2 * Linux INET6 implementation
6 * Pedro Roque <roque@di.fc.ul.pt>
8 * $Id: route.c,v 1.56 2001/10/31 21:55:55 davem Exp $
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
18 * YOSHIFUJI Hideaki @USAGI
19 * reworked default router selection.
20 * - respect outgoing interface
21 * - select from (probably) reachable routers (i.e.
22 * routers in REACHABLE, STALE, DELAY or PROBE states).
23 * - always select the same router if it is (probably)
24 * reachable. otherwise, round-robin the list.
26 * Fixed routing subtrees.
29 #include <linux/capability.h>
30 #include <linux/errno.h>
31 #include <linux/types.h>
32 #include <linux/times.h>
33 #include <linux/socket.h>
34 #include <linux/sockios.h>
35 #include <linux/net.h>
36 #include <linux/route.h>
37 #include <linux/netdevice.h>
38 #include <linux/in6.h>
39 #include <linux/init.h>
40 #include <linux/if_arp.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
47 #include <net/net_namespace.h>
50 #include <net/ip6_fib.h>
51 #include <net/ip6_route.h>
52 #include <net/ndisc.h>
53 #include <net/addrconf.h>
55 #include <linux/rtnetlink.h>
58 #include <net/netevent.h>
59 #include <net/netlink.h>
61 #include <asm/uaccess.h>
64 #include <linux/sysctl.h>
67 /* Set to 3 to get tracing. */
71 #define RDBG(x) printk x
72 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
75 #define RT6_TRACE(x...) do { ; } while (0)
78 #define CLONE_OFFLINK_ROUTE 0
80 static int ip6_rt_max_size
= 4096;
81 static int ip6_rt_gc_min_interval
= HZ
/ 2;
82 static int ip6_rt_gc_timeout
= 60*HZ
;
83 int ip6_rt_gc_interval
= 30*HZ
;
84 static int ip6_rt_gc_elasticity
= 9;
85 static int ip6_rt_mtu_expires
= 10*60*HZ
;
86 static int ip6_rt_min_advmss
= IPV6_MIN_MTU
- 20 - 40;
88 static struct rt6_info
* ip6_rt_copy(struct rt6_info
*ort
);
89 static struct dst_entry
*ip6_dst_check(struct dst_entry
*dst
, u32 cookie
);
90 static struct dst_entry
*ip6_negative_advice(struct dst_entry
*);
91 static void ip6_dst_destroy(struct dst_entry
*);
92 static void ip6_dst_ifdown(struct dst_entry
*,
93 struct net_device
*dev
, int how
);
94 static int ip6_dst_gc(void);
96 static int ip6_pkt_discard(struct sk_buff
*skb
);
97 static int ip6_pkt_discard_out(struct sk_buff
*skb
);
98 static void ip6_link_failure(struct sk_buff
*skb
);
99 static void ip6_rt_update_pmtu(struct dst_entry
*dst
, u32 mtu
);
101 #ifdef CONFIG_IPV6_ROUTE_INFO
102 static struct rt6_info
*rt6_add_route_info(struct in6_addr
*prefix
, int prefixlen
,
103 struct in6_addr
*gwaddr
, int ifindex
,
105 static struct rt6_info
*rt6_get_route_info(struct in6_addr
*prefix
, int prefixlen
,
106 struct in6_addr
*gwaddr
, int ifindex
);
109 static struct dst_ops ip6_dst_ops
= {
111 .protocol
= __constant_htons(ETH_P_IPV6
),
114 .check
= ip6_dst_check
,
115 .destroy
= ip6_dst_destroy
,
116 .ifdown
= ip6_dst_ifdown
,
117 .negative_advice
= ip6_negative_advice
,
118 .link_failure
= ip6_link_failure
,
119 .update_pmtu
= ip6_rt_update_pmtu
,
120 .entry_size
= sizeof(struct rt6_info
),
123 static void ip6_rt_blackhole_update_pmtu(struct dst_entry
*dst
, u32 mtu
)
127 static struct dst_ops ip6_dst_blackhole_ops
= {
129 .protocol
= __constant_htons(ETH_P_IPV6
),
130 .destroy
= ip6_dst_destroy
,
131 .check
= ip6_dst_check
,
132 .update_pmtu
= ip6_rt_blackhole_update_pmtu
,
133 .entry_size
= sizeof(struct rt6_info
),
136 struct rt6_info ip6_null_entry
= {
139 .__refcnt
= ATOMIC_INIT(1),
142 .error
= -ENETUNREACH
,
143 .metrics
= { [RTAX_HOPLIMIT
- 1] = 255, },
144 .input
= ip6_pkt_discard
,
145 .output
= ip6_pkt_discard_out
,
147 .path
= (struct dst_entry
*)&ip6_null_entry
,
150 .rt6i_flags
= (RTF_REJECT
| RTF_NONEXTHOP
),
151 .rt6i_metric
= ~(u32
) 0,
152 .rt6i_ref
= ATOMIC_INIT(1),
155 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
157 static int ip6_pkt_prohibit(struct sk_buff
*skb
);
158 static int ip6_pkt_prohibit_out(struct sk_buff
*skb
);
159 static int ip6_pkt_blk_hole(struct sk_buff
*skb
);
161 struct rt6_info ip6_prohibit_entry
= {
164 .__refcnt
= ATOMIC_INIT(1),
168 .metrics
= { [RTAX_HOPLIMIT
- 1] = 255, },
169 .input
= ip6_pkt_prohibit
,
170 .output
= ip6_pkt_prohibit_out
,
172 .path
= (struct dst_entry
*)&ip6_prohibit_entry
,
175 .rt6i_flags
= (RTF_REJECT
| RTF_NONEXTHOP
),
176 .rt6i_metric
= ~(u32
) 0,
177 .rt6i_ref
= ATOMIC_INIT(1),
180 struct rt6_info ip6_blk_hole_entry
= {
183 .__refcnt
= ATOMIC_INIT(1),
187 .metrics
= { [RTAX_HOPLIMIT
- 1] = 255, },
188 .input
= ip6_pkt_blk_hole
,
189 .output
= ip6_pkt_blk_hole
,
191 .path
= (struct dst_entry
*)&ip6_blk_hole_entry
,
194 .rt6i_flags
= (RTF_REJECT
| RTF_NONEXTHOP
),
195 .rt6i_metric
= ~(u32
) 0,
196 .rt6i_ref
= ATOMIC_INIT(1),
201 /* allocate dst with ip6_dst_ops */
202 static __inline__
struct rt6_info
*ip6_dst_alloc(void)
204 return (struct rt6_info
*)dst_alloc(&ip6_dst_ops
);
207 static void ip6_dst_destroy(struct dst_entry
*dst
)
209 struct rt6_info
*rt
= (struct rt6_info
*)dst
;
210 struct inet6_dev
*idev
= rt
->rt6i_idev
;
213 rt
->rt6i_idev
= NULL
;
218 static void ip6_dst_ifdown(struct dst_entry
*dst
, struct net_device
*dev
,
221 struct rt6_info
*rt
= (struct rt6_info
*)dst
;
222 struct inet6_dev
*idev
= rt
->rt6i_idev
;
224 if (dev
!= init_net
.loopback_dev
&& idev
!= NULL
&& idev
->dev
== dev
) {
225 struct inet6_dev
*loopback_idev
= in6_dev_get(init_net
.loopback_dev
);
226 if (loopback_idev
!= NULL
) {
227 rt
->rt6i_idev
= loopback_idev
;
233 static __inline__
int rt6_check_expired(const struct rt6_info
*rt
)
235 return (rt
->rt6i_flags
& RTF_EXPIRES
&&
236 time_after(jiffies
, rt
->rt6i_expires
));
239 static inline int rt6_need_strict(struct in6_addr
*daddr
)
241 return (ipv6_addr_type(daddr
) &
242 (IPV6_ADDR_MULTICAST
| IPV6_ADDR_LINKLOCAL
));
246 * Route lookup. Any table->tb6_lock is implied.
249 static __inline__
struct rt6_info
*rt6_device_match(struct rt6_info
*rt
,
253 struct rt6_info
*local
= NULL
;
254 struct rt6_info
*sprt
;
257 for (sprt
= rt
; sprt
; sprt
= sprt
->u
.dst
.rt6_next
) {
258 struct net_device
*dev
= sprt
->rt6i_dev
;
259 if (dev
->ifindex
== oif
)
261 if (dev
->flags
& IFF_LOOPBACK
) {
262 if (sprt
->rt6i_idev
== NULL
||
263 sprt
->rt6i_idev
->dev
->ifindex
!= oif
) {
266 if (local
&& (!oif
||
267 local
->rt6i_idev
->dev
->ifindex
== oif
))
278 return &ip6_null_entry
;
283 #ifdef CONFIG_IPV6_ROUTER_PREF
284 static void rt6_probe(struct rt6_info
*rt
)
286 struct neighbour
*neigh
= rt
? rt
->rt6i_nexthop
: NULL
;
288 * Okay, this does not seem to be appropriate
289 * for now, however, we need to check if it
290 * is really so; aka Router Reachability Probing.
292 * Router Reachability Probe MUST be rate-limited
293 * to no more than one per minute.
