m68k: Use _AC() instead of #ifdef __ASSEMBLY__
[wrt350n-kernel.git] / fs / exec.c
blobce62f7b65f17aa3963c67c8ff095974489b4f033
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/init.h>
33 #include <linux/pagemap.h>
34 #include <linux/highmem.h>
35 #include <linux/spinlock.h>
36 #include <linux/key.h>
37 #include <linux/personality.h>
38 #include <linux/binfmts.h>
39 #include <linux/swap.h>
40 #include <linux/utsname.h>
41 #include <linux/pid_namespace.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/signalfd.h>
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 #include <asm/tlb.h>
59 #ifdef CONFIG_KMOD
60 #include <linux/kmod.h>
61 #endif
63 int core_uses_pid;
64 char core_pattern[CORENAME_MAX_SIZE] = "core";
65 int suid_dumpable = 0;
67 EXPORT_SYMBOL(suid_dumpable);
68 /* The maximal length of core_pattern is also specified in sysctl.c */
70 static struct linux_binfmt *formats;
71 static DEFINE_RWLOCK(binfmt_lock);
73 int register_binfmt(struct linux_binfmt * fmt)
75 struct linux_binfmt ** tmp = &formats;
77 if (!fmt)
78 return -EINVAL;
79 if (fmt->next)
80 return -EBUSY;
81 write_lock(&binfmt_lock);
82 while (*tmp) {
83 if (fmt == *tmp) {
84 write_unlock(&binfmt_lock);
85 return -EBUSY;
87 tmp = &(*tmp)->next;
89 fmt->next = formats;
90 formats = fmt;
91 write_unlock(&binfmt_lock);
92 return 0;
95 EXPORT_SYMBOL(register_binfmt);
97 int unregister_binfmt(struct linux_binfmt * fmt)
99 struct linux_binfmt ** tmp = &formats;
101 write_lock(&binfmt_lock);
102 while (*tmp) {
103 if (fmt == *tmp) {
104 *tmp = fmt->next;
105 fmt->next = NULL;
106 write_unlock(&binfmt_lock);
107 return 0;
109 tmp = &(*tmp)->next;
111 write_unlock(&binfmt_lock);
112 return -EINVAL;
115 EXPORT_SYMBOL(unregister_binfmt);
117 static inline void put_binfmt(struct linux_binfmt * fmt)
119 module_put(fmt->module);
123 * Note that a shared library must be both readable and executable due to
124 * security reasons.
126 * Also note that we take the address to load from from the file itself.
128 asmlinkage long sys_uselib(const char __user * library)
130 struct file * file;
131 struct nameidata nd;
132 int error;
134 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
135 if (error)
136 goto out;
138 error = -EACCES;
139 if (nd.mnt->mnt_flags & MNT_NOEXEC)
140 goto exit;
141 error = -EINVAL;
142 if (!S_ISREG(nd.dentry->d_inode->i_mode))
143 goto exit;
145 error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
146 if (error)
147 goto exit;
149 file = nameidata_to_filp(&nd, O_RDONLY);
150 error = PTR_ERR(file);
151 if (IS_ERR(file))
152 goto out;
154 error = -ENOEXEC;
155 if(file->f_op) {
156 struct linux_binfmt * fmt;
158 read_lock(&binfmt_lock);
159 for (fmt = formats ; fmt ; fmt = fmt->next) {
160 if (!fmt->load_shlib)
161 continue;
162 if (!try_module_get(fmt->module))
163 continue;
164 read_unlock(&binfmt_lock);
165 error = fmt->load_shlib(file);
166 read_lock(&binfmt_lock);
167 put_binfmt(fmt);
168 if (error != -ENOEXEC)
169 break;
171 read_unlock(&binfmt_lock);
173 fput(file);
174 out:
175 return error;
176 exit:
177 release_open_intent(&nd);
178 path_release(&nd);
179 goto out;
182 #ifdef CONFIG_MMU
184 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
185 int write)
187 struct page *page;
188 int ret;
190 #ifdef CONFIG_STACK_GROWSUP
191 if (write) {
192 ret = expand_stack_downwards(bprm->vma, pos);
193 if (ret < 0)
194 return NULL;
196 #endif
197 ret = get_user_pages(current, bprm->mm, pos,
198 1, write, 1, &page, NULL);
199 if (ret <= 0)
200 return NULL;
202 if (write) {
203 struct rlimit *rlim = current->signal->rlim;
204 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
207 * Limit to 1/4-th the stack size for the argv+env strings.
208 * This ensures that:
209 * - the remaining binfmt code will not run out of stack space,
210 * - the program will have a reasonable amount of stack left
211 * to work from.
213 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
214 put_page(page);
215 return NULL;
219 return page;
222 static void put_arg_page(struct page *page)
224 put_page(page);
227 static void free_arg_page(struct linux_binprm *bprm, int i)
231 static void free_arg_pages(struct linux_binprm *bprm)
235 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
236 struct page *page)
238 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
241 static int __bprm_mm_init(struct linux_binprm *bprm)
243 int err = -ENOMEM;
244 struct vm_area_struct *vma = NULL;
245 struct mm_struct *mm = bprm->mm;
247 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
248 if (!vma)
249 goto err;
251 down_write(&mm->mmap_sem);
252 vma->vm_mm = mm;
255 * Place the stack at the largest stack address the architecture
256 * supports. Later, we'll move this to an appropriate place. We don't
257 * use STACK_TOP because that can depend on attributes which aren't
258 * configured yet.
