sched: improve affine wakeups
[wrt350n-kernel.git] / Documentation / powerpc / booting-without-of.txt
blob7b4e8a70882c2ff4fb4d61e4bc12a4987a7d06eb
1            Booting the Linux/ppc kernel without Open Firmware
2            --------------------------------------------------
4 (c) 2005 Benjamin Herrenschmidt <benh at kernel.crashing.org>,
5     IBM Corp.
6 (c) 2005 Becky Bruce <becky.bruce at freescale.com>,
7     Freescale Semiconductor, FSL SOC and 32-bit additions
8 (c) 2006 MontaVista Software, Inc.
9     Flash chip node definition
11 Table of Contents
12 =================
14   I - Introduction
15     1) Entry point for arch/powerpc
16     2) Board support
18   II - The DT block format
19     1) Header
20     2) Device tree generalities
21     3) Device tree "structure" block
22     4) Device tree "strings" block
24   III - Required content of the device tree
25     1) Note about cells and address representation
26     2) Note about "compatible" properties
27     3) Note about "name" properties
28     4) Note about node and property names and character set
29     5) Required nodes and properties
30       a) The root node
31       b) The /cpus node
32       c) The /cpus/* nodes
33       d) the /memory node(s)
34       e) The /chosen node
35       f) the /soc<SOCname> node
37   IV - "dtc", the device tree compiler
39   V - Recommendations for a bootloader
41   VI - System-on-a-chip devices and nodes
42     1) Defining child nodes of an SOC
43     2) Representing devices without a current OF specification
44       a) MDIO IO device
45       b) Gianfar-compatible ethernet nodes
46       c) PHY nodes
47       d) Interrupt controllers
48       e) I2C
49       f) Freescale SOC USB controllers
50       g) Freescale SOC SEC Security Engines
51       h) Board Control and Status (BCSR)
52       i) Freescale QUICC Engine module (QE)
53       j) CFI or JEDEC memory-mapped NOR flash
54       k) Global Utilities Block
55       l) Freescale Communications Processor Module
56       m) Chipselect/Local Bus
57       n) 4xx/Axon EMAC ethernet nodes
58       o) Xilinx IP cores
59       p) Freescale Synchronous Serial Interface
60           q) USB EHCI controllers
62   VII - Specifying interrupt information for devices
63     1) interrupts property
64     2) interrupt-parent property
65     3) OpenPIC Interrupt Controllers
66     4) ISA Interrupt Controllers
68   Appendix A - Sample SOC node for MPC8540
71 Revision Information
72 ====================
74    May 18, 2005: Rev 0.1 - Initial draft, no chapter III yet.
76    May 19, 2005: Rev 0.2 - Add chapter III and bits & pieces here or
77                            clarifies the fact that a lot of things are
78                            optional, the kernel only requires a very
79                            small device tree, though it is encouraged
80                            to provide an as complete one as possible.
82    May 24, 2005: Rev 0.3 - Precise that DT block has to be in RAM
83                          - Misc fixes
84                          - Define version 3 and new format version 16
85                            for the DT block (version 16 needs kernel
86                            patches, will be fwd separately).
87                            String block now has a size, and full path
88                            is replaced by unit name for more
89                            compactness.
90                            linux,phandle is made optional, only nodes
91                            that are referenced by other nodes need it.
92                            "name" property is now automatically
93                            deduced from the unit name
95    June 1, 2005: Rev 0.4 - Correct confusion between OF_DT_END and
96                            OF_DT_END_NODE in structure definition.
97                          - Change version 16 format to always align
98                            property data to 4 bytes. Since tokens are
99                            already aligned, that means no specific
100                            required alignment between property size
101                            and property data. The old style variable
102                            alignment would make it impossible to do
103                            "simple" insertion of properties using
104                            memmove (thanks Milton for
105                            noticing). Updated kernel patch as well
106                          - Correct a few more alignment constraints
107                          - Add a chapter about the device-tree
108                            compiler and the textural representation of
109                            the tree that can be "compiled" by dtc.
111    November 21, 2005: Rev 0.5
112                          - Additions/generalizations for 32-bit
113                          - Changed to reflect the new arch/powerpc
114                            structure
115                          - Added chapter VI
118  ToDo:
119         - Add some definitions of interrupt tree (simple/complex)
120         - Add some definitions for PCI host bridges
121         - Add some common address format examples
122         - Add definitions for standard properties and "compatible"
123           names for cells that are not already defined by the existing
124           OF spec.
125         - Compare FSL SOC use of PCI to standard and make sure no new
126           node definition required.
127         - Add more information about node definitions for SOC devices
128           that currently have no standard, like the FSL CPM.
131 I - Introduction
132 ================
134 During the recent development of the Linux/ppc64 kernel, and more
135 specifically, the addition of new platform types outside of the old
136 IBM pSeries/iSeries pair, it was decided to enforce some strict rules
137 regarding the kernel entry and bootloader <-> kernel interfaces, in
138 order to avoid the degeneration that had become the ppc32 kernel entry
139 point and the way a new platform should be added to the kernel. The
140 legacy iSeries platform breaks those rules as it predates this scheme,
141 but no new board support will be accepted in the main tree that
142 doesn't follows them properly.  In addition, since the advent of the
143 arch/powerpc merged architecture for ppc32 and ppc64, new 32-bit
144 platforms and 32-bit platforms which move into arch/powerpc will be
145 required to use these rules as well.
147 The main requirement that will be defined in more detail below is
148 the presence of a device-tree whose format is defined after Open
149 Firmware specification. However, in order to make life easier
150 to embedded board vendors, the kernel doesn't require the device-tree
151 to represent every device in the system and only requires some nodes
152 and properties to be present. This will be described in detail in
153 section III, but, for example, the kernel does not require you to
154 create a node for every PCI device in the system. It is a requirement
155 to have a node for PCI host bridges in order to provide interrupt
156 routing informations and memory/IO ranges, among others. It is also
157 recommended to define nodes for on chip devices and other busses that
158 don't specifically fit in an existing OF specification. This creates a
159 great flexibility in the way the kernel can then probe those and match
160 drivers to device, without having to hard code all sorts of tables. It
161 also makes it more flexible for board vendors to do minor hardware
162 upgrades without significantly impacting the kernel code or cluttering
163 it with special cases.
166 1) Entry point for arch/powerpc
167 -------------------------------
169    There is one and one single entry point to the kernel, at the start
170    of the kernel image. That entry point supports two calling
171    conventions:
173         a) Boot from Open Firmware. If your firmware is compatible
174         with Open Firmware (IEEE 1275) or provides an OF compatible
175         client interface API (support for "interpret" callback of
176         forth words isn't required), you can enter the kernel with:
178               r5 : OF callback pointer as defined by IEEE 1275
179               bindings to powerpc. Only the 32-bit client interface
180               is currently supported
182               r3, r4 : address & length of an initrd if any or 0
184               The MMU is either on or off; the kernel will run the
185               trampoline located in arch/powerpc/kernel/prom_init.c to
186               extract the device-tree and other information from open
187               firmware and build a flattened device-tree as described
188               in b). prom_init() will then re-enter the kernel using
189               the second method. This trampoline code runs in the
190               context of the firmware, which is supposed to handle all
191               exceptions during that time.
193         b) Direct entry with a flattened device-tree block. This entry
194         point is called by a) after the OF trampoline and can also be
195         called directly by a bootloader that does not support the Open
196         Firmware client interface. It is also used by "kexec" to
197         implement "hot" booting of a new kernel from a previous
198         running one. This method is what I will describe in more
199         details in this document, as method a) is simply standard Open
200         Firmware, and thus should be implemented according to the
201         various standard documents defining it and its binding to the
202         PowerPC platform. The entry point definition then becomes:
204                 r3 : physical pointer to the device-tree block
205                 (defined in chapter II) in RAM
207                 r4 : physical pointer to the kernel itself. This is
208                 used by the assembly code to properly disable the MMU
209                 in case you are entering the kernel with MMU enabled
210                 and a non-1:1 mapping.
212                 r5 : NULL (as to differentiate with method a)
214         Note about SMP entry: Either your firmware puts your other
215         CPUs in some sleep loop or spin loop in ROM where you can get
216         them out via a soft reset or some other means, in which case
217         you don't need to care, or you'll have to enter the kernel
218         with all CPUs. The way to do that with method b) will be
219         described in a later revision of this document.
222 2) Board support
223 ----------------
225 64-bit kernels:
227    Board supports (platforms) are not exclusive config options. An
228    arbitrary set of board supports can be built in a single kernel
229    image. The kernel will "know" what set of functions to use for a
230    given platform based on the content of the device-tree. Thus, you
231    should:
233         a) add your platform support as a _boolean_ option in
234         arch/powerpc/Kconfig, following the example of PPC_PSERIES,
235         PPC_PMAC and PPC_MAPLE. The later is probably a good
236         example of a board support to start from.
238         b) create your main platform file as
239         "arch/powerpc/platforms/myplatform/myboard_setup.c" and add it
240         to the Makefile under the condition of your CONFIG_
241         option. This file will define a structure of type "ppc_md"
242         containing the various callbacks that the generic code will
243         use to get to your platform specific code
245         c) Add a reference to your "ppc_md" structure in the
246         "machines" table in arch/powerpc/kernel/setup_64.c if you are
247         a 64-bit platform.
249         d) request and get assigned a platform number (see PLATFORM_*
250         constants in include/asm-powerpc/processor.h
252 32-bit embedded kernels:
254   Currently, board support is essentially an exclusive config option.
255   The kernel is configured for a single platform.  Part of the reason
256   for this is to keep kernels on embedded systems small and efficient;
257   part of this is due to the fact the code is already that way. In the
258   future, a kernel may support multiple platforms, but only if the
259   platforms feature the same core architecture.  A single kernel build
260   cannot support both configurations with Book E and configurations
261   with classic Powerpc architectures.
263   32-bit embedded platforms that are moved into arch/powerpc using a
264   flattened device tree should adopt the merged tree practice of
265   setting ppc_md up dynamically, even though the kernel is currently
266   built with support for only a single platform at a time.  This allows
267   unification of the setup code, and will make it easier to go to a
268   multiple-platform-support model in the future.
270 NOTE: I believe the above will be true once Ben's done with the merge
271 of the boot sequences.... someone speak up if this is wrong!
273   To add a 32-bit embedded platform support, follow the instructions
274   for 64-bit platforms above, with the exception that the Kconfig
275   option should be set up such that the kernel builds exclusively for
276   the platform selected.  The processor type for the platform should
277   enable another config option to select the specific board
278   supported.
280 NOTE: If Ben doesn't merge the setup files, may need to change this to
281 point to setup_32.c
284    I will describe later the boot process and various callbacks that
285    your platform should implement.
288 II - The DT block format
289 ========================
292 This chapter defines the actual format of the flattened device-tree
293 passed to the kernel. The actual content of it and kernel requirements
294 are described later. You can find example of code manipulating that
295 format in various places, including arch/powerpc/kernel/prom_init.c
296 which will generate a flattened device-tree from the Open Firmware
297 representation, or the fs2dt utility which is part of the kexec tools
298 which will generate one from a filesystem representation. It is
299 expected that a bootloader like uboot provides a bit more support,
300 that will be discussed later as well.
302 Note: The block has to be in main memory. It has to be accessible in
303 both real mode and virtual mode with no mapping other than main
304 memory. If you are writing a simple flash bootloader, it should copy
305 the block to RAM before passing it to the kernel.
308 1) Header
309 ---------
311    The kernel is entered with r3 pointing to an area of memory that is
312    roughly described in include/asm-powerpc/prom.h by the structure
313    boot_param_header:
315 struct boot_param_header {
316         u32     magic;                  /* magic word OF_DT_HEADER */
317         u32     totalsize;              /* total size of DT block */
318         u32     off_dt_struct;          /* offset to structure */
319         u32     off_dt_strings;         /* offset to strings */
320         u32     off_mem_rsvmap;         /* offset to memory reserve map
321                                            */
322         u32     version;                /* format version */
323         u32     last_comp_version;      /* last compatible version */
325         /* version 2 fields below */
326         u32     boot_cpuid_phys;        /* Which physical CPU id we're
327                                            booting on */
328         /* version 3 fields below */
329         u32     size_dt_strings;        /* size of the strings block */
331         /* version 17 fields below */
332         u32     size_dt_struct;         /* size of the DT structure block */
335    Along with the constants:
337 /* Definitions used by the flattened device tree */
338 #define OF_DT_HEADER            0xd00dfeed      /* 4: version,
339                                                    4: total size */
340 #define OF_DT_BEGIN_NODE        0x1             /* Start node: full name
341                                                    */
342 #define OF_DT_END_NODE          0x2             /* End node */
343 #define OF_DT_PROP              0x3             /* Property: name off,
344                                                    size, content */
345 #define OF_DT_END               0x9
347    All values in this header are in big endian format, the various
348    fields in this header are defined more precisely below. All
349    "offset" values are in bytes from the start of the header; that is
350    from the value of r3.
352    - magic
354      This is a magic value that "marks" the beginning of the
355      device-tree block header. It contains the value 0xd00dfeed and is
356      defined by the constant OF_DT_HEADER
358    - totalsize
360      This is the total size of the DT block including the header. The
361      "DT" block should enclose all data structures defined in this
362      chapter (who are pointed to by offsets in this header). That is,
363      the device-tree structure, strings, and the memory reserve map.
365    - off_dt_struct
367      This is an offset from the beginning of the header to the start
368      of the "structure" part the device tree. (see 2) device tree)
370    - off_dt_strings
372      This is an offset from the beginning of the header to the start
373      of the "strings" part of the device-tree
375    - off_mem_rsvmap
377      This is an offset from the beginning of the header to the start
378      of the reserved memory map. This map is a list of pairs of 64-
379      bit integers. Each pair is a physical address and a size. The
380      list is terminated by an entry of size 0. This map provides the
381      kernel with a list of physical memory areas that are "reserved"
382      and thus not to be used for memory allocations, especially during
383      early initialization. The kernel needs to allocate memory during
384      boot for things like un-flattening the device-tree, allocating an
385      MMU hash table, etc... Those allocations must be done in such a
386      way to avoid overriding critical things like, on Open Firmware
387      capable machines, the RTAS instance, or on some pSeries, the TCE
388      tables used for the iommu. Typically, the reserve map should
389      contain _at least_ this DT block itself (header,total_size). If
390      you are passing an initrd to the kernel, you should reserve it as
391      well. You do not need to reserve the kernel image itself. The map
392      should be 64-bit aligned.
394    - version
396      This is the version of this structure. Version 1 stops
397      here. Version 2 adds an additional field boot_cpuid_phys.