295 if (!neigh
|| (neigh
->nud_state
& NUD_VALID
))
297 read_lock_bh(&neigh
->lock
);
298 if (!(neigh
->nud_state
& NUD_VALID
) &&
299 time_after(jiffies
, neigh
->updated
+ rt
->rt6i_idev
->cnf
.rtr_probe_interval
)) {
300 struct in6_addr mcaddr
;
301 struct in6_addr
*target
;
303 neigh
->updated
= jiffies
;
304 read_unlock_bh(&neigh
->lock
);
306 target
= (struct in6_addr
*)&neigh
->primary_key
;
307 addrconf_addr_solict_mult(target
, &mcaddr
);
308 ndisc_send_ns(rt
->rt6i_dev
, NULL
, target
, &mcaddr
, NULL
);
310 read_unlock_bh(&neigh
->lock
);
313 static inline void rt6_probe(struct rt6_info
*rt
)
320 * Default Router Selection (RFC 2461 6.3.6)
322 static inline int rt6_check_dev(struct rt6_info
*rt
, int oif
)
324 struct net_device
*dev
= rt
->rt6i_dev
;
325 if (!oif
|| dev
->ifindex
== oif
)
327 if ((dev
->flags
& IFF_LOOPBACK
) &&
328 rt
->rt6i_idev
&& rt
->rt6i_idev
->dev
->ifindex
== oif
)
333 static inline int rt6_check_neigh(struct rt6_info
*rt
)
335 struct neighbour
*neigh
= rt
->rt6i_nexthop
;
337 if (rt
->rt6i_flags
& RTF_NONEXTHOP
||
338 !(rt
->rt6i_flags
& RTF_GATEWAY
))
341 read_lock_bh(&neigh
->lock
);
342 if (neigh
->nud_state
& NUD_VALID
)
344 else if (!(neigh
->nud_state
& NUD_FAILED
))
346 read_unlock_bh(&neigh
->lock
);
351 static int rt6_score_route(struct rt6_info
*rt
, int oif
,
356 m
= rt6_check_dev(rt
, oif
);
357 if (!m
&& (strict
& RT6_LOOKUP_F_IFACE
))
359 #ifdef CONFIG_IPV6_ROUTER_PREF
360 m
|= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(rt
->rt6i_flags
)) << 2;
362 n
= rt6_check_neigh(rt
);
363 if (!n
&& (strict
& RT6_LOOKUP_F_REACHABLE
))
368 static struct rt6_info
*find_match(struct rt6_info
*rt
, int oif
, int strict
,
369 int *mpri
, struct rt6_info
*match
)
373 if (rt6_check_expired(rt
))
376 m
= rt6_score_route(rt
, oif
, strict
);
381 if (strict
& RT6_LOOKUP_F_REACHABLE
)
385 } else if (strict
& RT6_LOOKUP_F_REACHABLE
) {
393 static struct rt6_info
*find_rr_leaf(struct fib6_node
*fn
,
394 struct rt6_info
*rr_head
,
395 u32 metric
, int oif
, int strict
)
397 struct rt6_info
*rt
, *match
;
401 for (rt
= rr_head
; rt
&& rt
->rt6i_metric
== metric
;
402 rt
= rt
->u
.dst
.rt6_next
)
403 match
= find_match(rt
, oif
, strict
, &mpri
, match
);
404 for (rt
= fn
->leaf
; rt
&& rt
!= rr_head
&& rt
->rt6i_metric
== metric
;
405 rt
= rt
->u
.dst
.rt6_next
)
406 match
= find_match(rt
, oif
, strict
, &mpri
, match
);
411 static struct rt6_info
*rt6_select(struct fib6_node
*fn
, int oif
, int strict
)
413 struct rt6_info
*match
, *rt0
;
415 RT6_TRACE("%s(fn->leaf=%p, oif=%d)\n",
416 __FUNCTION__
, fn
->leaf
, oif
);
420 fn
->rr_ptr
= rt0
= fn
->leaf
;
422 match
= find_rr_leaf(fn
, rt0
, rt0
->rt6i_metric
, oif
, strict
);
425 (strict
& RT6_LOOKUP_F_REACHABLE
)) {
426 struct rt6_info
*next
= rt0
->u
.dst
.rt6_next
;
428 /* no entries matched; do round-robin */
429 if (!next
|| next
->rt6i_metric
!= rt0
->rt6i_metric
)
436 RT6_TRACE("%s() => %p\n",
437 __FUNCTION__
, match
);
439 return (match
? match
: &ip6_null_entry
);
442 #ifdef CONFIG_IPV6_ROUTE_INFO
443 int rt6_route_rcv(struct net_device
*dev
, u8
*opt
, int len
,
444 struct in6_addr
*gwaddr
)
446 struct route_info
*rinfo
= (struct route_info
*) opt
;
447 struct in6_addr prefix_buf
, *prefix
;
452 if (len
< sizeof(struct route_info
)) {
456 /* Sanity check for prefix_len and length */
457 if (rinfo
->length
> 3) {
459 } else if (rinfo
->prefix_len
> 128) {
461 } else if (rinfo
->prefix_len
> 64) {
462 if (rinfo
->length
< 2) {
465 } else if (rinfo
->prefix_len
> 0) {
466 if (rinfo
->length
< 1) {
471 pref
= rinfo
->route_pref
;
472 if (pref
== ICMPV6_ROUTER_PREF_INVALID
)
473 pref
= ICMPV6_ROUTER_PREF_MEDIUM
;
475 lifetime
= ntohl(rinfo
->lifetime
);
476 if (lifetime
== 0xffffffff) {
478 } else if (lifetime
> 0x7fffffff/HZ
) {
479 /* Avoid arithmetic overflow */
480 lifetime
= 0x7fffffff/HZ
- 1;
483 if (rinfo
->length
== 3)
484 prefix
= (struct in6_addr
*)rinfo
->prefix
;
486 /* this function is safe */
487 ipv6_addr_prefix(&prefix_buf
,
488 (struct in6_addr
*)rinfo
->prefix
,
490 prefix
= &prefix_buf
;
493 rt
= rt6_get_route_info(prefix
, rinfo
->prefix_len
, gwaddr
, dev
->ifindex
);
495 if (rt
&& !lifetime
) {
501 rt
= rt6_add_route_info(prefix
, rinfo
->prefix_len
, gwaddr
, dev
->ifindex
,
504 rt
->rt6i_flags
= RTF_ROUTEINFO
|
505 (rt
->rt6i_flags
& ~RTF_PREF_MASK
) | RTF_PREF(pref
);
508 if (lifetime
== 0xffffffff) {
509 rt
->rt6i_flags
&= ~RTF_EXPIRES
;
511 rt
->rt6i_expires
= jiffies
+ HZ
* lifetime
;
512 rt
->rt6i_flags
|= RTF_EXPIRES
;
514 dst_release(&rt
->u
.dst
);
520 #define BACKTRACK(saddr) \
522 if (rt == &ip6_null_entry) { \
523 struct fib6_node *pn; \
525 if (fn->fn_flags & RTN_TL_ROOT) \
528 if (FIB6_SUBTREE(pn) && FIB6_SUBTREE(pn) != fn) \
529 fn = fib6_lookup(FIB6_SUBTREE(pn), NULL, saddr); \
532 if (fn->fn_flags & RTN_RTINFO) \
538 static struct rt6_info
*ip6_pol_route_lookup(struct fib6_table
*table
,
539 struct flowi
*fl
, int flags
)
541 struct fib6_node
*fn
;
544 read_lock_bh(&table
->tb6_lock
);
545 fn
= fib6_lookup(&table
->tb6_root
, &fl
->fl6_dst
, &fl
->fl6_src
);
548 rt
= rt6_device_match(rt
, fl
->oif
, flags
);
549 BACKTRACK(&fl
->fl6_src
);
551 dst_hold(&rt
->u
.dst
);
552 read_unlock_bh(&table
->tb6_lock
);
554 rt
->u
.dst
.lastuse
= jiffies
;
561 struct rt6_info
*rt6_lookup(struct in6_addr
*daddr
, struct in6_addr
*saddr
,
572 struct dst_entry
*dst
;
573 int flags
= strict
? RT6_LOOKUP_F_IFACE
: 0;
576 memcpy(&fl
.fl6_src
, saddr
, sizeof(*saddr
));
577 flags
|= RT6_LOOKUP_F_HAS_SADDR
;
580 dst
= fib6_rule_lookup(&fl
, flags
, ip6_pol_route_lookup
);
582 return (struct rt6_info
*) dst
;
589 EXPORT_SYMBOL(rt6_lookup
);
591 /* ip6_ins_rt is called with FREE table->tb6_lock.
592 It takes new route entry, the addition fails by any reason the
593 route is freed. In any case, if caller does not hold it, it may
597 static int __ip6_ins_rt(struct rt6_info
*rt
, struct nl_info
*info
)
600 struct fib6_table
*table
;
602 table
= rt
->rt6i_table
;
603 write_lock_bh(&table
->tb6_lock
);
604 err
= fib6_add(&table
->tb6_root
, rt
, info
);
605 write_unlock_bh(&table
->tb6_lock
);
610 int ip6_ins_rt(struct rt6_info
*rt
)
612 return __ip6_ins_rt(rt
, NULL
);
615 static struct rt6_info
*rt6_alloc_cow(struct rt6_info
*ort
, struct in6_addr
*daddr
,
616 struct in6_addr
*saddr
)
624 rt
= ip6_rt_copy(ort
);
627 if (!(rt
->rt6i_flags
&RTF_GATEWAY
)) {
628 if (rt
->rt6i_dst
.plen
!= 128 &&
629 ipv6_addr_equal(&rt
->rt6i_dst
.addr
, daddr
))
630 rt
->rt6i_flags
|= RTF_ANYCAST
;
631 ipv6_addr_copy(&rt
->rt6i_gateway
, daddr
);
634 ipv6_addr_copy(&rt
->rt6i_dst
.addr
, daddr
);
635 rt
->rt6i_dst
.plen
= 128;
636 rt
->rt6i_flags
|= RTF_CACHE
;
637 rt
->u
.dst
.flags
|= DST_HOST
;
639 #ifdef CONFIG_IPV6_SUBTREES
640 if (rt
->rt6i_src
.plen
&& saddr
) {
641 ipv6_addr_copy(&rt
->rt6i_src
.addr
, saddr
);
642 rt
->rt6i_src
.plen
= 128;
646 rt
->rt6i_nexthop
= ndisc_get_neigh(rt
->rt6i_dev
, &rt
->rt6i_gateway
);
653 static struct rt6_info
*rt6_alloc_clone(struct rt6_info
*ort
, struct in6_addr
*daddr
)
655 struct rt6_info
*rt
= ip6_rt_copy(ort
);
657 ipv6_addr_copy(&rt
->rt6i_dst
.addr
, daddr
);
658 rt
->rt6i_dst
.plen
= 128;
659 rt
->rt6i_flags
|= RTF_CACHE
;
660 rt
->u
.dst
.flags
|= DST_HOST
;
661 rt
->rt6i_nexthop
= neigh_clone(ort
->rt6i_nexthop
);
666 static struct rt6_info
*ip6_pol_route(struct fib6_table
*table
, int oif
,
667 struct flowi
*fl
, int flags
)
669 struct fib6_node
*fn
;
670 struct rt6_info
*rt
, *nrt
;
674 int reachable
= ipv6_devconf
.forwarding
? 0 : RT6_LOOKUP_F_REACHABLE
;
676 strict
|= flags
& RT6_LOOKUP_F_IFACE
;
679 read_lock_bh(&table
->tb6_lock
);
682 fn
= fib6_lookup(&table
->tb6_root
, &fl
->fl6_dst
, &fl
->fl6_src
);
685 rt
= rt6_select(fn
, oif
, strict
| reachable
);
686 BACKTRACK(&fl
->fl6_src
);
687 if (rt
== &ip6_null_entry
||
688 rt
->rt6i_flags
& RTF_CACHE
)
691 dst_hold(&rt
->u
.dst
);
692 read_unlock_bh(&table
->tb6_lock
);
694 if (!rt
->rt6i_nexthop
&& !(rt
->rt6i_flags
& RTF_NONEXTHOP
))
695 nrt
= rt6_alloc_cow(rt
, &fl
->fl6_dst
, &fl
->fl6_src
);
697 #if CLONE_OFFLINK_ROUTE
698 nrt
= rt6_alloc_clone(rt
, &fl
->fl6_dst
);
704 dst_release(&rt
->u
.dst
);
705 rt
= nrt
? : &ip6_null_entry
;
707 dst_hold(&rt
->u
.dst
);
709 err
= ip6_ins_rt(nrt
);
718 * Race condition! In the gap, when table->tb6_lock was
719 * released someone could insert this route. Relookup.
