(struct net_device *dev)
2800 /* dev_open will call this function so the list will stay sane. */
2801 if (!(dev->flags&IFF_UP))
2802 return;
2804 if (!netif_device_present(dev))
2805 return;
2807 if (dev->set_rx_mode)
2808 dev->set_rx_mode(dev);
2809 else {
2810 /* Unicast addresses changes may only happen under the rtnl,
2811 * therefore calling __dev_set_promiscuity here is safe.
2813 if (dev->uc_count > 0 && !dev->uc_promisc) {
2814 __dev_set_promiscuity(dev, 1);
2815 dev->uc_promisc = 1;
2816 } else if (dev->uc_count == 0 && dev->uc_promisc) {
2817 __dev_set_promiscuity(dev, -1);
2818 dev->uc_promisc = 0;
2821 if (dev->set_multicast_list)
2822 dev->set_multicast_list(dev);
2826 void dev_set_rx_mode(struct net_device *dev)
2828 netif_tx_lock_bh(dev);
2829 __dev_set_rx_mode(dev);
2830 netif_tx_unlock_bh(dev);
2833 int __dev_addr_delete(struct dev_addr_list **list, int *count,
2834 void *addr, int alen, int glbl)
2836 struct dev_addr_list *da;
2838 for (; (da = *list) != NULL; list = &da->next) {
2839 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2840 alen == da->da_addrlen) {
2841 if (glbl) {
2842 int old_glbl = da->da_gusers;
2843 da->da_gusers = 0;
2844 if (old_glbl == 0)
2845 break;
2847 if (--da->da_users)
2848 return 0;
2850 *list = da->next;
2851 kfree(da);
2852 (*count)--;
2853 return 0;
2856 return -ENOENT;
2859 int __dev_addr_add(struct dev_addr_list **list, int *count,
2860 void *addr, int alen, int glbl)
2862 struct dev_addr_list *da;
2864 for (da = *list; da != NULL; da = da->next) {
2865 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2866 da->da_addrlen == alen) {
2867 if (glbl) {
2868 int old_glbl = da->da_gusers;
2869 da->da_gusers = 1;
2870 if (old_glbl)
2871 return 0;
2873 da->da_users++;
2874 return 0;
2878 da = kmalloc(sizeof(*da), GFP_ATOMIC);
2879 if (da == NULL)
2880 return -ENOMEM;
2881 memcpy(da->da_addr, addr, alen);
2882 da->da_addrlen = alen;
2883 da->da_users = 1;
2884 da->da_gusers = glbl ? 1 : 0;
2885 da->next = *list;
2886 *list = da;
2887 (*count)++;
2888 return 0;
2892 * dev_unicast_delete - Release secondary unicast address.
2893 * @dev: device
2894 * @addr: address to delete
2895 * @alen: length of @addr
2897 * Release reference to a secondary unicast address and remove it
2898 * from the device if the reference count drops to zero.
2900 * The caller must hold the rtnl_mutex.
2902 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
2904 int err;
2906 ASSERT_RTNL();
2908 netif_tx_lock_bh(dev);
2909 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2910 if (!err)
2911 __dev_set_rx_mode(dev);
2912 netif_tx_unlock_bh(dev);
2913 return err;
2915 EXPORT_SYMBOL(dev_unicast_delete);
2918 * dev_unicast_add - add a secondary unicast address
2919 * @dev: device
2920 * @addr: address to delete
2921 * @alen: length of @addr
2923 * Add a secondary unicast address to the device or increase
2924 * the reference count if it already exists.
2926 * The caller must hold the rtnl_mutex.
2928 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
2930 int err;
2932 ASSERT_RTNL();
2934 netif_tx_lock_bh(dev);
2935 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2936 if (!err)
2937 __dev_set_rx_mode(dev);
2938 netif_tx_unlock_bh(dev);
2939 return err;
2941 EXPORT_SYMBOL(dev_unicast_add);
2943 static void __dev_addr_discard(struct dev_addr_list **list)
2945 struct dev_addr_list *tmp;
2947 while (*list != NULL) {
2948 tmp = *list;
2949 *list = tmp->next;
2950 if (tmp->da_users > tmp->da_gusers)
2951 printk("__dev_addr_discard: address leakage! "
2952 "da_users=%d\n", tmp->da_users);
2953 kfree(tmp);
2957 static void dev_addr_discard(struct net_device *dev)
2959 netif_tx_lock_bh(dev);
2961 __dev_addr_discard(&dev->uc_list);
2962 dev->uc_count = 0;
2964 __dev_addr_discard(&dev->mc_list);
2965 dev->mc_count = 0;
2967 netif_tx_unlock_bh(dev);
2970 unsigned dev_get_flags(const struct net_device *dev)
2972 unsigned flags;
2974 flags = (dev->flags & ~(IFF_PROMISC |
2975 IFF_ALLMULTI |
2976 IFF_RUNNING |
2977 IFF_LOWER_UP |
2978 IFF_DORMANT)) |
2979 (dev->gflags & (IFF_PROMISC |
2980 IFF_ALLMULTI));
2982 if (netif_running(dev)) {
2983 if (netif_oper_up(dev))
2984 flags |= IFF_RUNNING;
2985 if (netif_carrier_ok(dev))
2986 flags |= IFF_LOWER_UP;
2987 if (netif_dormant(dev))
2988 flags |= IFF_DORMANT;
2991 return flags;
2994 int dev_change_flags(struct net_device *dev, unsigned flags)
2996 int ret, changes;
2997 int old_flags = dev->flags;
2999 ASSERT_RTNL();
3002 * Set the flags on our device.
3005 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3006 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3007 IFF_AUTOMEDIA)) |
3008 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3009 IFF_ALLMULTI));
3012 * Load in the correct multicast list now the flags have changed.
3015 if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST)
3016 dev->change_rx_flags(dev, IFF_MULTICAST);
3018 dev_set_rx_mode(dev);
3021 * Have we downed the interface. We handle IFF_UP ourselves
3022 * according to user attempts to set it, rather than blindly
3023 * setting it.
