x86: coding style fixes in arch/x86/lib/io_64.c
[wrt350n-kernel.git] / drivers / atm / ambassador.c
blob7b44a5965155d7965464229c1a24dfc895439435
1 /*
2 Madge Ambassador ATM Adapter driver.
3 Copyright (C) 1995-1999 Madge Networks Ltd.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20 system and in the file COPYING in the Linux kernel source.
23 /* * dedicated to the memory of Graham Gordon 1971-1998 * */
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/pci.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/ioport.h>
31 #include <linux/atmdev.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/poison.h>
35 #include <linux/bitrev.h>
37 #include <asm/atomic.h>
38 #include <asm/io.h>
39 #include <asm/byteorder.h>
41 #include "ambassador.h"
43 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
44 #define description_string "Madge ATM Ambassador driver"
45 #define version_string "1.2.4"
47 static inline void __init show_version (void) {
48 printk ("%s version %s\n", description_string, version_string);
53 Theory of Operation
55 I Hardware, detection, initialisation and shutdown.
57 1. Supported Hardware
59 This driver is for the PCI ATMizer-based Ambassador card (except
60 very early versions). It is not suitable for the similar EISA "TR7"
61 card. Commercially, both cards are known as Collage Server ATM
62 adapters.
64 The loader supports image transfer to the card, image start and few
65 other miscellaneous commands.
67 Only AAL5 is supported with vpi = 0 and vci in the range 0 to 1023.
69 The cards are big-endian.
71 2. Detection
73 Standard PCI stuff, the early cards are detected and rejected.
75 3. Initialisation
77 The cards are reset and the self-test results are checked. The
78 microcode image is then transferred and started. This waits for a
79 pointer to a descriptor containing details of the host-based queues
80 and buffers and various parameters etc. Once they are processed
81 normal operations may begin. The BIA is read using a microcode
82 command.
84 4. Shutdown
86 This may be accomplished either by a card reset or via the microcode
87 shutdown command. Further investigation required.
89 5. Persistent state
91 The card reset does not affect PCI configuration (good) or the
92 contents of several other "shared run-time registers" (bad) which
93 include doorbell and interrupt control as well as EEPROM and PCI
94 control. The driver must be careful when modifying these registers
95 not to touch bits it does not use and to undo any changes at exit.
97 II Driver software
99 0. Generalities
101 The adapter is quite intelligent (fast) and has a simple interface
102 (few features). VPI is always zero, 1024 VCIs are supported. There
103 is limited cell rate support. UBR channels can be capped and ABR
104 (explicit rate, but not EFCI) is supported. There is no CBR or VBR
105 support.
107 1. Driver <-> Adapter Communication
109 Apart from the basic loader commands, the driver communicates
110 through three entities: the command queue (CQ), the transmit queue
111 pair (TXQ) and the receive queue pairs (RXQ). These three entities
112 are set up by the host and passed to the microcode just after it has
113 been started.
115 All queues are host-based circular queues. They are contiguous and
116 (due to hardware limitations) have some restrictions as to their
117 locations in (bus) memory. They are of the "full means the same as
118 empty so don't do that" variety since the adapter uses pointers
119 internally.
121 The queue pairs work as follows: one queue is for supply to the
122 adapter, items in it are pending and are owned by the adapter; the
123 other is the queue for return from the adapter, items in it have
124 been dealt with by the adapter. The host adds items to the supply
125 (TX descriptors and free RX buffer descriptors) and removes items
126 from the return (TX and RX completions). The adapter deals with out
127 of order completions.
129 Interrupts (card to host) and the doorbell (host to card) are used
130 for signalling.
132 1. CQ
134 This is to communicate "open VC", "close VC", "get stats" etc. to
135 the adapter. At most one command is retired every millisecond by the
136 card. There is no out of order completion or notification. The
137 driver needs to check the return code of the command, waiting as
138 appropriate.
140 2. TXQ
142 TX supply items are of variable length (scatter gather support) and
143 so the queue items are (more or less) pointers to the real thing.
144 Each TX supply item contains a unique, host-supplied handle (the skb
145 bus address seems most sensible as this works for Alphas as well,
146 there is no need to do any endian conversions on the handles).
148 TX return items consist of just the handles above.
150 3. RXQ (up to 4 of these with different lengths and buffer sizes)
152 RX supply items consist of a unique, host-supplied handle (the skb
153 bus address again) and a pointer to the buffer data area.
155 RX return items consist of the handle above, the VC, length and a
156 status word. This just screams "oh so easy" doesn't it?
158 Note on RX pool sizes:
160 Each pool should have enough buffers to handle a back-to-back stream
161 of minimum sized frames on a single VC. For example:
163 frame spacing = 3us (about right)
165 delay = IRQ lat + RX handling + RX buffer replenish = 20 (us) (a guess)
167 min number of buffers for one VC = 1 + delay/spacing (buffers)
169 delay/spacing = latency = (20+2)/3 = 7 (buffers) (rounding up)
171 The 20us delay assumes that there is no need to sleep; if we need to
172 sleep to get buffers we are going to drop frames anyway.
174 In fact, each pool should have enough buffers to support the
175 simultaneous reassembly of a separate frame on each VC and cope with
176 the case in which frames complete in round robin cell fashion on
177 each VC.
179 Only one frame can complete at each cell arrival, so if "n" VCs are
180 open, the worst case is to have them all complete frames together
181 followed by all starting new frames together.
183 desired number of buffers = n + delay/spacing
185 These are the extreme requirements, however, they are "n+k" for some
186 "k" so we have only the constant to choose. This is the argument
187 rx_lats which current defaults to 7.
189 Actually, "n ? n+k : 0" is better and this is what is implemented,
190 subject to the limit given by the pool size.
192 4. Driver locking
194 Simple spinlocks are used around the TX and RX queue mechanisms.
195 Anyone with a faster, working method is welcome to implement it.
197 The adapter command queue is protected with a spinlock. We always
198 wait for commands to complete.
200 A more complex form of locking is used around parts of the VC open
201 and close functions. There are three reasons for a lock: 1. we need
202 to do atomic rate reservation and release (not used yet), 2. Opening
203 sometimes involves two adapter commands which must not be separated
204 by another command on the same VC, 3. the changes to RX pool size
205 must be atomic. The lock needs to work over context switches, so we
206 use a semaphore.
208 III Hardware Features and Microcode Bugs
210 1. Byte Ordering
212 *%^"$&%^$*&^"$(%^$#&^%$(&#%$*(&^#%!"!"!*!
214 2. Memory access
216 All structures that are not accessed using DMA must be 4-byte
217 aligned (not a problem) and must not cross 4MB boundaries.
219 There is a DMA memory hole at E0000000-E00000FF (groan).
221 TX fragments (DMA read) must not cross 4MB boundaries (would be 16MB
222 but for a hardware bug).
224 RX buffers (DMA write) must not cross 16MB boundaries and must
225 include spare trailing bytes up to the next 4-byte boundary; they
226 will be written with rubbish.
228 The PLX likes to prefetch; if reading up to 4 u32 past the end of
229 each TX fragment is not a problem, then TX can be made to go a
230 little faster by passing a flag at init that disables a prefetch
231 workaround. We do not pass this flag. (new microcode only)
233 Now we:
234 . Note that alloc_skb rounds up size to a 16byte boundary.
235 . Ensure all areas do not traverse 4MB boundaries.