721 dst_release(&rt
->u
.dst
);
729 dst_hold(&rt
->u
.dst
);
730 read_unlock_bh(&table
->tb6_lock
);
732 rt
->u
.dst
.lastuse
= jiffies
;
738 static struct rt6_info
*ip6_pol_route_input(struct fib6_table
*table
,
739 struct flowi
*fl
, int flags
)
741 return ip6_pol_route(table
, fl
->iif
, fl
, flags
);
744 void ip6_route_input(struct sk_buff
*skb
)
746 struct ipv6hdr
*iph
= ipv6_hdr(skb
);
747 int flags
= RT6_LOOKUP_F_HAS_SADDR
;
749 .iif
= skb
->dev
->ifindex
,
754 .flowlabel
= (* (__be32
*) iph
)&IPV6_FLOWINFO_MASK
,
758 .proto
= iph
->nexthdr
,
761 if (rt6_need_strict(&iph
->daddr
))
762 flags
|= RT6_LOOKUP_F_IFACE
;
764 skb
->dst
= fib6_rule_lookup(&fl
, flags
, ip6_pol_route_input
);
767 static struct rt6_info
*ip6_pol_route_output(struct fib6_table
*table
,
768 struct flowi
*fl
, int flags
)
770 return ip6_pol_route(table
, fl
->oif
, fl
, flags
);
773 struct dst_entry
* ip6_route_output(struct sock
*sk
, struct flowi
*fl
)
777 if (rt6_need_strict(&fl
->fl6_dst
))
778 flags
|= RT6_LOOKUP_F_IFACE
;
780 if (!ipv6_addr_any(&fl
->fl6_src
))
781 flags
|= RT6_LOOKUP_F_HAS_SADDR
;
783 return fib6_rule_lookup(fl
, flags
, ip6_pol_route_output
);
786 EXPORT_SYMBOL(ip6_route_output
);
788 static int ip6_blackhole_output(struct sk_buff
*skb
)
794 int ip6_dst_blackhole(struct sock
*sk
, struct dst_entry
**dstp
, struct flowi
*fl
)
796 struct rt6_info
*ort
= (struct rt6_info
*) *dstp
;
797 struct rt6_info
*rt
= (struct rt6_info
*)
798 dst_alloc(&ip6_dst_blackhole_ops
);
799 struct dst_entry
*new = NULL
;
804 atomic_set(&new->__refcnt
, 1);
806 new->input
= ip6_blackhole_output
;
807 new->output
= ip6_blackhole_output
;
809 memcpy(new->metrics
, ort
->u
.dst
.metrics
, RTAX_MAX
*sizeof(u32
));
810 new->dev
= ort
->u
.dst
.dev
;
813 rt
->rt6i_idev
= ort
->rt6i_idev
;
815 in6_dev_hold(rt
->rt6i_idev
);
816 rt
->rt6i_expires
= 0;
818 ipv6_addr_copy(&rt
->rt6i_gateway
, &ort
->rt6i_gateway
);
819 rt
->rt6i_flags
= ort
->rt6i_flags
& ~RTF_EXPIRES
;
822 memcpy(&rt
->rt6i_dst
, &ort
->rt6i_dst
, sizeof(struct rt6key
));
823 #ifdef CONFIG_IPV6_SUBTREES
824 memcpy(&rt
->rt6i_src
, &ort
->rt6i_src
, sizeof(struct rt6key
));
832 return (new ? 0 : -ENOMEM
);
834 EXPORT_SYMBOL_GPL(ip6_dst_blackhole
);
837 * Destination cache support functions
840 static struct dst_entry
*ip6_dst_check(struct dst_entry
*dst
, u32 cookie
)
844 rt
= (struct rt6_info
*) dst
;
846 if (rt
&& rt
->rt6i_node
&& (rt
->rt6i_node
->fn_sernum
== cookie
))
852 static struct dst_entry
*ip6_negative_advice(struct dst_entry
*dst
)
854 struct rt6_info
*rt
= (struct rt6_info
*) dst
;
857 if (rt
->rt6i_flags
& RTF_CACHE
)
865 static void ip6_link_failure(struct sk_buff
*skb
)
869 icmpv6_send(skb
, ICMPV6_DEST_UNREACH
, ICMPV6_ADDR_UNREACH
, 0, skb
->dev
);
871 rt
= (struct rt6_info
*) skb
->dst
;
873 if (rt
->rt6i_flags
&RTF_CACHE
) {
874 dst_set_expires(&rt
->u
.dst
, 0);
875 rt
->rt6i_flags
|= RTF_EXPIRES
;
876 } else if (rt
->rt6i_node
&& (rt
->rt6i_flags
& RTF_DEFAULT
))
877 rt
->rt6i_node
->fn_sernum
= -1;
881 static void ip6_rt_update_pmtu(struct dst_entry
*dst
, u32 mtu
)
883 struct rt6_info
*rt6
= (struct rt6_info
*)dst
;
885 if (mtu
< dst_mtu(dst
) && rt6
->rt6i_dst
.plen
== 128) {
886 rt6
->rt6i_flags
|= RTF_MODIFIED
;
887 if (mtu
< IPV6_MIN_MTU
) {
889 dst
->metrics
[RTAX_FEATURES
-1] |= RTAX_FEATURE_ALLFRAG
;
891 dst
->metrics
[RTAX_MTU
-1] = mtu
;
892 call_netevent_notifiers(NETEVENT_PMTU_UPDATE
, dst
);
896 static int ipv6_get_mtu(struct net_device
*dev
);
898 static inline unsigned int ipv6_advmss(unsigned int mtu
)
900 mtu
-= sizeof(struct ipv6hdr
) + sizeof(struct tcphdr
);
902 if (mtu
< ip6_rt_min_advmss
)
903 mtu
= ip6_rt_min_advmss
;
906 * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and
907 * corresponding MSS is IPV6_MAXPLEN - tcp_header_size.
908 * IPV6_MAXPLEN is also valid and means: "any MSS,
909 * rely only on pmtu discovery"
911 if (mtu
> IPV6_MAXPLEN
- sizeof(struct tcphdr
))
916 static struct dst_entry
*ndisc_dst_gc_list
;
917 static DEFINE_SPINLOCK(ndisc_lock
);
919 struct dst_entry
*ndisc_dst_alloc(struct net_device
*dev
,
920 struct neighbour
*neigh
,
921 struct in6_addr
*addr
,
922 int (*output
)(struct sk_buff
*))
925 struct inet6_dev
*idev
= in6_dev_get(dev
);
927 if (unlikely(idev
== NULL
))
930 rt
= ip6_dst_alloc();
931 if (unlikely(rt
== NULL
)) {
940 neigh
= ndisc_get_neigh(dev
, addr
);
943 rt
->rt6i_idev
= idev
;
944 rt
->rt6i_nexthop
= neigh
;
945 atomic_set(&rt
->u
.dst
.__refcnt
, 1);
946 rt
->u
.dst
.metrics
[RTAX_HOPLIMIT
-1] = 255;
947 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = ipv6_get_mtu(rt
->rt6i_dev
);
948 rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] = ipv6_advmss(dst_mtu(&rt
->u
.dst
));
949 rt
->u
.dst
.output
= output
;
951 #if 0 /* there's no chance to use these for ndisc */
952 rt
->u
.dst
.flags
= ipv6_addr_type(addr
) & IPV6_ADDR_UNICAST
955 ipv6_addr_copy(&rt
->rt6i_dst
.addr
, addr
);
956 rt
->rt6i_dst
.plen
= 128;
959 spin_lock_bh(&ndisc_lock
);
960 rt
->u
.dst
.next
= ndisc_dst_gc_list
;
961 ndisc_dst_gc_list
= &rt
->u
.dst
;
962 spin_unlock_bh(&ndisc_lock
);
964 fib6_force_start_gc();
970 int ndisc_dst_gc(int *more
)
972 struct dst_entry
*dst
, *next
, **pprev
;
978 spin_lock_bh(&ndisc_lock
);
979 pprev
= &ndisc_dst_gc_list
;
981 while ((dst
= *pprev
) != NULL
) {
982 if (!atomic_read(&dst
->__refcnt
)) {
992 spin_unlock_bh(&ndisc_lock
);
997 static int ip6_dst_gc(void)
999 static unsigned expire
= 30*HZ
;
1000 static unsigned long last_gc
;
1001 unsigned long now
= jiffies
;
1003 if (time_after(last_gc
+ ip6_rt_gc_min_interval
, now
) &&
1004 atomic_read(&ip6_dst_ops
.entries
) <= ip6_rt_max_size
)
1008 fib6_run_gc(expire
);
1010 if (atomic_read(&ip6_dst_ops
.entries
) < ip6_dst_ops
.gc_thresh
)
1011 expire
= ip6_rt_gc_timeout
>>1;
1014 expire
-= expire
>>ip6_rt_gc_elasticity
;
1015 return (atomic_read(&ip6_dst_ops
.entries
) > ip6_rt_max_size
);
1018 /* Clean host part of a prefix. Not necessary in radix tree,
1019 but results in cleaner routing tables.