3026 ret = 0;
3027 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3028 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3030 if (!ret)
3031 dev_set_rx_mode(dev);
3034 if (dev->flags & IFF_UP &&
3035 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3036 IFF_VOLATILE)))
3037 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3039 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3040 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3041 dev->gflags ^= IFF_PROMISC;
3042 dev_set_promiscuity(dev, inc);
3045 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3046 is important. Some (broken) drivers set IFF_PROMISC, when
3047 IFF_ALLMULTI is requested not asking us and not reporting.
3049 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3050 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3051 dev->gflags ^= IFF_ALLMULTI;
3052 dev_set_allmulti(dev, inc);
3055 /* Exclude state transition flags, already notified */
3056 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3057 if (changes)
3058 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3060 return ret;
3063 int dev_set_mtu(struct net_device *dev, int new_mtu)
3065 int err;
3067 if (new_mtu == dev->mtu)
3068 return 0;
3070 /* MTU must be positive. */
3071 if (new_mtu < 0)
3072 return -EINVAL;
3074 if (!netif_device_present(dev))
3075 return -ENODEV;
3077 err = 0;
3078 if (dev->change_mtu)
3079 err = dev->change_mtu(dev, new_mtu);
3080 else
3081 dev->mtu = new_mtu;
3082 if (!err && dev->flags & IFF_UP)
3083 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3084 return err;
3087 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3089 int err;
3091 if (!dev->set_mac_address)
3092 return -EOPNOTSUPP;
3093 if (sa->sa_family != dev->type)
3094 return -EINVAL;
3095 if (!netif_device_present(dev))
3096 return -ENODEV;
3097 err = dev->set_mac_address(dev, sa);
3098 if (!err)
3099 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3100 return err;
3104 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3106 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3108 int err;
3109 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3111 if (!dev)
3112 return -ENODEV;
3114 switch (cmd) {
3115 case SIOCGIFFLAGS: /* Get interface flags */
3116 ifr->ifr_flags = dev_get_flags(dev);
3117 return 0;
3119 case SIOCGIFMETRIC: /* Get the metric on the interface
3120 (currently unused) */
3121 ifr->ifr_metric = 0;
3122 return 0;
3124 case SIOCGIFMTU: /* Get the MTU of a device */
3125 ifr->ifr_mtu = dev->mtu;
3126 return 0;
3128 case SIOCGIFHWADDR:
3129 if (!dev->addr_len)
3130 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3131 else
3132 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3133 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3134 ifr->ifr_hwaddr.sa_family = dev->type;
3135 return 0;
3137 case SIOCGIFSLAVE:
3138 err = -EINVAL;
3139 break;
3141 case SIOCGIFMAP:
3142 ifr->ifr_map.mem_start = dev->mem_start;
3143 ifr->ifr_map.mem_end = dev->mem_end;
3144 ifr->ifr_map.base_addr = dev->base_addr;
3145 ifr->ifr_map.irq = dev->irq;
3146 ifr->ifr_map.dma = dev->dma;
3147 ifr->ifr_map.port = dev->if_port;
3148 return 0;
3150 case SIOCGIFINDEX:
3151 ifr->ifr_ifindex = dev->ifindex;
3152 return 0;
3154 case SIOCGIFTXQLEN:
3155 ifr->ifr_qlen = dev->tx_queue_len;
3156 return 0;
3158 default:
3159 /* dev_ioctl() should ensure this case
3160 * is never reached
3162 WARN_ON(1);
3163 err = -EINVAL;
3164 break;
3167 return err;
3171 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3173 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3175 int err;
3176 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3178 if (!dev)
3179 return -ENODEV;
3181 switch (cmd) {
3182 case SIOCSIFFLAGS: /* Set interface flags */
3183 return dev_change_flags(dev, ifr->ifr_flags);
3185 case SIOCSIFMETRIC: /* Set the metric on the interface
3186 (currently unused) */
3187 return -EOPNOTSUPP;
3189 case SIOCSIFMTU: /* Set the MTU of a device */
3190 return dev_set_mtu(dev, ifr->ifr_mtu);
3192 case SIOCSIFHWADDR:
3193 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3195 case SIOCSIFHWBROADCAST:
3196 if (ifr->ifr_hwaddr.sa_family != dev->type)
3197 return -EINVAL;
3198 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3199 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3200 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3201 return 0;
3203 case SIOCSIFMAP:
3204 if (dev->set_config) {
3205 if (!netif_device_present(dev))
3206 return -ENODEV;
3207 return dev->set_config(dev, &ifr->ifr_map);
3209 return -EOPNOTSUPP;
3211 case SIOCADDMULTI:
3212 if (!dev->set_multicast_list ||
3213 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3214 return -EINVAL;
3215 if (!netif_device_present(dev))
3216 return -ENODEV;
3217 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3218 dev->addr_len, 1);
3220 case SIOCDELMULTI:
3221 if (!dev->set_multicast_list ||
3222 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3223 return -EINVAL;
3224 if (!netif_device_present(dev))
3225 return -ENODEV;
3226 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3227 dev->addr_len, 1);
3229 case SIOCSIFTXQLEN:
3230 if (ifr->ifr_qlen < 0)
3231 return -EINVAL;
3232 dev->tx_queue_len = ifr->ifr_qlen;
3233 return 0;
3235 case SIOCSIFNAME:
3236 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3237 return dev_change_name(dev, ifr->ifr_newname);
3240 * Unknown or private ioctl
3243 default:
3244 if ((cmd >= SIOCDEVPRIVATE &&
3245 cmd <= SIOCDEVPRIVATE + 15) ||
3246 cmd == SIOCBONDENSLAVE ||
3247 cmd == SIOCBONDRELEASE ||
3248 cmd == SIOCBONDSETHWADDR ||
3249 cmd == SIOCBONDSLAVEINFOQUERY ||
3250 cmd == SIOCBONDINFOQUERY ||
3251 cmd == SIOCBONDCHANGEACTIVE ||
3252 cmd == SIOCGMIIPHY ||
3253 cmd == SIOCGMIIREG ||
3254 cmd == SIOCSMIIREG ||
3255 cmd == SIOCBRADDIF ||
3256 cmd == SIOCBRDELIF ||
3257 cmd == SIOCWANDEV) {
3258 err = -EOPNOTSUPP;
3259 if (dev->do_ioctl) {
3260 if (netif_device_present(dev))
3261 err = dev->do_ioctl(dev, ifr,
3262 cmd);
3263 else
3264 err = -ENODEV;
3266 } else
3267 err = -EINVAL;
3270 return err;
3274 * This function handles all "interface"-type I/O control requests. The actual
3275 * 'doing' part of this is dev_ifsioc above.