236 . Ensure all areas do not start at a E00000xx bus address.
237 (I cannot be certain, but this may always hold with Linux)
238 . Make all failures cause a loud message.
239 . Discard non-conforming SKBs (causes TX failure or RX fill delay).
240 . Discard non-conforming TX fragment descriptors (the TX fails).
241 In the future we could:
242 . Allow RX areas that traverse 4MB (but not 16MB) boundaries.
243 . Segment TX areas into some/more fragments, when necessary.
244 . Relax checks for non-DMA items (ignore hole).
245 . Give scatter-gather (iovec) requirements using ???. (?)
247 3. VC close is broken (only for new microcode)
249 The VC close adapter microcode command fails to do anything if any
250 frames have been received on the VC but none have been transmitted.
251 Frames continue to be reassembled and passed (with IRQ) to the
252 driver.
254 IV To Do List
256 . Fix bugs!
258 . Timer code may be broken.
260 . Deal with buggy VC close (somehow) in microcode 12.
262 . Handle interrupted and/or non-blocking writes - is this a job for
263 the protocol layer?
265 . Add code to break up TX fragments when they span 4MB boundaries.
267 . Add SUNI phy layer (need to know where SUNI lives on card).
269 . Implement a tx_alloc fn to (a) satisfy TX alignment etc. and (b)
270 leave extra headroom space for Ambassador TX descriptors.
272 . Understand these elements of struct atm_vcc: recvq (proto?),
273 sleep, callback, listenq, backlog_quota, reply and user_back.
275 . Adjust TX/RX skb allocation to favour IP with LANE/CLIP (configurable).
277 . Impose a TX-pending limit (2?) on each VC, help avoid TX q overflow.
279 . Decide whether RX buffer recycling is or can be made completely safe;
280 turn it back on. It looks like Werner is going to axe this.
282 . Implement QoS changes on open VCs (involves extracting parts of VC open
283 and close into separate functions and using them to make changes).
285 . Hack on command queue so that someone can issue multiple commands and wait
286 on the last one (OR only "no-op" or "wait" commands are waited for).
288 . Eliminate need for while-schedule around do_command.
292 /********** microcode **********/
294 #ifdef AMB_NEW_MICROCODE
295 #define UCODE(x) UCODE2(atmsar12.x)
296 #else
297 #define UCODE(x) UCODE2(atmsar11.x)
298 #endif
299 #define UCODE2(x) #x
301 static u32 __devinitdata ucode_start =
302 #include UCODE(start)
305 static region __devinitdata ucode_regions[] = {
306 #include UCODE(regions)
307 { 0, 0 }
310 static u32 __devinitdata ucode_data[] = {
311 #include UCODE(data)
312 0xdeadbeef
315 static void do_housekeeping (unsigned long arg);
316 /********** globals **********/
318 static unsigned short debug = 0;
319 static unsigned int cmds = 8;
320 static unsigned int txs = 32;
321 static unsigned int rxs[NUM_RX_POOLS] = { 64, 64, 64, 64 };
322 static unsigned int rxs_bs[NUM_RX_POOLS] = { 4080, 12240, 36720, 65535 };
323 static unsigned int rx_lats = 7;
324 static unsigned char pci_lat = 0;
326 static const unsigned long onegigmask = -1 << 30;
328 /********** access to adapter **********/
330 static inline void wr_plain (const amb_dev * dev, size_t addr, u32 data) {
331 PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x", addr, data);
332 #ifdef AMB_MMIO
333 dev->membase[addr / sizeof(u32)] = data;
334 #else
335 outl (data, dev->iobase + addr);
336 #endif
339 static inline u32 rd_plain (const amb_dev * dev, size_t addr) {
340 #ifdef AMB_MMIO
341 u32 data = dev->membase[addr / sizeof(u32)];
342 #else
343 u32 data = inl (dev->iobase + addr);
344 #endif
345 PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x", addr, data);
346 return data;
349 static inline void wr_mem (const amb_dev * dev, size_t addr, u32 data) {
350 __be32 be = cpu_to_be32 (data);
351 PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x b[%08x]", addr, data, be);
352 #ifdef AMB_MMIO
353 dev->membase[addr / sizeof(u32)] = be;
354 #else
355 outl (be, dev->iobase + addr);
356 #endif
359 static inline u32 rd_mem (const amb_dev * dev, size_t addr) {
360 #ifdef AMB_MMIO
361 __be32 be = dev->membase[addr / sizeof(u32)];
362 #else
363 __be32 be = inl (dev->iobase + addr);
364 #endif
365 u32 data = be32_to_cpu (be);
366 PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x b[%08x]", addr, data, be);
367 return data;
370 /********** dump routines **********/
372 static inline void dump_registers (const amb_dev * dev) {
373 #ifdef DEBUG_AMBASSADOR
374 if (debug & DBG_REGS) {
375 size_t i;
376 PRINTD (DBG_REGS, "reading PLX control: ");
377 for (i = 0x00; i < 0x30; i += sizeof(u32))
378 rd_mem (dev, i);
379 PRINTD (DBG_REGS, "reading mailboxes: ");
380 for (i = 0x40; i < 0x60; i += sizeof(u32))
381 rd_mem (dev, i);
382 PRINTD (DBG_REGS, "reading doorb irqev irqen reset:");
383 for (i = 0x60; i < 0x70; i += sizeof(u32))
384 rd_mem (dev, i);
386 #else
387 (void) dev;
388 #endif
389 return;
392 static inline void dump_loader_block (volatile loader_block * lb) {
393 #ifdef DEBUG_AMBASSADOR
394 unsigned int i;
395 PRINTDB (DBG_LOAD, "lb @ %p; res: %d, cmd: %d, pay:",
396 lb, be32_to_cpu (lb->result), be32_to_cpu (lb->command));
397 for (i = 0; i < MAX_COMMAND_DATA; ++i)
398 PRINTDM (DBG_LOAD, " %08x", be32_to_cpu (lb->payload.data[i]));
399 PRINTDE (DBG_LOAD, ", vld: %08x", be32_to_cpu (lb->valid));
400 #else
401 (void) lb;
402 #endif
403 return;
406 static inline void dump_command (command * cmd) {
407 #ifdef DEBUG_AMBASSADOR
408 unsigned int i;
409 PRINTDB (DBG_CMD, "cmd @ %p, req: %08x, pars:",
410 cmd, /*be32_to_cpu*/ (cmd->request));
411 for (i = 0; i < 3; ++i)
412 PRINTDM (DBG_CMD, " %08x", /*be32_to_cpu*/ (cmd->args.par[i]));
413 PRINTDE (DBG_CMD, "");
414 #else
415 (void) cmd;
416 #endif
417 return;
420 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
421 #ifdef DEBUG_AMBASSADOR
422 unsigned int i;
423 unsigned char * data = skb->data;
424 PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
425 for (i=0; i<skb->len && i < 256;i++)
426 PRINTDM (DBG_DATA, "%02x ", data[i]);
427 PRINTDE (DBG_DATA,"");
428 #else
429 (void) prefix;
430 (void) vc;
431 (void) skb;
432 #endif
433 return;
436 /********** check memory areas for use by Ambassador **********/
438 /* see limitations under Hardware Features */
440 static inline int check_area (void * start, size_t length) {
441 // assumes length > 0
442 const u32 fourmegmask = -1 << 22;
443 const u32 twofivesixmask = -1 << 8;
444 const u32 starthole = 0xE0000000;
445 u32 startaddress = virt_to_bus (start);
446 u32 lastaddress = startaddress+length-1;
447 if ((startaddress ^ lastaddress) & fourmegmask ||
448 (startaddress & twofivesixmask) == starthole) {
449 PRINTK (KERN_ERR, "check_area failure: [%x,%x] - mail maintainer!",
450 startaddress, lastaddress);
451 return -1;
452 } else {
453 return 0;
457 /********** free an skb (as per ATM device driver documentation) **********/
459 static inline void amb_kfree_skb (struct sk_buff * skb) {
460 if (ATM_SKB(skb)->vcc->pop) {
461 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
462 } else {
463 dev_kfree_skb_any (skb);
467 /********** TX completion **********/
469 static inline void tx_complete (amb_dev * dev, tx_out * tx) {
470 tx_simple * tx_descr = bus_to_virt (tx->handle);
471 struct sk_buff * skb = tx_descr->skb;
473 PRINTD (DBG_FLOW|DBG_TX, "tx_complete %p %p", dev, tx);
475 // VC layer stats
476 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
478 // free the descriptor
479 kfree (tx_descr);
481 // free the skb
482 amb_kfree_skb (skb);
484 dev->stats.tx_ok++;
485 return;
488 /********** RX completion **********/
490 static void rx_complete (amb_dev * dev, rx_out * rx) {
491 struct sk_buff * skb = bus_to_virt (rx->handle);
492 u16 vc = be16_to_cpu (rx->vc);
493 // unused: u16 lec_id = be16_to_cpu (rx->lec_id);
494 u16 status = be16_to_cpu (rx->status);
495 u16 rx_len = be16_to_cpu (rx->length);
497 PRINTD (DBG_FLOW|DBG_RX, "rx_complete %p %p (len=%hu)", dev, rx, rx_len);
499 // XXX move this in and add to VC stats ???