398      Version 3 adds the size of the strings block, allowing the kernel
399      to reallocate it easily at boot and free up the unused flattened
400      structure after expansion. Version 16 introduces a new more
401      "compact" format for the tree itself that is however not backward
402      compatible. Version 17 adds an additional field, size_dt_struct,
403      allowing it to be reallocated or moved more easily (this is
404      particularly useful for bootloaders which need to make
405      adjustments to a device tree based on probed information). You
406      should always generate a structure of the highest version defined
407      at the time of your implementation. Currently that is version 17,
408      unless you explicitly aim at being backward compatible.
410    - last_comp_version
412      Last compatible version. This indicates down to what version of
413      the DT block you are backward compatible. For example, version 2
414      is backward compatible with version 1 (that is, a kernel build
415      for version 1 will be able to boot with a version 2 format). You
416      should put a 1 in this field if you generate a device tree of
417      version 1 to 3, or 16 if you generate a tree of version 16 or 17
418      using the new unit name format.
420    - boot_cpuid_phys
422      This field only exist on version 2 headers. It indicate which
423      physical CPU ID is calling the kernel entry point. This is used,
424      among others, by kexec. If you are on an SMP system, this value
425      should match the content of the "reg" property of the CPU node in
426      the device-tree corresponding to the CPU calling the kernel entry
427      point (see further chapters for more informations on the required
428      device-tree contents)
430    - size_dt_strings
432      This field only exists on version 3 and later headers.  It
433      gives the size of the "strings" section of the device tree (which
434      starts at the offset given by off_dt_strings).
436    - size_dt_struct
438      This field only exists on version 17 and later headers.  It gives
439      the size of the "structure" section of the device tree (which
440      starts at the offset given by off_dt_struct).
442    So the typical layout of a DT block (though the various parts don't
443    need to be in that order) looks like this (addresses go from top to
444    bottom):
447              ------------------------------
448        r3 -> |  struct boot_param_header  |
449              ------------------------------
450              |      (alignment gap) (*)   |
451              ------------------------------
452              |      memory reserve map    |
453              ------------------------------
454              |      (alignment gap)       |
455              ------------------------------
456              |                            |
457              |    device-tree structure   |
458              |                            |
459              ------------------------------
460              |      (alignment gap)       |
461              ------------------------------
462              |                            |
463              |     device-tree strings    |
464              |                            |
465       -----> ------------------------------
466       |
467       |
468       --- (r3 + totalsize)
470   (*) The alignment gaps are not necessarily present; their presence
471       and size are dependent on the various alignment requirements of
472       the individual data blocks.
475 2) Device tree generalities
476 ---------------------------
478 This device-tree itself is separated in two different blocks, a
479 structure block and a strings block. Both need to be aligned to a 4
480 byte boundary.
482 First, let's quickly describe the device-tree concept before detailing
483 the storage format. This chapter does _not_ describe the detail of the
484 required types of nodes & properties for the kernel, this is done
485 later in chapter III.
487 The device-tree layout is strongly inherited from the definition of
488 the Open Firmware IEEE 1275 device-tree. It's basically a tree of
489 nodes, each node having two or more named properties. A property can
490 have a value or not.
492 It is a tree, so each node has one and only one parent except for the
493 root node who has no parent.
495 A node has 2 names. The actual node name is generally contained in a
496 property of type "name" in the node property list whose value is a
497 zero terminated string and is mandatory for version 1 to 3 of the
498 format definition (as it is in Open Firmware). Version 16 makes it
499 optional as it can generate it from the unit name defined below.
501 There is also a "unit name" that is used to differentiate nodes with
502 the same name at the same level, it is usually made of the node
503 names, the "@" sign, and a "unit address", which definition is
504 specific to the bus type the node sits on.
506 The unit name doesn't exist as a property per-se but is included in
507 the device-tree structure. It is typically used to represent "path" in
508 the device-tree. More details about the actual format of these will be
509 below.
511 The kernel powerpc generic code does not make any formal use of the
512 unit address (though some board support code may do) so the only real
513 requirement here for the unit address is to ensure uniqueness of
514 the node unit name at a given level of the tree. Nodes with no notion
515 of address and no possible sibling of the same name (like /memory or
516 /cpus) may omit the unit address in the context of this specification,
517 or use the "@0" default unit address. The unit name is used to define
518 a node "full path", which is the concatenation of all parent node
519 unit names separated with "/".
521 The root node doesn't have a defined name, and isn't required to have
522 a name property either if you are using version 3 or earlier of the
523 format. It also has no unit address (no @ symbol followed by a unit
524 address). The root node unit name is thus an empty string. The full
525 path to the root node is "/".
527 Every node which actually represents an actual device (that is, a node
528 which isn't only a virtual "container" for more nodes, like "/cpus"
529 is) is also required to have a "device_type" property indicating the
530 type of node .
532 Finally, every node that can be referenced from a property in another
533 node is required to have a "linux,phandle" property. Real open
534 firmware implementations provide a unique "phandle" value for every
535 node that the "prom_init()" trampoline code turns into
536 "linux,phandle" properties. However, this is made optional if the
537 flattened device tree is used directly. An example of a node
538 referencing another node via "phandle" is when laying out the
539 interrupt tree which will be described in a further version of this
540 document.
542 This "linux, phandle" property is a 32-bit value that uniquely
543 identifies a node. You are free to use whatever values or system of
544 values, internal pointers, or whatever to generate these, the only
545 requirement is that every node for which you provide that property has
546 a unique value for it.
548 Here is an example of a simple device-tree. In this example, an "o"
549 designates a node followed by the node unit name. Properties are
550 presented with their name followed by their content. "content"
551 represents an ASCII string (zero terminated) value, while <content>
552 represents a 32-bit hexadecimal value. The various nodes in this
553 example will be discussed in a later chapter. At this point, it is
554 only meant to give you a idea of what a device-tree looks like. I have
555 purposefully kept the "name" and "linux,phandle" properties which
556 aren't necessary in order to give you a better idea of what the tree
557 looks like in practice.
559   / o device-tree
560       |- name = "device-tree"
561       |- model = "MyBoardName"
562       |- compatible = "MyBoardFamilyName"
563       |- #address-cells = <2>
564       |- #size-cells = <2>
565       |- linux,phandle = <0>
566       |
567       o cpus
568       | | - name = "cpus"
569       | | - linux,phandle = <1>
570       | | - #address-cells = <1>
571       | | - #size-cells = <0>
572       | |
573       | o PowerPC,970@0
574       |   |- name = "PowerPC,970"
575       |   |- device_type = "cpu"
576       |   |- reg = <0>
577       |   |- clock-frequency = <5f5e1000>
578       |   |- 64-bit
579       |   |- linux,phandle = <2>
580       |
581       o memory@0
582       | |- name = "memory"
583       | |- device_type = "memory"
584       | |- reg = <00000000 00000000 00000000 20000000>
585       | |- linux,phandle = <3>
586       |
587       o chosen
588         |- name = "chosen"
589         |- bootargs = "root=/dev/sda2"
590         |- linux,phandle = <4>
592 This tree is almost a minimal tree. It pretty much contains the
593 minimal set of required nodes and properties to boot a linux kernel;
594 that is, some basic model informations at the root, the CPUs, and the
595 physical memory layout.  It also includes misc information passed
596 through /chosen, like in this example, the platform type (mandatory)
597 and the kernel command line arguments (optional).
599 The /cpus/PowerPC,970@0/64-bit property is an example of a
600 property without a value. All other properties have a value. The
601 significance of the #address-cells and #size-cells properties will be
602 explained in chapter IV which defines precisely the required nodes and
603 properties and their content.
606 3) Device tree "structure" block
608 The structure of the device tree is a linearized tree structure. The
609 "OF_DT_BEGIN_NODE" token starts a new node, and the "OF_DT_END_NODE"
610 ends that node definition. Child nodes are simply defined before
611 "OF_DT_END_NODE" (that is nodes within the node). A 'token' is a 32
612 bit value. The tree has to be "finished" with a OF_DT_END token
614 Here's the basic structure of a single node:
616      * token OF_DT_BEGIN_NODE (that is 0x00000001)
617      * for version 1 to 3, this is the node full path as a zero
618        terminated string, starting with "/". For version 16 and later,
619        this is the node unit name only (or an empty string for the
620        root node)
621      * [align gap to next 4 bytes boundary]
622      * for each property:
623         * token OF_DT_PROP (that is 0x00000003)
624         * 32-bit value of property value size in bytes (or 0 if no
625           value)
626         * 32-bit value of offset in string block of property name
627         * property value data if any
628         * [align gap to next 4 bytes boundary]
629      * [child nodes if any]
630      * token OF_DT_END_NODE (that is 0x00000002)
632 So the node content can be summarized as a start token, a full path,
633 a list of properties, a list of child nodes, and an end token. Every
634 child node is a full node structure itself as defined above.
636 NOTE: The above definition requires that all property definitions for
637 a particular node MUST precede any subnode definitions for that node.
638 Although the structure would not be ambiguous if properties and
639 subnodes were intermingled, the kernel parser requires that the
640 properties come first (up until at least 2.6.22).  Any tools
641 manipulating a flattened tree must take care to preserve this
642 constraint.
644 4) Device tree "strings" block
646 In order to save space, property names, which are generally redundant,
647 are stored separately in the "strings" block. This block is simply the
648 whole bunch of zero terminated strings for all property names
649 concatenated together. The device-tree property definitions in the
650 structure block will contain offset values from the beginning of the
651 strings block.
654 III - Required content of the device tree
655 =========================================
657 WARNING: All "linux,*" properties defined in this document apply only
658 to a flattened device-tree. If your platform uses a real
659 implementation of Open Firmware or an implementation compatible with
660 the Open Firmware client interface, those properties will be created
661 by the trampoline code in the kernel's prom_init() file. For example,
662 that's where you'll have to add code to detect your board model and
663 set the platform number. However, when using the flattened device-tree
664 entry point, there is no prom_init() pass, and thus you have to
665 provide those properties yourself.
668 1) Note about cells and address representation
669 ----------------------------------------------
671 The general rule is documented in the various Open Firmware
672 documentations. If you choose to describe a bus with the device-tree
673 and there exist an OF bus binding, then you should follow the
674 specification. However, the kernel does not require every single
675 device or bus to be described by the device tree.
677 In general, the format of an address for a device is defined by the
678 parent bus type, based on the #address-cells and #size-cells
679 properties.  Note that the parent's parent definitions of #address-cells
680 and #size-cells are not inhereted so every node with children must specify
681 them.  The kernel requires the root node to have those properties defining
682 addresses format for devices directly mapped on the processor bus.
684 Those 2 properties define 'cells' for representing an address and a
685 size. A "cell" is a 32-bit number. For example, if both contain 2
686 like the example tree given above, then an address and a size are both
687 composed of 2 cells, and each is a 64-bit number (cells are
688 concatenated and expected to be in big endian format). Another example
689 is the way Apple firmware defines them, with 2 cells for an address
690 and one cell for a size.  Most 32-bit implementations should define
691 #address-cells and #size-cells to 1, which represents a 32-bit value.
692 Some 32-bit processors allow for physical addresses greater than 32
693 bits; these processors should define #address-cells as 2.
695 "reg" properties are always a tuple of the type "address size" where
696 the number of cells of address and size is specified by the bus
697 #address-cells and #size-cells. When a bus supports various address
698 spaces and other flags relative to a given address allocation (like
699 prefetchable, etc...) those flags are usually added to the top level
700 bits of the physical address. For example, a PCI physical address is
701 made of 3 cells, the bottom two containing the actual address itself
702 while the top cell contains address space indication, flags, and pci
703 bus & device numbers.
705 For busses that support dynamic allocation, it's the accepted practice
706 to then not provide the address in "reg" (keep it 0) though while
707 providing a flag indicating the address is dynamically allocated, and
708 then, to provide a separate "assigned-addresses" property that
709 contains the fully allocated addresses. See the PCI OF bindings for
710 details.
712 In general, a simple bus with no address space bits and no dynamic
713 allocation is preferred if it reflects your hardware, as the existing
714 kernel address parsing functions will work out of the box. If you
715 define a bus type with a more complex address format, including things
716 like address space bits, you'll have to add a bus translator to the
717 prom_parse.c file of the recent kernels for your bus type.
719 The "reg" property only defines addresses and sizes (if #size-cells is
720 non-0) within a given bus. In order to translate addresses upward
721 (that is into parent bus addresses, and possibly into CPU physical
722 addresses), all busses must contain a "ranges" property. If the
723 "ranges" property is missing at a given level, it's assumed that
724 translation isn't possible, i.e., the registers are not visible on the
725 parent bus.  The format of the "ranges" property for a bus is a list
728         bus address, parent bus address, size
730 "bus address" is in the format of the bus this bus node is defining,
731 that is, for a PCI bridge, it would be a PCI address. Thus, (bus
732 address, size) defines a range of addresses for child devices. "parent
733 bus address" is in the format of the parent bus of this bus. For
734 example, for a PCI host controller, that would be a CPU address. For a
735 PCI<->ISA bridge, that would be a PCI address. It defines the base
736 address in the parent bus where the beginning of that range is mapped.
738 For a new 64-bit powerpc board, I recommend either the 2/2 format or
739 Apple's 2/1 format which is slightly more compact since sizes usually
740 fit in a single 32-bit word.   New 32-bit powerpc boards should use a
741 1/1 format, unless the processor supports physical addresses greater
742 than 32-bits, in which case a 2/1 format is recommended.
744 Alternatively, the "ranges" property may be empty, indicating that the
745 registers are visible on the parent bus using an identity mapping
746 translation.  In other words, the parent bus address space is the same
747 as the child bus address space.
749 2) Note about "compatible" properties
750 -------------------------------------
752 These properties are optional, but recommended in devices and the root
753 node. The format of a "compatible" property is a list of concatenated
754 zero terminated strings. They allow a device to express its
755 compatibility with a family of similar devices, in some cases,
756 allowing a single driver to match against several devices regardless
757 of their actual names.
759 3) Note about "name" properties
760 -------------------------------
762 While earlier users of Open Firmware like OldWorld macintoshes tended
763 to use the actual device name for the "name" property, it's nowadays
764 considered a good practice to use a name that is closer to the device
765 class (often equal to device_type). For example, nowadays, ethernet
766 controllers are named "ethernet", an additional "model" property
767 defining precisely the chip type/model, and "compatible" property
768 defining the family in case a single driver can driver more than one
769 of these chips. However, the kernel doesn't generally put any
770 restriction on the "name" property; it is simply considered good
771 practice to follow the standard and its evolutions as closely as
772 possible.
774 Note also that the new format version 16 makes the "name" property
775 optional. If it's absent for a node, then the node's unit name is then
776 used to reconstruct the name. That is, the part of the unit name
777 before the "@" sign is used (or the entire unit name if no "@" sign
778 is present).