3279 * dev_ioctl - network device ioctl
3280 * @net: the applicable net namespace
3281 * @cmd: command to issue
3282 * @arg: pointer to a struct ifreq in user space
3284 * Issue ioctl functions to devices. This is normally called by the
3285 * user space syscall interfaces but can sometimes be useful for
3286 * other purposes. The return value is the return from the syscall if
3287 * positive or a negative errno code on error.
3290 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3292 struct ifreq ifr;
3293 int ret;
3294 char *colon;
3296 /* One special case: SIOCGIFCONF takes ifconf argument
3297 and requires shared lock, because it sleeps writing
3298 to user space.
3301 if (cmd == SIOCGIFCONF) {
3302 rtnl_lock();
3303 ret = dev_ifconf(net, (char __user *) arg);
3304 rtnl_unlock();
3305 return ret;
3307 if (cmd == SIOCGIFNAME)
3308 return dev_ifname(net, (struct ifreq __user *)arg);
3310 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3311 return -EFAULT;
3313 ifr.ifr_name[IFNAMSIZ-1] = 0;
3315 colon = strchr(ifr.ifr_name, ':');
3316 if (colon)
3317 *colon = 0;
3320 * See which interface the caller is talking about.
3323 switch (cmd) {
3325 * These ioctl calls:
3326 * - can be done by all.
3327 * - atomic and do not require locking.
3328 * - return a value
3330 case SIOCGIFFLAGS:
3331 case SIOCGIFMETRIC:
3332 case SIOCGIFMTU:
3333 case SIOCGIFHWADDR:
3334 case SIOCGIFSLAVE:
3335 case SIOCGIFMAP:
3336 case SIOCGIFINDEX:
3337 case SIOCGIFTXQLEN:
3338 dev_load(net, ifr.ifr_name);
3339 read_lock(&dev_base_lock);
3340 ret = dev_ifsioc_locked(net, &ifr, cmd);
3341 read_unlock(&dev_base_lock);
3342 if (!ret) {
3343 if (colon)
3344 *colon = ':';
3345 if (copy_to_user(arg, &ifr,
3346 sizeof(struct ifreq)))
3347 ret = -EFAULT;
3349 return ret;
3351 case SIOCETHTOOL:
3352 dev_load(net, ifr.ifr_name);
3353 rtnl_lock();
3354 ret = dev_ethtool(net, &ifr);
3355 rtnl_unlock();
3356 if (!ret) {
3357 if (colon)
3358 *colon = ':';
3359 if (copy_to_user(arg, &ifr,
3360 sizeof(struct ifreq)))
3361 ret = -EFAULT;
3363 return ret;
3366 * These ioctl calls:
3367 * - require superuser power.
3368 * - require strict serialization.
3369 * - return a value
3371 case SIOCGMIIPHY:
3372 case SIOCGMIIREG:
3373 case SIOCSIFNAME:
3374 if (!capable(CAP_NET_ADMIN))
3375 return -EPERM;
3376 dev_load(net, ifr.ifr_name);
3377 rtnl_lock();
3378 ret = dev_ifsioc(net, &ifr, cmd);
3379 rtnl_unlock();
3380 if (!ret) {
3381 if (colon)
3382 *colon = ':';
3383 if (copy_to_user(arg, &ifr,
3384 sizeof(struct ifreq)))
3385 ret = -EFAULT;
3387 return ret;
3390 * These ioctl calls:
3391 * - require superuser power.
3392 * - require strict serialization.
3393 * - do not return a value
3395 case SIOCSIFFLAGS:
3396 case SIOCSIFMETRIC:
3397 case SIOCSIFMTU:
3398 case SIOCSIFMAP:
3399 case SIOCSIFHWADDR:
3400 case SIOCSIFSLAVE:
3401 case SIOCADDMULTI:
3402 case SIOCDELMULTI:
3403 case SIOCSIFHWBROADCAST:
3404 case SIOCSIFTXQLEN:
3405 case SIOCSMIIREG:
3406 case SIOCBONDENSLAVE:
3407 case SIOCBONDRELEASE:
3408 case SIOCBONDSETHWADDR:
3409 case SIOCBONDCHANGEACTIVE:
3410 case SIOCBRADDIF:
3411 case SIOCBRDELIF:
3412 if (!capable(CAP_NET_ADMIN))
3413 return -EPERM;
3414 /* fall through */
3415 case SIOCBONDSLAVEINFOQUERY:
3416 case SIOCBONDINFOQUERY:
3417 dev_load(net, ifr.ifr_name);
3418 rtnl_lock();
3419 ret = dev_ifsioc(net, &ifr, cmd);
3420 rtnl_unlock();
3421 return ret;
3423 case SIOCGIFMEM:
3424 /* Get the per device memory space. We can add this but
3425 * currently do not support it */
3426 case SIOCSIFMEM:
3427 /* Set the per device memory buffer space.
3428 * Not applicable in our case */
3429 case SIOCSIFLINK:
3430 return -EINVAL;
3433 * Unknown or private ioctl.