500 if (!status) {
501 struct atm_vcc * atm_vcc = dev->rxer[vc];
502 dev->stats.rx.ok++;
504 if (atm_vcc) {
506 if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
508 if (atm_charge (atm_vcc, skb->truesize)) {
510 // prepare socket buffer
511 ATM_SKB(skb)->vcc = atm_vcc;
512 skb_put (skb, rx_len);
514 dump_skb ("<<<", vc, skb);
516 // VC layer stats
517 atomic_inc(&atm_vcc->stats->rx);
518 __net_timestamp(skb);
519 // end of our responsability
520 atm_vcc->push (atm_vcc, skb);
521 return;
523 } else {
524 // someone fix this (message), please!
525 PRINTD (DBG_INFO|DBG_RX, "dropped thanks to atm_charge (vc %hu, truesize %u)", vc, skb->truesize);
526 // drop stats incremented in atm_charge
529 } else {
530 PRINTK (KERN_INFO, "dropped over-size frame");
531 // should we count this?
532 atomic_inc(&atm_vcc->stats->rx_drop);
535 } else {
536 PRINTD (DBG_WARN|DBG_RX, "got frame but RX closed for channel %hu", vc);
537 // this is an adapter bug, only in new version of microcode
540 } else {
541 dev->stats.rx.error++;
542 if (status & CRC_ERR)
543 dev->stats.rx.badcrc++;
544 if (status & LEN_ERR)
545 dev->stats.rx.toolong++;
546 if (status & ABORT_ERR)
547 dev->stats.rx.aborted++;
548 if (status & UNUSED_ERR)
549 dev->stats.rx.unused++;
552 dev_kfree_skb_any (skb);
553 return;
558 Note on queue handling.
560 Here "give" and "take" refer to queue entries and a queue (pair)
561 rather than frames to or from the host or adapter. Empty frame
562 buffers are given to the RX queue pair and returned unused or
563 containing RX frames. TX frames (well, pointers to TX fragment
564 lists) are given to the TX queue pair, completions are returned.
568 /********** command queue **********/
570 // I really don't like this, but it's the best I can do at the moment
572 // also, the callers are responsible for byte order as the microcode
573 // sometimes does 16-bit accesses (yuk yuk yuk)
575 static int command_do (amb_dev * dev, command * cmd) {
576 amb_cq * cq = &dev->cq;
577 volatile amb_cq_ptrs * ptrs = &cq->ptrs;
578 command * my_slot;
580 PRINTD (DBG_FLOW|DBG_CMD, "command_do %p", dev);
582 if (test_bit (dead, &dev->flags))
583 return 0;
585 spin_lock (&cq->lock);
587 // if not full...
588 if (cq->pending < cq->maximum) {
589 // remember my slot for later
590 my_slot = ptrs->in;
591 PRINTD (DBG_CMD, "command in slot %p", my_slot);
593 dump_command (cmd);
595 // copy command in
596 *ptrs->in = *cmd;
597 cq->pending++;
598 ptrs->in = NEXTQ (ptrs->in, ptrs->start, ptrs->limit);
600 // mail the command
601 wr_mem (dev, offsetof(amb_mem, mb.adapter.cmd_address), virt_to_bus (ptrs->in));
603 if (cq->pending > cq->high)
604 cq->high = cq->pending;
605 spin_unlock (&cq->lock);
607 // these comments were in a while-loop before, msleep removes the loop
608 // go to sleep
609 // PRINTD (DBG_CMD, "wait: sleeping %lu for command", timeout);
610 msleep(cq->pending);
612 // wait for my slot to be reached (all waiters are here or above, until...)
