CRIS v10: Update drivers/gpio.c, fix locking and general improvements.
[wrt350n-kernel.git] / kernel / time.c
blob33af3e55570dfc5d8fe74aba067d2e26591c1a91
1 /*
2 * linux/kernel/time.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
11 * Modification history kernel/time.c
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
30 #include <linux/module.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/clocksource.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
39 #include <asm/uaccess.h>
40 #include <asm/unistd.h>
43 * The timezone where the local system is located. Used as a default by some
44 * programs who obtain this value by using gettimeofday.
46 struct timezone sys_tz;
48 EXPORT_SYMBOL(sys_tz);
50 #ifdef __ARCH_WANT_SYS_TIME
53 * sys_time() can be implemented in user-level using
54 * sys_gettimeofday(). Is this for backwards compatibility? If so,
55 * why not move it into the appropriate arch directory (for those
56 * architectures that need it).
58 asmlinkage long sys_time(time_t __user * tloc)
60 time_t i = get_seconds();
62 if (tloc) {
63 if (put_user(i,tloc))
64 i = -EFAULT;
66 return i;
70 * sys_stime() can be implemented in user-level using
71 * sys_settimeofday(). Is this for backwards compatibility? If so,
72 * why not move it into the appropriate arch directory (for those
73 * architectures that need it).
76 asmlinkage long sys_stime(time_t __user *tptr)
78 struct timespec tv;
79 int err;
81 if (get_user(tv.tv_sec, tptr))
82 return -EFAULT;
84 tv.tv_nsec = 0;
86 err = security_settime(&tv, NULL);
87 if (err)
88 return err;
90 do_settimeofday(&tv);
91 return 0;
94 #endif /* __ARCH_WANT_SYS_TIME */
96 asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
98 if (likely(tv != NULL)) {
99 struct timeval ktv;
100 do_gettimeofday(&ktv);
101 if (copy_to_user(tv, &ktv, sizeof(ktv)))
102 return -EFAULT;
104 if (unlikely(tz != NULL)) {
105 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
106 return -EFAULT;
108 return 0;
112 * Adjust the time obtained from the CMOS to be UTC time instead of
113 * local time.
115 * This is ugly, but preferable to the alternatives. Otherwise we
116 * would either need to write a program to do it in /etc/rc (and risk
117 * confusion if the program gets run more than once; it would also be
118 * hard to make the program warp the clock precisely n hours) or
119 * compile in the timezone information into the kernel. Bad, bad....
121 * - TYT, 1992-01-01
123 * The best thing to do is to keep the CMOS clock in universal time (UTC)
124 * as real UNIX machines always do it. This avoids all headaches about
125 * daylight saving times and warping kernel clocks.
127 static inline void warp_clock(void)
129 write_seqlock_irq(&xtime_lock);
130 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
131 xtime.tv_sec += sys_tz.tz_minuteswest * 60;
132 update_xtime_cache(0);
133 write_sequnlock_irq(&xtime_lock);
134 clock_was_set();
138 * In case for some reason the CMOS clock has not already been running
139 * in UTC, but in some local time: The first time we set the timezone,
140 * we will warp the clock so that it is ticking UTC time instead of
141 * local time. Presumably, if someone is setting the timezone then we
142 * are running in an environment where the programs understand about
143 * timezones. This should be done at boot time in the /etc/rc script,
144 * as soon as possible, so that the clock can be set right. Otherwise,
145 * various programs will get confused when the clock gets warped.
148 int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
150 static int firsttime = 1;
151 int error = 0;
153 if (tv && !timespec_valid(tv))
154 return -EINVAL;
156 error = security_settime(tv, tz);
157 if (error)
158 return error;
160 if (tz) {
161 /* SMP safe, global irq locking makes it work. */
162 sys_tz = *tz;
163 update_vsyscall_tz();
164 if (firsttime) {
165 firsttime = 0;
166 if (!tv)
167 warp_clock();
170 if (tv)
172 /* SMP safe, again the code in arch/foo/time.c should
173 * globally block out interrupts when it runs.