3435 default:
3436 if (cmd == SIOCWANDEV ||
3437 (cmd >= SIOCDEVPRIVATE &&
3438 cmd <= SIOCDEVPRIVATE + 15)) {
3439 dev_load(net, ifr.ifr_name);
3440 rtnl_lock();
3441 ret = dev_ifsioc(net, &ifr, cmd);
3442 rtnl_unlock();
3443 if (!ret && copy_to_user(arg, &ifr,
3444 sizeof(struct ifreq)))
3445 ret = -EFAULT;
3446 return ret;
3448 /* Take care of Wireless Extensions */
3449 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3450 return wext_handle_ioctl(net, &ifr, cmd, arg);
3451 return -EINVAL;
3457 * dev_new_index - allocate an ifindex
3458 * @net: the applicable net namespace
3460 * Returns a suitable unique value for a new device interface
3461 * number. The caller must hold the rtnl semaphore or the
3462 * dev_base_lock to be sure it remains unique.
3464 static int dev_new_index(struct net *net)
3466 static int ifindex;
3467 for (;;) {
3468 if (++ifindex <= 0)
3469 ifindex = 1;
3470 if (!__dev_get_by_index(net, ifindex))
3471 return ifindex;
3475 /* Delayed registration/unregisteration */
3476 static DEFINE_SPINLOCK(net_todo_list_lock);
3477 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list);
3479 static void net_set_todo(struct net_device *dev)
3481 spin_lock(&net_todo_list_lock);
3482 list_add_tail(&dev->todo_list, &net_todo_list);
3483 spin_unlock(&net_todo_list_lock);
3487 * register_netdevice - register a network device
3488 * @dev: device to register
3490 * Take a completed network device structure and add it to the kernel
3491 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3492 * chain. 0 is returned on success. A negative errno code is returned
3493 * on a failure to set up the device, or if the name is a duplicate.
3495 * Callers must hold the rtnl semaphore. You may want
3496 * register_netdev() instead of this.
3498 * BUGS:
3499 * The locking appears insufficient to guarantee two parallel registers
3500 * will not get the same name.
3503 int register_netdevice(struct net_device *dev)
3505 struct hlist_head *head;
3506 struct hlist_node *p;
3507 int ret;
3508 struct net *net;
3510 BUG_ON(dev_boot_phase);
3511 ASSERT_RTNL();
3513 might_sleep();
3515 /* When net_device's are persistent, this will be fatal. */
3516 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3517 BUG_ON(!dev->nd_net);
3518 net = dev->nd_net;
3520 spin_lock_init(&dev->queue_lock);
3521 spin_lock_init(&dev->_xmit_lock);
3522 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3523 dev->xmit_lock_owner = -1;
3524 spin_lock_init(&dev->ingress_lock);
3526 dev->iflink = -1;
3528 /* Init, if this function is available */
3529 if (dev->init) {
3530 ret = dev->init(dev);
3531 if (ret) {
3532 if (ret > 0)
3533 ret = -EIO;
3534 goto out;
3538 if (!dev_valid_name(dev->name)) {
3539 ret = -EINVAL;
3540 goto err_uninit;
3543 dev->ifindex = dev_new_index(net);
3544 if (dev->iflink == -1)
3545 dev->iflink = dev->ifindex;
3547 /* Check for existence of name */
3548 head = dev_name_hash(net, dev->name);
3549 hlist_for_each(p, head) {
3550 struct net_device *d
3551 = hlist_entry(p, struct net_device, name_hlist);
3552 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3553 ret = -EEXIST;
3554 goto err_uninit;
3558 /* Fix illegal checksum combinations */
3559 if ((dev->features & NETIF_F_HW_CSUM) &&
3560 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3561 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3562 dev->name);
3563 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3566 if ((dev->features & NETIF_F_NO_CSUM) &&
3567 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3568 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3569 dev->name);
3570 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3574 /* Fix illegal SG+CSUM combinations. */
3575 if ((dev->features & NETIF_F_SG) &&
3576 !(dev->features & NETIF_F_ALL_CSUM)) {
3577 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3578 dev->name);
3579 dev->features &= ~NETIF_F_SG;
3582 /* TSO requires that SG is present as well. */
3583 if ((dev->features & NETIF_F_TSO) &&
3584 !(dev->features & NETIF_F_SG)) {
3585 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3586 dev->name);
3587 dev->features &= ~NETIF_F_TSO;
3589 if (dev->features & NETIF_F_UFO) {
3590 if (!(dev->features & NETIF_F_HW_CSUM)) {
3591 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3592 "NETIF_F_HW_CSUM feature.\n",
3593 dev->name);
3594 dev->features &= ~NETIF_F_UFO;
3596 if (!(dev->features & NETIF_F_SG)) {
3597 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3598 "NETIF_F_SG feature.\n",
3599 dev->name);
3600 dev->features &= ~NETIF_F_UFO;
3604 ret = netdev_register_kobject(dev);
3605 if (ret)
3606 goto err_uninit;
3607 dev->reg_state = NETREG_REGISTERED;
3610 * Default initial state at registry is that the
3611 * device is present.
3614 set_bit(__LINK_STATE_PRESENT, &dev->state);
3616 dev_init_scheduler(dev);
3617 dev_hold(dev);
3618 list_netdevice(dev);
3620 /* Notify protocols, that a new device appeared. */
3621 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3622 ret = notifier_to_errno(ret);
3623 if (ret)
3624 unregister_netdevice(dev);
3626 out:
3627 return ret;
3629 err_uninit:
3630 if (dev->uninit)
3631 dev->uninit(dev);
3632 goto out;
3636 * register_netdev - register a network device
3637 * @dev: device to register
3639 * Take a completed network device structure and add it to the kernel
3640 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3641 * chain. 0 is returned on success. A negative errno code is returned
3642 * on a failure to set up the device, or if the name is a duplicate.
3644 * This is a wrapper around register_netdevice that takes the rtnl semaphore
3645 * and expands the device name if you passed a format string to
3646 * alloc_netdev.
3648 int register_netdev(struct net_device *dev)
3650 int err;
3652 rtnl_lock();
3655 * If the name is a format string the caller wants us to do a
3656 * name allocation.