613 while (ptrs->out != my_slot) {
614 PRINTD (DBG_CMD, "wait: command slot (now at %p)", ptrs->out);
615 set_current_state(TASK_UNINTERRUPTIBLE);
616 schedule();
619 // wait on my slot (... one gets to its slot, and... )
620 while (ptrs->out->request != cpu_to_be32 (SRB_COMPLETE)) {
621 PRINTD (DBG_CMD, "wait: command slot completion");
622 set_current_state(TASK_UNINTERRUPTIBLE);
623 schedule();
626 PRINTD (DBG_CMD, "command complete");
627 // update queue (... moves the queue along to the next slot)
628 spin_lock (&cq->lock);
629 cq->pending--;
630 // copy command out
631 *cmd = *ptrs->out;
632 ptrs->out = NEXTQ (ptrs->out, ptrs->start, ptrs->limit);
633 spin_unlock (&cq->lock);
635 return 0;
636 } else {
637 cq->filled++;
638 spin_unlock (&cq->lock);
639 return -EAGAIN;
644 /********** TX queue pair **********/
646 static inline int tx_give (amb_dev * dev, tx_in * tx) {
647 amb_txq * txq = &dev->txq;
648 unsigned long flags;
650 PRINTD (DBG_FLOW|DBG_TX, "tx_give %p", dev);
652 if (test_bit (dead, &dev->flags))
653 return 0;
655 spin_lock_irqsave (&txq->lock, flags);
657 if (txq->pending < txq->maximum) {
658 PRINTD (DBG_TX, "TX in slot %p", txq->in.ptr);
660 *txq->in.ptr = *tx;
661 txq->pending++;
662 txq->in.ptr = NEXTQ (txq->in.ptr, txq->in.start, txq->in.limit);
663 // hand over the TX and ring the bell
664 wr_mem (dev, offsetof(amb_mem, mb.adapter.tx_address), virt_to_bus (txq->in.ptr));
665 wr_mem (dev, offsetof(amb_mem, doorbell), TX_FRAME);
667 if (txq->pending > txq->high)
668 txq->high = txq->pending;
669 spin_unlock_irqrestore (&txq->lock, flags);
670 return 0;
671 } else {
672 txq->filled++;
673 spin_unlock_irqrestore (&txq->lock, flags);
674 return -EAGAIN;
678 static inline int tx_take (amb_dev * dev) {
679 amb_txq * txq = &dev->txq;
680 unsigned long flags;
682 PRINTD (DBG_FLOW|DBG_TX, "tx_take %p", dev);
684 spin_lock_irqsave (&txq->lock, flags);
686 if (txq->pending && txq->out.ptr->handle) {
687 // deal with TX completion
688 tx_complete (dev, txq->out.ptr);
689 // mark unused again
690 txq->out.ptr->handle = 0;
691 // remove item
692 txq->pending--;
693 txq->out.ptr = NEXTQ (txq->out.ptr, txq->out.start, txq->out.limit);
695 spin_unlock_irqrestore (&txq->lock, flags);
696 return 0;
697 } else {
699 spin_unlock_irqrestore (&txq->lock, flags);
700 return -1;
704 /********** RX queue pairs **********/
706 static inline int rx_give (amb_dev * dev, rx_in * rx, unsigned char pool) {
707 amb_rxq * rxq = &dev->rxq[pool];
708 unsigned long flags;
710 PRINTD (DBG_FLOW|DBG_RX, "rx_give %p[%hu]", dev, pool);
712 spin_lock_irqsave (&rxq->lock, flags);
714 if (rxq->pending < rxq->maximum) {
715 PRINTD (DBG_RX, "RX in slot %p", rxq->in.ptr);
717 *rxq->in.ptr = *rx;
718 rxq->pending++;
719 rxq->in.ptr = NEXTQ (rxq->in.ptr, rxq->in.start, rxq->in.limit);
720 // hand over the RX buffer
721 wr_mem (dev, offsetof(amb_mem, mb.adapter.rx_address[pool]), virt_to_bus (rxq->in.ptr));
723 spin_unlock_irqrestore (&rxq->lock, flags);
724 return 0;
725 } else {
726 spin_unlock_irqrestore (&rxq->lock, flags);
727 return -1;
731 static inline int rx_take (amb_dev * dev, unsigned char pool) {
732 amb_rxq * rxq = &dev->rxq[pool];
733 unsigned long flags;
735 PRINTD (DBG_FLOW|DBG_RX, "rx_take %p[%hu]", dev, pool);
737 spin_lock_irqsave (&rxq->lock, flags);
739 if (rxq->pending && (rxq->out.ptr->status || rxq->out.ptr->length)) {
740 // deal with RX completion
741 rx_complete (dev, rxq->out.ptr);
742 // mark unused again
743 rxq->out.ptr->status = 0;
744 rxq->out.ptr->length = 0;
745 // remove item
746 rxq->pending--;
747 rxq->out.ptr = NEXTQ (rxq->out.ptr, rxq->out.start, rxq->out.limit);
749 if (rxq->pending < rxq->low)
750 rxq->low = rxq->pending;
751 spin_unlock_irqrestore (&rxq->lock, flags);
752 return 0;
753 } else {
754 if (!rxq->pending && rxq->buffers_wanted)
755 rxq->emptied++;
756 spin_unlock_irqrestore (&rxq->lock, flags);
757 return -1;
761 /********** RX Pool handling **********/
763 /* pre: buffers_wanted = 0, post: pending = 0 */
764 static inline void drain_rx_pool (amb_dev * dev, unsigned char pool) {
765 amb_rxq * rxq = &dev->rxq[pool];
767 PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pool %p %hu", dev, pool);
769 if (test_bit (dead, &dev->flags))
770 return;
772 /* we are not quite like the fill pool routines as we cannot just
773 remove one buffer, we have to remove all of them, but we might as
774 well pretend... */
775 if (rxq->pending > rxq->buffers_wanted) {
776 command cmd;
777 cmd.request = cpu_to_be32 (SRB_FLUSH_BUFFER_Q);
778 cmd.args.flush.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
779 while (command_do (dev, &cmd))
780 schedule();
781 /* the pool may also be emptied via the interrupt handler */
782 while (rxq->pending > rxq->buffers_wanted)
783 if (rx_take (dev, pool))
784 schedule();
787 return;
790 static void drain_rx_pools (amb_dev * dev) {
791 unsigned char pool;
793 PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pools %p", dev);
795 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
796 drain_rx_pool (dev, pool);
799 static inline void fill_rx_pool (amb_dev * dev, unsigned char pool,
800 gfp_t priority)
802 rx_in rx;
803 amb_rxq * rxq;
805 PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pool %p %hu %x", dev, pool, priority);
807 if (test_bit (dead, &dev->flags))
808 return;
810 rxq = &dev->rxq[pool];
811 while (rxq->pending < rxq->maximum && rxq->pending < rxq->buffers_wanted) {
813 struct sk_buff * skb = alloc_skb (rxq->buffer_size, priority);
814 if (!skb) {
815 PRINTD (DBG_SKB|DBG_POOL, "failed to allocate skb for RX pool %hu", pool);
816 return;
818 if (check_area (skb->data, skb->truesize)) {
819 dev_kfree_skb_any (skb);
820 return;
822 // cast needed as there is no %? for pointer differences
823 PRINTD (DBG_SKB, "allocated skb at %p, head %p, area %li",
824 skb, skb->head, (long) (skb_end_pointer(skb) - skb->head));
825 rx.handle = virt_to_bus (skb);
826 rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
827 if (rx_give (dev, &rx, pool))
828 dev_kfree_skb_any (skb);
832 return;
835 // top up all RX pools (can also be called as a bottom half)
836 static void fill_rx_pools (amb_dev * dev) {
837 unsigned char pool;
839 PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pools %p", dev);
841 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
842 fill_rx_pool (dev, pool, GFP_ATOMIC);
844 return;
847 /********** enable host interrupts **********/
849 static inline void interrupts_on (amb_dev * dev) {
850 wr_plain (dev, offsetof(amb_mem, interrupt_control),
851 rd_plain (dev, offsetof(amb_mem, interrupt_control))
852 | AMB_INTERRUPT_BITS);
855 /********** disable host interrupts **********/
857 static inline void interrupts_off (amb_dev * dev) {
858 wr_plain (dev, offsetof(amb_mem, interrupt_control),
859 rd_plain (dev, offsetof(amb_mem, interrupt_control))
860 &~ AMB_INTERRUPT_BITS);
863 /********** interrupt handling **********/
865 static irqreturn_t interrupt_handler(int irq, void *dev_id) {
866 amb_dev * dev = dev_id;
868 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler: %p", dev_id);
871 u32 interrupt = rd_plain (dev, offsetof(amb_mem, interrupt));
873 // for us or someone else sharing the same interrupt
874 if (!interrupt) {
875 PRINTD (DBG_IRQ, "irq not for me: %d", irq);