1021 Remove it only when all the things will work!
1024 static int ipv6_get_mtu(struct net_device
*dev
)
1026 int mtu
= IPV6_MIN_MTU
;
1027 struct inet6_dev
*idev
;
1029 idev
= in6_dev_get(dev
);
1031 mtu
= idev
->cnf
.mtu6
;
1037 int ipv6_get_hoplimit(struct net_device
*dev
)
1039 int hoplimit
= ipv6_devconf
.hop_limit
;
1040 struct inet6_dev
*idev
;
1042 idev
= in6_dev_get(dev
);
1044 hoplimit
= idev
->cnf
.hop_limit
;
1054 int ip6_route_add(struct fib6_config
*cfg
)
1057 struct rt6_info
*rt
= NULL
;
1058 struct net_device
*dev
= NULL
;
1059 struct inet6_dev
*idev
= NULL
;
1060 struct fib6_table
*table
;
1063 if (cfg
->fc_dst_len
> 128 || cfg
->fc_src_len
> 128)
1065 #ifndef CONFIG_IPV6_SUBTREES
1066 if (cfg
->fc_src_len
)
1069 if (cfg
->fc_ifindex
) {
1071 dev
= dev_get_by_index(&init_net
, cfg
->fc_ifindex
);
1074 idev
= in6_dev_get(dev
);
1079 if (cfg
->fc_metric
== 0)
1080 cfg
->fc_metric
= IP6_RT_PRIO_USER
;
1082 table
= fib6_new_table(cfg
->fc_table
);
1083 if (table
== NULL
) {
1088 rt
= ip6_dst_alloc();
1095 rt
->u
.dst
.obsolete
= -1;
1096 rt
->rt6i_expires
= jiffies
+ clock_t_to_jiffies(cfg
->fc_expires
);
1098 if (cfg
->fc_protocol
== RTPROT_UNSPEC
)
1099 cfg
->fc_protocol
= RTPROT_BOOT
;
1100 rt
->rt6i_protocol
= cfg
->fc_protocol
;
1102 addr_type
= ipv6_addr_type(&cfg
->fc_dst
);
1104 if (addr_type
& IPV6_ADDR_MULTICAST
)
1105 rt
->u
.dst
.input
= ip6_mc_input
;
1107 rt
->u
.dst
.input
= ip6_forward
;
1109 rt
->u
.dst
.output
= ip6_output
;
1111 ipv6_addr_prefix(&rt
->rt6i_dst
.addr
, &cfg
->fc_dst
, cfg
->fc_dst_len
);
1112 rt
->rt6i_dst
.plen
= cfg
->fc_dst_len
;
1113 if (rt
->rt6i_dst
.plen
== 128)
1114 rt
->u
.dst
.flags
= DST_HOST
;
1116 #ifdef CONFIG_IPV6_SUBTREES
1117 ipv6_addr_prefix(&rt
->rt6i_src
.addr
, &cfg
->fc_src
, cfg
->fc_src_len
);
1118 rt
->rt6i_src
.plen
= cfg
->fc_src_len
;
1121 rt
->rt6i_metric
= cfg
->fc_metric
;
1123 /* We cannot add true routes via loopback here,
1124 they would result in kernel looping; promote them to reject routes
1126 if ((cfg
->fc_flags
& RTF_REJECT
) ||
1127 (dev
&& (dev
->flags
&IFF_LOOPBACK
) && !(addr_type
&IPV6_ADDR_LOOPBACK
))) {
1128 /* hold loopback dev/idev if we haven't done so. */
1129 if (dev
!= init_net
.loopback_dev
) {
1134 dev
= init_net
.loopback_dev
;
1136 idev
= in6_dev_get(dev
);
1142 rt
->u
.dst
.output
= ip6_pkt_discard_out
;
1143 rt
->u
.dst
.input
= ip6_pkt_discard
;
1144 rt
->u
.dst
.error
= -ENETUNREACH
;
1145 rt
->rt6i_flags
= RTF_REJECT
|RTF_NONEXTHOP
;
1149 if (cfg
->fc_flags
& RTF_GATEWAY
) {
1150 struct in6_addr
*gw_addr
;
1153 gw_addr
= &cfg
->fc_gateway
;
1154 ipv6_addr_copy(&rt
->rt6i_gateway
, gw_addr
);
1155 gwa_type
= ipv6_addr_type(gw_addr
);
1157 if (gwa_type
!= (IPV6_ADDR_LINKLOCAL
|IPV6_ADDR_UNICAST
)) {
1158 struct rt6_info
*grt
;
1160 /* IPv6 strictly inhibits using not link-local
1161 addresses as nexthop address.
1162 Otherwise, router will not able to send redirects.
1163 It is very good, but in some (rare!) circumstances
1164 (SIT, PtP, NBMA NOARP links) it is handy to allow
1165 some exceptions. --ANK
1168 if (!(gwa_type
&IPV6_ADDR_UNICAST
))
1171 grt
= rt6_lookup(gw_addr
, NULL
, cfg
->fc_ifindex
, 1);
1173 err
= -EHOSTUNREACH
;
1177 if (dev
!= grt
->rt6i_dev
) {
1178 dst_release(&grt
->u
.dst
);
1182 dev
= grt
->rt6i_dev
;
1183 idev
= grt
->rt6i_idev
;
1185 in6_dev_hold(grt
->rt6i_idev
);
1187 if (!(grt
->rt6i_flags
&RTF_GATEWAY
))
1189 dst_release(&grt
->u
.dst
);
1195 if (dev
== NULL
|| (dev
->flags
&IFF_LOOPBACK
))
1203 if (cfg
->fc_flags
& (RTF_GATEWAY
| RTF_NONEXTHOP
)) {
1204 rt
->rt6i_nexthop
= __neigh_lookup_errno(&nd_tbl
, &rt
->rt6i_gateway
, dev
);
1205 if (IS_ERR(rt
->rt6i_nexthop
)) {
1206 err
= PTR_ERR(rt
->rt6i_nexthop
);
1207 rt
->rt6i_nexthop
= NULL
;
1212 rt
->rt6i_flags
= cfg
->fc_flags
;
1219 nla_for_each_attr(nla
, cfg
->fc_mx
, cfg
->fc_mx_len
, remaining
) {
1220 int type
= nla_type(nla
);
1223 if (type
> RTAX_MAX
) {
1228 rt
->u
.dst
.metrics
[type
- 1] = nla_get_u32(nla
);
1233 if (rt
->u
.dst
.metrics
[RTAX_HOPLIMIT
-1] == 0)
1234 rt
->u
.dst
.metrics
[RTAX_HOPLIMIT
-1] = -1;
1235 if (!rt
->u
.dst
.metrics
[RTAX_MTU
-1])
1236 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = ipv6_get_mtu(dev
);
1237 if (!rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1])
1238 rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] = ipv6_advmss(dst_mtu(&rt
->u
.dst
));
1239 rt
->u
.dst
.dev
= dev
;
1240 rt
->rt6i_idev
= idev
;
1241 rt
->rt6i_table
= table
;
1242 return __ip6_ins_rt(rt
, &cfg
->fc_nlinfo
);
1250 dst_free(&rt
->u
.dst
);
1254 static int __ip6_del_rt(struct rt6_info
*rt
, struct nl_info
*info
)
1257 struct fib6_table
*table
;
1259 if (rt
== &ip6_null_entry
)
1262 table
= rt
->rt6i_table
;
1263 write_lock_bh(&table
->tb6_lock
);
1265 err
= fib6_del(rt
, info
);
1266 dst_release(&rt
->u
.dst
);
1268 write_unlock_bh(&table
->tb6_lock
);
1273 int ip6_del_rt(struct rt6_info
*rt
)
1275 return __ip6_del_rt(rt
, NULL
);
1278 static int ip6_route_del(struct fib6_config
*cfg
)
1280 struct fib6_table
*table
;
1281 struct fib6_node
*fn
;
1282 struct rt6_info
*rt
;
1285 table
= fib6_get_table(cfg
->fc_table
);
1289 read_lock_bh(&table
->tb6_lock
);
1291 fn
= fib6_locate(&table
->tb6_root
,
1292 &cfg
->fc_dst
, cfg
->fc_dst_len
,
1293 &cfg
->fc_src
, cfg
->fc_src_len
);
1296 for (rt
= fn
->leaf
; rt
; rt
= rt
->u
.dst
.rt6_next
) {
1297 if (cfg
->fc_ifindex
&&
1298 (rt
->rt6i_dev
== NULL
||
1299 rt
->rt6i_dev
->ifindex
!= cfg
->fc_ifindex
))
1301 if (cfg
->fc_flags
& RTF_GATEWAY
&&
1302 !ipv6_addr_equal(&cfg
->fc_gateway
, &rt
->rt6i_gateway
))
1304 if (cfg
->fc_metric
&& cfg
->fc_metric
!= rt
->rt6i_metric
)
1306 dst_hold(&rt
->u
.dst
);
1307 read_unlock_bh(&table
->tb6_lock
);
1309 return __ip6_del_rt(rt
, &cfg
->fc_nlinfo
);
1312 read_unlock_bh(&table
->tb6_lock
);
1320 struct ip6rd_flowi
{
1322 struct in6_addr gateway
;
1325 static struct rt6_info
*__ip6_route_redirect(struct fib6_table
*table
,
1329 struct ip6rd_flowi
*rdfl
= (struct ip6rd_flowi
*)fl
;
1330 struct rt6_info
*rt
;
1331 struct fib6_node
*fn
;
1334 * Get the "current" route for this destination and
1335 * check if the redirect has come from approriate router.
1337 * RFC 2461 specifies that redirects should only be
1338 * accepted if they come from the nexthop to the target.
1339 * Due to the way the routes are chosen, this notion
1340 * is a bit fuzzy and one might need to check all possible
1344 read_lock_bh(&table
->tb6_lock
);
1345 fn
= fib6_lookup(&table
->tb6_root
, &fl
->fl6_dst
, &fl
->fl6_src
);
1347 for (rt
= fn
->leaf
; rt
; rt
= rt
->u
.dst
.rt6_next
) {
1349 * Current route is on-link; redirect is always invalid.
1351 * Seems, previous statement is not true. It could
1352 * be node, which looks for us as on-link (f.e. proxy ndisc)
1353 * But then router serving it might decide, that we should
1354 * know truth 8)8) --ANK (980726).