3658 if (strchr(dev->name, '%')) {
3659 err = dev_alloc_name(dev, dev->name);
3660 if (err < 0)
3661 goto out;
3664 err = register_netdevice(dev);
3665 out:
3666 rtnl_unlock();
3667 return err;
3669 EXPORT_SYMBOL(register_netdev);
3672 * netdev_wait_allrefs - wait until all references are gone.
3674 * This is called when unregistering network devices.
3676 * Any protocol or device that holds a reference should register
3677 * for netdevice notification, and cleanup and put back the
3678 * reference if they receive an UNREGISTER event.
3679 * We can get stuck here if buggy protocols don't correctly
3680 * call dev_put.
3682 static void netdev_wait_allrefs(struct net_device *dev)
3684 unsigned long rebroadcast_time, warning_time;
3686 rebroadcast_time = warning_time = jiffies;
3687 while (atomic_read(&dev->refcnt) != 0) {
3688 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3689 rtnl_lock();
3691 /* Rebroadcast unregister notification */
3692 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3694 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3695 &dev->state)) {
3696 /* We must not have linkwatch events
3697 * pending on unregister. If this
3698 * happens, we simply run the queue
3699 * unscheduled, resulting in a noop
3700 * for this device.
3702 linkwatch_run_queue();
3705 __rtnl_unlock();
3707 rebroadcast_time = jiffies;
3710 msleep(250);
3712 if (time_after(jiffies, warning_time + 10 * HZ)) {
3713 printk(KERN_EMERG "unregister_netdevice: "
3714 "waiting for %s to become free. Usage "
3715 "count = %d\n",
3716 dev->name, atomic_read(&dev->refcnt));
3717 warning_time = jiffies;
3722 /* The sequence is:
3724 * rtnl_lock();
3725 * ...
3726 * register_netdevice(x1);
3727 * register_netdevice(x2);
3728 * ...
3729 * unregister_netdevice(y1);
3730 * unregister_netdevice(y2);
3731 * ...
3732 * rtnl_unlock();
3733 * free_netdev(y1);
3734 * free_netdev(y2);
3736 * We are invoked by rtnl_unlock() after it drops the semaphore.
3737 * This allows us to deal with problems:
3738 * 1) We can delete sysfs objects which invoke hotplug
3739 * without deadlocking with linkwatch via keventd.
3740 * 2) Since we run with the RTNL semaphore not held, we can sleep
3741 * safely in order to wait for the netdev refcnt to drop to zero.
3743 static DEFINE_MUTEX(net_todo_run_mutex);
3744 void netdev_run_todo(void)
3746 struct list_head list;
3748 /* Need to guard against multiple cpu's getting out of order. */
3749 mutex_lock(&net_todo_run_mutex);
3751 /* Not safe to do outside the semaphore. We must not return
3752 * until all unregister events invoked by the local processor
3753 * have been completed (either by this todo run, or one on
3754 * another cpu).
3756 if (list_empty(&net_todo_list))
3757 goto out;
3759 /* Snapshot list, allow later requests */
3760 spin_lock(&net_todo_list_lock);
3761 list_replace_init(&net_todo_list, &list);
3762 spin_unlock(&net_todo_list_lock);
3764 while (!list_empty(&list)) {
3765 struct net_device *dev
3766 = list_entry(list.next, struct net_device, todo_list);
3767 list_del(&dev->todo_list);
3769 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3770 printk(KERN_ERR "network todo '%s' but state %d\n",
3771 dev->name, dev->reg_state);
3772 dump_stack();
3773 continue;
3776 dev->reg_state = NETREG_UNREGISTERED;
3778 netdev_wait_allrefs(dev);
3780 /* paranoia */
3781 BUG_ON(atomic_read(&dev->refcnt));
3782 BUG_TRAP(!dev->ip_ptr);
3783 BUG_TRAP(!dev->ip6_ptr);
3784 BUG_TRAP(!dev->dn_ptr);
3786 if (dev->destructor)
3787 dev->destructor(dev);
3789 /* Free network device */
3790 kobject_put(&dev->dev.kobj);
3793 out:
3794 mutex_unlock(&net_todo_run_mutex);
3797 static struct net_device_stats *internal_stats(struct net_device *dev)
3799 return &dev->stats;
3803 * alloc_netdev_mq - allocate network device
3804 * @sizeof_priv: size of private data to allocate space for
3805 * @name: device name format string
3806 * @setup: callback to initialize device
3807 * @queue_count: the number of subqueues to allocate
3809 * Allocates a struct net_device with private data area for driver use
3810 * and performs basic initialization. Also allocates subquue structs
3811 * for each queue on the device at the end of the netdevice.
3813 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
3814 void (*setup)(struct net_device *), unsigned int queue_count)
3816 void *p;
3817 struct net_device *dev;
3818 int alloc_size;
3820 BUG_ON(strlen(name) >= sizeof(dev->name));
3822 /* ensure 32-byte alignment of both the device and private area */
3823 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST +
3824 (sizeof(struct net_device_subqueue) * (queue_count - 1))) &
3825 ~NETDEV_ALIGN_CONST;
3826 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;
3828 p = kzalloc(alloc_size, GFP_KERNEL);
3829 if (!p) {
3830 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
3831 return NULL;
3834 dev = (struct net_device *)
3835 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
3836 dev->padded = (char *)dev - (char *)p;
3837 dev->nd_net = &init_net;
3839 if (sizeof_priv) {
3840 dev->priv = ((char *)dev +
3841 ((sizeof(struct net_device) +
3842 (sizeof(struct net_device_subqueue) *
3843 (queue_count - 1)) + NETDEV_ALIGN_CONST)
3844 & ~NETDEV_ALIGN_CONST));
3847 dev->egress_subqueue_count = queue_count;
3849 dev->get_stats = internal_stats;
3850 netpoll_netdev_init(dev);
3851 setup(dev);
3852 strcpy(dev->name, name);
3853 return dev;
3855 EXPORT_SYMBOL(alloc_netdev_mq);
3858 * free_netdev - free network device
3859 * @dev: device
3861 * This function does the last stage of destroying an allocated device
3862 * interface. The reference to the device object is released.