876 return IRQ_NONE;
879 // definitely for us
880 PRINTD (DBG_IRQ, "FYI: interrupt was %08x", interrupt);
881 wr_plain (dev, offsetof(amb_mem, interrupt), -1);
885 unsigned int irq_work = 0;
886 unsigned char pool;
887 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
888 while (!rx_take (dev, pool))
889 ++irq_work;
890 while (!tx_take (dev))
891 ++irq_work;
893 if (irq_work) {
894 #ifdef FILL_RX_POOLS_IN_BH
895 schedule_work (&dev->bh);
896 #else
897 fill_rx_pools (dev);
898 #endif
900 PRINTD (DBG_IRQ, "work done: %u", irq_work);
901 } else {
902 PRINTD (DBG_IRQ|DBG_WARN, "no work done");
906 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
907 return IRQ_HANDLED;
910 /********** make rate (not quite as much fun as Horizon) **********/
912 static int make_rate (unsigned int rate, rounding r,
913 u16 * bits, unsigned int * actual) {
914 unsigned char exp = -1; // hush gcc
915 unsigned int man = -1; // hush gcc
917 PRINTD (DBG_FLOW|DBG_QOS, "make_rate %u", rate);
919 // rates in cells per second, ITU format (nasty 16-bit floating-point)
920 // given 5-bit e and 9-bit m:
921 // rate = EITHER (1+m/2^9)*2^e OR 0
922 // bits = EITHER 1<<14 | e<<9 | m OR 0
923 // (bit 15 is "reserved", bit 14 "non-zero")
924 // smallest rate is 0 (special representation)
925 // largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
926 // smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
927 // simple algorithm:
928 // find position of top bit, this gives e
929 // remove top bit and shift (rounding if feeling clever) by 9-e
931 // ucode bug: please don't set bit 14! so 0 rate not representable
933 if (rate > 0xffc00000U) {
934 // larger than largest representable rate
936 if (r == round_up) {
937 return -EINVAL;
938 } else {
939 exp = 31;
940 man = 511;
943 } else if (rate) {
944 // representable rate
946 exp = 31;
947 man = rate;
949 // invariant: rate = man*2^(exp-31)
950 while (!(man & (1<<31))) {
951 exp = exp - 1;
952 man = man<<1;
955 // man has top bit set
956 // rate = (2^31+(man-2^31))*2^(exp-31)
957 // rate = (1+(man-2^31)/2^31)*2^exp
958 man = man<<1;
959 man &= 0xffffffffU; // a nop on 32-bit systems
960 // rate = (1+man/2^32)*2^exp
962 // exp is in the range 0 to 31, man is in the range 0 to 2^32-1
963 // time to lose significance... we want m in the range 0 to 2^9-1
964 // rounding presents a minor problem... we first decide which way
965 // we are rounding (based on given rounding direction and possibly
966 // the bits of the mantissa that are to be discarded).
968 switch (r) {
969 case round_down: {
970 // just truncate
971 man = man>>(32-9);
972 break;
974 case round_up: {
975 // check all bits that we are discarding
976 if (man & (~0U>>9)) {
977 man = (man>>(32-9)) + 1;
978 if (man == (1<<9)) {
979 // no need to check for round up outside of range
980 man = 0;
981 exp += 1;
983 } else {
984 man = (man>>(32-9));
986 break;
988 case round_nearest: {
989 // check msb that we are discarding
990 if (man & (1<<(32-9-1))) {
991 man = (man>>(32-9)) + 1;
992 if (man == (1<<9)) {
993 // no need to check for round up outside of range
994 man = 0;
995 exp += 1;
997 } else {
998 man = (man>>(32-9));
1000 break;
1004 } else {
1005 // zero rate - not representable
1007 if (r == round_down) {
1008 return -EINVAL;
1009 } else {
1010 exp = 0;
1011 man = 0;
1016 PRINTD (DBG_QOS, "rate: man=%u, exp=%hu", man, exp);
1018 if (bits)
1019 *bits = /* (1<<14) | */ (exp<<9) | man;
1021 if (actual)
1022 *actual = (exp >= 9)
1023 ? (1 << exp) + (man << (exp-9))
1024 : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
1026 return 0;
1029 /********** Linux ATM Operations **********/
1031 // some are not yet implemented while others do not make sense for
1032 // this device
1034 /********** Open a VC **********/
1036 static int amb_open (struct atm_vcc * atm_vcc)
1038 int error;
1040 struct atm_qos * qos;
1041 struct atm_trafprm * txtp;
1042 struct atm_trafprm * rxtp;
1043 u16 tx_rate_bits = -1; // hush gcc
1044 u16 tx_vc_bits = -1; // hush gcc
1045 u16 tx_frame_bits = -1; // hush gcc
1047 amb_dev * dev = AMB_DEV(atm_vcc->dev);
1048 amb_vcc * vcc;
1049 unsigned char pool = -1; // hush gcc
1050 short vpi = atm_vcc->vpi;
1051 int vci = atm_vcc->vci;
1053 PRINTD (DBG_FLOW|DBG_VCC, "amb_open %x %x", vpi, vci);
1055 #ifdef ATM_VPI_UNSPEC
1056 // UNSPEC is deprecated, remove this code eventually
1057 if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
1058 PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
1059 return -EINVAL;
1061 #endif
1063 if (!(0 <= vpi && vpi < (1<<NUM_VPI_BITS) &&
1064 0 <= vci && vci < (1<<NUM_VCI_BITS))) {
1065 PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
1066 return -EINVAL;
1069 qos = &atm_vcc->qos;
1071 if (qos->aal != ATM_AAL5) {
1072 PRINTD (DBG_QOS, "AAL not supported");
1073 return -EINVAL;
1076 // traffic parameters
1078 PRINTD (DBG_QOS, "TX:");
1079 txtp = &qos->txtp;
1080 if (txtp->traffic_class != ATM_NONE) {
1081 switch (txtp->traffic_class) {
1082 case ATM_UBR: {
1083 // we take "the PCR" as a rate-cap
1084 int pcr = atm_pcr_goal (txtp);
1085 if (!pcr) {
1086 // no rate cap
1087 tx_rate_bits = 0;
1088 tx_vc_bits = TX_UBR;
1089 tx_frame_bits = TX_FRAME_NOTCAP;
1090 } else {
1091 rounding r;
1092 if (pcr < 0) {
1093 r = round_down;
1094 pcr = -pcr;
1095 } else {
1096 r = round_up;
1098 error = make_rate (pcr, r, &tx_rate_bits, NULL);
1099 if (error)
1100 return error;
1101 tx_vc_bits = TX_UBR_CAPPED;
1102 tx_frame_bits = TX_FRAME_CAPPED;
1104 break;
1106 #if 0
1107 case ATM_ABR: {
1108 pcr = atm_pcr_goal (txtp);
1109 PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1110 break;
1112 #endif
1113 default: {
1114 // PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1115 PRINTD (DBG_QOS, "request for non-UBR denied");
1116 return -EINVAL;
1119 PRINTD (DBG_QOS, "tx_rate_bits=%hx, tx_vc_bits=%hx",
1120 tx_rate_bits, tx_vc_bits);
1123 PRINTD (DBG_QOS, "RX:");
1124 rxtp = &qos->rxtp;
1125 if (rxtp->traffic_class == ATM_NONE) {
1126 // do nothing
1127 } else {
1128 // choose an RX pool (arranged in increasing size)
1129 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1130 if ((unsigned int) rxtp->max_sdu <= dev->rxq[pool].buffer_size) {
1131 PRINTD (DBG_VCC|DBG_QOS|DBG_POOL, "chose pool %hu (max_sdu %u <= %u)",
1132 pool, rxtp->max_sdu, dev->rxq[pool].buffer_size);
1133 break;
1135 if (pool == NUM_RX_POOLS) {
1136 PRINTD (DBG_WARN|DBG_VCC|DBG_QOS|DBG_POOL,
1137 "no pool suitable for VC (RX max_sdu %d is too large)",
1138 rxtp->max_sdu);
1139 return -EINVAL;
1142 switch (rxtp->traffic_class) {
1143 case ATM_UBR: {
1144 break;
1146 #if 0
1147 case ATM_ABR: {
1148 pcr = atm_pcr_goal (rxtp);
1149 PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1150 break;
1152 #endif
1153 default: {
1154 // PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1155 PRINTD (DBG_QOS, "request for non-UBR denied");
1156 return -EINVAL;
1161 // get space for our vcc stuff
1162 vcc = kmalloc (sizeof(amb_vcc), GFP_KERNEL);
1163 if (!vcc) {
1164 PRINTK (KERN_ERR, "out of memory!");
1165 return -ENOMEM;
1167 atm_vcc->dev_data = (void *) vcc;
1169 // no failures beyond this point
1171 // we are not really "immediately before allocating the connection
1172 // identifier in hardware", but it will just have to do!