1356 if (rt6_check_expired(rt
))
1358 if (!(rt
->rt6i_flags
& RTF_GATEWAY
))
1360 if (fl
->oif
!= rt
->rt6i_dev
->ifindex
)
1362 if (!ipv6_addr_equal(&rdfl
->gateway
, &rt
->rt6i_gateway
))
1368 rt
= &ip6_null_entry
;
1369 BACKTRACK(&fl
->fl6_src
);
1371 dst_hold(&rt
->u
.dst
);
1373 read_unlock_bh(&table
->tb6_lock
);
1378 static struct rt6_info
*ip6_route_redirect(struct in6_addr
*dest
,
1379 struct in6_addr
*src
,
1380 struct in6_addr
*gateway
,
1381 struct net_device
*dev
)
1383 int flags
= RT6_LOOKUP_F_HAS_SADDR
;
1384 struct ip6rd_flowi rdfl
= {
1386 .oif
= dev
->ifindex
,
1394 .gateway
= *gateway
,
1397 if (rt6_need_strict(dest
))
1398 flags
|= RT6_LOOKUP_F_IFACE
;
1400 return (struct rt6_info
*)fib6_rule_lookup((struct flowi
*)&rdfl
, flags
, __ip6_route_redirect
);
1403 void rt6_redirect(struct in6_addr
*dest
, struct in6_addr
*src
,
1404 struct in6_addr
*saddr
,
1405 struct neighbour
*neigh
, u8
*lladdr
, int on_link
)
1407 struct rt6_info
*rt
, *nrt
= NULL
;
1408 struct netevent_redirect netevent
;
1410 rt
= ip6_route_redirect(dest
, src
, saddr
, neigh
->dev
);
1412 if (rt
== &ip6_null_entry
) {
1413 if (net_ratelimit())
1414 printk(KERN_DEBUG
"rt6_redirect: source isn't a valid nexthop "
1415 "for redirect target\n");
1420 * We have finally decided to accept it.
1423 neigh_update(neigh
, lladdr
, NUD_STALE
,
1424 NEIGH_UPDATE_F_WEAK_OVERRIDE
|
1425 NEIGH_UPDATE_F_OVERRIDE
|
1426 (on_link
? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER
|
1427 NEIGH_UPDATE_F_ISROUTER
))
1431 * Redirect received -> path was valid.
1432 * Look, redirects are sent only in response to data packets,
1433 * so that this nexthop apparently is reachable. --ANK
1435 dst_confirm(&rt
->u
.dst
);
1437 /* Duplicate redirect: silently ignore. */
1438 if (neigh
== rt
->u
.dst
.neighbour
)
1441 nrt
= ip6_rt_copy(rt
);
1445 nrt
->rt6i_flags
= RTF_GATEWAY
|RTF_UP
|RTF_DYNAMIC
|RTF_CACHE
;
1447 nrt
->rt6i_flags
&= ~RTF_GATEWAY
;
1449 ipv6_addr_copy(&nrt
->rt6i_dst
.addr
, dest
);
1450 nrt
->rt6i_dst
.plen
= 128;
1451 nrt
->u
.dst
.flags
|= DST_HOST
;
1453 ipv6_addr_copy(&nrt
->rt6i_gateway
, (struct in6_addr
*)neigh
->primary_key
);
1454 nrt
->rt6i_nexthop
= neigh_clone(neigh
);
1455 /* Reset pmtu, it may be better */
1456 nrt
->u
.dst
.metrics
[RTAX_MTU
-1] = ipv6_get_mtu(neigh
->dev
);
1457 nrt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] = ipv6_advmss(dst_mtu(&nrt
->u
.dst
));
1459 if (ip6_ins_rt(nrt
))
1462 netevent
.old
= &rt
->u
.dst
;
1463 netevent
.new = &nrt
->u
.dst
;
1464 call_netevent_notifiers(NETEVENT_REDIRECT
, &netevent
);
1466 if (rt
->rt6i_flags
&RTF_CACHE
) {
1472 dst_release(&rt
->u
.dst
);
1477 * Handle ICMP "packet too big" messages
1478 * i.e. Path MTU discovery
1481 void rt6_pmtu_discovery(struct in6_addr
*daddr
, struct in6_addr
*saddr
,
1482 struct net_device
*dev
, u32 pmtu
)
1484 struct rt6_info
*rt
, *nrt
;
1487 rt
= rt6_lookup(daddr
, saddr
, dev
->ifindex
, 0);
1491 if (pmtu
>= dst_mtu(&rt
->u
.dst
))
1494 if (pmtu
< IPV6_MIN_MTU
) {
1496 * According to RFC2460, PMTU is set to the IPv6 Minimum Link
1497 * MTU (1280) and a fragment header should always be included
1498 * after a node receiving Too Big message reporting PMTU is
1499 * less than the IPv6 Minimum Link MTU.
1501 pmtu
= IPV6_MIN_MTU
;
1505 /* New mtu received -> path was valid.
1506 They are sent only in response to data packets,
1507 so that this nexthop apparently is reachable. --ANK
1509 dst_confirm(&rt
->u
.dst
);
1511 /* Host route. If it is static, it would be better
1512 not to override it, but add new one, so that
1513 when cache entry will expire old pmtu
1514 would return automatically.
1516 if (rt
->rt6i_flags
& RTF_CACHE
) {
1517 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = pmtu
;
1519 rt
->u
.dst
.metrics
[RTAX_FEATURES
-1] |= RTAX_FEATURE_ALLFRAG
;
1520 dst_set_expires(&rt
->u
.dst
, ip6_rt_mtu_expires
);
1521 rt
->rt6i_flags
|= RTF_MODIFIED
|RTF_EXPIRES
;
1526 Two cases are possible:
1527 1. It is connected route. Action: COW
1528 2. It is gatewayed route or NONEXTHOP route. Action: clone it.
1530 if (!rt
->rt6i_nexthop
&& !(rt
->rt6i_flags
& RTF_NONEXTHOP
))
1531 nrt
= rt6_alloc_cow(rt
, daddr
, saddr
);
1533 nrt
= rt6_alloc_clone(rt
, daddr
);
1536 nrt
->u
.dst
.metrics
[RTAX_MTU
-1] = pmtu
;
1538 nrt
->u
.dst
.metrics
[RTAX_FEATURES
-1] |= RTAX_FEATURE_ALLFRAG
;
1540 /* According to RFC 1981, detecting PMTU increase shouldn't be
1541 * happened within 5 mins, the recommended timer is 10 mins.
1542 * Here this route expiration time is set to ip6_rt_mtu_expires
1543 * which is 10 mins. After 10 mins the decreased pmtu is expired
1544 * and detecting PMTU increase will be automatically happened.
1546 dst_set_expires(&nrt
->u
.dst
, ip6_rt_mtu_expires
);
1547 nrt
->rt6i_flags
|= RTF_DYNAMIC
|RTF_EXPIRES
;
1552 dst_release(&rt
->u
.dst
);
1556 * Misc support functions
1559 static struct rt6_info
* ip6_rt_copy(struct rt6_info
*ort
)
1561 struct rt6_info
*rt
= ip6_dst_alloc();
1564 rt
->u
.dst
.input
= ort
->u
.dst
.input
;
1565 rt
->u
.dst
.output
= ort
->u
.dst
.output
;
1567 memcpy(rt
->u
.dst
.metrics
, ort
->u
.dst
.metrics
, RTAX_MAX
*sizeof(u32
));
1568 rt
->u
.dst
.error
= ort
->u
.dst
.error
;
1569 rt
->u
.dst
.dev
= ort
->u
.dst
.dev
;
1571 dev_hold(rt
->u
.dst
.dev
);
1572 rt
->rt6i_idev
= ort
->rt6i_idev
;
1574 in6_dev_hold(rt
->rt6i_idev
);
1575 rt
->u
.dst
.lastuse
= jiffies
;
1576 rt
->rt6i_expires
= 0;
1578 ipv6_addr_copy(&rt
->rt6i_gateway
, &ort
->rt6i_gateway
);
1579 rt
->rt6i_flags
= ort
->rt6i_flags
& ~RTF_EXPIRES
;
1580 rt
->rt6i_metric
= 0;
1582 memcpy(&rt
->rt6i_dst
, &ort
->rt6i_dst
, sizeof(struct rt6key
));
1583 #ifdef CONFIG_IPV6_SUBTREES
1584 memcpy(&rt
->rt6i_src
, &ort
->rt6i_src
, sizeof(struct rt6key
));
1586 rt
->rt6i_table
= ort
->rt6i_table
;
1591 #ifdef CONFIG_IPV6_ROUTE_INFO
1592 static struct rt6_info
*rt6_get_route_info(struct in6_addr
*prefix
, int prefixlen
,
1593 struct in6_addr
*gwaddr
, int ifindex
)
1595 struct fib6_node
*fn
;
1596 struct rt6_info
*rt
= NULL
;
1597 struct fib6_table
*table
;
1599 table
= fib6_get_table(RT6_TABLE_INFO
);
1603 write_lock_bh(&table
->tb6_lock
);
1604 fn
= fib6_locate(&table
->tb6_root
, prefix
,prefixlen
, NULL
, 0);
1608 for (rt
= fn
->leaf
; rt
; rt
= rt
->u
.dst
.rt6_next
) {
1609 if (rt
->rt6i_dev
->ifindex
!= ifindex
)
1611 if ((rt
->rt6i_flags
& (RTF_ROUTEINFO
|RTF_GATEWAY
)) != (RTF_ROUTEINFO
|RTF_GATEWAY
))
1613 if (!ipv6_addr_equal(&rt
->rt6i_gateway
, gwaddr
))