175 return do_settimeofday(tv);
177 return 0;
180 asmlinkage long sys_settimeofday(struct timeval __user *tv,
181 struct timezone __user *tz)
183 struct timeval user_tv;
184 struct timespec new_ts;
185 struct timezone new_tz;
187 if (tv) {
188 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
189 return -EFAULT;
190 new_ts.tv_sec = user_tv.tv_sec;
191 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
193 if (tz) {
194 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
195 return -EFAULT;
198 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
201 asmlinkage long sys_adjtimex(struct timex __user *txc_p)
203 struct timex txc; /* Local copy of parameter */
204 int ret;
206 /* Copy the user data space into the kernel copy
207 * structure. But bear in mind that the structures
208 * may change
210 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
211 return -EFAULT;
212 ret = do_adjtimex(&txc);
213 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
217 * current_fs_time - Return FS time
218 * @sb: Superblock.
220 * Return the current time truncated to the time granularity supported by
221 * the fs.
223 struct timespec current_fs_time(struct super_block *sb)
225 struct timespec now = current_kernel_time();
226 return timespec_trunc(now, sb->s_time_gran);
228 EXPORT_SYMBOL(current_fs_time);
231 * Convert jiffies to milliseconds and back.
233 * Avoid unnecessary multiplications/divisions in the
234 * two most common HZ cases:
236 unsigned int inline jiffies_to_msecs(const unsigned long j)
238 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
239 return (MSEC_PER_SEC / HZ) * j;
240 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
241 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
242 #else
243 return (j * MSEC_PER_SEC) / HZ;
244 #endif
246 EXPORT_SYMBOL(jiffies_to_msecs);
248 unsigned int inline jiffies_to_usecs(const unsigned long j)
250 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
251 return (USEC_PER_SEC / HZ) * j;
252 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
253 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
254 #else
255 return (j * USEC_PER_SEC) / HZ;
256 #endif
258 EXPORT_SYMBOL(jiffies_to_usecs);
261 * timespec_trunc - Truncate timespec to a granularity
262 * @t: Timespec
263 * @gran: Granularity in ns.
265 * Truncate a timespec to a granularity. gran must be smaller than a second.
266 * Always rounds down.
268 * This function should be only used for timestamps returned by
269 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
270 * it doesn't handle the better resolution of the later.
272 struct timespec timespec_trunc(struct timespec t, unsigned gran)
275 * Division is pretty slow so avoid it for common cases.
276 * Currently current_kernel_time() never returns better than
277 * jiffies resolution. Exploit that.
279 if (gran <= jiffies_to_usecs(1) * 1000) {
280 /* nothing */
281 } else if (gran == 1000000000) {
282 t.tv_nsec = 0;
283 } else {
284 t.tv_nsec -= t.tv_nsec % gran;
286 return t;
288 EXPORT_SYMBOL(timespec_trunc);
290 #ifndef CONFIG_GENERIC_TIME
292 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
293 * and therefore only yields usec accuracy
295 void getnstimeofday(struct timespec *tv)
297 struct timeval x;
299 do_gettimeofday(&x);
300 tv->tv_sec = x.tv_sec;
301 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
303 EXPORT_SYMBOL_GPL(getnstimeofday);
304 #endif
306 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
307 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
308 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
310 * [For the Julian calendar (which was used in Russia before 1917,
311 * Britain & colonies before 1752, anywhere else before 1582,
312 * and is still in use by some communities) leave out the
313 * -year/100+year/400 terms, and add 10.]
315 * This algorithm was first published by Gauss (I think).
317 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
318 * machines were long is 32-bit! (However, as time_t is signed, we
319 * will already get problems at other places on 2038-01-19 03:14:08)
321 unsigned long
322 mktime(const unsigned int year0, const unsigned int mon0,
323 const unsigned int day, const unsigned int hour,
324 const unsigned int min, const unsigned int sec)
326 unsigned int mon = mon0, year = year0;
328 /* 1..12 -> 11,12,1..10 */
329 if (0 >= (int) (mon -= 2)) {
330 mon += 12; /* Puts Feb last since it has leap day */
331 year -= 1;
334 return ((((unsigned long)
335 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
336 year*365 - 719499
337 )*24 + hour /* now have hours */
338 )*60 + min /* now have minutes */
339 )*60 + sec; /* finally seconds */
342 EXPORT_SYMBOL(mktime);
345 * set_normalized_timespec - set timespec sec and nsec parts and normalize
347 * @ts: pointer to timespec variable to be set
348 * @sec: seconds to set
349 * @nsec: nanoseconds to set
351 * Set seconds and nanoseconds field of a timespec variable and
352 * normalize to the timespec storage format
354 * Note: The tv_nsec part is always in the range of
355 * 0 <= tv_nsec < NSEC_PER_SEC
356 * For negative values only the tv_sec field is negative !