1173 set_bit(ATM_VF_ADDR,&atm_vcc->flags);
1175 if (txtp->traffic_class != ATM_NONE) {
1176 command cmd;
1178 vcc->tx_frame_bits = tx_frame_bits;
1180 down (&dev->vcc_sf);
1181 if (dev->rxer[vci]) {
1182 // RXer on the channel already, just modify rate...
1183 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1184 cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0
1185 cmd.args.modify_rate.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1186 while (command_do (dev, &cmd))
1187 schedule();
1188 // ... and TX flags, preserving the RX pool
1189 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1190 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1191 cmd.args.modify_flags.flags = cpu_to_be32
1192 ( (AMB_VCC(dev->rxer[vci])->rx_info.pool << SRB_POOL_SHIFT)
1193 | (tx_vc_bits << SRB_FLAGS_SHIFT) );
1194 while (command_do (dev, &cmd))
1195 schedule();
1196 } else {
1197 // no RXer on the channel, just open (with pool zero)
1198 cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1199 cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0
1200 cmd.args.open.flags = cpu_to_be32 (tx_vc_bits << SRB_FLAGS_SHIFT);
1201 cmd.args.open.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1202 while (command_do (dev, &cmd))
1203 schedule();
1205 dev->txer[vci].tx_present = 1;
1206 up (&dev->vcc_sf);
1209 if (rxtp->traffic_class != ATM_NONE) {
1210 command cmd;
1212 vcc->rx_info.pool = pool;
1214 down (&dev->vcc_sf);
1215 /* grow RX buffer pool */
1216 if (!dev->rxq[pool].buffers_wanted)
1217 dev->rxq[pool].buffers_wanted = rx_lats;
1218 dev->rxq[pool].buffers_wanted += 1;
1219 fill_rx_pool (dev, pool, GFP_KERNEL);
1221 if (dev->txer[vci].tx_present) {
1222 // TXer on the channel already
1223 // switch (from pool zero) to this pool, preserving the TX bits
1224 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1225 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1226 cmd.args.modify_flags.flags = cpu_to_be32
1227 ( (pool << SRB_POOL_SHIFT)
1228 | (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT) );
1229 } else {
1230 // no TXer on the channel, open the VC (with no rate info)
1231 cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1232 cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0
1233 cmd.args.open.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
1234 cmd.args.open.rate = cpu_to_be32 (0);
1236 while (command_do (dev, &cmd))
1237 schedule();
1238 // this link allows RX frames through
1239 dev->rxer[vci] = atm_vcc;
1240 up (&dev->vcc_sf);
1243 // indicate readiness
1244 set_bit(ATM_VF_READY,&atm_vcc->flags);
1246 return 0;
1249 /********** Close a VC **********/
1251 static void amb_close (struct atm_vcc * atm_vcc) {
1252 amb_dev * dev = AMB_DEV (atm_vcc->dev);
1253 amb_vcc * vcc = AMB_VCC (atm_vcc);
1254 u16 vci = atm_vcc->vci;
1256 PRINTD (DBG_VCC|DBG_FLOW, "amb_close");
1258 // indicate unreadiness
1259 clear_bit(ATM_VF_READY,&atm_vcc->flags);
1261 // disable TXing
1262 if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
1263 command cmd;
1265 down (&dev->vcc_sf);
1266 if (dev->rxer[vci]) {
1267 // RXer still on the channel, just modify rate... XXX not really needed
1268 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1269 cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0
1270 cmd.args.modify_rate.rate = cpu_to_be32 (0);
1271 // ... and clear TX rate flags (XXX to stop RM cell output?), preserving RX pool
1272 } else {
1273 // no RXer on the channel, close channel
1274 cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1275 cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1277 dev->txer[vci].tx_present = 0;
1278 while (command_do (dev, &cmd))
1279 schedule();
1280 up (&dev->vcc_sf);
1283 // disable RXing
1284 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1285 command cmd;
1287 // this is (the?) one reason why we need the amb_vcc struct
1288 unsigned char pool = vcc->rx_info.pool;
1290 down (&dev->vcc_sf);
1291 if (dev->txer[vci].tx_present) {
1292 // TXer still on the channel, just go to pool zero XXX not really needed
1293 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1294 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1295 cmd.args.modify_flags.flags = cpu_to_be32
1296 (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT);
1297 } else {
1298 // no TXer on the channel, close the VC
1299 cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1300 cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1302 // forget the rxer - no more skbs will be pushed
1303 if (atm_vcc != dev->rxer[vci])
1304 PRINTK (KERN_ERR, "%s vcc=%p rxer[vci]=%p",
1305 "arghhh! we're going to die!",
1306 vcc, dev->rxer[vci]);
1307 dev->rxer[vci] = NULL;
1308 while (command_do (dev, &cmd))
1309 schedule();
1311 /* shrink RX buffer pool */
1312 dev->rxq[pool].buffers_wanted -= 1;
1313 if (dev->rxq[pool].buffers_wanted == rx_lats) {
1314 dev->rxq[pool].buffers_wanted = 0;
1315 drain_rx_pool (dev, pool);
1317 up (&dev->vcc_sf);
1320 // free our structure
1321 kfree (vcc);
1323 // say the VPI/VCI is free again
1324 clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
1326 return;
1329 /********** Set socket options for a VC **********/
1331 // int amb_getsockopt (struct atm_vcc * atm_vcc, int level, int optname, void * optval, int optlen);
1333 /********** Set socket options for a VC **********/
1335 // int amb_setsockopt (struct atm_vcc * atm_vcc, int level, int optname, void * optval, int optlen);
1337 /********** Send **********/
1339 static int amb_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1340 amb_dev * dev = AMB_DEV(atm_vcc->dev);
1341 amb_vcc * vcc = AMB_VCC(atm_vcc);
1342 u16 vc = atm_vcc->vci;
1343 unsigned int tx_len = skb->len;
1344 unsigned char * tx_data = skb->data;
1345 tx_simple * tx_descr;
1346 tx_in tx;
1348 if (test_bit (dead, &dev->flags))
1349 return -EIO;
1351 PRINTD (DBG_FLOW|DBG_TX, "amb_send vc %x data %p len %u",
1352 vc, tx_data, tx_len);
1354 dump_skb (">>>", vc, skb);
1356 if (!dev->txer[vc].tx_present) {
1357 PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", vc);
1358 return -EBADFD;
1361 // this is a driver private field so we have to set it ourselves,
1362 // despite the fact that we are _required_ to use it to check for a
1363 // pop function
1364 ATM_SKB(skb)->vcc = atm_vcc;
1366 if (skb->len > (size_t) atm_vcc->qos.txtp.max_sdu) {
1367 PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1368 return -EIO;
1371 if (check_area (skb->data, skb->len)) {
1372 atomic_inc(&atm_vcc->stats->tx_err);
1373 return -ENOMEM; // ?