260 vma->vm_end = STACK_TOP_MAX;
261 vma->vm_start = vma->vm_end - PAGE_SIZE;
263 vma->vm_flags = VM_STACK_FLAGS;
264 vma->vm_page_prot = protection_map[vma->vm_flags & 0x7];
265 err = insert_vm_struct(mm, vma);
266 if (err) {
267 up_write(&mm->mmap_sem);
268 goto err;
271 mm->stack_vm = mm->total_vm = 1;
272 up_write(&mm->mmap_sem);
274 bprm->p = vma->vm_end - sizeof(void *);
276 return 0;
278 err:
279 if (vma) {
280 bprm->vma = NULL;
281 kmem_cache_free(vm_area_cachep, vma);
284 return err;
287 static bool valid_arg_len(struct linux_binprm *bprm, long len)
289 return len <= MAX_ARG_STRLEN;
292 #else
294 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
295 int write)
297 struct page *page;
299 page = bprm->page[pos / PAGE_SIZE];
300 if (!page && write) {
301 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
302 if (!page)
303 return NULL;
304 bprm->page[pos / PAGE_SIZE] = page;
307 return page;
310 static void put_arg_page(struct page *page)
314 static void free_arg_page(struct linux_binprm *bprm, int i)
316 if (bprm->page[i]) {
317 __free_page(bprm->page[i]);
318 bprm->page[i] = NULL;
322 static void free_arg_pages(struct linux_binprm *bprm)
324 int i;
326 for (i = 0; i < MAX_ARG_PAGES; i++)
327 free_arg_page(bprm, i);
330 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
331 struct page *page)
335 static int __bprm_mm_init(struct linux_binprm *bprm)
337 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
338 return 0;
341 static bool valid_arg_len(struct linux_binprm *bprm, long len)
343 return len <= bprm->p;
346 #endif /* CONFIG_MMU */
349 * Create a new mm_struct and populate it with a temporary stack
350 * vm_area_struct. We don't have enough context at this point to set the stack
351 * flags, permissions, and offset, so we use temporary values. We'll update
352 * them later in setup_arg_pages().
354 int bprm_mm_init(struct linux_binprm *bprm)
356 int err;
357 struct mm_struct *mm = NULL;
359 bprm->mm = mm = mm_alloc();
360 err = -ENOMEM;
361 if (!mm)
362 goto err;
364 err = init_new_context(current, mm);
365 if (err)
366 goto err;
368 err = __bprm_mm_init(bprm);
369 if (err)
370 goto err;
372 return 0;
374 err:
375 if (mm) {
376 bprm->mm = NULL;
377 mmdrop(mm);
380 return err;
384 * count() counts the number of strings in array ARGV.
386 static int count(char __user * __user * argv, int max)
388 int i = 0;
390 if (argv != NULL) {
391 for (;;) {
392 char __user * p;
394 if (get_user(p, argv))
395 return -EFAULT;
396 if (!p)
397 break;
398 argv++;
399 if(++i > max)
400 return -E2BIG;
401 cond_resched();
404 return i;
408 * 'copy_strings()' copies argument/environment strings from the old
409 * processes's memory to the new process's stack. The call to get_user_pages()
410 * ensures the destination page is created and not swapped out.
412 static int copy_strings(int argc, char __user * __user * argv,
413 struct linux_binprm *bprm)
415 struct page *kmapped_page = NULL;
416 char *kaddr = NULL;
417 unsigned long kpos = 0;
418 int ret;
420 while (argc-- > 0) {
421 char __user *str;
422 int len;
423 unsigned long pos;
425 if (get_user(str, argv+argc) ||
426 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
427 ret = -EFAULT;
428 goto out;
431 if (!valid_arg_len(bprm, len)) {
432 ret = -E2BIG;
433 goto out;
436 /* We're going to work our way backwords. */
437 pos = bprm->p;
438 str += len;
439 bprm->p -= len;
441 while (len > 0) {
442 int offset, bytes_to_copy;
444 offset = pos % PAGE_SIZE;
445 if (offset == 0)
446 offset = PAGE_SIZE;
448 bytes_to_copy = offset;
449 if (bytes_to_copy > len)
450 bytes_to_copy = len;
452 offset -= bytes_to_copy;
453 pos -= bytes_to_copy;
454 str -= bytes_to_copy;
455 len -= bytes_to_copy;
457 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
458 struct page *page;
460 page = get_arg_page(bprm, pos, 1);
461 if (!page) {
462 ret = -E2BIG;
463 goto out;
466 if (kmapped_page) {
467 flush_kernel_dcache_page(kmapped_page);
468 kunmap(kmapped_page);
469 put_arg_page(kmapped_page);
471 kmapped_page = page;
472 kaddr = kmap(kmapped_page);
473 kpos = pos & PAGE_MASK;
474 flush_arg_page(bprm, kpos, kmapped_page);
476 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
477 ret = -EFAULT;
478 goto out;
482 ret = 0;
483 out:
484 if (kmapped_page) {
485 flush_kernel_dcache_page(kmapped_page);
486 kunmap(kmapped_page);
487 put_arg_page(kmapped_page);
489 return ret;
493 * Like copy_strings, but get argv and its values from kernel memory.
495 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
497 int r;
498 mm_segment_t oldfs = get_fs();
499 set_fs(KERNEL_DS);
500 r = copy_strings(argc, (char __user * __user *)argv, bprm);
501 set_fs(oldfs);
502 return r;
504 EXPORT_SYMBOL(copy_strings_kernel);
506 #ifdef CONFIG_MMU
509 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
510 * the binfmt code determines where the new stack should reside, we shift it to
511 * its final location. The process proceeds as follows:
513 * 1) Use shift to calculate the new vma endpoints.
514 * 2) Extend vma to cover both the old and new ranges. This ensures the
515 * arguments passed to subsequent functions are consistent.
516 * 3) Move vma's page tables to the new range.
517 * 4) Free up any cleared pgd range.
518 * 5) Shrink the vma to cover only the new range.
520 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
522 struct mm_struct *mm = vma->vm_mm;
523 unsigned long old_start = vma->vm_start;
524 unsigned long old_end = vma->vm_end;
525 unsigned long length = old_end - old_start;
526 unsigned long new_start = old_start - shift;
527 unsigned long new_end = old_end - shift;
528 struct mmu_gather *tlb;
530 BUG_ON(new_start > new_end);
533 * ensure there are no vmas between where we want to go
534 * and where we are
536 if (vma != find_vma(mm, new_start))
537 return -EFAULT;
540 * cover the whole range: [new_start, old_end)
542 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
545 * move the page tables downwards, on failure we rely on
546 * process cleanup to remove whatever mess we made.