1615 dst_hold(&rt
->u
.dst
);
1619 write_unlock_bh(&table
->tb6_lock
);
1623 static struct rt6_info
*rt6_add_route_info(struct in6_addr
*prefix
, int prefixlen
,
1624 struct in6_addr
*gwaddr
, int ifindex
,
1627 struct fib6_config cfg
= {
1628 .fc_table
= RT6_TABLE_INFO
,
1630 .fc_ifindex
= ifindex
,
1631 .fc_dst_len
= prefixlen
,
1632 .fc_flags
= RTF_GATEWAY
| RTF_ADDRCONF
| RTF_ROUTEINFO
|
1633 RTF_UP
| RTF_PREF(pref
),
1636 ipv6_addr_copy(&cfg
.fc_dst
, prefix
);
1637 ipv6_addr_copy(&cfg
.fc_gateway
, gwaddr
);
1639 /* We should treat it as a default route if prefix length is 0. */
1641 cfg
.fc_flags
|= RTF_DEFAULT
;
1643 ip6_route_add(&cfg
);
1645 return rt6_get_route_info(prefix
, prefixlen
, gwaddr
, ifindex
);
1649 struct rt6_info
*rt6_get_dflt_router(struct in6_addr
*addr
, struct net_device
*dev
)
1651 struct rt6_info
*rt
;
1652 struct fib6_table
*table
;
1654 table
= fib6_get_table(RT6_TABLE_DFLT
);
1658 write_lock_bh(&table
->tb6_lock
);
1659 for (rt
= table
->tb6_root
.leaf
; rt
; rt
=rt
->u
.dst
.rt6_next
) {
1660 if (dev
== rt
->rt6i_dev
&&
1661 ((rt
->rt6i_flags
& (RTF_ADDRCONF
| RTF_DEFAULT
)) == (RTF_ADDRCONF
| RTF_DEFAULT
)) &&
1662 ipv6_addr_equal(&rt
->rt6i_gateway
, addr
))
1666 dst_hold(&rt
->u
.dst
);
1667 write_unlock_bh(&table
->tb6_lock
);
1671 struct rt6_info
*rt6_add_dflt_router(struct in6_addr
*gwaddr
,
1672 struct net_device
*dev
,
1675 struct fib6_config cfg
= {
1676 .fc_table
= RT6_TABLE_DFLT
,
1678 .fc_ifindex
= dev
->ifindex
,
1679 .fc_flags
= RTF_GATEWAY
| RTF_ADDRCONF
| RTF_DEFAULT
|
1680 RTF_UP
| RTF_EXPIRES
| RTF_PREF(pref
),
1683 ipv6_addr_copy(&cfg
.fc_gateway
, gwaddr
);
1685 ip6_route_add(&cfg
);
1687 return rt6_get_dflt_router(gwaddr
, dev
);
1690 void rt6_purge_dflt_routers(void)
1692 struct rt6_info
*rt
;
1693 struct fib6_table
*table
;
1695 /* NOTE: Keep consistent with rt6_get_dflt_router */
1696 table
= fib6_get_table(RT6_TABLE_DFLT
);
1701 read_lock_bh(&table
->tb6_lock
);
1702 for (rt
= table
->tb6_root
.leaf
; rt
; rt
= rt
->u
.dst
.rt6_next
) {
1703 if (rt
->rt6i_flags
& (RTF_DEFAULT
| RTF_ADDRCONF
)) {
1704 dst_hold(&rt
->u
.dst
);
1705 read_unlock_bh(&table
->tb6_lock
);
1710 read_unlock_bh(&table
->tb6_lock
);
1713 static void rtmsg_to_fib6_config(struct in6_rtmsg
*rtmsg
,
1714 struct fib6_config
*cfg
)
1716 memset(cfg
, 0, sizeof(*cfg
));
1718 cfg
->fc_table
= RT6_TABLE_MAIN
;
1719 cfg
->fc_ifindex
= rtmsg
->rtmsg_ifindex
;
1720 cfg
->fc_metric
= rtmsg
->rtmsg_metric
;
1721 cfg
->fc_expires
= rtmsg
->rtmsg_info
;
1722 cfg
->fc_dst_len
= rtmsg
->rtmsg_dst_len
;
1723 cfg
->fc_src_len
= rtmsg
->rtmsg_src_len
;
1724 cfg
->fc_flags
= rtmsg
->rtmsg_flags
;
1726 ipv6_addr_copy(&cfg
->fc_dst
, &rtmsg
->rtmsg_dst
);
1727 ipv6_addr_copy(&cfg
->fc_src
, &rtmsg
->rtmsg_src
);
1728 ipv6_addr_copy(&cfg
->fc_gateway
, &rtmsg
->rtmsg_gateway
);
1731 int ipv6_route_ioctl(unsigned int cmd
, void __user
*arg
)
1733 struct fib6_config cfg
;
1734 struct in6_rtmsg rtmsg
;
1738 case SIOCADDRT
: /* Add a route */
1739 case SIOCDELRT
: /* Delete a route */
1740 if (!capable(CAP_NET_ADMIN
))
1742 err
= copy_from_user(&rtmsg
, arg
,
1743 sizeof(struct in6_rtmsg
));
1747 rtmsg_to_fib6_config(&rtmsg
, &cfg
);
1752 err
= ip6_route_add(&cfg
);
1755 err
= ip6_route_del(&cfg
);
1769 * Drop the packet on the floor
1772 static inline int ip6_pkt_drop(struct sk_buff
*skb
, int code
,
1773 int ipstats_mib_noroutes
)
1776 switch (ipstats_mib_noroutes
) {
1777 case IPSTATS_MIB_INNOROUTES
:
1778 type
= ipv6_addr_type(&ipv6_hdr(skb
)->daddr
);
1779 if (type
== IPV6_ADDR_ANY
|| type
== IPV6_ADDR_RESERVED
) {
1780 IP6_INC_STATS(ip6_dst_idev(skb
->dst
), IPSTATS_MIB_INADDRERRORS
);
1784 case IPSTATS_MIB_OUTNOROUTES
:
1785 IP6_INC_STATS(ip6_dst_idev(skb
->dst
), ipstats_mib_noroutes
);
1788 icmpv6_send(skb
, ICMPV6_DEST_UNREACH
, code
, 0, skb
->dev
);
1793 static int ip6_pkt_discard(struct sk_buff
*skb
)
1795 return ip6_pkt_drop(skb
, ICMPV6_NOROUTE
, IPSTATS_MIB_INNOROUTES
);
1798 static int ip6_pkt_discard_out(struct sk_buff
*skb
)
1800 skb
->dev
= skb
->dst
->dev
;
1801 return ip6_pkt_drop(skb
, ICMPV6_NOROUTE
, IPSTATS_MIB_OUTNOROUTES
);
1804 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1806 static int ip6_pkt_prohibit(struct sk_buff
*skb
)
1808 return ip6_pkt_drop(skb
, ICMPV6_ADM_PROHIBITED
, IPSTATS_MIB_INNOROUTES
);
1811 static int ip6_pkt_prohibit_out(struct sk_buff
*skb
)
1813 skb
->dev
= skb
->dst
->dev
;
1814 return ip6_pkt_drop(skb
, ICMPV6_ADM_PROHIBITED
, IPSTATS_MIB_OUTNOROUTES
);
1817 static int ip6_pkt_blk_hole(struct sk_buff
*skb
)
1826 * Allocate a dst for local (unicast / anycast) address.
1829 struct rt6_info
*addrconf_dst_alloc(struct inet6_dev
*idev
,
1830 const struct in6_addr
*addr
,
1833 struct rt6_info
*rt
= ip6_dst_alloc();
1836 return ERR_PTR(-ENOMEM
);
1838 dev_hold(init_net
.loopback_dev
);
1841 rt
->u
.dst
.flags
= DST_HOST
;
1842 rt
->u
.dst
.input
= ip6_input
;
1843 rt
->u
.dst
.output
= ip6_output
;
1844 rt
->rt6i_dev
= init_net
.loopback_dev
;
1845 rt
->rt6i_idev
= idev
;
1846 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = ipv6_get_mtu(rt
->rt6i_dev
);
1847 rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] = ipv6_advmss(dst_mtu(&rt
->u
.dst
));
1848 rt
->u
.dst
.metrics
[RTAX_HOPLIMIT
-1] = -1;
1849 rt
->u
.dst
.obsolete
= -1;
1851 rt
->rt6i_flags
= RTF_UP
| RTF_NONEXTHOP
;
1853 rt
->rt6i_flags
|= RTF_ANYCAST
;
1855 rt
->rt6i_flags
|= RTF_LOCAL
;
1856 rt
->rt6i_nexthop
= ndisc_get_neigh(rt
->rt6i_dev
, &rt
->rt6i_gateway
);
1857 if (rt
->rt6i_nexthop
== NULL
) {
1858 dst_free(&rt
->u
.dst
);
1859 return ERR_PTR(-ENOMEM
);
1862 ipv6_addr_copy(&rt
->rt6i_dst
.addr
, addr
);
1863 rt
->rt6i_dst
.plen
= 128;
1864 rt
->rt6i_table
= fib6_get_table(RT6_TABLE_LOCAL
);
1866 atomic_set(&rt
->u
.dst
.__refcnt
, 1);
1871 static int fib6_ifdown(struct rt6_info
*rt
, void *arg
)
1873 if (((void*)rt
->rt6i_dev
== arg
|| arg
== NULL
) &&
1874 rt
!= &ip6_null_entry
) {
1875 RT6_TRACE("deleted by ifdown %p\n", rt
);
1881 void rt6_ifdown(struct net_device
*dev
)
1883 fib6_clean_all(fib6_ifdown
, 0, dev
);
1886 struct rt6_mtu_change_arg
1888 struct net_device
*dev
;
1892 static int rt6_mtu_change_route(struct rt6_info
*rt
, void *p_arg
)
1894 struct rt6_mtu_change_arg
*arg
= (struct rt6_mtu_change_arg
*) p_arg
;
1895 struct inet6_dev
*idev
;
1897 /* In IPv6 pmtu discovery is not optional,
1898 so that RTAX_MTU lock cannot disable it.
1899 We still use this lock to block changes
1900 caused by addrconf/ndisc.