1376 // allocate memory for fragments
1377 tx_descr = kmalloc (sizeof(tx_simple), GFP_KERNEL);
1378 if (!tx_descr) {
1379 PRINTK (KERN_ERR, "could not allocate TX descriptor");
1380 return -ENOMEM;
1382 if (check_area (tx_descr, sizeof(tx_simple))) {
1383 kfree (tx_descr);
1384 return -ENOMEM;
1386 PRINTD (DBG_TX, "fragment list allocated at %p", tx_descr);
1388 tx_descr->skb = skb;
1390 tx_descr->tx_frag.bytes = cpu_to_be32 (tx_len);
1391 tx_descr->tx_frag.address = cpu_to_be32 (virt_to_bus (tx_data));
1393 tx_descr->tx_frag_end.handle = virt_to_bus (tx_descr);
1394 tx_descr->tx_frag_end.vc = 0;
1395 tx_descr->tx_frag_end.next_descriptor_length = 0;
1396 tx_descr->tx_frag_end.next_descriptor = 0;
1397 #ifdef AMB_NEW_MICROCODE
1398 tx_descr->tx_frag_end.cpcs_uu = 0;
1399 tx_descr->tx_frag_end.cpi = 0;
1400 tx_descr->tx_frag_end.pad = 0;
1401 #endif
1403 tx.vc = cpu_to_be16 (vcc->tx_frame_bits | vc);
1404 tx.tx_descr_length = cpu_to_be16 (sizeof(tx_frag)+sizeof(tx_frag_end));
1405 tx.tx_descr_addr = cpu_to_be32 (virt_to_bus (&tx_descr->tx_frag));
1407 while (tx_give (dev, &tx))
1408 schedule();
1409 return 0;
1412 /********** Change QoS on a VC **********/
1414 // int amb_change_qos (struct atm_vcc * atm_vcc, struct atm_qos * qos, int flags);
1416 /********** Free RX Socket Buffer **********/
1418 #if 0
1419 static void amb_free_rx_skb (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1420 amb_dev * dev = AMB_DEV (atm_vcc->dev);
1421 amb_vcc * vcc = AMB_VCC (atm_vcc);
1422 unsigned char pool = vcc->rx_info.pool;
1423 rx_in rx;
1425 // This may be unsafe for various reasons that I cannot really guess
1426 // at. However, I note that the ATM layer calls kfree_skb rather
1427 // than dev_kfree_skb at this point so we are least covered as far
1428 // as buffer locking goes. There may be bugs if pcap clones RX skbs.
1430 PRINTD (DBG_FLOW|DBG_SKB, "amb_rx_free skb %p (atm_vcc %p, vcc %p)",
1431 skb, atm_vcc, vcc);
1433 rx.handle = virt_to_bus (skb);
1434 rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
1436 skb->data = skb->head;
1437 skb->tail = skb->head;
1438 skb->len = 0;
1440 if (!rx_give (dev, &rx, pool)) {
1441 // success
1442 PRINTD (DBG_SKB|DBG_POOL, "recycled skb for pool %hu", pool);
1443 return;
1446 // just do what the ATM layer would have done
1447 dev_kfree_skb_any (skb);
1449 return;
1451 #endif
1453 /********** Proc File Output **********/
1455 static int amb_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
1456 amb_dev * dev = AMB_DEV (atm_dev);
1457 int left = *pos;
1458 unsigned char pool;
1460 PRINTD (DBG_FLOW, "amb_proc_read");
1462 /* more diagnostics here? */
1464 if (!left--) {
1465 amb_stats * s = &dev->stats;
1466 return sprintf (page,
1467 "frames: TX OK %lu, RX OK %lu, RX bad %lu "
1468 "(CRC %lu, long %lu, aborted %lu, unused %lu).\n",
1469 s->tx_ok, s->rx.ok, s->rx.error,
1470 s->rx.badcrc, s->rx.toolong,
1471 s->rx.aborted, s->rx.unused);
1474 if (!left--) {
1475 amb_cq * c = &dev->cq;
1476 return sprintf (page, "cmd queue [cur/hi/max]: %u/%u/%u. ",
1477 c->pending, c->high, c->maximum);
1480 if (!left--) {
1481 amb_txq * t = &dev->txq;
1482 return sprintf (page, "TX queue [cur/max high full]: %u/%u %u %u.\n",
1483 t->pending, t->maximum, t->high, t->filled);
1486 if (!left--) {
1487 unsigned int count = sprintf (page, "RX queues [cur/max/req low empty]:");
1488 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1489 amb_rxq * r = &dev->rxq[pool];
1490 count += sprintf (page+count, " %u/%u/%u %u %u",
1491 r->pending, r->maximum, r->buffers_wanted, r->low, r->emptied);
1493 count += sprintf (page+count, ".\n");
1494 return count;
1497 if (!left--) {
1498 unsigned int count = sprintf (page, "RX buffer sizes:");
1499 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1500 amb_rxq * r = &dev->rxq[pool];
1501 count += sprintf (page+count, " %u", r->buffer_size);
1503 count += sprintf (page+count, ".\n");
1504 return count;
1507 #if 0
1508 if (!left--) {
1509 // suni block etc?