548 if (length != move_page_tables(vma, old_start,
549 vma, new_start, length))
550 return -ENOMEM;
552 lru_add_drain();
553 tlb = tlb_gather_mmu(mm, 0);
554 if (new_end > old_start) {
556 * when the old and new regions overlap clear from new_end.
558 free_pgd_range(&tlb, new_end, old_end, new_end,
559 vma->vm_next ? vma->vm_next->vm_start : 0);
560 } else {
562 * otherwise, clean from old_start; this is done to not touch
563 * the address space in [new_end, old_start) some architectures
564 * have constraints on va-space that make this illegal (IA64) -
565 * for the others its just a little faster.
567 free_pgd_range(&tlb, old_start, old_end, new_end,
568 vma->vm_next ? vma->vm_next->vm_start : 0);
570 tlb_finish_mmu(tlb, new_end, old_end);
573 * shrink the vma to just the new range.
575 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
577 return 0;
580 #define EXTRA_STACK_VM_PAGES 20 /* random */
583 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
584 * the stack is optionally relocated, and some extra space is added.
586 int setup_arg_pages(struct linux_binprm *bprm,
587 unsigned long stack_top,
588 int executable_stack)
590 unsigned long ret;
591 unsigned long stack_shift;
592 struct mm_struct *mm = current->mm;
593 struct vm_area_struct *vma = bprm->vma;
594 struct vm_area_struct *prev = NULL;
595 unsigned long vm_flags;
596 unsigned long stack_base;
598 #ifdef CONFIG_STACK_GROWSUP
599 /* Limit stack size to 1GB */
600 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
601 if (stack_base > (1 << 30))
602 stack_base = 1 << 30;
604 /* Make sure we didn't let the argument array grow too large. */
605 if (vma->vm_end - vma->vm_start > stack_base)
606 return -ENOMEM;
608 stack_base = PAGE_ALIGN(stack_top - stack_base);
610 stack_shift = vma->vm_start - stack_base;
611 mm->arg_start = bprm->p - stack_shift;
612 bprm->p = vma->vm_end - stack_shift;
613 #else
614 stack_top = arch_align_stack(stack_top);
615 stack_top = PAGE_ALIGN(stack_top);
616 stack_shift = vma->vm_end - stack_top;
618 bprm->p -= stack_shift;
619 mm->arg_start = bprm->p;
620 #endif
622 if (bprm->loader)
623 bprm->loader -= stack_shift;
624 bprm->exec -= stack_shift;
626 down_write(&mm->mmap_sem);
627 vm_flags = vma->vm_flags;
630 * Adjust stack execute permissions; explicitly enable for
631 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
632 * (arch default) otherwise.
634 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
635 vm_flags |= VM_EXEC;
636 else if (executable_stack == EXSTACK_DISABLE_X)
637 vm_flags &= ~VM_EXEC;
638 vm_flags |= mm->def_flags;
640 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
641 vm_flags);
642 if (ret)
643 goto out_unlock;
644 BUG_ON(prev != vma);
646 /* Move stack pages down in memory. */
647 if (stack_shift) {
648 ret = shift_arg_pages(vma, stack_shift);
649 if (ret) {
650 up_write(&mm->mmap_sem);
651 return ret;
655 #ifdef CONFIG_STACK_GROWSUP
656 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
657 #else
658 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
659 #endif
660 ret = expand_stack(vma, stack_base);
661 if (ret)
662 ret = -EFAULT;
664 out_unlock:
665 up_write(&mm->mmap_sem);
666 return 0;
668 EXPORT_SYMBOL(setup_arg_pages);
670 #endif /* CONFIG_MMU */
672 struct file *open_exec(const char *name)
674 struct nameidata nd;
675 int err;
676 struct file *file;
678 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
679 file = ERR_PTR(err);
681 if (!err) {
682 struct inode *inode = nd.dentry->d_inode;
683 file = ERR_PTR(-EACCES);
684 if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
685 S_ISREG(inode->i_mode)) {
686 int err = vfs_permission(&nd, MAY_EXEC);
687 file = ERR_PTR(err);
688 if (!err) {
689 file = nameidata_to_filp(&nd, O_RDONLY);
690 if (!IS_ERR(file)) {
691 err = deny_write_access(file);
692 if (err) {
693 fput(file);
694 file = ERR_PTR(err);
697 out:
698 return file;
701 release_open_intent(&nd);
702 path_release(&nd);
704 goto out;
707 EXPORT_SYMBOL(open_exec);
709 int kernel_read(struct file *file, unsigned long offset,
710 char *addr, unsigned long count)
712 mm_segment_t old_fs;
713 loff_t pos = offset;
714 int result;
716 old_fs = get_fs();
717 set_fs(get_ds());
718 /* The cast to a user pointer is valid due to the set_fs() */
719 result = vfs_read(file, (void __user *)addr, count, &pos);
720 set_fs(old_fs);
721 return result;
724 EXPORT_SYMBOL(kernel_read);
726 static int exec_mmap(struct mm_struct *mm)
728 struct task_struct *tsk;
729 struct mm_struct * old_mm, *active_mm;
731 /* Notify parent that we're no longer interested in the old VM */
732 tsk = current;
733 old_mm = current->mm;
734 mm_release(tsk, old_mm);
736 if (old_mm) {
738 * Make sure that if there is a core dump in progress
739 * for the old mm, we get out and die instead of going
740 * through with the exec. We must hold mmap_sem around
741 * checking core_waiters and changing tsk->mm. The
742 * core-inducing thread will increment core_waiters for
743 * each thread whose ->mm == old_mm.
745 down_read(&old_mm->mmap_sem);
746 if (unlikely(old_mm->core_waiters)) {
747 up_read(&old_mm->mmap_sem);
748 return -EINTR;
751 task_lock(tsk);
752 active_mm = tsk->active_mm;
753 tsk->mm = mm;
754 tsk->active_mm = mm;
755 activate_mm(active_mm, mm);
756 task_unlock(tsk);
757 arch_pick_mmap_layout(mm);
758 if (old_mm) {
759 up_read(&old_mm->mmap_sem);
760 BUG_ON(active_mm != old_mm);
761 mmput(old_mm);
762 return 0;
764 mmdrop(active_mm);
765 return 0;
769 * This function makes sure the current process has its own signal table,
770 * so that flush_signal_handlers can later reset the handlers without
771 * disturbing other processes. (Other processes might share the signal
772 * table via the CLONE_SIGHAND option to clone().)