1903 idev
= __in6_dev_get(arg
->dev
);
1907 /* For administrative MTU increase, there is no way to discover
1908 IPv6 PMTU increase, so PMTU increase should be updated here.
1909 Since RFC 1981 doesn't include administrative MTU increase
1910 update PMTU increase is a MUST. (i.e. jumbo frame)
1913 If new MTU is less than route PMTU, this new MTU will be the
1914 lowest MTU in the path, update the route PMTU to reflect PMTU
1915 decreases; if new MTU is greater than route PMTU, and the
1916 old MTU is the lowest MTU in the path, update the route PMTU
1917 to reflect the increase. In this case if the other nodes' MTU
1918 also have the lowest MTU, TOO BIG MESSAGE will be lead to
1921 if (rt
->rt6i_dev
== arg
->dev
&&
1922 !dst_metric_locked(&rt
->u
.dst
, RTAX_MTU
) &&
1923 (dst_mtu(&rt
->u
.dst
) > arg
->mtu
||
1924 (dst_mtu(&rt
->u
.dst
) < arg
->mtu
&&
1925 dst_mtu(&rt
->u
.dst
) == idev
->cnf
.mtu6
))) {
1926 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = arg
->mtu
;
1927 rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] = ipv6_advmss(arg
->mtu
);
1932 void rt6_mtu_change(struct net_device
*dev
, unsigned mtu
)
1934 struct rt6_mtu_change_arg arg
= {
1939 fib6_clean_all(rt6_mtu_change_route
, 0, &arg
);
1942 static const struct nla_policy rtm_ipv6_policy
[RTA_MAX
+1] = {
1943 [RTA_GATEWAY
] = { .len
= sizeof(struct in6_addr
) },
1944 [RTA_OIF
] = { .type
= NLA_U32
},
1945 [RTA_IIF
] = { .type
= NLA_U32
},
1946 [RTA_PRIORITY
] = { .type
= NLA_U32
},
1947 [RTA_METRICS
] = { .type
= NLA_NESTED
},
1950 static int rtm_to_fib6_config(struct sk_buff
*skb
, struct nlmsghdr
*nlh
,
1951 struct fib6_config
*cfg
)
1954 struct nlattr
*tb
[RTA_MAX
+1];
1957 err
= nlmsg_parse(nlh
, sizeof(*rtm
), tb
, RTA_MAX
, rtm_ipv6_policy
);
1962 rtm
= nlmsg_data(nlh
);
1963 memset(cfg
, 0, sizeof(*cfg
));
1965 cfg
->fc_table
= rtm
->rtm_table
;
1966 cfg
->fc_dst_len
= rtm
->rtm_dst_len
;
1967 cfg
->fc_src_len
= rtm
->rtm_src_len
;
1968 cfg
->fc_flags
= RTF_UP
;
1969 cfg
->fc_protocol
= rtm
->rtm_protocol
;
1971 if (rtm
->rtm_type
== RTN_UNREACHABLE
)
1972 cfg
->fc_flags
|= RTF_REJECT
;
1974 cfg
->fc_nlinfo
.pid
= NETLINK_CB(skb
).pid
;
1975 cfg
->fc_nlinfo
.nlh
= nlh
;
1977 if (tb
[RTA_GATEWAY
]) {
1978 nla_memcpy(&cfg
->fc_gateway
, tb
[RTA_GATEWAY
], 16);
1979 cfg
->fc_flags
|= RTF_GATEWAY
;
1983 int plen
= (rtm
->rtm_dst_len
+ 7) >> 3;
1985 if (nla_len(tb
[RTA_DST
]) < plen
)
1988 nla_memcpy(&cfg
->fc_dst
, tb
[RTA_DST
], plen
);
1992 int plen
= (rtm
->rtm_src_len
+ 7) >> 3;
1994 if (nla_len(tb
[RTA_SRC
]) < plen
)
1997 nla_memcpy(&cfg
->fc_src
, tb
[RTA_SRC
], plen
);
2001 cfg
->fc_ifindex
= nla_get_u32(tb
[RTA_OIF
]);
2003 if (tb
[RTA_PRIORITY
])
2004 cfg
->fc_metric
= nla_get_u32(tb
[RTA_PRIORITY
]);
2006 if (tb
[RTA_METRICS
]) {
2007 cfg
->fc_mx
= nla_data(tb
[RTA_METRICS
]);
2008 cfg
->fc_mx_len
= nla_len(tb
[RTA_METRICS
]);
2012 cfg
->fc_table
= nla_get_u32(tb
[RTA_TABLE
]);
2019 static int inet6_rtm_delroute(struct sk_buff
*skb
, struct nlmsghdr
* nlh
, void *arg
)
2021 struct fib6_config cfg
;
2024 err
= rtm_to_fib6_config(skb
, nlh
, &cfg
);
2028 return ip6_route_del(&cfg
);
2031 static int inet6_rtm_newroute(struct sk_buff
*skb
, struct nlmsghdr
* nlh
, void *arg
)
2033 struct fib6_config cfg
;
2036 err
= rtm_to_fib6_config(skb
, nlh
, &cfg
);
2040 return ip6_route_add(&cfg
);
2043 static inline size_t rt6_nlmsg_size(void)
2045 return NLMSG_ALIGN(sizeof(struct rtmsg
))
2046 + nla_total_size(16) /* RTA_SRC */
2047 + nla_total_size(16) /* RTA_DST */
2048 + nla_total_size(16) /* RTA_GATEWAY */
2049 + nla_total_size(16) /* RTA_PREFSRC */
2050 + nla_total_size(4) /* RTA_TABLE */
2051 + nla_total_size(4) /* RTA_IIF */
2052 + nla_total_size(4) /* RTA_OIF */
2053 + nla_total_size(4) /* RTA_PRIORITY */
2054 + RTAX_MAX
* nla_total_size(4) /* RTA_METRICS */
2055 + nla_total_size(sizeof(struct rta_cacheinfo
));
2058 static int rt6_fill_node(struct sk_buff
*skb
, struct rt6_info
*rt
,
2059 struct in6_addr
*dst
, struct in6_addr
*src
,
2060 int iif
, int type
, u32 pid
, u32 seq
,
2061 int prefix
, unsigned int flags
)
2064 struct nlmsghdr
*nlh
;
2068 if (prefix
) { /* user wants prefix routes only */
2069 if (!(rt
->rt6i_flags
& RTF_PREFIX_RT
)) {
2070 /* success since this is not a prefix route */
2075 nlh
= nlmsg_put(skb
, pid
, seq
, type
, sizeof(*rtm
), flags
);
2079 rtm
= nlmsg_data(nlh
);
2080 rtm
->rtm_family
= AF_INET6
;
2081 rtm
->rtm_dst_len
= rt
->rt6i_dst
.plen
;
2082 rtm
->rtm_src_len
= rt
->rt6i_src
.plen
;
2085 table
= rt
->rt6i_table
->tb6_id
;
2087 table
= RT6_TABLE_UNSPEC
;
2088 rtm
->rtm_table
= table
;
2089 NLA_PUT_U32(skb
, RTA_TABLE
, table
);
2090 if (rt
->rt6i_flags
&RTF_REJECT
)
2091 rtm
->rtm_type
= RTN_UNREACHABLE
;
2092 else if (rt
->rt6i_dev
&& (rt
->rt6i_dev
->flags
&IFF_LOOPBACK
))
2093 rtm
->rtm_type
= RTN_LOCAL
;
2095 rtm
->rtm_type
= RTN_UNICAST
;
2097 rtm
->rtm_scope
= RT_SCOPE_UNIVERSE
;
2098 rtm
->rtm_protocol
= rt
->rt6i_protocol
;
2099 if (rt
->rt6i_flags
&RTF_DYNAMIC
)
2100 rtm
->rtm_protocol
= RTPROT_REDIRECT
;
2101 else if (rt
->rt6i_flags
& RTF_ADDRCONF
)
2102 rtm
->rtm_protocol
= RTPROT_KERNEL
;
2103 else if (rt
->rt6i_flags
&RTF_DEFAULT
)
2104 rtm
->rtm_protocol
= RTPROT_RA
;
2106 if (rt
->rt6i_flags
&RTF_CACHE
)
2107 rtm
->rtm_flags
|= RTM_F_CLONED
;
2110 NLA_PUT(skb
, RTA_DST
, 16, dst
);
2111 rtm
->rtm_dst_len
= 128;
2112 } else if (rtm
->rtm_dst_len
)
2113 NLA_PUT(skb
, RTA_DST
, 16, &rt
->rt6i_dst
.addr
);
2114 #ifdef CONFIG_IPV6_SUBTREES
2116 NLA_PUT(skb
, RTA_SRC
, 16, src
);
2117 rtm
->rtm_src_len
= 128;
2118 } else if (rtm
->rtm_src_len
)
2119 NLA_PUT(skb
, RTA_SRC
, 16, &rt
->rt6i_src
.addr
);
2122 NLA_PUT_U32(skb
, RTA_IIF
, iif
);
2124 struct in6_addr saddr_buf
;
2125 if (ipv6_get_saddr(&rt
->u
.dst
, dst
, &saddr_buf
) == 0)
2126 NLA_PUT(skb
, RTA_PREFSRC
, 16, &saddr_buf
);
2129 if (rtnetlink_put_metrics(skb
, rt
->u
.dst
.metrics
) < 0)
2130 goto nla_put_failure
;
2132 if (rt
->u
.dst
.neighbour
)
2133 NLA_PUT(skb
, RTA_GATEWAY
, 16, &rt
->u
.dst
.neighbour
->primary_key
);
2136 NLA_PUT_U32(skb
, RTA_OIF
, rt
->rt6i_dev
->ifindex
);
2138 NLA_PUT_U32(skb
, RTA_PRIORITY
, rt
->rt6i_metric
);
2140 expires
= rt
->rt6i_expires
? rt
->rt6i_expires
- jiffies
: 0;
2141 if (rtnl_put_cacheinfo(skb
, &rt
->u
.dst
, 0, 0, 0,
2142 expires
, rt
->u
.dst
.error
) < 0)
2143 goto nla_put_failure
;
2145 return nlmsg_end(skb
, nlh
);
2148 nlmsg_cancel(skb
, nlh
);
2152 int rt6_dump_route(struct rt6_info
*rt
, void *p_arg
)
2154 struct rt6_rtnl_dump_arg
*arg
= (struct rt6_rtnl_dump_arg
*) p_arg
;
2157 if (nlmsg_len(arg
->cb
->nlh
) >= sizeof(struct rtmsg
)) {
2158 struct rtmsg
*rtm
= nlmsg_data(arg
->cb
->nlh
);
2159 prefix
= (rtm
->rtm_flags
& RTM_F_PREFIX
) != 0;
2163 return rt6_fill_node(arg
->skb
, rt
, NULL
, NULL
, 0, RTM_NEWROUTE
,
2164 NETLINK_CB(arg
->cb
->skb
).pid
, arg
->cb
->nlh
->nlmsg_seq
,
2165 prefix
, NLM_F_MULTI
);
2168 static int inet6_rtm_getroute(struct sk_buff
*in_skb
, struct nlmsghdr
* nlh
, void *arg
)
2170 struct nlattr
*tb
[RTA_MAX
+1];
2171 struct rt6_info
*rt
;
2172 struct sk_buff
*skb
;
2177 err
= nlmsg_parse(nlh
, sizeof(*rtm
), tb
, RTA_MAX
, rtm_ipv6_policy
);
2182 memset(&fl
, 0, sizeof(fl
));
2185 if (nla_len(tb
[RTA_SRC
]) < sizeof(struct in6_addr
))
2188 ipv6_addr_copy(&fl
.fl6_src
, nla_data(tb
[RTA_SRC
]));
2192 if (nla_len(tb
[RTA_DST
]) < sizeof(struct in6_addr
))
2195 ipv6_addr_copy(&fl
.fl6_dst
, nla_data(tb
[RTA_DST
]));
2199 iif
= nla_get_u32(tb
[RTA_IIF
]);
2202 fl
.oif
= nla_get_u32(tb
[RTA_OIF
]);
2205 struct net_device
*dev
;
2206 dev
= __dev_get_by_index(&init_net
, iif
);
2213 skb
= alloc_skb(NLMSG_GOODSIZE
, GFP_KERNEL
);
2219 /* Reserve room for dummy headers, this skb can pass
2220 through good chunk of routing engine.