358 void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
360 while (nsec >= NSEC_PER_SEC) {
361 nsec -= NSEC_PER_SEC;
362 ++sec;
364 while (nsec < 0) {
365 nsec += NSEC_PER_SEC;
366 --sec;
368 ts->tv_sec = sec;
369 ts->tv_nsec = nsec;
373 * ns_to_timespec - Convert nanoseconds to timespec
374 * @nsec: the nanoseconds value to be converted
376 * Returns the timespec representation of the nsec parameter.
378 struct timespec ns_to_timespec(const s64 nsec)
380 struct timespec ts;
382 if (!nsec)
383 return (struct timespec) {0, 0};
385 ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
386 if (unlikely(nsec < 0))
387 set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
389 return ts;
391 EXPORT_SYMBOL(ns_to_timespec);
394 * ns_to_timeval - Convert nanoseconds to timeval
395 * @nsec: the nanoseconds value to be converted
397 * Returns the timeval representation of the nsec parameter.
399 struct timeval ns_to_timeval(const s64 nsec)
401 struct timespec ts = ns_to_timespec(nsec);
402 struct timeval tv;
404 tv.tv_sec = ts.tv_sec;
405 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
407 return tv;
409 EXPORT_SYMBOL(ns_to_timeval);
412 * When we convert to jiffies then we interpret incoming values
413 * the following way:
415 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
417 * - 'too large' values [that would result in larger than
418 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
420 * - all other values are converted to jiffies by either multiplying
421 * the input value by a factor or dividing it with a factor
423 * We must also be careful about 32-bit overflows.
425 unsigned long msecs_to_jiffies(const unsigned int m)
428 * Negative value, means infinite timeout:
430 if ((int)m < 0)
431 return MAX_JIFFY_OFFSET;
433 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
435 * HZ is equal to or smaller than 1000, and 1000 is a nice
436 * round multiple of HZ, divide with the factor between them,
437 * but round upwards:
439 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
440 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
442 * HZ is larger than 1000, and HZ is a nice round multiple of
443 * 1000 - simply multiply with the factor between them.
445 * But first make sure the multiplication result cannot
446 * overflow:
448 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
449 return MAX_JIFFY_OFFSET;
451 return m * (HZ / MSEC_PER_SEC);
452 #else
454 * Generic case - multiply, round and divide. But first
455 * check that if we are doing a net multiplication, that
456 * we wouldnt overflow:
458 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
459 return MAX_JIFFY_OFFSET;
461 return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
462 #endif
464 EXPORT_SYMBOL(msecs_to_jiffies);
466 unsigned long usecs_to_jiffies(const unsigned int u)
468 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
469 return MAX_JIFFY_OFFSET;
470 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
471 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
472 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
473 return u * (HZ / USEC_PER_SEC);
474 #else
475 return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
476 #endif
478 EXPORT_SYMBOL(usecs_to_jiffies);
481 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
482 * that a remainder subtract here would not do the right thing as the
483 * resolution values don't fall on second boundries. I.e. the line:
484 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
486 * Rather, we just shift the bits off the right.
488 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
489 * value to a scaled second value.
491 unsigned long
492 timespec_to_jiffies(const struct timespec *value)
494 unsigned long sec = value->tv_sec;
495 long nsec = value->tv_nsec + TICK_NSEC - 1;
497 if (sec >= MAX_SEC_IN_JIFFIES){
498 sec = MAX_SEC_IN_JIFFIES;
499 nsec = 0;
501 return (((u64)sec * SEC_CONVERSION) +
502 (((u64)nsec * NSEC_CONVERSION) >>
503 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
506 EXPORT_SYMBOL(timespec_to_jiffies);
508 void
509 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
512 * Convert jiffies to nanoseconds and separate with
513 * one divide.