774 static int de_thread(struct task_struct *tsk)
776 struct signal_struct *sig = tsk->signal;
777 struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
778 spinlock_t *lock = &oldsighand->siglock;
779 struct task_struct *leader = NULL;
780 int count;
783 * Tell all the sighand listeners that this sighand has
784 * been detached. The signalfd_detach() function grabs the
785 * sighand lock, if signal listeners are present on the sighand.
787 signalfd_detach(tsk);
790 * If we don't share sighandlers, then we aren't sharing anything
791 * and we can just re-use it all.
793 if (atomic_read(&oldsighand->count) <= 1) {
794 BUG_ON(atomic_read(&sig->count) != 1);
795 exit_itimers(sig);
796 return 0;
799 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
800 if (!newsighand)
801 return -ENOMEM;
803 if (thread_group_empty(tsk))
804 goto no_thread_group;
807 * Kill all other threads in the thread group.
808 * We must hold tasklist_lock to call zap_other_threads.
810 read_lock(&tasklist_lock);
811 spin_lock_irq(lock);
812 if (sig->flags & SIGNAL_GROUP_EXIT) {
814 * Another group action in progress, just
815 * return so that the signal is processed.
817 spin_unlock_irq(lock);
818 read_unlock(&tasklist_lock);
819 kmem_cache_free(sighand_cachep, newsighand);
820 return -EAGAIN;
824 * child_reaper ignores SIGKILL, change it now.
825 * Reparenting needs write_lock on tasklist_lock,
826 * so it is safe to do it under read_lock.
828 if (unlikely(tsk->group_leader == child_reaper(tsk)))
829 tsk->nsproxy->pid_ns->child_reaper = tsk;
831 zap_other_threads(tsk);
832 read_unlock(&tasklist_lock);
835 * Account for the thread group leader hanging around:
837 count = 1;
838 if (!thread_group_leader(tsk)) {
839 count = 2;
841 * The SIGALRM timer survives the exec, but needs to point
842 * at us as the new group leader now. We have a race with
843 * a timer firing now getting the old leader, so we need to
844 * synchronize with any firing (by calling del_timer_sync)
845 * before we can safely let the old group leader die.
847 sig->tsk = tsk;
848 spin_unlock_irq(lock);
849 if (hrtimer_cancel(&sig->real_timer))
850 hrtimer_restart(&sig->real_timer);
851 spin_lock_irq(lock);
853 while (atomic_read(&sig->count) > count) {
854 sig->group_exit_task = tsk;
855 sig->notify_count = count;
856 __set_current_state(TASK_UNINTERRUPTIBLE);
857 spin_unlock_irq(lock);
858 schedule();
859 spin_lock_irq(lock);
861 sig->group_exit_task = NULL;
862 sig->notify_count = 0;
863 spin_unlock_irq(lock);
866 * At this point all other threads have exited, all we have to
867 * do is to wait for the thread group leader to become inactive,
868 * and to assume its PID:
870 if (!thread_group_leader(tsk)) {
872 * Wait for the thread group leader to be a zombie.
873 * It should already be zombie at this point, most
874 * of the time.
876 leader = tsk->group_leader;
877 while (leader->exit_state != EXIT_ZOMBIE)
878 yield();
881 * The only record we have of the real-time age of a
882 * process, regardless of execs it's done, is start_time.
883 * All the past CPU time is accumulated in signal_struct
884 * from sister threads now dead. But in this non-leader
885 * exec, nothing survives from the original leader thread,
886 * whose birth marks the true age of this process now.
887 * When we take on its identity by switching to its PID, we
888 * also take its birthdate (always earlier than our own).
890 tsk->start_time = leader->start_time;
892 write_lock_irq(&tasklist_lock);
894 BUG_ON(leader->tgid != tsk->tgid);
895 BUG_ON(tsk->pid == tsk->tgid);
897 * An exec() starts a new thread group with the
898 * TGID of the previous thread group. Rehash the
899 * two threads with a switched PID, and release
900 * the former thread group leader:
903 /* Become a process group leader with the old leader's pid.
904 * The old leader becomes a thread of the this thread group.
905 * Note: The old leader also uses this pid until release_task
906 * is called. Odd but simple and correct.
908 detach_pid(tsk, PIDTYPE_PID);
909 tsk->pid = leader->pid;
910 attach_pid(tsk, PIDTYPE_PID, find_pid(tsk->pid));
911 transfer_pid(leader, tsk, PIDTYPE_PGID);
912 transfer_pid(leader, tsk, PIDTYPE_SID);
913 list_replace_rcu(&leader->tasks, &tsk->tasks);
915 tsk->group_leader = tsk;
916 leader->group_leader = tsk;
918 tsk->exit_signal = SIGCHLD;
920 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
921 leader->exit_state = EXIT_DEAD;
923 write_unlock_irq(&tasklist_lock);
927 * There may be one thread left which is just exiting,
928 * but it's safe to stop telling the group to kill themselves.
930 sig->flags = 0;
932 no_thread_group:
933 exit_itimers(sig);
934 if (leader)
935 release_task(leader);
937 BUG_ON(atomic_read(&sig->count) != 1);
939 if (atomic_read(&oldsighand->count) == 1) {
941 * Now that we nuked the rest of the thread group,
942 * it turns out we are not sharing sighand any more either.
943 * So we can just keep it.
945 kmem_cache_free(sighand_cachep, newsighand);
946 } else {
948 * Move our state over to newsighand and switch it in.