780 4) Note about node and property names and character set
781 -------------------------------------------------------
783 While open firmware provides more flexible usage of 8859-1, this
784 specification enforces more strict rules. Nodes and properties should
785 be comprised only of ASCII characters 'a' to 'z', '0' to
786 '9', ',', '.', '_', '+', '#', '?', and '-'. Node names additionally
787 allow uppercase characters 'A' to 'Z' (property names should be
788 lowercase. The fact that vendors like Apple don't respect this rule is
789 irrelevant here). Additionally, node and property names should always
790 begin with a character in the range 'a' to 'z' (or 'A' to 'Z' for node
791 names).
793 The maximum number of characters for both nodes and property names
794 is 31. In the case of node names, this is only the leftmost part of
795 a unit name (the pure "name" property), it doesn't include the unit
796 address which can extend beyond that limit.
799 5) Required nodes and properties
800 --------------------------------
801   These are all that are currently required. However, it is strongly
802   recommended that you expose PCI host bridges as documented in the
803   PCI binding to open firmware, and your interrupt tree as documented
804   in OF interrupt tree specification.
806   a) The root node
808   The root node requires some properties to be present:
810     - model : this is your board name/model
811     - #address-cells : address representation for "root" devices
812     - #size-cells: the size representation for "root" devices
813     - device_type : This property shouldn't be necessary. However, if
814       you decide to create a device_type for your root node, make sure it
815       is _not_ "chrp" unless your platform is a pSeries or PAPR compliant
816       one for 64-bit, or a CHRP-type machine for 32-bit as this will
817       matched by the kernel this way.
819   Additionally, some recommended properties are:
821     - compatible : the board "family" generally finds its way here,
822       for example, if you have 2 board models with a similar layout,
823       that typically get driven by the same platform code in the
824       kernel, you would use a different "model" property but put a
825       value in "compatible". The kernel doesn't directly use that
826       value but it is generally useful.
828   The root node is also generally where you add additional properties
829   specific to your board like the serial number if any, that sort of
830   thing. It is recommended that if you add any "custom" property whose
831   name may clash with standard defined ones, you prefix them with your
832   vendor name and a comma.
834   b) The /cpus node
836   This node is the parent of all individual CPU nodes. It doesn't
837   have any specific requirements, though it's generally good practice
838   to have at least:
840                #address-cells = <00000001>
841                #size-cells    = <00000000>
843   This defines that the "address" for a CPU is a single cell, and has
844   no meaningful size. This is not necessary but the kernel will assume
845   that format when reading the "reg" properties of a CPU node, see
846   below
848   c) The /cpus/* nodes
850   So under /cpus, you are supposed to create a node for every CPU on
851   the machine. There is no specific restriction on the name of the
852   CPU, though It's common practice to call it PowerPC,<name>. For
853   example, Apple uses PowerPC,G5 while IBM uses PowerPC,970FX.
855   Required properties:
857     - device_type : has to be "cpu"
858     - reg : This is the physical CPU number, it's a single 32-bit cell
859       and is also used as-is as the unit number for constructing the
860       unit name in the full path. For example, with 2 CPUs, you would
861       have the full path:
862         /cpus/PowerPC,970FX@0
863         /cpus/PowerPC,970FX@1
864       (unit addresses do not require leading zeroes)
865     - d-cache-block-size : one cell, L1 data cache block size in bytes (*)
866     - i-cache-block-size : one cell, L1 instruction cache block size in
867       bytes
868     - d-cache-size : one cell, size of L1 data cache in bytes
869     - i-cache-size : one cell, size of L1 instruction cache in bytes
871 (*) The cache "block" size is the size on which the cache management
872 instructions operate. Historically, this document used the cache
873 "line" size here which is incorrect. The kernel will prefer the cache
874 block size and will fallback to cache line size for backward
875 compatibility.
877   Recommended properties:
879     - timebase-frequency : a cell indicating the frequency of the
880       timebase in Hz. This is not directly used by the generic code,
881       but you are welcome to copy/paste the pSeries code for setting
882       the kernel timebase/decrementer calibration based on this
883       value.
884     - clock-frequency : a cell indicating the CPU core clock frequency
885       in Hz. A new property will be defined for 64-bit values, but if
886       your frequency is < 4Ghz, one cell is enough. Here as well as
887       for the above, the common code doesn't use that property, but
888       you are welcome to re-use the pSeries or Maple one. A future
889       kernel version might provide a common function for this.
890     - d-cache-line-size : one cell, L1 data cache line size in bytes
891       if different from the block size
892     - i-cache-line-size : one cell, L1 instruction cache line size in
893       bytes if different from the block size
895   You are welcome to add any property you find relevant to your board,
896   like some information about the mechanism used to soft-reset the
897   CPUs. For example, Apple puts the GPIO number for CPU soft reset
898   lines in there as a "soft-reset" property since they start secondary
899   CPUs by soft-resetting them.
902   d) the /memory node(s)
904   To define the physical memory layout of your board, you should
905   create one or more memory node(s). You can either create a single
906   node with all memory ranges in its reg property, or you can create
907   several nodes, as you wish. The unit address (@ part) used for the
908   full path is the address of the first range of memory defined by a
909   given node. If you use a single memory node, this will typically be
910   @0.
912   Required properties:
914     - device_type : has to be "memory"
915     - reg : This property contains all the physical memory ranges of
916       your board. It's a list of addresses/sizes concatenated
917       together, with the number of cells of each defined by the
918       #address-cells and #size-cells of the root node. For example,
919       with both of these properties being 2 like in the example given
920       earlier, a 970 based machine with 6Gb of RAM could typically
921       have a "reg" property here that looks like:
923       00000000 00000000 00000000 80000000
924       00000001 00000000 00000001 00000000
926       That is a range starting at 0 of 0x80000000 bytes and a range
927       starting at 0x100000000 and of 0x100000000 bytes. You can see
928       that there is no memory covering the IO hole between 2Gb and
929       4Gb. Some vendors prefer splitting those ranges into smaller
930       segments, but the kernel doesn't care.
932   e) The /chosen node
934   This node is a bit "special". Normally, that's where open firmware
935   puts some variable environment information, like the arguments, or
936   the default input/output devices.
938   This specification makes a few of these mandatory, but also defines
939   some linux-specific properties that would be normally constructed by
940   the prom_init() trampoline when booting with an OF client interface,
941   but that you have to provide yourself when using the flattened format.
943   Recommended properties:
945     - bootargs : This zero-terminated string is passed as the kernel
946       command line
947     - linux,stdout-path : This is the full path to your standard
948       console device if any. Typically, if you have serial devices on
949       your board, you may want to put the full path to the one set as
950       the default console in the firmware here, for the kernel to pick
951       it up as its own default console. If you look at the function
952       set_preferred_console() in arch/ppc64/kernel/setup.c, you'll see
953       that the kernel tries to find out the default console and has
954       knowledge of various types like 8250 serial ports. You may want
955       to extend this function to add your own.
957   Note that u-boot creates and fills in the chosen node for platforms
958   that use it.
960   (Note: a practice that is now obsolete was to include a property
961   under /chosen called interrupt-controller which had a phandle value
962   that pointed to the main interrupt controller)
964   f) the /soc<SOCname> node
966   This node is used to represent a system-on-a-chip (SOC) and must be
967   present if the processor is a SOC. The top-level soc node contains
968   information that is global to all devices on the SOC. The node name
969   should contain a unit address for the SOC, which is the base address
970   of the memory-mapped register set for the SOC. The name of an soc
971   node should start with "soc", and the remainder of the name should
972   represent the part number for the soc.  For example, the MPC8540's
973   soc node would be called "soc8540".
975   Required properties:
977     - device_type : Should be "soc"
978     - ranges : Should be defined as specified in 1) to describe the
979       translation of SOC addresses for memory mapped SOC registers.
980     - bus-frequency: Contains the bus frequency for the SOC node.
981       Typically, the value of this field is filled in by the boot
982       loader. 
985   Recommended properties:
987     - reg : This property defines the address and size of the
988       memory-mapped registers that are used for the SOC node itself.
989       It does not include the child device registers - these will be
990       defined inside each child node.  The address specified in the
991       "reg" property should match the unit address of the SOC node.
992     - #address-cells : Address representation for "soc" devices.  The
993       format of this field may vary depending on whether or not the
994       device registers are memory mapped.  For memory mapped
995       registers, this field represents the number of cells needed to
996       represent the address of the registers.  For SOCs that do not
997       use MMIO, a special address format should be defined that
998       contains enough cells to represent the required information.
999       See 1) above for more details on defining #address-cells.
1000     - #size-cells : Size representation for "soc" devices
1001     - #interrupt-cells : Defines the width of cells used to represent
1002        interrupts.  Typically this value is <2>, which includes a
1003        32-bit number that represents the interrupt number, and a
1004        32-bit number that represents the interrupt sense and level.
1005        This field is only needed if the SOC contains an interrupt
1006        controller.
1008   The SOC node may contain child nodes for each SOC device that the
1009   platform uses.  Nodes should not be created for devices which exist
1010   on the SOC but are not used by a particular platform. See chapter VI
1011   for more information on how to specify devices that are part of a SOC.
1013   Example SOC node for the MPC8540:
1015         soc8540@e0000000 {
1016                 #address-cells = <1>;
1017                 #size-cells = <1>;
1018                 #interrupt-cells = <2>;
1019                 device_type = "soc";
1020                 ranges = <00000000 e0000000 00100000>
1021                 reg = <e0000000 00003000>;
1022                 bus-frequency = <0>;
1023         }
1027 IV - "dtc", the device tree compiler
1028 ====================================
1031 dtc source code can be found at
1032 <http://ozlabs.org/~dgibson/dtc/dtc.tar.gz>
1034 WARNING: This version is still in early development stage; the
1035 resulting device-tree "blobs" have not yet been validated with the
1036 kernel. The current generated bloc lacks a useful reserve map (it will
1037 be fixed to generate an empty one, it's up to the bootloader to fill
1038 it up) among others. The error handling needs work, bugs are lurking,
1039 etc...
1041 dtc basically takes a device-tree in a given format and outputs a
1042 device-tree in another format. The currently supported formats are:
1044   Input formats:
1045   -------------
1047      - "dtb": "blob" format, that is a flattened device-tree block
1048        with
1049         header all in a binary blob.
1050      - "dts": "source" format. This is a text file containing a
1051        "source" for a device-tree. The format is defined later in this
1052         chapter.
1053      - "fs" format. This is a representation equivalent to the
1054         output of /proc/device-tree, that is nodes are directories and
1055         properties are files
1057  Output formats:
1058  ---------------
1060      - "dtb": "blob" format
1061      - "dts": "source" format
1062      - "asm": assembly language file. This is a file that can be
1063        sourced by gas to generate a device-tree "blob". That file can
1064        then simply be added to your Makefile. Additionally, the
1065        assembly file exports some symbols that can be used.
1068 The syntax of the dtc tool is
1070     dtc [-I <input-format>] [-O <output-format>]
1071         [-o output-filename] [-V output_version] input_filename
1074 The "output_version" defines what version of the "blob" format will be
1075 generated. Supported versions are 1,2,3 and 16. The default is
1076 currently version 3 but that may change in the future to version 16.
1078 Additionally, dtc performs various sanity checks on the tree, like the
1079 uniqueness of linux, phandle properties, validity of strings, etc...
1081 The format of the .dts "source" file is "C" like, supports C and C++
1082 style comments.
1084 / {
1087 The above is the "device-tree" definition. It's the only statement
1088 supported currently at the toplevel.
1090 / {
1091   property1 = "string_value";   /* define a property containing a 0
1092                                  * terminated string
1093                                  */
1095   property2 = <1234abcd>;       /* define a property containing a
1096                                  * numerical 32-bit value (hexadecimal)
1097                                  */
1099   property3 = <12345678 12345678 deadbeef>;
1100                                 /* define a property containing 3
1101                                  * numerical 32-bit values (cells) in
1102                                  * hexadecimal
1103                                  */
1104   property4 = [0a 0b 0c 0d de ea ad be ef];
1105                                 /* define a property whose content is
1106                                  * an arbitrary array of bytes
1107                                  */
1109   childnode@addresss {  /* define a child node named "childnode"
1110                                  * whose unit name is "childnode at
1111                                  * address"
1112                                  */
1114     childprop = "hello\n";      /* define a property "childprop" of
1115                                  * childnode (in this case, a string)
1116                                  */
1117   };
1120 Nodes can contain other nodes etc... thus defining the hierarchical
1121 structure of the tree.
1123 Strings support common escape sequences from C: "\n", "\t", "\r",
1124 "\(octal value)", "\x(hex value)".
1126 It is also suggested that you pipe your source file through cpp (gcc
1127 preprocessor) so you can use #include's, #define for constants, etc...
1129 Finally, various options are planned but not yet implemented, like
1130 automatic generation of phandles, labels (exported to the asm file so
1131 you can point to a property content and change it easily from whatever
1132 you link the device-tree with), label or path instead of numeric value
1133 in some cells to "point" to a node (replaced by a phandle at compile
1134 time), export of reserve map address to the asm file, ability to
1135 specify reserve map content at compile time, etc...
1137 We may provide a .h include file with common definitions of that
1138 proves useful for some properties (like building PCI properties or
1139 interrupt maps) though it may be better to add a notion of struct
1140 definitions to the compiler...
1143 V - Recommendations for a bootloader
1144 ====================================
1147 Here are some various ideas/recommendations that have been proposed
1148 while all this has been defined and implemented.
1150   - The bootloader may want to be able to use the device-tree itself
1151     and may want to manipulate it (to add/edit some properties,
1152     like physical memory size or kernel arguments). At this point, 2
1153     choices can be made. Either the bootloader works directly on the
1154     flattened format, or the bootloader has its own internal tree
1155     representation with pointers (similar to the kernel one) and
1156     re-flattens the tree when booting the kernel. The former is a bit
1157     more difficult to edit/modify, the later requires probably a bit
1158     more code to handle the tree structure. Note that the structure
1159     format has been designed so it's relatively easy to "insert"
1160     properties or nodes or delete them by just memmoving things
1161     around. It contains no internal offsets or pointers for this
1162     purpose.
1164   - An example of code for iterating nodes & retrieving properties
1165     directly from the flattened tree format can be found in the kernel
1166     file arch/ppc64/kernel/prom.c, look at scan_flat_dt() function,
1167     its usage in early_init_devtree(), and the corresponding various
1168     early_init_dt_scan_*() callbacks. That code can be re-used in a
1169     GPL bootloader, and as the author of that code, I would be happy
1170     to discuss possible free licensing to any vendor who wishes to
1171     integrate all or part of this code into a non-GPL bootloader.