3863 * If this is the last reference then it will be freed.
3865 void free_netdev(struct net_device *dev)
3867 /* Compatibility with error handling in drivers */
3868 if (dev->reg_state == NETREG_UNINITIALIZED) {
3869 kfree((char *)dev - dev->padded);
3870 return;
3873 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
3874 dev->reg_state = NETREG_RELEASED;
3876 /* will free via device release */
3877 put_device(&dev->dev);
3880 /* Synchronize with packet receive processing. */
3881 void synchronize_net(void)
3883 might_sleep();
3884 synchronize_rcu();
3888 * unregister_netdevice - remove device from the kernel
3889 * @dev: device
3891 * This function shuts down a device interface and removes it
3892 * from the kernel tables. On success 0 is returned, on a failure
3893 * a negative errno code is returned.
3895 * Callers must hold the rtnl semaphore. You may want
3896 * unregister_netdev() instead of this.
3899 void unregister_netdevice(struct net_device *dev)
3901 BUG_ON(dev_boot_phase);
3902 ASSERT_RTNL();
3904 /* Some devices call without registering for initialization unwind. */
3905 if (dev->reg_state == NETREG_UNINITIALIZED) {
3906 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3907 "was registered\n", dev->name, dev);
3909 WARN_ON(1);
3910 return;
3913 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3915 /* If device is running, close it first. */
3916 dev_close(dev);
3918 /* And unlink it from device chain. */
3919 unlist_netdevice(dev);
3921 dev->reg_state = NETREG_UNREGISTERING;
3923 synchronize_net();
3925 /* Shutdown queueing discipline. */
3926 dev_shutdown(dev);
3929 /* Notify protocols, that we are about to destroy
3930 this device. They should clean all the things.
3932 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3935 * Flush the unicast and multicast chains
3937 dev_addr_discard(dev);
3939 if (dev->uninit)
3940 dev->uninit(dev);
3942 /* Notifier chain MUST detach us from master device. */
3943 BUG_TRAP(!dev->master);
3945 /* Remove entries from kobject tree */
3946 netdev_unregister_kobject(dev);
3948 /* Finish processing unregister after unlock */
3949 net_set_todo(dev);
3951 synchronize_net();
3953 dev_put(dev);
3957 * unregister_netdev - remove device from the kernel
3958 * @dev: device
3960 * This function shuts down a device interface and removes it
3961 * from the kernel tables. On success 0 is returned, on a failure
3962 * a negative errno code is returned.
3964 * This is just a wrapper for unregister_netdevice that takes
3965 * the rtnl semaphore. In general you want to use this and not
3966 * unregister_netdevice.
3968 void unregister_netdev(struct net_device *dev)
3970 rtnl_lock();
3971 unregister_netdevice(dev);
3972 rtnl_unlock();
3975 EXPORT_SYMBOL(unregister_netdev);
3978 * dev_change_net_namespace - move device to different nethost namespace
3979 * @dev: device
3980 * @net: network namespace
3981 * @pat: If not NULL name pattern to try if the current device name
3982 * is already taken in the destination network namespace.
3984 * This function shuts down a device interface and moves it
3985 * to a new network namespace. On success 0 is returned, on
3986 * a failure a netagive errno code is returned.
3988 * Callers must hold the rtnl semaphore.
3991 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
3993 char buf[IFNAMSIZ];
3994 const char *destname;
3995 int err;
3997 ASSERT_RTNL();
3999 /* Don't allow namespace local devices to be moved. */
4000 err = -EINVAL;
4001 if (dev->features & NETIF_F_NETNS_LOCAL)
4002 goto out;
4004 /* Ensure the device has been registrered */
4005 err = -EINVAL;
4006 if (dev->reg_state != NETREG_REGISTERED)
4007 goto out;
4009 /* Get out if there is nothing todo */
4010 err = 0;
4011 if (dev->nd_net == net)
4012 goto out;
4014 /* Pick the destination device name, and ensure
4015 * we can use it in the destination network namespace.
4017 err = -EEXIST;
4018 destname = dev->name;
4019 if (__dev_get_by_name(net, destname)) {
4020 /* We get here if we can't use the current device name */
4021 if (!pat)
4022 goto out;
4023 if (!dev_valid_name(pat))
4024 goto out;
4025 if (strchr(pat, '%')) {
4026 if (__dev_alloc_name(net, pat, buf) < 0)
4027 goto out;
4028 destname = buf;
4029 } else
4030 destname = pat;
4031 if (__dev_get_by_name(net, destname))
4032 goto out;
4036 * And now a mini version of register_netdevice unregister_netdevice.
4039 /* If device is running close it first. */
4040 dev_close(dev);
4042 /* And unlink it from device chain */
4043 err = -ENODEV;
4044 unlist_netdevice(dev);
4046 synchronize_net();
4048 /* Shutdown queueing discipline. */
4049 dev_shutdown(dev);
4051 /* Notify protocols, that we are about to destroy
4052 this device. They should clean all the things.