950 atomic_set(&newsighand->count, 1);
951 memcpy(newsighand->action, oldsighand->action,
952 sizeof(newsighand->action));
954 write_lock_irq(&tasklist_lock);
955 spin_lock(&oldsighand->siglock);
956 spin_lock_nested(&newsighand->siglock, SINGLE_DEPTH_NESTING);
958 rcu_assign_pointer(tsk->sighand, newsighand);
959 recalc_sigpending();
961 spin_unlock(&newsighand->siglock);
962 spin_unlock(&oldsighand->siglock);
963 write_unlock_irq(&tasklist_lock);
965 __cleanup_sighand(oldsighand);
968 BUG_ON(!thread_group_leader(tsk));
969 return 0;
973 * These functions flushes out all traces of the currently running executable
974 * so that a new one can be started
977 static void flush_old_files(struct files_struct * files)
979 long j = -1;
980 struct fdtable *fdt;
982 spin_lock(&files->file_lock);
983 for (;;) {
984 unsigned long set, i;
986 j++;
987 i = j * __NFDBITS;
988 fdt = files_fdtable(files);
989 if (i >= fdt->max_fds)
990 break;
991 set = fdt->close_on_exec->fds_bits[j];
992 if (!set)
993 continue;
994 fdt->close_on_exec->fds_bits[j] = 0;
995 spin_unlock(&files->file_lock);
996 for ( ; set ; i++,set >>= 1) {
997 if (set & 1) {
998 sys_close(i);
1001 spin_lock(&files->file_lock);
1004 spin_unlock(&files->file_lock);
1007 void get_task_comm(char *buf, struct task_struct *tsk)
1009 /* buf must be at least sizeof(tsk->comm) in size */
1010 task_lock(tsk);
1011 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1012 task_unlock(tsk);
1015 void set_task_comm(struct task_struct *tsk, char *buf)
1017 task_lock(tsk);
1018 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1019 task_unlock(tsk);
1022 int flush_old_exec(struct linux_binprm * bprm)
1024 char * name;
1025 int i, ch, retval;
1026 struct files_struct *files;
1027 char tcomm[sizeof(current->comm)];
1030 * Make sure we have a private signal table and that
1031 * we are unassociated from the previous thread group.
1033 retval = de_thread(current);
1034 if (retval)
1035 goto out;
1038 * Make sure we have private file handles. Ask the
1039 * fork helper to do the work for us and the exit
1040 * helper to do the cleanup of the old one.
1042 files = current->files; /* refcounted so safe to hold */
1043 retval = unshare_files();
1044 if (retval)
1045 goto out;
1047 * Release all of the old mmap stuff
1049 retval = exec_mmap(bprm->mm);
1050 if (retval)
1051 goto mmap_failed;
1053 bprm->mm = NULL; /* We're using it now */
1055 /* This is the point of no return */
1056 put_files_struct(files);
1058 current->sas_ss_sp = current->sas_ss_size = 0;
1060 if (current->euid == current->uid && current->egid == current->gid)
1061 set_dumpable(current->mm, 1);
1062 else
1063 set_dumpable(current->mm, suid_dumpable);
1065 name = bprm->filename;
1067 /* Copies the binary name from after last slash */
1068 for (i=0; (ch = *(name++)) != '\0';) {
1069 if (ch == '/')
1070 i = 0; /* overwrite what we wrote */
1071 else
1072 if (i < (sizeof(tcomm) - 1))
1073 tcomm[i++] = ch;
1075 tcomm[i] = '\0';
1076 set_task_comm(current, tcomm);
1078 current->flags &= ~PF_RANDOMIZE;
1079 flush_thread();
1081 /* Set the new mm task size. We have to do that late because it may
1082 * depend on TIF_32BIT which is only updated in flush_thread() on
1083 * some architectures like powerpc
1085 current->mm->task_size = TASK_SIZE;
1087 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1088 suid_keys(current);
1089 set_dumpable(current->mm, suid_dumpable);
1090 current->pdeath_signal = 0;
1091 } else if (file_permission(bprm->file, MAY_READ) ||
1092 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1093 suid_keys(current);
1094 set_dumpable(current->mm, suid_dumpable);
1097 /* An exec changes our domain. We are no longer part of the thread
1098 group */
1100 current->self_exec_id++;
1102 flush_signal_handlers(current, 0);
1103 flush_old_files(current->files);
1105 return 0;
1107 mmap_failed:
1108 reset_files_struct(current, files);
1109 out:
1110 return retval;
1113 EXPORT_SYMBOL(flush_old_exec);
1116 * Fill the binprm structure from the inode.
1117 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1119 int prepare_binprm(struct linux_binprm *bprm)
1121 int mode;
1122 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1123 int retval;
1125 mode = inode->i_mode;
1126 if (bprm->file->f_op == NULL)
1127 return -EACCES;
1129 bprm->e_uid = current->euid;
1130 bprm->e_gid = current->egid;
1132 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1133 /* Set-uid? */
1134 if (mode & S_ISUID) {
1135 current->personality &= ~PER_CLEAR_ON_SETID;
1136 bprm->e_uid = inode->i_uid;
1139 /* Set-gid? */
1141 * If setgid is set but no group execute bit then this
1142 * is a candidate for mandatory locking, not a setgid
1143 * executable.
1145 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1146 current->personality &= ~PER_CLEAR_ON_SETID;
1147 bprm->e_gid = inode->i_gid;
1151 /* fill in binprm security blob */
1152 retval = security_bprm_set(bprm);
1153 if (retval)
1154 return retval;
1156 memset(bprm->buf,0,BINPRM_BUF_SIZE);
1157 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1160 EXPORT_SYMBOL(prepare_binprm);
1162 static int unsafe_exec(struct task_struct *p)
1164 int unsafe = 0;
1165 if (p->ptrace & PT_PTRACED) {
1166 if (p->ptrace & PT_PTRACE_CAP)
1167 unsafe |= LSM_UNSAFE_PTRACE_CAP;
1168 else
1169 unsafe |= LSM_UNSAFE_PTRACE;
1171 if (atomic_read(&p->fs->count) > 1 ||
1172 atomic_read(&p->files->count) > 1 ||
1173 atomic_read(&p->sighand->count) > 1)
1174 unsafe |= LSM_UNSAFE_SHARE;
1176 return unsafe;
1179 void compute_creds(struct linux_binprm *bprm)
1181 int unsafe;
1183 if (bprm->e_uid != current->uid) {
1184 suid_keys(current);
1185 current->pdeath_signal = 0;
1187 exec_keys(current);
1189 task_lock(current);
1190 unsafe = unsafe_exec(current);
1191 security_bprm_apply_creds(bprm, unsafe);
1192 task_unlock(current);
1193 security_bprm_post_apply_creds(bprm);
1195 EXPORT_SYMBOL(compute_creds);
1198 * Arguments are '\0' separated strings found at the location bprm->p
1199 * points to; chop off the first by relocating brpm->p to right after
1200 * the first '\0' encountered.