1175 VI - System-on-a-chip devices and nodes
1176 =======================================
1178 Many companies are now starting to develop system-on-a-chip
1179 processors, where the processor core (CPU) and many peripheral devices
1180 exist on a single piece of silicon.  For these SOCs, an SOC node
1181 should be used that defines child nodes for the devices that make
1182 up the SOC. While platforms are not required to use this model in
1183 order to boot the kernel, it is highly encouraged that all SOC
1184 implementations define as complete a flat-device-tree as possible to
1185 describe the devices on the SOC.  This will allow for the
1186 genericization of much of the kernel code.
1189 1) Defining child nodes of an SOC
1190 ---------------------------------
1192 Each device that is part of an SOC may have its own node entry inside
1193 the SOC node.  For each device that is included in the SOC, the unit
1194 address property represents the address offset for this device's
1195 memory-mapped registers in the parent's address space.  The parent's
1196 address space is defined by the "ranges" property in the top-level soc
1197 node. The "reg" property for each node that exists directly under the
1198 SOC node should contain the address mapping from the child address space
1199 to the parent SOC address space and the size of the device's
1200 memory-mapped register file.
1202 For many devices that may exist inside an SOC, there are predefined
1203 specifications for the format of the device tree node.  All SOC child
1204 nodes should follow these specifications, except where noted in this
1205 document.
1207 See appendix A for an example partial SOC node definition for the
1208 MPC8540.
1211 2) Representing devices without a current OF specification
1212 ----------------------------------------------------------
1214 Currently, there are many devices on SOCs that do not have a standard
1215 representation pre-defined as part of the open firmware
1216 specifications, mainly because the boards that contain these SOCs are
1217 not currently booted using open firmware.   This section contains
1218 descriptions for the SOC devices for which new nodes have been
1219 defined; this list will expand as more and more SOC-containing
1220 platforms are moved over to use the flattened-device-tree model.
1222   a) MDIO IO device
1224   The MDIO is a bus to which the PHY devices are connected.  For each
1225   device that exists on this bus, a child node should be created.  See
1226   the definition of the PHY node below for an example of how to define
1227   a PHY.
1229   Required properties:
1230     - reg : Offset and length of the register set for the device
1231     - compatible : Should define the compatible device type for the
1232       mdio.  Currently, this is most likely to be "fsl,gianfar-mdio"
1234   Example:
1236         mdio@24520 {
1237                 reg = <24520 20>;
1238                 compatible = "fsl,gianfar-mdio";
1240                 ethernet-phy@0 {
1241                         ......
1242                 };
1243         };
1246   b) Gianfar-compatible ethernet nodes
1248   Required properties:
1250     - device_type : Should be "network"
1251     - model : Model of the device.  Can be "TSEC", "eTSEC", or "FEC"
1252     - compatible : Should be "gianfar"
1253     - reg : Offset and length of the register set for the device
1254     - mac-address : List of bytes representing the ethernet address of
1255       this controller
1256     - interrupts : <a b> where a is the interrupt number and b is a
1257       field that represents an encoding of the sense and level
1258       information for the interrupt.  This should be encoded based on
1259       the information in section 2) depending on the type of interrupt
1260       controller you have.
1261     - interrupt-parent : the phandle for the interrupt controller that
1262       services interrupts for this device.
1263     - phy-handle : The phandle for the PHY connected to this ethernet
1264       controller.
1265     - fixed-link : <a b c d e> where a is emulated phy id - choose any,
1266       but unique to the all specified fixed-links, b is duplex - 0 half,
1267       1 full, c is link speed - d#10/d#100/d#1000, d is pause - 0 no
1268       pause, 1 pause, e is asym_pause - 0 no asym_pause, 1 asym_pause.
1270   Recommended properties:
1272     - linux,network-index : This is the intended "index" of this
1273       network device.  This is used by the bootwrapper to interpret
1274       MAC addresses passed by the firmware when no information other
1275       than indices is available to associate an address with a device.
1276     - phy-connection-type : a string naming the controller/PHY interface type,
1277       i.e., "mii" (default), "rmii", "gmii", "rgmii", "rgmii-id", "sgmii",
1278       "tbi", or "rtbi".  This property is only really needed if the connection
1279       is of type "rgmii-id", as all other connection types are detected by
1280       hardware.
1283   Example:
1285         ethernet@24000 {
1286                 #size-cells = <0>;
1287                 device_type = "network";
1288                 model = "TSEC";
1289                 compatible = "gianfar";
1290                 reg = <24000 1000>;
1291                 mac-address = [ 00 E0 0C 00 73 00 ];
1292                 interrupts = <d 3 e 3 12 3>;
1293                 interrupt-parent = <40000>;
1294                 phy-handle = <2452000>
1295         };
1299    c) PHY nodes
1301    Required properties:
1303     - device_type : Should be "ethernet-phy"
1304     - interrupts : <a b> where a is the interrupt number and b is a
1305       field that represents an encoding of the sense and level
1306       information for the interrupt.  This should be encoded based on
1307       the information in section 2) depending on the type of interrupt
1308       controller you have.
1309     - interrupt-parent : the phandle for the interrupt controller that
1310       services interrupts for this device.
1311     - reg : The ID number for the phy, usually a small integer
1312     - linux,phandle :  phandle for this node; likely referenced by an
1313       ethernet controller node.
1316    Example:
1318         ethernet-phy@0 {
1319                 linux,phandle = <2452000>
1320                 interrupt-parent = <40000>;
1321                 interrupts = <35 1>;
1322                 reg = <0>;
1323                 device_type = "ethernet-phy";
1324         };
1327    d) Interrupt controllers
1329    Some SOC devices contain interrupt controllers that are different
1330    from the standard Open PIC specification.  The SOC device nodes for
1331    these types of controllers should be specified just like a standard
1332    OpenPIC controller.  Sense and level information should be encoded
1333    as specified in section 2) of this chapter for each device that
1334    specifies an interrupt.
1336    Example :
1338         pic@40000 {
1339                 linux,phandle = <40000>;
1340                 clock-frequency = <0>;
1341                 interrupt-controller;
1342                 #address-cells = <0>;
1343                 reg = <40000 40000>;
1344                 built-in;
1345                 compatible = "chrp,open-pic";
1346                 device_type = "open-pic";
1347                 big-endian;
1348         };
1351    e) I2C
1353    Required properties :
1355     - device_type : Should be "i2c"
1356     - reg : Offset and length of the register set for the device
1358    Recommended properties :
1360     - compatible : Should be "fsl-i2c" for parts compatible with
1361       Freescale I2C specifications.
1362     - interrupts : <a b> where a is the interrupt number and b is a
1363       field that represents an encoding of the sense and level
1364       information for the interrupt.  This should be encoded based on
1365       the information in section 2) depending on the type of interrupt
1366       controller you have.
1367     - interrupt-parent : the phandle for the interrupt controller that
1368       services interrupts for this device.
1369     - dfsrr : boolean; if defined, indicates that this I2C device has
1370       a digital filter sampling rate register
1371     - fsl5200-clocking : boolean; if defined, indicated that this device
1372       uses the FSL 5200 clocking mechanism.
1374    Example :
1376         i2c@3000 {
1377                 interrupt-parent = <40000>;
1378                 interrupts = <1b 3>;
1379                 reg = <3000 18>;
1380                 device_type = "i2c";
1381                 compatible  = "fsl-i2c";
1382                 dfsrr;
1383         };
1386    f) Freescale SOC USB controllers
1388    The device node for a USB controller that is part of a Freescale
1389    SOC is as described in the document "Open Firmware Recommended
1390    Practice : Universal Serial Bus" with the following modifications
1391    and additions :  
1393    Required properties :
1394     - compatible : Should be "fsl-usb2-mph" for multi port host USB
1395       controllers, or "fsl-usb2-dr" for dual role USB controllers
1396     - phy_type : For multi port host USB controllers, should be one of
1397       "ulpi", or "serial". For dual role USB controllers, should be
1398       one of "ulpi", "utmi", "utmi_wide", or "serial".
1399     - reg : Offset and length of the register set for the device
1400     - port0 : boolean; if defined, indicates port0 is connected for
1401       fsl-usb2-mph compatible controllers.  Either this property or
1402       "port1" (or both) must be defined for "fsl-usb2-mph" compatible 
1403       controllers.
1404     - port1 : boolean; if defined, indicates port1 is connected for
1405       fsl-usb2-mph compatible controllers.  Either this property or
1406       "port0" (or both) must be defined for "fsl-usb2-mph" compatible 
1407       controllers.
1408     - dr_mode : indicates the working mode for "fsl-usb2-dr" compatible
1409       controllers.  Can be "host", "peripheral", or "otg".  Default to
1410       "host" if not defined for backward compatibility.
1412    Recommended properties :
1413     - interrupts : <a b> where a is the interrupt number and b is a
1414       field that represents an encoding of the sense and level
1415       information for the interrupt.  This should be encoded based on
1416       the information in section 2) depending on the type of interrupt
1417       controller you have.
1418     - interrupt-parent : the phandle for the interrupt controller that
1419       services interrupts for this device.
1421    Example multi port host USB controller device node :
1422         usb@22000 {
1423                 compatible = "fsl-usb2-mph";
1424                 reg = <22000 1000>;
1425                 #address-cells = <1>;
1426                 #size-cells = <0>;
1427                 interrupt-parent = <700>;
1428                 interrupts = <27 1>;
1429                 phy_type = "ulpi";
1430                 port0;
1431                 port1;
1432         };
1434    Example dual role USB controller device node :
1435         usb@23000 {
1436                 compatible = "fsl-usb2-dr";
1437                 reg = <23000 1000>;
1438                 #address-cells = <1>;
1439                 #size-cells = <0>;
1440                 interrupt-parent = <700>;
1441                 interrupts = <26 1>;
1442                 dr_mode = "otg";
1443                 phy = "ulpi";
1444         };
1447    g) Freescale SOC SEC Security Engines
1449    Required properties:
1451     - device_type : Should be "crypto"
1452     - model : Model of the device.  Should be "SEC1" or "SEC2"
1453     - compatible : Should be "talitos"
1454     - reg : Offset and length of the register set for the device
1455     - interrupts : <a b> where a is the interrupt number and b is a
1456       field that represents an encoding of the sense and level
1457       information for the interrupt.  This should be encoded based on
1458       the information in section 2) depending on the type of interrupt
1459       controller you have.
1460     - interrupt-parent : the phandle for the interrupt controller that
1461       services interrupts for this device.
1462     - num-channels : An integer representing the number of channels
1463       available.
1464     - channel-fifo-len : An integer representing the number of
1465       descriptor pointers each channel fetch fifo can hold.
1466     - exec-units-mask : The bitmask representing what execution units
1467       (EUs) are available. It's a single 32-bit cell. EU information
1468       should be encoded following the SEC's Descriptor Header Dword
1469       EU_SEL0 field documentation, i.e. as follows:
1471         bit 0 = reserved - should be 0
1472         bit 1 = set if SEC has the ARC4 EU (AFEU)
1473         bit 2 = set if SEC has the DES/3DES EU (DEU)
1474         bit 3 = set if SEC has the message digest EU (MDEU)
1475         bit 4 = set if SEC has the random number generator EU (RNG)
1476         bit 5 = set if SEC has the public key EU (PKEU)
1477         bit 6 = set if SEC has the AES EU (AESU)
1478         bit 7 = set if SEC has the Kasumi EU (KEU)
1480       bits 8 through 31 are reserved for future SEC EUs.
1482     - descriptor-types-mask : The bitmask representing what descriptors
1483       are available. It's a single 32-bit cell. Descriptor type
1484       information should be encoded following the SEC's Descriptor
1485       Header Dword DESC_TYPE field documentation, i.e. as follows:
1487         bit 0  = set if SEC supports the aesu_ctr_nonsnoop desc. type
1488         bit 1  = set if SEC supports the ipsec_esp descriptor type
1489         bit 2  = set if SEC supports the common_nonsnoop desc. type
1490         bit 3  = set if SEC supports the 802.11i AES ccmp desc. type
1491         bit 4  = set if SEC supports the hmac_snoop_no_afeu desc. type
1492         bit 5  = set if SEC supports the srtp descriptor type
1493         bit 6  = set if SEC supports the non_hmac_snoop_no_afeu desc.type
1494         bit 7  = set if SEC supports the pkeu_assemble descriptor type
1495         bit 8  = set if SEC supports the aesu_key_expand_output desc.type
1496         bit 9  = set if SEC supports the pkeu_ptmul descriptor type
1497         bit 10 = set if SEC supports the common_nonsnoop_afeu desc. type
1498         bit 11 = set if SEC supports the pkeu_ptadd_dbl descriptor type
1500       ..and so on and so forth.
1502    Example:
1504        /* MPC8548E */
1505        crypto@30000 {
1506                device_type = "crypto";
1507                model = "SEC2";
1508                compatible = "talitos";
1509                reg = <30000 10000>;
1510                interrupts = <1d 3>;
1511                interrupt-parent = <40000>;
1512                num-channels = <4>;
1513                channel-fifo-len = <18>;
1514                exec-units-mask = <000000fe>;
1515                descriptor-types-mask = <012b0ebf>;
1516        };
1518    h) Board Control and Status (BCSR)
1520    Required properties:
1522     - device_type : Should be "board-control"
1523     - reg : Offset and length of the register set for the device
1525     Example:
1527         bcsr@f8000000 {
1528                 device_type = "board-control";
1529                 reg = <f8000000 8000>;
1530         };
1532    i) Freescale QUICC Engine module (QE)
1533    This represents qe module that is installed on PowerQUICC II Pro.
1535    NOTE:  This is an interim binding; it should be updated to fit
1536    in with the CPM binding later in this document.
1538    Basically, it is a bus of devices, that could act more or less
1539    as a complete entity (UCC, USB etc ). All of them should be siblings on
1540    the "root" qe node, using the common properties from there.
1541    The description below applies to the qe of MPC8360 and
1542    more nodes and properties would be extended in the future.
1544    i) Root QE device
1546    Required properties:
1547    - compatible : should be "fsl,qe";
1548    - model : precise model of the QE, Can be "QE", "CPM", or "CPM2"
1549    - reg : offset and length of the device registers.
1550    - bus-frequency : the clock frequency for QUICC Engine.
1552    Recommended properties
1553    - brg-frequency : the internal clock source frequency for baud-rate
1554      generators in Hz.