515 u64 nsec = (u64)jiffies * TICK_NSEC;
516 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
518 EXPORT_SYMBOL(jiffies_to_timespec);
520 /* Same for "timeval"
522 * Well, almost. The problem here is that the real system resolution is
523 * in nanoseconds and the value being converted is in micro seconds.
524 * Also for some machines (those that use HZ = 1024, in-particular),
525 * there is a LARGE error in the tick size in microseconds.
527 * The solution we use is to do the rounding AFTER we convert the
528 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
529 * Instruction wise, this should cost only an additional add with carry
530 * instruction above the way it was done above.
532 unsigned long
533 timeval_to_jiffies(const struct timeval *value)
535 unsigned long sec = value->tv_sec;
536 long usec = value->tv_usec;
538 if (sec >= MAX_SEC_IN_JIFFIES){
539 sec = MAX_SEC_IN_JIFFIES;
540 usec = 0;
542 return (((u64)sec * SEC_CONVERSION) +
543 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
544 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
546 EXPORT_SYMBOL(timeval_to_jiffies);
548 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
551 * Convert jiffies to nanoseconds and separate with
552 * one divide.
554 u64 nsec = (u64)jiffies * TICK_NSEC;
555 long tv_usec;
557 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
558 tv_usec /= NSEC_PER_USEC;
559 value->tv_usec = tv_usec;
561 EXPORT_SYMBOL(jiffies_to_timeval);
564 * Convert jiffies/jiffies_64 to clock_t and back.
566 clock_t jiffies_to_clock_t(long x)
568 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
569 # if HZ < USER_HZ
570 return x * (USER_HZ / HZ);
571 # else
572 return x / (HZ / USER_HZ);
573 # endif
574 #else
575 u64 tmp = (u64)x * TICK_NSEC;
576 do_div(tmp, (NSEC_PER_SEC / USER_HZ));
577 return (long)tmp;
578 #endif
580 EXPORT_SYMBOL(jiffies_to_clock_t);
582 unsigned long clock_t_to_jiffies(unsigned long x)
584 #if (HZ % USER_HZ)==0
585 if (x >= ~0UL / (HZ / USER_HZ))
586 return ~0UL;
587 return x * (HZ / USER_HZ);
588 #else
589 u64 jif;
591 /* Don't worry about loss of precision here .. */
592 if (x >= ~0UL / HZ * USER_HZ)
593 return ~0UL;
595 /* .. but do try to contain it here */
596 jif = x * (u64) HZ;
597 do_div(jif, USER_HZ);
598 return jif;
599 #endif
601 EXPORT_SYMBOL(clock_t_to_jiffies);
603 u64 jiffies_64_to_clock_t(u64 x)
605 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
606 # if HZ < USER_HZ
607 x *= USER_HZ;
608 do_div(x, HZ);
609 # elif HZ > USER_HZ
610 do_div(x, HZ / USER_HZ);
611 # else
612 /* Nothing to do */
613 # endif
614 #else
616 * There are better ways that don't overflow early,
617 * but even this doesn't overflow in hundreds of years
618 * in 64 bits, so..
620 x *= TICK_NSEC;
621 do_div(x, (NSEC_PER_SEC / USER_HZ));
622 #endif
623 return x;
625 EXPORT_SYMBOL(jiffies_64_to_clock_t);
627 u64 nsec_to_clock_t(u64 x)
629 #if (NSEC_PER_SEC % USER_HZ) == 0
630 do_div(x, (NSEC_PER_SEC / USER_HZ));
631 #elif (USER_HZ % 512) == 0
632 x *= USER_HZ/512;
633 do_div(x, (NSEC_PER_SEC / 512));
634 #else
636 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
637 * overflow after 64.99 years.
638 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
640 x *= 9;
641 do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
642 USER_HZ));
643 #endif
644 return x;
647 #if (BITS_PER_LONG < 64)
648 u64 get_jiffies_64(void)
650 unsigned long seq;
651 u64 ret;
653 do {
654 seq = read_seqbegin(&xtime_lock);
655 ret = jiffies_64;
656 } while (read_seqretry(&xtime_lock, seq));
657 return ret;
659 EXPORT_SYMBOL(get_jiffies_64);
660 #endif
662 EXPORT_SYMBOL(jiffies);