1202 int remove_arg_zero(struct linux_binprm *bprm)
1204 int ret = 0;
1205 unsigned long offset;
1206 char *kaddr;
1207 struct page *page;
1209 if (!bprm->argc)
1210 return 0;
1212 do {
1213 offset = bprm->p & ~PAGE_MASK;
1214 page = get_arg_page(bprm, bprm->p, 0);
1215 if (!page) {
1216 ret = -EFAULT;
1217 goto out;
1219 kaddr = kmap_atomic(page, KM_USER0);
1221 for (; offset < PAGE_SIZE && kaddr[offset];
1222 offset++, bprm->p++)
1225 kunmap_atomic(kaddr, KM_USER0);
1226 put_arg_page(page);
1228 if (offset == PAGE_SIZE)
1229 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1230 } while (offset == PAGE_SIZE);
1232 bprm->p++;
1233 bprm->argc--;
1234 ret = 0;
1236 out:
1237 return ret;
1239 EXPORT_SYMBOL(remove_arg_zero);
1242 * cycle the list of binary formats handler, until one recognizes the image
1244 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1246 int try,retval;
1247 struct linux_binfmt *fmt;
1248 #ifdef __alpha__
1249 /* handle /sbin/loader.. */
1251 struct exec * eh = (struct exec *) bprm->buf;
1253 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1254 (eh->fh.f_flags & 0x3000) == 0x3000)
1256 struct file * file;
1257 unsigned long loader;
1259 allow_write_access(bprm->file);
1260 fput(bprm->file);
1261 bprm->file = NULL;
1263 loader = bprm->vma->vm_end - sizeof(void *);
1265 file = open_exec("/sbin/loader");
1266 retval = PTR_ERR(file);
1267 if (IS_ERR(file))
1268 return retval;
1270 /* Remember if the application is TASO. */
1271 bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1273 bprm->file = file;
1274 bprm->loader = loader;
1275 retval = prepare_binprm(bprm);
1276 if (retval<0)
1277 return retval;
1278 /* should call search_binary_handler recursively here,
1279 but it does not matter */
1282 #endif
1283 retval = security_bprm_check(bprm);
1284 if (retval)
1285 return retval;
1287 /* kernel module loader fixup */
1288 /* so we don't try to load run modprobe in kernel space. */
1289 set_fs(USER_DS);
1291 retval = audit_bprm(bprm);
1292 if (retval)
1293 return retval;
1295 retval = -ENOENT;
1296 for (try=0; try<2; try++) {
1297 read_lock(&binfmt_lock);
1298 for (fmt = formats ; fmt ; fmt = fmt->next) {
1299 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1300 if (!fn)
1301 continue;
1302 if (!try_module_get(fmt->module))
1303 continue;
1304 read_unlock(&binfmt_lock);
1305 retval = fn(bprm, regs);
1306 if (retval >= 0) {
1307 put_binfmt(fmt);
1308 allow_write_access(bprm->file);
1309 if (bprm->file)
1310 fput(bprm->file);
1311 bprm->file = NULL;
1312 current->did_exec = 1;
1313 proc_exec_connector(current);
1314 return retval;
1316 read_lock(&binfmt_lock);
1317 put_binfmt(fmt);
1318 if (retval != -ENOEXEC || bprm->mm == NULL)
1319 break;
1320 if (!bprm->file) {
1321 read_unlock(&binfmt_lock);
1322 return retval;
1325 read_unlock(&binfmt_lock);
1326 if (retval != -ENOEXEC || bprm->mm == NULL) {
1327 break;
1328 #ifdef CONFIG_KMOD
1329 }else{
1330 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1331 if (printable(bprm->buf[0]) &&
1332 printable(bprm->buf[1]) &&
1333 printable(bprm->buf[2]) &&
1334 printable(bprm->buf[3]))
1335 break; /* -ENOEXEC */
1336 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1337 #endif
1340 return retval;
1343 EXPORT_SYMBOL(search_binary_handler);
1346 * sys_execve() executes a new program.