1556    Example:
1557         qe@e0100000 {
1558                 #address-cells = <1>;
1559                 #size-cells = <1>;
1560                 #interrupt-cells = <2>;
1561                 compatible = "fsl,qe";
1562                 ranges = <0 e0100000 00100000>;
1563                 reg = <e0100000 480>;
1564                 brg-frequency = <0>;
1565                 bus-frequency = <179A7B00>;
1566         }
1569    ii) SPI (Serial Peripheral Interface)
1571    Required properties:
1572    - cell-index : SPI controller index.
1573    - compatible : should be "fsl,spi".
1574    - mode : the SPI operation mode, it can be "cpu" or "cpu-qe".
1575    - reg : Offset and length of the register set for the device
1576    - interrupts : <a b> where a is the interrupt number and b is a
1577      field that represents an encoding of the sense and level
1578      information for the interrupt.  This should be encoded based on
1579      the information in section 2) depending on the type of interrupt
1580      controller you have.
1581    - interrupt-parent : the phandle for the interrupt controller that
1582      services interrupts for this device.
1584    Example:
1585         spi@4c0 {
1586                 cell-index = <0>;
1587                 compatible = "fsl,spi";
1588                 reg = <4c0 40>;
1589                 interrupts = <82 0>;
1590                 interrupt-parent = <700>;
1591                 mode = "cpu";
1592         };
1595    iii) USB (Universal Serial Bus Controller)
1597    Required properties:
1598    - compatible : could be "qe_udc" or "fhci-hcd".
1599    - mode : the could be "host" or "slave".
1600    - reg : Offset and length of the register set for the device
1601    - interrupts : <a b> where a is the interrupt number and b is a
1602      field that represents an encoding of the sense and level
1603      information for the interrupt.  This should be encoded based on
1604      the information in section 2) depending on the type of interrupt
1605      controller you have.
1606    - interrupt-parent : the phandle for the interrupt controller that
1607      services interrupts for this device.
1609    Example(slave):
1610         usb@6c0 {
1611                 compatible = "qe_udc";
1612                 reg = <6c0 40>;
1613                 interrupts = <8b 0>;
1614                 interrupt-parent = <700>;
1615                 mode = "slave";
1616         };
1619    iv) UCC (Unified Communications Controllers)
1621    Required properties:
1622    - device_type : should be "network", "hldc", "uart", "transparent"
1623      "bisync", "atm", or "serial".
1624    - compatible : could be "ucc_geth" or "fsl_atm" and so on.
1625    - model : should be "UCC".
1626    - device-id : the ucc number(1-8), corresponding to UCCx in UM.
1627    - reg : Offset and length of the register set for the device
1628    - interrupts : <a b> where a is the interrupt number and b is a
1629      field that represents an encoding of the sense and level
1630      information for the interrupt.  This should be encoded based on
1631      the information in section 2) depending on the type of interrupt
1632      controller you have.
1633    - interrupt-parent : the phandle for the interrupt controller that
1634      services interrupts for this device.
1635    - pio-handle : The phandle for the Parallel I/O port configuration.
1636    - port-number : for UART drivers, the port number to use, between 0 and 3.
1637      This usually corresponds to the /dev/ttyQE device, e.g. <0> = /dev/ttyQE0.
1638      The port number is added to the minor number of the device.  Unlike the
1639      CPM UART driver, the port-number is required for the QE UART driver.
1640    - soft-uart : for UART drivers, if specified this means the QE UART device
1641      driver should use "Soft-UART" mode, which is needed on some SOCs that have
1642      broken UART hardware.  Soft-UART is provided via a microcode upload.
1643    - rx-clock-name: the UCC receive clock source
1644      "none": clock source is disabled
1645      "brg1" through "brg16": clock source is BRG1-BRG16, respectively
1646      "clk1" through "clk24": clock source is CLK1-CLK24, respectively
1647    - tx-clock-name: the UCC transmit clock source
1648      "none": clock source is disabled
1649      "brg1" through "brg16": clock source is BRG1-BRG16, respectively
1650      "clk1" through "clk24": clock source is CLK1-CLK24, respectively
1651    The following two properties are deprecated.  rx-clock has been replaced
1652    with rx-clock-name, and tx-clock has been replaced with tx-clock-name.
1653    Drivers that currently use the deprecated properties should continue to
1654    do so, in order to support older device trees, but they should be updated
1655    to check for the new properties first.
1656    - rx-clock : represents the UCC receive clock source.
1657      0x00 : clock source is disabled;
1658      0x1~0x10 : clock source is BRG1~BRG16 respectively;
1659      0x11~0x28: clock source is QE_CLK1~QE_CLK24 respectively.
1660    - tx-clock: represents the UCC transmit clock source;
1661      0x00 : clock source is disabled;
1662      0x1~0x10 : clock source is BRG1~BRG16 respectively;
1663      0x11~0x28: clock source is QE_CLK1~QE_CLK24 respectively.
1665    Required properties for network device_type:
1666    - mac-address : list of bytes representing the ethernet address.
1667    - phy-handle : The phandle for the PHY connected to this controller.
1669    Recommended properties:
1670    - linux,network-index : This is the intended "index" of this
1671      network device.  This is used by the bootwrapper to interpret
1672      MAC addresses passed by the firmware when no information other
1673      than indices is available to associate an address with a device.
1674    - phy-connection-type : a string naming the controller/PHY interface type,
1675      i.e., "mii" (default), "rmii", "gmii", "rgmii", "rgmii-id" (Internal
1676      Delay), "rgmii-txid" (delay on TX only), "rgmii-rxid" (delay on RX only),
1677      "tbi", or "rtbi".
1679    Example:
1680         ucc@2000 {
1681                 device_type = "network";
1682                 compatible = "ucc_geth";
1683                 model = "UCC";
1684                 device-id = <1>;
1685                 reg = <2000 200>;
1686                 interrupts = <a0 0>;
1687                 interrupt-parent = <700>;
1688                 mac-address = [ 00 04 9f 00 23 23 ];
1689                 rx-clock = "none";
1690                 tx-clock = "clk9";
1691                 phy-handle = <212000>;
1692                 phy-connection-type = "gmii";
1693                 pio-handle = <140001>;
1694         };
1697    v) Parallel I/O Ports
1699    This node configures Parallel I/O ports for CPUs with QE support.
1700    The node should reside in the "soc" node of the tree.  For each
1701    device that using parallel I/O ports, a child node should be created.
1702    See the definition of the Pin configuration nodes below for more
1703    information.
1705    Required properties:
1706    - device_type : should be "par_io".
1707    - reg : offset to the register set and its length.
1708    - num-ports : number of Parallel I/O ports
1710    Example:
1711         par_io@1400 {
1712                 reg = <1400 100>;
1713                 #address-cells = <1>;
1714                 #size-cells = <0>;
1715                 device_type = "par_io";
1716                 num-ports = <7>;
1717                 ucc_pin@01 {
1718                         ......
1719                 };
1722    vi) Pin configuration nodes
1724    Required properties:
1725    - linux,phandle : phandle of this node; likely referenced by a QE
1726      device.
1727    - pio-map : array of pin configurations.  Each pin is defined by 6
1728      integers.  The six numbers are respectively: port, pin, dir,
1729      open_drain, assignment, has_irq.
1730      - port : port number of the pin; 0-6 represent port A-G in UM.
1731      - pin : pin number in the port.
1732      - dir : direction of the pin, should encode as follows:
1734         0 = The pin is disabled
1735         1 = The pin is an output
1736         2 = The pin is an input
1737         3 = The pin is I/O
1739      - open_drain : indicates the pin is normal or wired-OR:
1741         0 = The pin is actively driven as an output
1742         1 = The pin is an open-drain driver. As an output, the pin is
1743             driven active-low, otherwise it is three-stated.
1745      - assignment : function number of the pin according to the Pin Assignment
1746        tables in User Manual.  Each pin can have up to 4 possible functions in
1747        QE and two options for CPM.
1748      - has_irq : indicates if the pin is used as source of external
1749        interrupts.
1751    Example:
1752         ucc_pin@01 {
1753                 linux,phandle = <140001>;
1754                 pio-map = <
1755                 /* port  pin  dir  open_drain  assignment  has_irq */
1756                         0  3  1  0  1  0        /* TxD0 */
1757                         0  4  1  0  1  0        /* TxD1 */
1758                         0  5  1  0  1  0        /* TxD2 */
1759                         0  6  1  0  1  0        /* TxD3 */
1760                         1  6  1  0  3  0        /* TxD4 */
1761                         1  7  1  0  1  0        /* TxD5 */
1762                         1  9  1  0  2  0        /* TxD6 */
1763                         1  a  1  0  2  0        /* TxD7 */
1764                         0  9  2  0  1  0        /* RxD0 */
1765                         0  a  2  0  1  0        /* RxD1 */
1766                         0  b  2  0  1  0        /* RxD2 */
1767                         0  c  2  0  1  0        /* RxD3 */
1768                         0  d  2  0  1  0        /* RxD4 */
1769                         1  1  2  0  2  0        /* RxD5 */
1770                         1  0  2  0  2  0        /* RxD6 */
1771                         1  4  2  0  2  0        /* RxD7 */
1772                         0  7  1  0  1  0        /* TX_EN */
1773                         0  8  1  0  1  0        /* TX_ER */
1774                         0  f  2  0  1  0        /* RX_DV */
1775                         0  10 2  0  1  0        /* RX_ER */
1776                         0  0  2  0  1  0        /* RX_CLK */
1777                         2  9  1  0  3  0        /* GTX_CLK - CLK10 */
1778                         2  8  2  0  1  0>;      /* GTX125 - CLK9 */
1779         };
1781    vii) Multi-User RAM (MURAM)
1783    Required properties:
1784    - compatible : should be "fsl,qe-muram", "fsl,cpm-muram".
1785    - mode : the could be "host" or "slave".
1786    - ranges : Should be defined as specified in 1) to describe the
1787       translation of MURAM addresses.
1788    - data-only : sub-node which defines the address area under MURAM
1789       bus that can be allocated as data/parameter
1791    Example:
1793         muram@10000 {
1794                 compatible = "fsl,qe-muram", "fsl,cpm-muram";
1795                 ranges = <0 00010000 0000c000>;
1797                 data-only@0{
1798                         compatible = "fsl,qe-muram-data",
1799                                      "fsl,cpm-muram-data";
1800                         reg = <0 c000>;
1801                 };
1802         };
1804    viii) Uploaded QE firmware
1806          If a new firwmare has been uploaded to the QE (usually by the
1807          boot loader), then a 'firmware' child node should be added to the QE
1808          node.  This node provides information on the uploaded firmware that
1809          device drivers may need.
1811          Required properties:
1812          - id: The string name of the firmware.  This is taken from the 'id'
1813                member of the qe_firmware structure of the uploaded firmware.
1814                Device drivers can search this string to determine if the
1815                firmware they want is already present.
1816          - extended-modes: The Extended Modes bitfield, taken from the
1817                            firmware binary.  It is a 64-bit number represented
1818                            as an array of two 32-bit numbers.
1819          - virtual-traps: The virtual traps, taken from the firmware binary.
1820                           It is an array of 8 32-bit numbers.
1822          Example:
1824                 firmware {
1825                         id = "Soft-UART";
1826                         extended-modes = <0 0>;
1827                         virtual-traps = <0 0 0 0 0 0 0 0>;
1828                 }
1830    j) CFI or JEDEC memory-mapped NOR flash
1832     Flash chips (Memory Technology Devices) are often used for solid state
1833     file systems on embedded devices.
1835      - compatible : should contain the specific model of flash chip(s)
1836        used, if known, followed by either "cfi-flash" or "jedec-flash"
1837      - reg : Address range of the flash chip
1838      - bank-width : Width (in bytes) of the flash bank.  Equal to the
1839        device width times the number of interleaved chips.
1840      - device-width : (optional) Width of a single flash chip.  If
1841        omitted, assumed to be equal to 'bank-width'.
1842      - #address-cells, #size-cells : Must be present if the flash has
1843        sub-nodes representing partitions (see below).  In this case
1844        both #address-cells and #size-cells must be equal to 1.
1846     For JEDEC compatible devices, the following additional properties
1847     are defined:
1849      - vendor-id : Contains the flash chip's vendor id (1 byte).
1850      - device-id : Contains the flash chip's device id (1 byte).
1852     In addition to the information on the flash bank itself, the
1853     device tree may optionally contain additional information
1854     describing partitions of the flash address space.  This can be
1855     used on platforms which have strong conventions about which
1856     portions of the flash are used for what purposes, but which don't
1857     use an on-flash partition table such as RedBoot.
1859     Each partition is represented as a sub-node of the flash device.
1860     Each node's name represents the name of the corresponding
1861     partition of the flash device.
1863     Flash partitions
1864      - reg : The partition's offset and size within the flash bank.
1865      - label : (optional) The label / name for this flash partition.
1866        If omitted, the label is taken from the node name (excluding
1867        the unit address).
1868      - read-only : (optional) This parameter, if present, is a hint to
1869        Linux that this flash partition should only be mounted
1870        read-only.  This is usually used for flash partitions
1871        containing early-boot firmware images or data which should not
1872        be clobbered.
1874     Example:
1876         flash@ff000000 {
1877                 compatible = "amd,am29lv128ml", "cfi-flash";
1878                 reg = <ff000000 01000000>;
1879                 bank-width = <4>;
1880                 device-width = <1>;
1881                 #address-cells = <1>;
1882                 #size-cells = <1>;
1883                 fs@0 {
1884                         label = "fs";
1885                         reg = <0 f80000>;
1886                 };
1887                 firmware@f80000 {
1888                         label ="firmware";
1889                         reg = <f80000 80000>;
1890                         read-only;
1891                 };
1892         };
1894    k) Global Utilities Block
1896    The global utilities block controls power management, I/O device
1897    enabling, power-on-reset configuration monitoring, general-purpose
1898    I/O signal configuration, alternate function selection for multiplexed
1899    signals, and clock control.
1901    Required properties:
1903     - compatible : Should define the compatible device type for
1904       global-utilities.
1905     - reg : Offset and length of the register set for the device.
1907   Recommended properties:
1909     - fsl,has-rstcr : Indicates that the global utilities register set
1910       contains a functioning "reset control register" (i.e. the board
1911       is wired to reset upon setting the HRESET_REQ bit in this register).
1913     Example:
1915         global-utilities@e0000 {        /* global utilities block */
1916                 compatible = "fsl,mpc8548-guts";
1917                 reg = <e0000 1000>;
1918                 fsl,has-rstcr;
1919         };
1921    l) Freescale Communications Processor Module
1923    NOTE: This is an interim binding, and will likely change slightly,
1924    as more devices are supported.  The QE bindings especially are
1925    incomplete.
1927    i) Root CPM node
1929    Properties:
1930    - compatible : "fsl,cpm1", "fsl,cpm2", or "fsl,qe".
1931    - reg : A 48-byte region beginning with CPCR.