4054 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4057 * Flush the unicast and multicast chains
4059 dev_addr_discard(dev);
4061 /* Actually switch the network namespace */
4062 dev->nd_net = net;
4064 /* Assign the new device name */
4065 if (destname != dev->name)
4066 strcpy(dev->name, destname);
4068 /* If there is an ifindex conflict assign a new one */
4069 if (__dev_get_by_index(net, dev->ifindex)) {
4070 int iflink = (dev->iflink == dev->ifindex);
4071 dev->ifindex = dev_new_index(net);
4072 if (iflink)
4073 dev->iflink = dev->ifindex;
4076 /* Fixup kobjects */
4077 err = device_rename(&dev->dev, dev->name);
4078 WARN_ON(err);
4080 /* Add the device back in the hashes */
4081 list_netdevice(dev);
4083 /* Notify protocols, that a new device appeared. */
4084 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4086 synchronize_net();
4087 err = 0;
4088 out:
4089 return err;
4092 static int dev_cpu_callback(struct notifier_block *nfb,
4093 unsigned long action,
4094 void *ocpu)
4096 struct sk_buff **list_skb;
4097 struct net_device **list_net;
4098 struct sk_buff *skb;
4099 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4100 struct softnet_data *sd, *oldsd;
4102 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4103 return NOTIFY_OK;
4105 local_irq_disable();
4106 cpu = smp_processor_id();
4107 sd = &per_cpu(softnet_data, cpu);
4108 oldsd = &per_cpu(softnet_data, oldcpu);
4110 /* Find end of our completion_queue. */
4111 list_skb = &sd->completion_queue;
4112 while (*list_skb)
4113 list_skb = &(*list_skb)->next;
4114 /* Append completion queue from offline CPU. */
4115 *list_skb = oldsd->completion_queue;
4116 oldsd->completion_queue = NULL;
4118 /* Find end of our output_queue. */
4119 list_net = &sd->output_queue;
4120 while (*list_net)
4121 list_net = &(*list_net)->next_sched;
4122 /* Append output queue from offline CPU. */
4123 *list_net = oldsd->output_queue;
4124 oldsd->output_queue = NULL;
4126 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4127 local_irq_enable();
4129 /* Process offline CPU's input_pkt_queue */
4130 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4131 netif_rx(skb);
4133 return NOTIFY_OK;
4136 #ifdef CONFIG_NET_DMA
4138 * net_dma_rebalance - try to maintain one DMA channel per CPU
4139 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4141 * This is called when the number of channels allocated to the net_dma client
4142 * changes. The net_dma client tries to have one DMA channel per CPU.
4145 static void net_dma_rebalance(struct net_dma *net_dma)
4147 unsigned int cpu, i, n, chan_idx;
4148 struct dma_chan *chan;
4150 if (cpus_empty(net_dma->channel_mask)) {
4151 for_each_online_cpu(cpu)
4152 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4153 return;
4156 i = 0;
4157 cpu = first_cpu(cpu_online_map);
4159 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4160 chan = net_dma->channels[chan_idx];
4162 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4163 + (i < (num_online_cpus() %
4164 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4166 while(n) {
4167 per_cpu(softnet_data, cpu).net_dma = chan;
4168 cpu = next_cpu(cpu, cpu_online_map);
4169 n--;
4171 i++;
4176 * netdev_dma_event - event callback for the net_dma_client
4177 * @client: should always be net_dma_client
4178 * @chan: DMA channel for the event
4179 * @state: DMA state to be handled
4181 static enum dma_state_client
4182 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4183 enum dma_state state)
4185 int i, found = 0, pos = -1;
4186 struct net_dma *net_dma =
4187 container_of(client, struct net_dma, client);
4188 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4190 spin_lock(&net_dma->lock);
4191 switch (state) {
4192 case DMA_RESOURCE_AVAILABLE:
4193 for (i = 0; i < NR_CPUS; i++)
4194 if (net_dma->channels[i] == chan) {
4195 found = 1;
4196 break;
4197 } else if (net_dma->channels[i] == NULL && pos < 0)
4198 pos = i;
4200 if (!found && pos >= 0) {
4201 ack = DMA_ACK;
4202 net_dma->channels[pos] = chan;
4203 cpu_set(pos, net_dma->channel_mask);
4204 net_dma_rebalance(net_dma);
4206 break;
4207 case DMA_RESOURCE_REMOVED:
4208 for (i = 0; i < NR_CPUS; i++)
4209 if (net_dma->channels[i] == chan) {
4210 found = 1;
4211 pos = i;
4212 break;
4215 if (found) {
4216 ack = DMA_ACK;
4217 cpu_clear(pos, net_dma->channel_mask);
4218 net_dma->channels[i] = NULL;
4219 net_dma_rebalance(net_dma);
4221 break;
4222 default:
4223 break;
4225 spin_unlock(&net_dma->lock);
4227 return ack;
4231 * netdev_dma_regiser - register the networking subsystem as a DMA client
4233 static int __init netdev_dma_register(void)
4235 spin_lock_init(&net_dma.lock);
4236 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4237 dma_async_client_register(&net_dma.client);
4238 dma_async_client_chan_request(&net_dma.client);
4239 return 0;
4242 #else
4243 static int __init netdev_dma_register(void) { return -ENODEV; }
4244 #endif /* CONFIG_NET_DMA */
4247 * netdev_compute_feature - compute conjunction of two feature sets
4248 * @all: first feature set
4249 * @one: second feature set
4251 * Computes a new feature set after adding a device with feature set
4252 * @one to the master device with current feature set @all. Returns
4253 * the new feature set.