1348 int do_execve(char * filename,
1349 char __user *__user *argv,
1350 char __user *__user *envp,
1351 struct pt_regs * regs)
1353 struct linux_binprm *bprm;
1354 struct file *file;
1355 unsigned long env_p;
1356 int retval;
1358 retval = -ENOMEM;
1359 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1360 if (!bprm)
1361 goto out_ret;
1363 file = open_exec(filename);
1364 retval = PTR_ERR(file);
1365 if (IS_ERR(file))
1366 goto out_kfree;
1368 sched_exec();
1370 bprm->file = file;
1371 bprm->filename = filename;
1372 bprm->interp = filename;
1374 retval = bprm_mm_init(bprm);
1375 if (retval)
1376 goto out_file;
1378 bprm->argc = count(argv, MAX_ARG_STRINGS);
1379 if ((retval = bprm->argc) < 0)
1380 goto out_mm;
1382 bprm->envc = count(envp, MAX_ARG_STRINGS);
1383 if ((retval = bprm->envc) < 0)
1384 goto out_mm;
1386 retval = security_bprm_alloc(bprm);
1387 if (retval)
1388 goto out;
1390 retval = prepare_binprm(bprm);
1391 if (retval < 0)
1392 goto out;
1394 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1395 if (retval < 0)
1396 goto out;
1398 bprm->exec = bprm->p;
1399 retval = copy_strings(bprm->envc, envp, bprm);
1400 if (retval < 0)
1401 goto out;
1403 env_p = bprm->p;
1404 retval = copy_strings(bprm->argc, argv, bprm);
1405 if (retval < 0)
1406 goto out;
1407 bprm->argv_len = env_p - bprm->p;
1409 retval = search_binary_handler(bprm,regs);
1410 if (retval >= 0) {
1411 /* execve success */
1412 free_arg_pages(bprm);
1413 security_bprm_free(bprm);
1414 acct_update_integrals(current);
1415 kfree(bprm);
1416 return retval;
1419 out:
1420 free_arg_pages(bprm);
1421 if (bprm->security)
1422 security_bprm_free(bprm);
1424 out_mm:
1425 if (bprm->mm)
1426 mmput (bprm->mm);
1428 out_file:
1429 if (bprm->file) {
1430 allow_write_access(bprm->file);
1431 fput(bprm->file);
1433 out_kfree:
1434 kfree(bprm);
1436 out_ret:
1437 return retval;
1440 int set_binfmt(struct linux_binfmt *new)
1442 struct linux_binfmt *old = current->binfmt;
1444 if (new) {
1445 if (!try_module_get(new->module))
1446 return -1;
1448 current->binfmt = new;
1449 if (old)
1450 module_put(old->module);
1451 return 0;
1454 EXPORT_SYMBOL(set_binfmt);
1456 /* format_corename will inspect the pattern parameter, and output a
1457 * name into corename, which must have space for at least
1458 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1460 static int format_corename(char *corename, const char *pattern, long signr)
1462 const char *pat_ptr = pattern;
1463 char *out_ptr = corename;
1464 char *const out_end = corename + CORENAME_MAX_SIZE;
1465 int rc;
1466 int pid_in_pattern = 0;
1467 int ispipe = 0;
1469 if (*pattern == '|')
1470 ispipe = 1;
1472 /* Repeat as long as we have more pattern to process and more output
1473 space */
1474 while (*pat_ptr) {
1475 if (*pat_ptr != '%') {
1476 if (out_ptr == out_end)
1477 goto out;
1478 *out_ptr++ = *pat_ptr++;
1479 } else {
1480 switch (*++pat_ptr) {
1481 case 0:
1482 goto out;
1483 /* Double percent, output one percent */
1484 case '%':
1485 if (out_ptr == out_end)
1486 goto out;
1487 *out_ptr++ = '%';
1488 break;
1489 /* pid */
1490 case 'p':
1491 pid_in_pattern = 1;
1492 rc = snprintf(out_ptr, out_end - out_ptr,
1493 "%d", current->tgid);
1494 if (rc > out_end - out_ptr)
1495 goto out;
1496 out_ptr += rc;
1497 break;
1498 /* uid */
1499 case 'u':
1500 rc = snprintf(out_ptr, out_end - out_ptr,
1501 "%d", current->uid);
1502 if (rc > out_end - out_ptr)
1503 goto out;
1504 out_ptr += rc;
1505 break;
1506 /* gid */
1507 case 'g':
1508 rc = snprintf(out_ptr, out_end - out_ptr,
1509 "%d", current->gid);
1510 if (rc > out_end - out_ptr)
1511 goto out;
1512 out_ptr += rc;
1513 break;
1514 /* signal that caused the coredump */
1515 case 's':
1516 rc = snprintf(out_ptr, out_end - out_ptr,
1517 "%ld", signr);
1518 if (rc > out_end - out_ptr)
1519 goto out;
1520 out_ptr += rc;
1521 break;
1522 /* UNIX time of coredump */
1523 case 't': {
1524 struct timeval tv;
1525 do_gettimeofday(&tv);
1526 rc = snprintf(out_ptr, out_end - out_ptr,
1527 "%lu", tv.tv_sec);
1528 if (rc > out_end - out_ptr)
1529 goto out;
1530 out_ptr += rc;
1531 break;
1533 /* hostname */
1534 case 'h':
1535 down_read(&uts_sem);
1536 rc = snprintf(out_ptr, out_end - out_ptr,
1537 "%s", utsname()->nodename);
1538 up_read(&uts_sem);
1539 if (rc > out_end - out_ptr)
1540 goto out;
1541 out_ptr += rc;
1542 break;
1543 /* executable */
1544 case 'e':
1545 rc = snprintf(out_ptr, out_end - out_ptr,
1546 "%s", current->comm);
1547 if (rc > out_end - out_ptr)
1548 goto out;
1549 out_ptr += rc;
1550 break;
1551 default:
1552 break;
1554 ++pat_ptr;
1557 /* Backward compatibility with core_uses_pid:
1559 * If core_pattern does not include a %p (as is the default)
1560 * and core_uses_pid is set, then .%pid will be appended to
1561 * the filename. Do not do this for piped commands. */
1562 if (!ispipe && !pid_in_pattern
1563 && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1564 rc = snprintf(out_ptr, out_end - out_ptr,
1565 ".%d", current->tgid);
1566 if (rc > out_end - out_ptr)
1567 goto out;
1568 out_ptr += rc;
1570 out:
1571 *out_ptr = 0;
1572 return ispipe;
1575 static void zap_process(struct task_struct *start)
1577 struct task_struct *t;
1579 start->signal->flags = SIGNAL_GROUP_EXIT;
1580 start->signal->group_stop_count = 0;
1582 t = start;
1583 do {
1584 if (t != current && t->mm) {
1585 t->mm->core_waiters++;
1586 sigaddset(&t->pending.signal, SIGKILL);
1587 signal_wake_up(t, 1);
1589 } while ((t = next_thread(t)) != start);
1592 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1593 int exit_code)
1595 struct task_struct *g, *p;
1596 unsigned long flags;
1597 int err = -EAGAIN;