1933    Example:
1934         cpm@119c0 {
1935                 #address-cells = <1>;
1936                 #size-cells = <1>;
1937                 #interrupt-cells = <2>;
1938                 compatible = "fsl,mpc8272-cpm", "fsl,cpm2";
1939                 reg = <119c0 30>;
1940         }
1942    ii) Properties common to mulitple CPM/QE devices
1944    - fsl,cpm-command : This value is ORed with the opcode and command flag
1945                        to specify the device on which a CPM command operates.
1947    - fsl,cpm-brg : Indicates which baud rate generator the device
1948                    is associated with.  If absent, an unused BRG
1949                    should be dynamically allocated.  If zero, the
1950                    device uses an external clock rather than a BRG.
1952    - reg : Unless otherwise specified, the first resource represents the
1953            scc/fcc/ucc registers, and the second represents the device's
1954            parameter RAM region (if it has one).
1956    iii) Serial
1958    Currently defined compatibles:
1959    - fsl,cpm1-smc-uart
1960    - fsl,cpm2-smc-uart
1961    - fsl,cpm1-scc-uart
1962    - fsl,cpm2-scc-uart
1963    - fsl,qe-uart
1965    Example:
1967         serial@11a00 {
1968                 device_type = "serial";
1969                 compatible = "fsl,mpc8272-scc-uart",
1970                              "fsl,cpm2-scc-uart";
1971                 reg = <11a00 20 8000 100>;
1972                 interrupts = <28 8>;
1973                 interrupt-parent = <&PIC>;
1974                 fsl,cpm-brg = <1>;
1975                 fsl,cpm-command = <00800000>;
1976         };
1978    iii) Network
1980    Currently defined compatibles:
1981    - fsl,cpm1-scc-enet
1982    - fsl,cpm2-scc-enet
1983    - fsl,cpm1-fec-enet
1984    - fsl,cpm2-fcc-enet (third resource is GFEMR)
1985    - fsl,qe-enet
1987    Example:
1989         ethernet@11300 {
1990                 device_type = "network";
1991                 compatible = "fsl,mpc8272-fcc-enet",
1992                              "fsl,cpm2-fcc-enet";
1993                 reg = <11300 20 8400 100 11390 1>;
1994                 local-mac-address = [ 00 00 00 00 00 00 ];
1995                 interrupts = <20 8>;
1996                 interrupt-parent = <&PIC>;
1997                 phy-handle = <&PHY0>;
1998                 linux,network-index = <0>;
1999                 fsl,cpm-command = <12000300>;
2000         };
2002    iv) MDIO
2004    Currently defined compatibles:
2005    fsl,pq1-fec-mdio (reg is same as first resource of FEC device)
2006    fsl,cpm2-mdio-bitbang (reg is port C registers)
2008    Properties for fsl,cpm2-mdio-bitbang:
2009    fsl,mdio-pin : pin of port C controlling mdio data
2010    fsl,mdc-pin : pin of port C controlling mdio clock
2012    Example:
2014         mdio@10d40 {
2015                 device_type = "mdio";
2016                 compatible = "fsl,mpc8272ads-mdio-bitbang",
2017                              "fsl,mpc8272-mdio-bitbang",
2018                              "fsl,cpm2-mdio-bitbang";
2019                 reg = <10d40 14>;
2020                 #address-cells = <1>;
2021                 #size-cells = <0>;
2022                 fsl,mdio-pin = <12>;
2023                 fsl,mdc-pin = <13>;
2024         };
2026    v) Baud Rate Generators
2028    Currently defined compatibles:
2029    fsl,cpm-brg
2030    fsl,cpm1-brg
2031    fsl,cpm2-brg
2033    Properties:
2034    - reg : There may be an arbitrary number of reg resources; BRG
2035      numbers are assigned to these in order.
2036    - clock-frequency : Specifies the base frequency driving
2037      the BRG.
2039    Example:
2041         brg@119f0 {
2042                 compatible = "fsl,mpc8272-brg",
2043                              "fsl,cpm2-brg",
2044                              "fsl,cpm-brg";
2045                 reg = <119f0 10 115f0 10>;
2046                 clock-frequency = <d#25000000>;
2047         };
2049    vi) Interrupt Controllers
2051    Currently defined compatibles:
2052    - fsl,cpm1-pic
2053      - only one interrupt cell
2054    - fsl,pq1-pic
2055    - fsl,cpm2-pic
2056      - second interrupt cell is level/sense:
2057        - 2 is falling edge
2058        - 8 is active low
2060    Example:
2062         interrupt-controller@10c00 {
2063                 #interrupt-cells = <2>;
2064                 interrupt-controller;
2065                 reg = <10c00 80>;
2066                 compatible = "mpc8272-pic", "fsl,cpm2-pic";
2067         };
2069    vii) USB (Universal Serial Bus Controller)
2071    Properties:
2072    - compatible : "fsl,cpm1-usb", "fsl,cpm2-usb", "fsl,qe-usb"
2074    Example:
2075         usb@11bc0 {
2076                 #address-cells = <1>;
2077                 #size-cells = <0>;
2078                 compatible = "fsl,cpm2-usb";
2079                 reg = <11b60 18 8b00 100>;
2080                 interrupts = <b 8>;
2081                 interrupt-parent = <&PIC>;
2082                 fsl,cpm-command = <2e600000>;
2083         };
2085    viii) Multi-User RAM (MURAM)
2087    The multi-user/dual-ported RAM is expressed as a bus under the CPM node.
2089    Ranges must be set up subject to the following restrictions:
2091    - Children's reg nodes must be offsets from the start of all muram, even
2092      if the user-data area does not begin at zero.
2093    - If multiple range entries are used, the difference between the parent
2094      address and the child address must be the same in all, so that a single
2095      mapping can cover them all while maintaining the ability to determine
2096      CPM-side offsets with pointer subtraction.  It is recommended that
2097      multiple range entries not be used.
2098    - A child address of zero must be translatable, even if no reg resources
2099      contain it.
2101    A child "data" node must exist, compatible with "fsl,cpm-muram-data", to
2102    indicate the portion of muram that is usable by the OS for arbitrary
2103    purposes.  The data node may have an arbitrary number of reg resources,
2104    all of which contribute to the allocatable muram pool.
2106    Example, based on mpc8272:
2108         muram@0 {
2109                 #address-cells = <1>;
2110                 #size-cells = <1>;
2111                 ranges = <0 0 10000>;
2113                 data@0 {
2114                         compatible = "fsl,cpm-muram-data";
2115                         reg = <0 2000 9800 800>;
2116                 };
2117         };
2119    m) Chipselect/Local Bus
2121    Properties:
2122    - name : Should be localbus
2123    - #address-cells : Should be either two or three.  The first cell is the
2124                       chipselect number, and the remaining cells are the
2125                       offset into the chipselect.
2126    - #size-cells : Either one or two, depending on how large each chipselect
2127                    can be.
2128    - ranges : Each range corresponds to a single chipselect, and cover
2129               the entire access window as configured.
2131    Example:
2132         localbus@f0010100 {
2133                 compatible = "fsl,mpc8272-localbus",
2134                              "fsl,pq2-localbus";
2135                 #address-cells = <2>;
2136                 #size-cells = <1>;
2137                 reg = <f0010100 40>;
2139                 ranges = <0 0 fe000000 02000000
2140                           1 0 f4500000 00008000>;
2142                 flash@0,0 {
2143                         compatible = "jedec-flash";
2144                         reg = <0 0 2000000>;
2145                         bank-width = <4>;
2146                         device-width = <1>;
2147                 };
2149                 board-control@1,0 {
2150                         reg = <1 0 20>;
2151                         compatible = "fsl,mpc8272ads-bcsr";
2152                 };
2153         };
2156     n) 4xx/Axon EMAC ethernet nodes
2158     The EMAC ethernet controller in IBM and AMCC 4xx chips, and also
2159     the Axon bridge.  To operate this needs to interact with a ths
2160     special McMAL DMA controller, and sometimes an RGMII or ZMII
2161     interface.  In addition to the nodes and properties described
2162     below, the node for the OPB bus on which the EMAC sits must have a
2163     correct clock-frequency property.
2165       i) The EMAC node itself
2167     Required properties:
2168     - device_type       : "network"
2170     - compatible        : compatible list, contains 2 entries, first is
2171                           "ibm,emac-CHIP" where CHIP is the host ASIC (440gx,
2172                           405gp, Axon) and second is either "ibm,emac" or
2173                           "ibm,emac4".  For Axon, thus, we have: "ibm,emac-axon",
2174                           "ibm,emac4"
2175     - interrupts        : <interrupt mapping for EMAC IRQ and WOL IRQ>
2176     - interrupt-parent  : optional, if needed for interrupt mapping
2177     - reg               : <registers mapping>
2178     - local-mac-address : 6 bytes, MAC address
2179     - mal-device        : phandle of the associated McMAL node
2180     - mal-tx-channel    : 1 cell, index of the tx channel on McMAL associated
2181                           with this EMAC
2182     - mal-rx-channel    : 1 cell, index of the rx channel on McMAL associated
2183                           with this EMAC
2184     - cell-index        : 1 cell, hardware index of the EMAC cell on a given
2185                           ASIC (typically 0x0 and 0x1 for EMAC0 and EMAC1 on
2186                           each Axon chip)
2187     - max-frame-size    : 1 cell, maximum frame size supported in bytes
2188     - rx-fifo-size      : 1 cell, Rx fifo size in bytes for 10 and 100 Mb/sec
2189                           operations.
2190                           For Axon, 2048
2191     - tx-fifo-size      : 1 cell, Tx fifo size in bytes for 10 and 100 Mb/sec
2192                           operations.
2193                           For Axon, 2048.
2194     - fifo-entry-size   : 1 cell, size of a fifo entry (used to calculate
2195                           thresholds).
2196                           For Axon, 0x00000010
2197     - mal-burst-size    : 1 cell, MAL burst size (used to calculate thresholds)
2198                           in bytes.
2199                           For Axon, 0x00000100 (I think ...)
2200     - phy-mode          : string, mode of operations of the PHY interface.
2201                           Supported values are: "mii", "rmii", "smii", "rgmii",
2202                           "tbi", "gmii", rtbi", "sgmii".
2203                           For Axon on CAB, it is "rgmii"
2204     - mdio-device       : 1 cell, required iff using shared MDIO registers
2205                           (440EP).  phandle of the EMAC to use to drive the
2206                           MDIO lines for the PHY used by this EMAC.
2207     - zmii-device       : 1 cell, required iff connected to a ZMII.  phandle of
2208                           the ZMII device node
2209     - zmii-channel      : 1 cell, required iff connected to a ZMII.  Which ZMII
2210                           channel or 0xffffffff if ZMII is only used for MDIO.
2211     - rgmii-device      : 1 cell, required iff connected to an RGMII. phandle
2212                           of the RGMII device node.
2213                           For Axon: phandle of plb5/plb4/opb/rgmii
2214     - rgmii-channel     : 1 cell, required iff connected to an RGMII.  Which
2215                           RGMII channel is used by this EMAC.
2216                           Fox Axon: present, whatever value is appropriate for each
2217                           EMAC, that is the content of the current (bogus) "phy-port"
2218                           property.
2220     Recommended properties:
2221     - linux,network-index : This is the intended "index" of this
2222       network device.  This is used by the bootwrapper to interpret
2223       MAC addresses passed by the firmware when no information other
2224       than indices is available to associate an address with a device.
2226     Optional properties:
2227     - phy-address       : 1 cell, optional, MDIO address of the PHY. If absent,
2228                           a search is performed.
2229     - phy-map           : 1 cell, optional, bitmap of addresses to probe the PHY
2230                           for, used if phy-address is absent. bit 0x00000001 is
2231                           MDIO address 0.
2232                           For Axon it can be absent, thouugh my current driver
2233                           doesn't handle phy-address yet so for now, keep
2234                           0x00ffffff in it.
2235     - rx-fifo-size-gige : 1 cell, Rx fifo size in bytes for 1000 Mb/sec
2236                           operations (if absent the value is the same as
2237                           rx-fifo-size).  For Axon, either absent or 2048.
2238     - tx-fifo-size-gige : 1 cell, Tx fifo size in bytes for 1000 Mb/sec
2239                           operations (if absent the value is the same as
2240                           tx-fifo-size). For Axon, either absent or 2048.
2241     - tah-device        : 1 cell, optional. If connected to a TAH engine for
2242                           offload, phandle of the TAH device node.
2243     - tah-channel       : 1 cell, optional. If appropriate, channel used on the
2244                           TAH engine.
2246     Example:
2248         EMAC0: ethernet@40000800 {
2249                 linux,network-index = <0>;
2250                 device_type = "network";
2251                 compatible = "ibm,emac-440gp", "ibm,emac";
2252                 interrupt-parent = <&UIC1>;
2253                 interrupts = <1c 4 1d 4>;
2254                 reg = <40000800 70>;
2255                 local-mac-address = [00 04 AC E3 1B 1E];
2256                 mal-device = <&MAL0>;
2257                 mal-tx-channel = <0 1>;
2258                 mal-rx-channel = <0>;
2259                 cell-index = <0>;
2260                 max-frame-size = <5dc>;
2261                 rx-fifo-size = <1000>;
2262                 tx-fifo-size = <800>;
2263                 phy-mode = "rmii";
2264                 phy-map = <00000001>;
2265                 zmii-device = <&ZMII0>;
2266                 zmii-channel = <0>;
2267         };
2269       ii) McMAL node
2271     Required properties:
2272     - device_type        : "dma-controller"
2273     - compatible         : compatible list, containing 2 entries, first is
2274                            "ibm,mcmal-CHIP" where CHIP is the host ASIC (like
2275                            emac) and the second is either "ibm,mcmal" or
2276                            "ibm,mcmal2".
2277                            For Axon, "ibm,mcmal-axon","ibm,mcmal2"
2278     - interrupts         : <interrupt mapping for the MAL interrupts sources:
2279                            5 sources: tx_eob, rx_eob, serr, txde, rxde>.
2280                            For Axon: This is _different_ from the current
2281                            firmware.  We use the "delayed" interrupts for txeob
2282                            and rxeob. Thus we end up with mapping those 5 MPIC
2283                            interrupts, all level positive sensitive: 10, 11, 32,
2284                            33, 34 (in decimal)
2285     - dcr-reg            : < DCR registers range >
2286     - dcr-parent         : if needed for dcr-reg
2287     - num-tx-chans       : 1 cell, number of Tx channels
2288     - num-rx-chans       : 1 cell, number of Rx channels
2290       iii) ZMII node
2292     Required properties:
2293     - compatible         : compatible list, containing 2 entries, first is
2294                            "ibm,zmii-CHIP" where CHIP is the host ASIC (like
2295                            EMAC) and the second is "ibm,zmii".
2296                            For Axon, there is no ZMII node.
2297     - reg                : <registers mapping>
2299       iv) RGMII node
2301     Required properties:
2302     - compatible         : compatible list, containing 2 entries, first is
2303                            "ibm,rgmii-CHIP" where CHIP is the host ASIC (like
2304                            EMAC) and the second is "ibm,rgmii".
2305                            For Axon, "ibm,rgmii-axon","ibm,rgmii"
2306     - reg                : <registers mapping>
2307     - revision           : as provided by the RGMII new version register if
2308                            available.