2222 skb_reset_mac_header(skb
);
2223 skb_reserve(skb
, MAX_HEADER
+ sizeof(struct ipv6hdr
));
2225 rt
= (struct rt6_info
*) ip6_route_output(NULL
, &fl
);
2226 skb
->dst
= &rt
->u
.dst
;
2228 err
= rt6_fill_node(skb
, rt
, &fl
.fl6_dst
, &fl
.fl6_src
, iif
,
2229 RTM_NEWROUTE
, NETLINK_CB(in_skb
).pid
,
2230 nlh
->nlmsg_seq
, 0, 0);
2236 err
= rtnl_unicast(skb
, NETLINK_CB(in_skb
).pid
);
2241 void inet6_rt_notify(int event
, struct rt6_info
*rt
, struct nl_info
*info
)
2243 struct sk_buff
*skb
;
2244 u32 pid
= 0, seq
= 0;
2245 struct nlmsghdr
*nlh
= NULL
;
2252 seq
= nlh
->nlmsg_seq
;
2255 skb
= nlmsg_new(rt6_nlmsg_size(), gfp_any());
2259 err
= rt6_fill_node(skb
, rt
, NULL
, NULL
, 0, event
, pid
, seq
, 0, 0);
2261 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */
2262 WARN_ON(err
== -EMSGSIZE
);
2266 err
= rtnl_notify(skb
, pid
, RTNLGRP_IPV6_ROUTE
, nlh
, gfp_any());
2269 rtnl_set_sk_err(RTNLGRP_IPV6_ROUTE
, err
);
2276 #ifdef CONFIG_PROC_FS
2278 #define RT6_INFO_LEN (32 + 4 + 32 + 4 + 32 + 40 + 5 + 1)
2289 static int rt6_info_route(struct rt6_info
*rt
, void *p_arg
)
2291 struct rt6_proc_arg
*arg
= (struct rt6_proc_arg
*) p_arg
;
2293 if (arg
->skip
< arg
->offset
/ RT6_INFO_LEN
) {
2298 if (arg
->len
>= arg
->length
)
2301 arg
->len
+= sprintf(arg
->buffer
+ arg
->len
,
2302 NIP6_SEQFMT
" %02x ",
2303 NIP6(rt
->rt6i_dst
.addr
),
2306 #ifdef CONFIG_IPV6_SUBTREES
2307 arg
->len
+= sprintf(arg
->buffer
+ arg
->len
,
2308 NIP6_SEQFMT
" %02x ",
2309 NIP6(rt
->rt6i_src
.addr
),
2312 arg
->len
+= sprintf(arg
->buffer
+ arg
->len
,
2313 "00000000000000000000000000000000 00 ");
2316 if (rt
->rt6i_nexthop
) {
2317 arg
->len
+= sprintf(arg
->buffer
+ arg
->len
,
2319 NIP6(*((struct in6_addr
*)rt
->rt6i_nexthop
->primary_key
)));
2321 arg
->len
+= sprintf(arg
->buffer
+ arg
->len
,
2322 "00000000000000000000000000000000");
2324 arg
->len
+= sprintf(arg
->buffer
+ arg
->len
,
2325 " %08x %08x %08x %08x %8s\n",
2326 rt
->rt6i_metric
, atomic_read(&rt
->u
.dst
.__refcnt
),
2327 rt
->u
.dst
.__use
, rt
->rt6i_flags
,
2328 rt
->rt6i_dev
? rt
->rt6i_dev
->name
: "");
2332 static int rt6_proc_info(char *buffer
, char **start
, off_t offset
, int length
)
2334 struct rt6_proc_arg arg
= {
2340 fib6_clean_all(rt6_info_route
, 0, &arg
);
2344 *start
+= offset
% RT6_INFO_LEN
;
2346 arg
.len
-= offset
% RT6_INFO_LEN
;
2348 if (arg
.len
> length
)
2356 static int rt6_stats_seq_show(struct seq_file
*seq
, void *v
)
2358 seq_printf(seq
, "%04x %04x %04x %04x %04x %04x %04x\n",
2359 rt6_stats
.fib_nodes
, rt6_stats
.fib_route_nodes
,
2360 rt6_stats
.fib_rt_alloc
, rt6_stats
.fib_rt_entries
,
2361 rt6_stats
.fib_rt_cache
,
2362 atomic_read(&ip6_dst_ops
.entries
),
2363 rt6_stats
.fib_discarded_routes
);
2368 static int rt6_stats_seq_open(struct inode
*inode
, struct file
*file
)
2370 return single_open(file
, rt6_stats_seq_show
, NULL
);
2373 static const struct file_operations rt6_stats_seq_fops
= {
2374 .owner
= THIS_MODULE
,
2375 .open
= rt6_stats_seq_open
,
2377 .llseek
= seq_lseek
,
2378 .release
= single_release
,
2380 #endif /* CONFIG_PROC_FS */
2382 #ifdef CONFIG_SYSCTL
2384 static int flush_delay
;
2387 int ipv6_sysctl_rtcache_flush(ctl_table
*ctl
, int write
, struct file
* filp
,
2388 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2391 proc_dointvec(ctl
, write
, filp
, buffer
, lenp
, ppos
);
2392 fib6_run_gc(flush_delay
<= 0 ? ~0UL : (unsigned long)flush_delay
);
2398 ctl_table ipv6_route_table
[] = {
2400 .procname
= "flush",
2401 .data
= &flush_delay
,
2402 .maxlen
= sizeof(int),
2404 .proc_handler
= &ipv6_sysctl_rtcache_flush
2407 .ctl_name
= NET_IPV6_ROUTE_GC_THRESH
,
2408 .procname
= "gc_thresh",
2409 .data
= &ip6_dst_ops
.gc_thresh
,
2410 .maxlen
= sizeof(int),
2412 .proc_handler
= &proc_dointvec
,
2415 .ctl_name
= NET_IPV6_ROUTE_MAX_SIZE
,
2416 .procname
= "max_size",
2417 .data
= &ip6_rt_max_size
,
2418 .maxlen
= sizeof(int),
2420 .proc_handler
= &proc_dointvec
,
2423 .ctl_name
= NET_IPV6_ROUTE_GC_MIN_INTERVAL
,
2424 .procname
= "gc_min_interval",
2425 .data
= &ip6_rt_gc_min_interval
,
2426 .maxlen
= sizeof(int),
2428 .proc_handler
= &proc_dointvec_jiffies
,
2429 .strategy
= &sysctl_jiffies
,
2432 .ctl_name
= NET_IPV6_ROUTE_GC_TIMEOUT
,
2433 .procname
= "gc_timeout",
2434 .data
= &ip6_rt_gc_timeout
,
2435 .maxlen
= sizeof(int),
2437 .proc_handler
= &proc_dointvec_jiffies
,
2438 .strategy
= &sysctl_jiffies
,
2441 .ctl_name
= NET_IPV6_ROUTE_GC_INTERVAL
,
2442 .procname
= "gc_interval",
2443 .data
= &ip6_rt_gc_interval
,
2444 .maxlen
= sizeof(int),
2446 .proc_handler
= &proc_dointvec_jiffies
,
2447 .strategy
= &sysctl_jiffies
,
2450 .ctl_name
= NET_IPV6_ROUTE_GC_ELASTICITY
,
2451 .procname
= "gc_elasticity",
2452 .data
= &ip6_rt_gc_elasticity
,
2453 .maxlen
= sizeof(int),
2455 .proc_handler
= &proc_dointvec_jiffies
,
2456 .strategy
= &sysctl_jiffies
,
2459 .ctl_name
= NET_IPV6_ROUTE_MTU_EXPIRES
,
2460 .procname
= "mtu_expires",
2461 .data
= &ip6_rt_mtu_expires
,
2462 .maxlen
= sizeof(int),
2464 .proc_handler
= &proc_dointvec_jiffies
,
2465 .strategy
= &sysctl_jiffies
,
2468 .ctl_name
= NET_IPV6_ROUTE_MIN_ADVMSS
,
2469 .procname
= "min_adv_mss",
2470 .data
= &ip6_rt_min_advmss
,
2471 .maxlen
= sizeof(int),
2473 .proc_handler
= &proc_dointvec_jiffies
,
2474 .strategy
= &sysctl_jiffies
,
2477 .ctl_name
= NET_IPV6_ROUTE_GC_MIN_INTERVAL_MS
,
2478 .procname
= "gc_min_interval_ms",
2479 .data
= &ip6_rt_gc_min_interval
,
2480 .maxlen
= sizeof(int),
2482 .proc_handler
= &proc_dointvec_ms_jiffies
,
2483 .strategy
= &sysctl_ms_jiffies
,
2490 void __init
ip6_route_init(void)
2492 #ifdef CONFIG_PROC_FS
2493 struct proc_dir_entry
*p
;
2495 ip6_dst_ops
.kmem_cachep
=
2496 kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info
), 0,
2497 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
2498 ip6_dst_blackhole_ops
.kmem_cachep
= ip6_dst_ops
.kmem_cachep
;
2501 #ifdef CONFIG_PROC_FS
2502 p
= proc_net_create(&init_net
, "ipv6_route", 0, rt6_proc_info
);
2504 p
->owner
= THIS_MODULE
;
2506 proc_net_fops_create(&init_net
, "rt6_stats", S_IRUGO
, &rt6_stats_seq_fops
);
2511 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2515 __rtnl_register(PF_INET6
, RTM_NEWROUTE
, inet6_rtm_newroute
, NULL
);
2516 __rtnl_register(PF_INET6
, RTM_DELROUTE
, inet6_rtm_delroute
, NULL
);
2517 __rtnl_register(PF_INET6
, RTM_GETROUTE
, inet6_rtm_getroute
, NULL
);
2520 void ip6_route_cleanup(void)
2522 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2523 fib6_rules_cleanup();
2525 #ifdef CONFIG_PROC_FS
2526 proc_net_remove(&init_net
, "ipv6_route");
2527 proc_net_remove(&init_net
, "rt6_stats");
2534 kmem_cache_destroy(ip6_dst_ops
.kmem_cachep
);