4255 int netdev_compute_features(unsigned long all, unsigned long one)
4257 /* if device needs checksumming, downgrade to hw checksumming */
4258 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4259 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4261 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4262 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4263 all ^= NETIF_F_HW_CSUM
4264 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4266 if (one & NETIF_F_GSO)
4267 one |= NETIF_F_GSO_SOFTWARE;
4268 one |= NETIF_F_GSO;
4270 /* If even one device supports robust GSO, enable it for all. */
4271 if (one & NETIF_F_GSO_ROBUST)
4272 all |= NETIF_F_GSO_ROBUST;
4274 all &= one | NETIF_F_LLTX;
4276 if (!(all & NETIF_F_ALL_CSUM))
4277 all &= ~NETIF_F_SG;
4278 if (!(all & NETIF_F_SG))
4279 all &= ~NETIF_F_GSO_MASK;
4281 return all;
4283 EXPORT_SYMBOL(netdev_compute_features);
4285 static struct hlist_head *netdev_create_hash(void)
4287 int i;
4288 struct hlist_head *hash;
4290 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4291 if (hash != NULL)
4292 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4293 INIT_HLIST_HEAD(&hash[i]);
4295 return hash;
4298 /* Initialize per network namespace state */
4299 static int __net_init netdev_init(struct net *net)
4301 INIT_LIST_HEAD(&net->dev_base_head);
4302 rwlock_init(&dev_base_lock);
4304 net->dev_name_head = netdev_create_hash();
4305 if (net->dev_name_head == NULL)
4306 goto err_name;
4308 net->dev_index_head = netdev_create_hash();
4309 if (net->dev_index_head == NULL)
4310 goto err_idx;
4312 return 0;
4314 err_idx:
4315 kfree(net->dev_name_head);
4316 err_name:
4317 return -ENOMEM;
4320 static void __net_exit netdev_exit(struct net *net)
4322 kfree(net->dev_name_head);
4323 kfree(net->dev_index_head);
4326 static struct pernet_operations __net_initdata netdev_net_ops = {
4327 .init = netdev_init,
4328 .exit = netdev_exit,
4331 static void __net_exit default_device_exit(struct net *net)
4333 struct net_device *dev, *next;
4335 * Push all migratable of the network devices back to the
4336 * initial network namespace
4338 rtnl_lock();
4339 for_each_netdev_safe(net, dev, next) {
4340 int err;
4342 /* Ignore unmoveable devices (i.e. loopback) */
4343 if (dev->features & NETIF_F_NETNS_LOCAL)
4344 continue;
4346 /* Push remaing network devices to init_net */
4347 err = dev_change_net_namespace(dev, &init_net, "dev%d");
4348 if (err) {
4349 printk(KERN_WARNING "%s: failed to move %s to init_net: %d\n",
4350 __func__, dev->name, err);
4351 unregister_netdevice(dev);
4354 rtnl_unlock();
4357 static struct pernet_operations __net_initdata default_device_ops = {
4358 .exit = default_device_exit,
4362 * Initialize the DEV module. At boot time this walks the device list and
4363 * unhooks any devices that fail to initialise (normally hardware not
4364 * present) and leaves us with a valid list of present and active devices.
4369 * This is called single threaded during boot, so no need
4370 * to take the rtnl semaphore.
4372 static int __init net_dev_init(void)
4374 int i, rc = -ENOMEM;
4376 BUG_ON(!dev_boot_phase);
4378 if (dev_proc_init())
4379 goto out;
4381 if (netdev_kobject_init())
4382 goto out;
4384 INIT_LIST_HEAD(&ptype_all);
4385 for (i = 0; i < 16; i++)
4386 INIT_LIST_HEAD(&ptype_base[i]);
4388 if (register_pernet_subsys(&netdev_net_ops))
4389 goto out;
4391 if (register_pernet_device(&default_device_ops))
4392 goto out;
4395 * Initialise the packet receive queues.
4398 for_each_possible_cpu(i) {
4399 struct softnet_data *queue;
4401 queue = &per_cpu(softnet_data, i);
4402 skb_queue_head_init(&queue->input_pkt_queue);
4403 queue->completion_queue = NULL;
4404 INIT_LIST_HEAD(&queue->poll_list);
4406 queue->backlog.poll = process_backlog;
4407 queue->backlog.weight = weight_p;
4410 netdev_dma_register();
4412 dev_boot_phase = 0;
4414 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4415 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4417 hotcpu_notifier(dev_cpu_callback, 0);
4418 dst_init();
4419 dev_mcast_init();
4420 rc = 0;
4421 out:
4422 return rc;
4425 subsys_initcall(net_dev_init);
4427 EXPORT_SYMBOL(__dev_get_by_index);
4428 EXPORT_SYMBOL(__dev_get_by_name);
4429 EXPORT_SYMBOL(__dev_remove_pack);
4430 EXPORT_SYMBOL(dev_valid_name);
4431 EXPORT_SYMBOL(dev_add_pack);
4432 EXPORT_SYMBOL(dev_alloc_name);
4433 EXPORT_SYMBOL(dev_close);
4434 EXPORT_SYMBOL(dev_get_by_flags);
4435 EXPORT_SYMBOL(dev_get_by_index);
4436 EXPORT_SYMBOL(dev_get_by_name);
4437 EXPORT_SYMBOL(dev_open);
4438 EXPORT_SYMBOL(dev_queue_xmit);
4439 EXPORT_SYMBOL(dev_remove_pack);
4440 EXPORT_SYMBOL(dev_set_allmulti);
4441 EXPORT_SYMBOL(dev_set_promiscuity);
4442 EXPORT_SYMBOL(dev_change_flags);
4443 EXPORT_SYMBOL(dev_set_mtu);
4444 EXPORT_SYMBOL(dev_set_mac_address);
4445 EXPORT_SYMBOL(free_netdev);
4446 EXPORT_SYMBOL(netdev_boot_setup_check);
4447 EXPORT_SYMBOL(netdev_set_master);
4448 EXPORT_SYMBOL(netdev_state_change);
4449 EXPORT_SYMBOL(netif_receive_skb);
4450 EXPORT_SYMBOL(netif_rx);
4451 EXPORT_SYMBOL(register_gifconf);
4452 EXPORT_SYMBOL(register_netdevice);
4453 EXPORT_SYMBOL(register_netdevice_notifier);
4454 EXPORT_SYMBOL(skb_checksum_help);
4455 EXPORT_SYMBOL(synchronize_net);
4456 EXPORT_SYMBOL(unregister_netdevice);
4457 EXPORT_SYMBOL(unregister_netdevice_notifier);
4458 EXPORT_SYMBOL(net_enable_timestamp);
4459 EXPORT_SYMBOL(net_disable_timestamp);
4460 EXPORT_SYMBOL(dev_get_flags);
4462 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4463 EXPORT_SYMBOL(br_handle_frame_hook);
4464 EXPORT_SYMBOL(br_fdb_get_hook);
4465 EXPORT_SYMBOL(br_fdb_put_hook);
4466 #endif
4468 #ifdef CONFIG_KMOD
4469 EXPORT_SYMBOL(dev_load);
4470 #endif
4472 EXPORT_PER_CPU_SYMBOL(softnet_data);