2309                            For Axon: 0x0000012a
2311    o) Xilinx IP cores
2313    The Xilinx EDK toolchain ships with a set of IP cores (devices) for use
2314    in Xilinx Spartan and Virtex FPGAs.  The devices cover the whole range
2315    of standard device types (network, serial, etc.) and miscellanious
2316    devices (gpio, LCD, spi, etc).  Also, since these devices are
2317    implemented within the fpga fabric every instance of the device can be
2318    synthesised with different options that change the behaviour.
2320    Each IP-core has a set of parameters which the FPGA designer can use to
2321    control how the core is synthesized.  Historically, the EDK tool would
2322    extract the device parameters relevant to device drivers and copy them
2323    into an 'xparameters.h' in the form of #define symbols.  This tells the
2324    device drivers how the IP cores are configured, but it requres the kernel
2325    to be recompiled every time the FPGA bitstream is resynthesized.
2327    The new approach is to export the parameters into the device tree and
2328    generate a new device tree each time the FPGA bitstream changes.  The
2329    parameters which used to be exported as #defines will now become
2330    properties of the device node.  In general, device nodes for IP-cores
2331    will take the following form:
2333         (name): (generic-name)@(base-address) {
2334                 compatible = "xlnx,(ip-core-name)-(HW_VER)"
2335                              [, (list of compatible devices), ...];
2336                 reg = <(baseaddr) (size)>;
2337                 interrupt-parent = <&interrupt-controller-phandle>;
2338                 interrupts = < ... >;
2339                 xlnx,(parameter1) = "(string-value)";
2340                 xlnx,(parameter2) = <(int-value)>;
2341         };
2343         (generic-name):   an open firmware-style name that describes the
2344                         generic class of device.  Preferably, this is one word, such
2345                         as 'serial' or 'ethernet'.
2346         (ip-core-name): the name of the ip block (given after the BEGIN
2347                         directive in system.mhs).  Should be in lowercase
2348                         and all underscores '_' converted to dashes '-'.
2349         (name):         is derived from the "PARAMETER INSTANCE" value.
2350         (parameter#):   C_* parameters from system.mhs.  The C_ prefix is
2351                         dropped from the parameter name, the name is converted
2352                         to lowercase and all underscore '_' characters are
2353                         converted to dashes '-'.
2354         (baseaddr):     the baseaddr parameter value (often named C_BASEADDR).
2355         (HW_VER):       from the HW_VER parameter.
2356         (size):         the address range size (often C_HIGHADDR - C_BASEADDR + 1).
2358    Typically, the compatible list will include the exact IP core version
2359    followed by an older IP core version which implements the same
2360    interface or any other device with the same interface.
2362    'reg', 'interrupt-parent' and 'interrupts' are all optional properties.
2364    For example, the following block from system.mhs:
2366         BEGIN opb_uartlite
2367                 PARAMETER INSTANCE = opb_uartlite_0
2368                 PARAMETER HW_VER = 1.00.b
2369                 PARAMETER C_BAUDRATE = 115200
2370                 PARAMETER C_DATA_BITS = 8
2371                 PARAMETER C_ODD_PARITY = 0
2372                 PARAMETER C_USE_PARITY = 0
2373                 PARAMETER C_CLK_FREQ = 50000000
2374                 PARAMETER C_BASEADDR = 0xEC100000
2375                 PARAMETER C_HIGHADDR = 0xEC10FFFF
2376                 BUS_INTERFACE SOPB = opb_7
2377                 PORT OPB_Clk = CLK_50MHz
2378                 PORT Interrupt = opb_uartlite_0_Interrupt
2379                 PORT RX = opb_uartlite_0_RX
2380                 PORT TX = opb_uartlite_0_TX
2381                 PORT OPB_Rst = sys_bus_reset_0
2382         END
2384    becomes the following device tree node:
2386         opb_uartlite_0: serial@ec100000 {
2387                 device_type = "serial";
2388                 compatible = "xlnx,opb-uartlite-1.00.b";
2389                 reg = <ec100000 10000>;
2390                 interrupt-parent = <&opb_intc_0>;
2391                 interrupts = <1 0>; // got this from the opb_intc parameters
2392                 current-speed = <d#115200>;     // standard serial device prop
2393                 clock-frequency = <d#50000000>; // standard serial device prop
2394                 xlnx,data-bits = <8>;
2395                 xlnx,odd-parity = <0>;
2396                 xlnx,use-parity = <0>;
2397         };
2399    Some IP cores actually implement 2 or more logical devices.  In
2400    this case, the device should still describe the whole IP core with
2401    a single node and add a child node for each logical device.  The
2402    ranges property can be used to translate from parent IP-core to the
2403    registers of each device.  In addition, the parent node should be
2404    compatible with the bus type 'xlnx,compound', and should contain
2405    #address-cells and #size-cells, as with any other bus.  (Note: this
2406    makes the assumption that both logical devices have the same bus
2407    binding.  If this is not true, then separate nodes should be used
2408    for each logical device).  The 'cell-index' property can be used to
2409    enumerate logical devices within an IP core.  For example, the
2410    following is the system.mhs entry for the dual ps2 controller found
2411    on the ml403 reference design.
2413         BEGIN opb_ps2_dual_ref
2414                 PARAMETER INSTANCE = opb_ps2_dual_ref_0
2415                 PARAMETER HW_VER = 1.00.a
2416                 PARAMETER C_BASEADDR = 0xA9000000
2417                 PARAMETER C_HIGHADDR = 0xA9001FFF
2418                 BUS_INTERFACE SOPB = opb_v20_0
2419                 PORT Sys_Intr1 = ps2_1_intr
2420                 PORT Sys_Intr2 = ps2_2_intr
2421                 PORT Clkin1 = ps2_clk_rx_1
2422                 PORT Clkin2 = ps2_clk_rx_2
2423                 PORT Clkpd1 = ps2_clk_tx_1
2424                 PORT Clkpd2 = ps2_clk_tx_2
2425                 PORT Rx1 = ps2_d_rx_1
2426                 PORT Rx2 = ps2_d_rx_2
2427                 PORT Txpd1 = ps2_d_tx_1
2428                 PORT Txpd2 = ps2_d_tx_2
2429         END
2431    It would result in the following device tree nodes:
2433         opb_ps2_dual_ref_0: opb-ps2-dual-ref@a9000000 {
2434                 #address-cells = <1>;
2435                 #size-cells = <1>;
2436                 compatible = "xlnx,compound";
2437                 ranges = <0 a9000000 2000>;
2438                 // If this device had extra parameters, then they would
2439                 // go here.
2440                 ps2@0 {
2441                         compatible = "xlnx,opb-ps2-dual-ref-1.00.a";
2442                         reg = <0 40>;
2443                         interrupt-parent = <&opb_intc_0>;
2444                         interrupts = <3 0>;
2445                         cell-index = <0>;
2446                 };
2447                 ps2@1000 {
2448                         compatible = "xlnx,opb-ps2-dual-ref-1.00.a";
2449                         reg = <1000 40>;
2450                         interrupt-parent = <&opb_intc_0>;
2451                         interrupts = <3 0>;
2452                         cell-index = <0>;
2453                 };
2454         };
2456    Also, the system.mhs file defines bus attachments from the processor
2457    to the devices.  The device tree structure should reflect the bus
2458    attachments.  Again an example; this system.mhs fragment:
2460         BEGIN ppc405_virtex4
2461                 PARAMETER INSTANCE = ppc405_0
2462                 PARAMETER HW_VER = 1.01.a
2463                 BUS_INTERFACE DPLB = plb_v34_0
2464                 BUS_INTERFACE IPLB = plb_v34_0
2465         END
2467         BEGIN opb_intc
2468                 PARAMETER INSTANCE = opb_intc_0
2469                 PARAMETER HW_VER = 1.00.c
2470                 PARAMETER C_BASEADDR = 0xD1000FC0
2471                 PARAMETER C_HIGHADDR = 0xD1000FDF
2472                 BUS_INTERFACE SOPB = opb_v20_0
2473         END
2475         BEGIN opb_uart16550
2476                 PARAMETER INSTANCE = opb_uart16550_0
2477                 PARAMETER HW_VER = 1.00.d
2478                 PARAMETER C_BASEADDR = 0xa0000000
2479                 PARAMETER C_HIGHADDR = 0xa0001FFF
2480                 BUS_INTERFACE SOPB = opb_v20_0
2481         END
2483         BEGIN plb_v34
2484                 PARAMETER INSTANCE = plb_v34_0
2485                 PARAMETER HW_VER = 1.02.a
2486         END
2488         BEGIN plb_bram_if_cntlr
2489                 PARAMETER INSTANCE = plb_bram_if_cntlr_0
2490                 PARAMETER HW_VER = 1.00.b
2491                 PARAMETER C_BASEADDR = 0xFFFF0000
2492                 PARAMETER C_HIGHADDR = 0xFFFFFFFF
2493                 BUS_INTERFACE SPLB = plb_v34_0
2494         END
2496         BEGIN plb2opb_bridge
2497                 PARAMETER INSTANCE = plb2opb_bridge_0
2498                 PARAMETER HW_VER = 1.01.a
2499                 PARAMETER C_RNG0_BASEADDR = 0x20000000
2500                 PARAMETER C_RNG0_HIGHADDR = 0x3FFFFFFF
2501                 PARAMETER C_RNG1_BASEADDR = 0x60000000
2502                 PARAMETER C_RNG1_HIGHADDR = 0x7FFFFFFF
2503                 PARAMETER C_RNG2_BASEADDR = 0x80000000
2504                 PARAMETER C_RNG2_HIGHADDR = 0xBFFFFFFF
2505                 PARAMETER C_RNG3_BASEADDR = 0xC0000000
2506                 PARAMETER C_RNG3_HIGHADDR = 0xDFFFFFFF
2507                 BUS_INTERFACE SPLB = plb_v34_0
2508                 BUS_INTERFACE MOPB = opb_v20_0
2509         END
2511    Gives this device tree (some properties removed for clarity):
2513         plb@0 {
2514                 #address-cells = <1>;
2515                 #size-cells = <1>;
2516                 compatible = "xlnx,plb-v34-1.02.a";
2517                 device_type = "ibm,plb";
2518                 ranges; // 1:1 translation
2520                 plb_bram_if_cntrl_0: bram@ffff0000 {
2521                         reg = <ffff0000 10000>;
2522                 }
2524                 opb@20000000 {
2525                         #address-cells = <1>;
2526                         #size-cells = <1>;
2527                         ranges = <20000000 20000000 20000000
2528                                   60000000 60000000 20000000
2529                                   80000000 80000000 40000000
2530                                   c0000000 c0000000 20000000>;
2532                         opb_uart16550_0: serial@a0000000 {
2533                                 reg = <a00000000 2000>;
2534                         };
2536                         opb_intc_0: interrupt-controller@d1000fc0 {
2537                                 reg = <d1000fc0 20>;
2538                         };
2539                 };
2540         };
2542    That covers the general approach to binding xilinx IP cores into the
2543    device tree.  The following are bindings for specific devices:
2545       i) Xilinx ML300 Framebuffer
2547       Simple framebuffer device from the ML300 reference design (also on the
2548       ML403 reference design as well as others).
2550       Optional properties:
2551        - resolution = <xres yres> : pixel resolution of framebuffer.  Some
2552                                     implementations use a different resolution.
2553                                     Default is <d#640 d#480>
2554        - virt-resolution = <xvirt yvirt> : Size of framebuffer in memory.
2555                                            Default is <d#1024 d#480>.
2556        - rotate-display (empty) : rotate display 180 degrees.
2558       ii) Xilinx SystemACE
2560       The Xilinx SystemACE device is used to program FPGAs from an FPGA
2561       bitstream stored on a CF card.  It can also be used as a generic CF
2562       interface device.
2564       Optional properties:
2565        - 8-bit (empty) : Set this property for SystemACE in 8 bit mode
2567       iii) Xilinx EMAC and Xilinx TEMAC
2569       Xilinx Ethernet devices.  In addition to general xilinx properties
2570       listed above, nodes for these devices should include a phy-handle
2571       property, and may include other common network device properties
2572       like local-mac-address.
2573       
2574       iv) Xilinx Uartlite
2576       Xilinx uartlite devices are simple fixed speed serial ports.
2578       Requred properties:
2579        - current-speed : Baud rate of uartlite
2581       v) Xilinx hwicap
2583                 Xilinx hwicap devices provide access to the configuration logic
2584                 of the FPGA through the Internal Configuration Access Port
2585                 (ICAP).  The ICAP enables partial reconfiguration of the FPGA,
2586                 readback of the configuration information, and some control over
2587                 'warm boots' of the FPGA fabric.
2589                 Required properties:
2590                 - xlnx,family : The family of the FPGA, necessary since the
2591                       capabilities of the underlying ICAP hardware
2592                       differ between different families.  May be
2593                       'virtex2p', 'virtex4', or 'virtex5'.
2595     p) Freescale Synchronous Serial Interface
2597        The SSI is a serial device that communicates with audio codecs.  It can
2598        be programmed in AC97, I2S, left-justified, or right-justified modes.
2600        Required properties:
2601        - compatible       : compatible list, containing "fsl,ssi"
2602        - cell-index       : the SSI, <0> = SSI1, <1> = SSI2, and so on
2603        - reg              : offset and length of the register set for the device
2604        - interrupts       : <a b> where a is the interrupt number and b is a
2605                             field that represents an encoding of the sense and
2606                             level information for the interrupt.  This should be
2607                             encoded based on the information in section 2)
2608                             depending on the type of interrupt controller you
2609                             have.
2610        - interrupt-parent : the phandle for the interrupt controller that
2611                             services interrupts for this device.
2612        - fsl,mode         : the operating mode for the SSI interface
2613                             "i2s-slave" - I2S mode, SSI is clock slave
2614                             "i2s-master" - I2S mode, SSI is clock master
2615                             "lj-slave" - left-justified mode, SSI is clock slave
2616                             "lj-master" - l.j. mode, SSI is clock master
2617                             "rj-slave" - right-justified mode, SSI is clock slave
2618                             "rj-master" - r.j., SSI is clock master
2619                             "ac97-slave" - AC97 mode, SSI is clock slave
2620                             "ac97-master" - AC97 mode, SSI is clock master
2622        Optional properties:
2623        - codec-handle     : phandle to a 'codec' node that defines an audio
2624                             codec connected to this SSI.  This node is typically
2625                             a child of an I2C or other control node.