1599 spin_lock_irq(&tsk->sighand->siglock);
1600 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
1601 tsk->signal->group_exit_code = exit_code;
1602 zap_process(tsk);
1603 err = 0;
1605 spin_unlock_irq(&tsk->sighand->siglock);
1606 if (err)
1607 return err;
1609 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1610 goto done;
1612 rcu_read_lock();
1613 for_each_process(g) {
1614 if (g == tsk->group_leader)
1615 continue;
1617 p = g;
1618 do {
1619 if (p->mm) {
1620 if (p->mm == mm) {
1622 * p->sighand can't disappear, but
1623 * may be changed by de_thread()
1625 lock_task_sighand(p, &flags);
1626 zap_process(p);
1627 unlock_task_sighand(p, &flags);
1629 break;
1631 } while ((p = next_thread(p)) != g);
1633 rcu_read_unlock();
1634 done:
1635 return mm->core_waiters;
1638 static int coredump_wait(int exit_code)
1640 struct task_struct *tsk = current;
1641 struct mm_struct *mm = tsk->mm;
1642 struct completion startup_done;
1643 struct completion *vfork_done;
1644 int core_waiters;
1646 init_completion(&mm->core_done);
1647 init_completion(&startup_done);
1648 mm->core_startup_done = &startup_done;
1650 core_waiters = zap_threads(tsk, mm, exit_code);
1651 up_write(&mm->mmap_sem);
1653 if (unlikely(core_waiters < 0))
1654 goto fail;
1657 * Make sure nobody is waiting for us to release the VM,
1658 * otherwise we can deadlock when we wait on each other
1660 vfork_done = tsk->vfork_done;
1661 if (vfork_done) {
1662 tsk->vfork_done = NULL;
1663 complete(vfork_done);
1666 if (core_waiters)
1667 wait_for_completion(&startup_done);
1668 fail:
1669 BUG_ON(mm->core_waiters);
1670 return core_waiters;
1674 * set_dumpable converts traditional three-value dumpable to two flags and
1675 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1676 * these bits are not changed atomically. So get_dumpable can observe the
1677 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1678 * return either old dumpable or new one by paying attention to the order of
1679 * modifying the bits.
1681 * dumpable | mm->flags (binary)
1682 * old new | initial interim final
1683 * ---------+-----------------------
1684 * 0 1 | 00 01 01
1685 * 0 2 | 00 10(*) 11
1686 * 1 0 | 01 00 00
1687 * 1 2 | 01 11 11
1688 * 2 0 | 11 10(*) 00
1689 * 2 1 | 11 11 01
1691 * (*) get_dumpable regards interim value of 10 as 11.
1693 void set_dumpable(struct mm_struct *mm, int value)
1695 switch (value) {
1696 case 0:
1697 clear_bit(MMF_DUMPABLE, &mm->flags);
1698 smp_wmb();
1699 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1700 break;
1701 case 1:
1702 set_bit(MMF_DUMPABLE, &mm->flags);
1703 smp_wmb();
1704 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1705 break;
1706 case 2:
1707 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1708 smp_wmb();
1709 set_bit(MMF_DUMPABLE, &mm->flags);
1710 break;
1713 EXPORT_SYMBOL_GPL(set_dumpable);
1715 int get_dumpable(struct mm_struct *mm)
1717 int ret;
1719 ret = mm->flags & 0x3;
1720 return (ret >= 2) ? 2 : ret;
1723 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1725 char corename[CORENAME_MAX_SIZE + 1];
1726 struct mm_struct *mm = current->mm;
1727 struct linux_binfmt * binfmt;
1728 struct inode * inode;
1729 struct file * file;
1730 int retval = 0;
1731 int fsuid = current->fsuid;
1732 int flag = 0;
1733 int ispipe = 0;
1735 audit_core_dumps(signr);
1737 binfmt = current->binfmt;
1738 if (!binfmt || !binfmt->core_dump)
1739 goto fail;
1740 down_write(&mm->mmap_sem);
1741 if (!get_dumpable(mm)) {
1742 up_write(&mm->mmap_sem);
1743 goto fail;
1747 * We cannot trust fsuid as being the "true" uid of the
1748 * process nor do we know its entire history. We only know it
1749 * was tainted so we dump it as root in mode 2.
1751 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1752 flag = O_EXCL; /* Stop rewrite attacks */
1753 current->fsuid = 0; /* Dump root private */
1755 set_dumpable(mm, 0);
1757 retval = coredump_wait(exit_code);
1758 if (retval < 0)
1759 goto fail;
1762 * Clear any false indication of pending signals that might
1763 * be seen by the filesystem code called to write the core file.
1765 clear_thread_flag(TIF_SIGPENDING);
1767 if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
1768 goto fail_unlock;
1771 * lock_kernel() because format_corename() is controlled by sysctl, which
1772 * uses lock_kernel()
1774 lock_kernel();
1775 ispipe = format_corename(corename, core_pattern, signr);
1776 unlock_kernel();
1777 if (ispipe) {
1778 /* SIGPIPE can happen, but it's just never processed */
1779 if(call_usermodehelper_pipe(corename+1, NULL, NULL, &file)) {
1780 printk(KERN_INFO "Core dump to %s pipe failed\n",
1781 corename);
1782 goto fail_unlock;
1784 } else
1785 file = filp_open(corename,
1786 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1787 0600);
1788 if (IS_ERR(file))
1789 goto fail_unlock;
1790 inode = file->f_path.dentry->d_inode;
1791 if (inode->i_nlink > 1)
1792 goto close_fail; /* multiple links - don't dump */
1793 if (!ispipe && d_unhashed(file->f_path.dentry))
1794 goto close_fail;
1796 /* AK: actually i see no reason to not allow this for named pipes etc.,
1797 but keep the previous behaviour for now. */
1798 if (!ispipe && !S_ISREG(inode->i_mode))
1799 goto close_fail;
1800 if (!file->f_op)
1801 goto close_fail;
1802 if (!file->f_op->write)
1803 goto close_fail;
1804 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1805 goto close_fail;
1807 retval = binfmt->core_dump(signr, regs, file);
1809 if (retval)
1810 current->signal->group_exit_code |= 0x80;
1811 close_fail:
1812 filp_close(file, NULL);
1813 fail_unlock:
1814 current->fsuid = fsuid;
1815 complete_all(&mm->core_done);
1816 fail:
1817 return retval;