2627        Child 'codec' node required properties:
2628        - compatible       : compatible list, contains the name of the codec
2630        Child 'codec' node optional properties:
2631        - clock-frequency  : The frequency of the input clock, which typically
2632                             comes from an on-board dedicated oscillator.
2634     * Freescale 83xx DMA Controller
2636     Freescale PowerPC 83xx have on chip general purpose DMA controllers.
2638     Required properties:
2640     - compatible        : compatible list, contains 2 entries, first is
2641                          "fsl,CHIP-dma", where CHIP is the processor
2642                          (mpc8349, mpc8360, etc.) and the second is
2643                          "fsl,elo-dma"
2644     - reg               : <registers mapping for DMA general status reg>
2645     - ranges            : Should be defined as specified in 1) to describe the
2646                           DMA controller channels.
2647     - cell-index        : controller index.  0 for controller @ 0x8100
2648     - interrupts        : <interrupt mapping for DMA IRQ>
2649     - interrupt-parent  : optional, if needed for interrupt mapping
2652     - DMA channel nodes:
2653             - compatible        : compatible list, contains 2 entries, first is
2654                                  "fsl,CHIP-dma-channel", where CHIP is the processor
2655                                  (mpc8349, mpc8350, etc.) and the second is
2656                                  "fsl,elo-dma-channel"
2657             - reg               : <registers mapping for channel>
2658             - cell-index        : dma channel index starts at 0.
2660     Optional properties:
2661             - interrupts        : <interrupt mapping for DMA channel IRQ>
2662                                   (on 83xx this is expected to be identical to
2663                                    the interrupts property of the parent node)
2664             - interrupt-parent  : optional, if needed for interrupt mapping
2666   Example:
2667         dma@82a8 {
2668                 #address-cells = <1>;
2669                 #size-cells = <1>;
2670                 compatible = "fsl,mpc8349-dma", "fsl,elo-dma";
2671                 reg = <82a8 4>;
2672                 ranges = <0 8100 1a4>;
2673                 interrupt-parent = <&ipic>;
2674                 interrupts = <47 8>;
2675                 cell-index = <0>;
2676                 dma-channel@0 {
2677                         compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel";
2678                         cell-index = <0>;
2679                         reg = <0 80>;
2680                 };
2681                 dma-channel@80 {
2682                         compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel";
2683                         cell-index = <1>;
2684                         reg = <80 80>;
2685                 };
2686                 dma-channel@100 {
2687                         compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel";
2688                         cell-index = <2>;
2689                         reg = <100 80>;
2690                 };
2691                 dma-channel@180 {
2692                         compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel";
2693                         cell-index = <3>;
2694                         reg = <180 80>;
2695                 };
2696         };
2698    * Freescale 85xx/86xx DMA Controller
2700     Freescale PowerPC 85xx/86xx have on chip general purpose DMA controllers.
2702     Required properties:
2704     - compatible        : compatible list, contains 2 entries, first is
2705                          "fsl,CHIP-dma", where CHIP is the processor
2706                          (mpc8540, mpc8540, etc.) and the second is
2707                          "fsl,eloplus-dma"
2708     - reg               : <registers mapping for DMA general status reg>
2709     - cell-index        : controller index.  0 for controller @ 0x21000,
2710                                              1 for controller @ 0xc000
2711     - ranges            : Should be defined as specified in 1) to describe the
2712                           DMA controller channels.
2714     - DMA channel nodes:
2715             - compatible        : compatible list, contains 2 entries, first is
2716                                  "fsl,CHIP-dma-channel", where CHIP is the processor
2717                                  (mpc8540, mpc8560, etc.) and the second is
2718                                  "fsl,eloplus-dma-channel"
2719             - cell-index        : dma channel index starts at 0.
2720             - reg               : <registers mapping for channel>
2721             - interrupts        : <interrupt mapping for DMA channel IRQ>
2722             - interrupt-parent  : optional, if needed for interrupt mapping
2724   Example:
2725         dma@21300 {
2726                 #address-cells = <1>;
2727                 #size-cells = <1>;
2728                 compatible = "fsl,mpc8540-dma", "fsl,eloplus-dma";
2729                 reg = <21300 4>;
2730                 ranges = <0 21100 200>;
2731                 cell-index = <0>;
2732                 dma-channel@0 {
2733                         compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel";
2734                         reg = <0 80>;
2735                         cell-index = <0>;
2736                         interrupt-parent = <&mpic>;
2737                         interrupts = <14 2>;
2738                 };
2739                 dma-channel@80 {
2740                         compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel";
2741                         reg = <80 80>;
2742                         cell-index = <1>;
2743                         interrupt-parent = <&mpic>;
2744                         interrupts = <15 2>;
2745                 };
2746                 dma-channel@100 {
2747                         compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel";
2748                         reg = <100 80>;
2749                         cell-index = <2>;
2750                         interrupt-parent = <&mpic>;
2751                         interrupts = <16 2>;
2752                 };
2753                 dma-channel@180 {
2754                         compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel";
2755                         reg = <180 80>;
2756                         cell-index = <3>;
2757                         interrupt-parent = <&mpic>;
2758                         interrupts = <17 2>;
2759                 };
2760         };
2762     * Freescale 8xxx/3.0 Gb/s SATA nodes
2764     SATA nodes are defined to describe on-chip Serial ATA controllers.
2765     Each SATA port should have its own node.
2767     Required properties:
2768     - compatible        : compatible list, contains 2 entries, first is
2769                          "fsl,CHIP-sata", where CHIP is the processor
2770                          (mpc8315, mpc8379, etc.) and the second is
2771                          "fsl,pq-sata"
2772     - interrupts        : <interrupt mapping for SATA IRQ>
2773     - cell-index        : controller index.
2774                               1 for controller @ 0x18000
2775                               2 for controller @ 0x19000
2776                               3 for controller @ 0x1a000
2777                               4 for controller @ 0x1b000
2779     Optional properties:
2780     - interrupt-parent  : optional, if needed for interrupt mapping
2781     - reg               : <registers mapping>
2783    Example:
2785         sata@18000 {
2786                 compatible = "fsl,mpc8379-sata", "fsl,pq-sata";
2787                 reg = <0x18000 0x1000>;
2788                 cell-index = <1>;
2789                 interrupts = <2c 8>;
2790                 interrupt-parent = < &ipic >;
2791         };
2793     q) USB EHCI controllers
2795     Required properties:
2796       - compatible : should be "usb-ehci".
2797       - reg : should contain at least address and length of the standard EHCI
2798         register set for the device. Optional platform-dependent registers
2799         (debug-port or other) can be also specified here, but only after
2800         definition of standard EHCI registers.
2801       - interrupts : one EHCI interrupt should be described here.
2802     If device registers are implemented in big endian mode, the device
2803     node should have "big-endian-regs" property.
2804     If controller implementation operates with big endian descriptors,
2805     "big-endian-desc" property should be specified.
2806     If both big endian registers and descriptors are used by the controller
2807     implementation, "big-endian" property can be specified instead of having
2808     both "big-endian-regs" and "big-endian-desc".
2810      Example (Sequoia 440EPx):
2811             ehci@e0000300 {
2812                    compatible = "ibm,usb-ehci-440epx", "usb-ehci";
2813                    interrupt-parent = <&UIC0>;
2814                    interrupts = <1a 4>;
2815                    reg = <0 e0000300 90 0 e0000390 70>;
2816                    big-endian;
2817            };
2820    More devices will be defined as this spec matures.
2822 VII - Specifying interrupt information for devices
2823 ===================================================
2825 The device tree represents the busses and devices of a hardware
2826 system in a form similar to the physical bus topology of the
2827 hardware.
2829 In addition, a logical 'interrupt tree' exists which represents the
2830 hierarchy and routing of interrupts in the hardware.
2832 The interrupt tree model is fully described in the
2833 document "Open Firmware Recommended Practice: Interrupt
2834 Mapping Version 0.9".  The document is available at:
2835 <http://playground.sun.com/1275/practice>.
2837 1) interrupts property
2838 ----------------------
2840 Devices that generate interrupts to a single interrupt controller
2841 should use the conventional OF representation described in the
2842 OF interrupt mapping documentation.
2844 Each device which generates interrupts must have an 'interrupt'
2845 property.  The interrupt property value is an arbitrary number of
2846 of 'interrupt specifier' values which describe the interrupt or
2847 interrupts for the device.
2849 The encoding of an interrupt specifier is determined by the
2850 interrupt domain in which the device is located in the
2851 interrupt tree.  The root of an interrupt domain specifies in
2852 its #interrupt-cells property the number of 32-bit cells
2853 required to encode an interrupt specifier.  See the OF interrupt
2854 mapping documentation for a detailed description of domains.
2856 For example, the binding for the OpenPIC interrupt controller
2857 specifies  an #interrupt-cells value of 2 to encode the interrupt
2858 number and level/sense information. All interrupt children in an
2859 OpenPIC interrupt domain use 2 cells per interrupt in their interrupts
2860 property.
2862 The PCI bus binding specifies a #interrupt-cell value of 1 to encode
2863 which interrupt pin (INTA,INTB,INTC,INTD) is used.
2865 2) interrupt-parent property
2866 ----------------------------
2868 The interrupt-parent property is specified to define an explicit
2869 link between a device node and its interrupt parent in
2870 the interrupt tree.  The value of interrupt-parent is the
2871 phandle of the parent node.
2873 If the interrupt-parent property is not defined for a node, it's
2874 interrupt parent is assumed to be an ancestor in the node's
2875 _device tree_ hierarchy.
2877 3) OpenPIC Interrupt Controllers
2878 --------------------------------
2880 OpenPIC interrupt controllers require 2 cells to encode
2881 interrupt information.  The first cell defines the interrupt
2882 number.  The second cell defines the sense and level
2883 information.
2885 Sense and level information should be encoded as follows:
2887         0 = low to high edge sensitive type enabled
2888         1 = active low level sensitive type enabled
2889         2 = active high level sensitive type enabled
2890         3 = high to low edge sensitive type enabled
2892 4) ISA Interrupt Controllers
2893 ----------------------------
2895 ISA PIC interrupt controllers require 2 cells to encode
2896 interrupt information.  The first cell defines the interrupt
2897 number.  The second cell defines the sense and level
2898 information.
2900 ISA PIC interrupt controllers should adhere to the ISA PIC
2901 encodings listed below:
2903         0 =  active low level sensitive type enabled
2904         1 =  active high level sensitive type enabled
2905         2 =  high to low edge sensitive type enabled
2906         3 =  low to high edge sensitive type enabled
2909 Appendix A - Sample SOC node for MPC8540
2910 ========================================
2912 Note that the #address-cells and #size-cells for the SoC node
2913 in this example have been explicitly listed; these are likely
2914 not necessary as they are usually the same as the root node.
2916         soc8540@e0000000 {
2917                 #address-cells = <1>;
2918                 #size-cells = <1>;
2919                 #interrupt-cells = <2>;
2920                 device_type = "soc";
2921                 ranges = <00000000 e0000000 00100000>
2922                 reg = <e0000000 00003000>;
2923                 bus-frequency = <0>;
2925                 mdio@24520 {
2926                         reg = <24520 20>;
2927                         device_type = "mdio";
2928                         compatible = "gianfar";
2930                         ethernet-phy@0 {
2931                                 linux,phandle = <2452000>
2932                                 interrupt-parent = <40000>;
2933                                 interrupts = <35 1>;
2934                                 reg = <0>;
2935                                 device_type = "ethernet-phy";
2936                         };
2938                         ethernet-phy@1 {
2939                                 linux,phandle = <2452001>
2940                                 interrupt-parent = <40000>;
2941                                 interrupts = <35 1>;
2942                                 reg = <1>;
2943                                 device_type = "ethernet-phy";
2944                         };
2946                         ethernet-phy@3 {
2947                                 linux,phandle = <2452002>
2948                                 interrupt-parent = <40000>;
2949                                 interrupts = <35 1>;
2950                                 reg = <3>;
2951                                 device_type = "ethernet-phy";
2952                         };
2954                 };
2956                 ethernet@24000 {
2957                         #size-cells = <0>;
2958                         device_type = "network";
2959                         model = "TSEC";
2960                         compatible = "gianfar";
2961                         reg = <24000 1000>;
2962                         mac-address = [ 00 E0 0C 00 73 00 ];
2963                         interrupts = <d 3 e 3 12 3>;
2964                         interrupt-parent = <40000>;
2965                         phy-handle = <2452000>;
2966                 };
2968                 ethernet@25000 {
2969                         #address-cells = <1>;
2970                         #size-cells = <0>;
2971                         device_type = "network";
2972                         model = "TSEC";
2973                         compatible = "gianfar";
2974                         reg = <25000 1000>;
2975                         mac-address = [ 00 E0 0C 00 73 01 ];
2976                         interrupts = <13 3 14 3 18 3>;
2977                         interrupt-parent = <40000>;
2978                         phy-handle = <2452001>;
2979                 };
2981                 ethernet@26000 {
2982                         #address-cells = <1>;
2983                         #size-cells = <0>;
2984                         device_type = "network";
2985                         model = "FEC";
2986                         compatible = "gianfar";
2987                         reg = <26000 1000>;
2988                         mac-address = [ 00 E0 0C 00 73 02 ];
2989                         interrupts = <19 3>;
2990                         interrupt-parent = <40000>;
2991                         phy-handle = <2452002>;
2992                 };
2994                 serial@4500 {
2995                         device_type = "serial";
2996                         compatible = "ns16550";
2997                         reg = <4500 100>;
2998                         clock-frequency = <0>;
2999                         interrupts = <1a 3>;
3000                         interrupt-parent = <40000>;
3001                 };
3003                 pic@40000 {
3004                         linux,phandle = <40000>;
3005                         clock-frequency = <0>;
3006                         interrupt-controller;
3007                         #address-cells = <0>;
3008                         reg = <40000 40000>;
3009                         built-in;
3010                         compatible = "chrp,open-pic";
3011                         device_type = "open-pic";
3012                         big-endian;
3013                 };
3015                 i2c@3000 {
3016                         interrupt-parent = <40000>;
3017                         interrupts = <1b 3>;
3018                         reg = <3000 18>;
3019                         device_type = "i2c";
3020                         compatible  = "fsl-i2c";
3021                         dfsrr;
3022                 };
3024         };