1511 #endif
1513 return 0;
1516 /********** Operation Structure **********/
1518 static const struct atmdev_ops amb_ops = {
1519 .open = amb_open,
1520 .close = amb_close,
1521 .send = amb_send,
1522 .proc_read = amb_proc_read,
1523 .owner = THIS_MODULE,
1526 /********** housekeeping **********/
1527 static void do_housekeeping (unsigned long arg) {
1528 amb_dev * dev = (amb_dev *) arg;
1530 // could collect device-specific (not driver/atm-linux) stats here
1532 // last resort refill once every ten seconds
1533 fill_rx_pools (dev);
1534 mod_timer(&dev->housekeeping, jiffies + 10*HZ);
1536 return;
1539 /********** creation of communication queues **********/
1541 static int __devinit create_queues (amb_dev * dev, unsigned int cmds,
1542 unsigned int txs, unsigned int * rxs,
1543 unsigned int * rx_buffer_sizes) {
1544 unsigned char pool;
1545 size_t total = 0;
1546 void * memory;
1547 void * limit;
1549 PRINTD (DBG_FLOW, "create_queues %p", dev);
1551 total += cmds * sizeof(command);
1553 total += txs * (sizeof(tx_in) + sizeof(tx_out));
1555 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1556 total += rxs[pool] * (sizeof(rx_in) + sizeof(rx_out));
1558 memory = kmalloc (total, GFP_KERNEL);
1559 if (!memory) {
1560 PRINTK (KERN_ERR, "could not allocate queues");
1561 return -ENOMEM;
1563 if (check_area (memory, total)) {
1564 PRINTK (KERN_ERR, "queues allocated in nasty area");
1565 kfree (memory);
1566 return -ENOMEM;
1569 limit = memory + total;
1570 PRINTD (DBG_INIT, "queues from %p to %p", memory, limit);
1572 PRINTD (DBG_CMD, "command queue at %p", memory);
1575 command * cmd = memory;
1576 amb_cq * cq = &dev->cq;
1578 cq->pending = 0;
1579 cq->high = 0;
1580 cq->maximum = cmds - 1;
1582 cq->ptrs.start = cmd;
1583 cq->ptrs.in = cmd;
1584 cq->ptrs.out = cmd;
1585 cq->ptrs.limit = cmd + cmds;
1587 memory = cq->ptrs.limit;
1590 PRINTD (DBG_TX, "TX queue pair at %p", memory);
1593 tx_in * in = memory;
1594 tx_out * out;
1595 amb_txq * txq = &dev->txq;
1597 txq->pending = 0;
1598 txq->high = 0;
1599 txq->filled = 0;
1600 txq->maximum = txs - 1;
1602 txq->in.start = in;
1603 txq->in.ptr = in;
1604 txq->in.limit = in + txs;
1606 memory = txq->in.limit;
1607 out = memory;
1609 txq->out.start = out;
1610 txq->out.ptr = out;
1611 txq->out.limit = out + txs;
1613 memory = txq->out.limit;
1616 PRINTD (DBG_RX, "RX queue pairs at %p", memory);
1618 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1619 rx_in * in = memory;
1620 rx_out * out;
1621 amb_rxq * rxq = &dev->rxq[pool];
1623 rxq->buffer_size = rx_buffer_sizes[pool];
1624 rxq->buffers_wanted = 0;
1626 rxq->pending = 0;
1627 rxq->low = rxs[pool] - 1;
1628 rxq->emptied = 0;
1629 rxq->maximum = rxs[pool] - 1;
1631 rxq->in.start = in;
1632 rxq->in.ptr = in;
1633 rxq->in.limit = in + rxs[pool];
1635 memory = rxq->in.limit;
1636 out = memory;
1638 rxq->out.start = out;
1639 rxq->out.ptr = out;
1640 rxq->out.limit = out + rxs[pool];
1642 memory = rxq->out.limit;
1645 if (memory == limit) {
1646 return 0;
1647 } else {
1648 PRINTK (KERN_ERR, "bad queue alloc %p != %p (tell maintainer)", memory, limit);
1649 kfree (limit - total);
1650 return -ENOMEM;
1655 /********** destruction of communication queues **********/
1657 static void destroy_queues (amb_dev * dev) {
1658 // all queues assumed empty
1659 void * memory = dev->cq.ptrs.start;
1660 // includes txq.in, txq.out, rxq[].in and rxq[].out
1662 PRINTD (DBG_FLOW, "destroy_queues %p", dev);
1664 PRINTD (DBG_INIT, "freeing queues at %p", memory);
1665 kfree (memory);
1667 return;
1670 /********** basic loader commands and error handling **********/
1671 // centisecond timeouts - guessing away here
1672 static unsigned int command_timeouts [] = {
1673 [host_memory_test] = 15,
1674 [read_adapter_memory] = 2,
1675 [write_adapter_memory] = 2,
1676 [adapter_start] = 50,
1677 [get_version_number] = 10,
1678 [interrupt_host] = 1,
1679 [flash_erase_sector] = 1,
1680 [adap_download_block] = 1,
1681 [adap_erase_flash] = 1,
1682 [adap_run_in_iram] = 1,
1683 [adap_end_download] = 1
1687 static unsigned int command_successes [] = {
1688 [host_memory_test] = COMMAND_PASSED_TEST,
1689 [read_adapter_memory] = COMMAND_READ_DATA_OK,
1690 [write_adapter_memory] = COMMAND_WRITE_DATA_OK,
1691 [adapter_start] = COMMAND_COMPLETE,
1692 [get_version_number] = COMMAND_COMPLETE,
1693 [interrupt_host] = COMMAND_COMPLETE,
1694 [flash_erase_sector] = COMMAND_COMPLETE,
1695 [adap_download_block] = COMMAND_COMPLETE,
1696 [adap_erase_flash] = COMMAND_COMPLETE,
1697 [adap_run_in_iram] = COMMAND_COMPLETE,
1698 [adap_end_download] = COMMAND_COMPLETE
1701 static int decode_loader_result (loader_command cmd, u32 result)
1703 int res;
1704 const char *msg;
1706 if (result == command_successes[cmd])
1707 return 0;
1709 switch (result) {
1710 case BAD_COMMAND:
1711 res = -EINVAL;
1712 msg = "bad command";
1713 break;
1714 case COMMAND_IN_PROGRESS:
1715 res = -ETIMEDOUT;
1716 msg = "command in progress";
1717 break;
1718 case COMMAND_PASSED_TEST:
1719 res = 0;
1720 msg = "command passed test";
1721 break;
1722 case COMMAND_FAILED_TEST:
1723 res = -EIO;
1724 msg = "command failed test";
1725 break;
1726 case COMMAND_READ_DATA_OK:
1727 res = 0;
1728 msg = "command read data ok";
1729 break;
1730 case COMMAND_READ_BAD_ADDRESS:
1731 res = -EINVAL;
1732 msg = "command read bad address";
1733 break;
1734 case COMMAND_WRITE_DATA_OK:
1735 res = 0;
1736 msg = "command write data ok";
1737 break;
1738 case COMMAND_WRITE_BAD_ADDRESS:
1739 res = -EINVAL;
1740 msg = "command write bad address";
1741 break;
1742 case COMMAND_WRITE_FLASH_FAILURE:
1743 res = -EIO;
1744 msg = "command write flash failure";
1745 break;
1746 case COMMAND_COMPLETE:
1747 res = 0;
1748 msg = "command complete";
1749 break;
1750 case COMMAND_FLASH_ERASE_FAILURE:
1751 res = -EIO;
1752 msg = "command flash erase failure";
1753 break;
1754 case COMMAND_WRITE_BAD_DATA:
1755 res = -EINVAL;
1756 msg = "command write bad data";
1757 break;
1758 default:
1759 res = -EINVAL;
1760 msg = "unknown error";
1761 PRINTD (DBG_LOAD|DBG_ERR,
1762 "decode_loader_result got %d=%x !",
1763 result, result);
1764 break;
1767 PRINTK (KERN_ERR, "%s", msg);
1768 return res;
1771 static int __devinit do_loader_command (volatile loader_block * lb,
1772 const amb_dev * dev, loader_command cmd) {
1774 unsigned long timeout;
1776 PRINTD (DBG_FLOW|DBG_LOAD, "do_loader_command");
1778 /* do a command
1780 Set the return value to zero, set the command type and set the
1781 valid entry to the right magic value. The payload is already
1782 correctly byte-ordered so we leave it alone. Hit the doorbell
1783 with the bus address of this structure.
1787 lb->result = 0;
1788 lb->command = cpu_to_be32 (cmd);
1789 lb->valid = cpu_to_be32 (DMA_VALID);
1790 // dump_registers (dev);
1791 // dump_loader_block (lb);
1792 wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (lb) & ~onegigmask);
1794 timeout = command_timeouts[cmd] * 10;
1796 while (!lb->result || lb->result == cpu_to_be32 (COMMAND_IN_PROGRESS))
1797 if (timeout) {
1798 timeout = msleep_interruptible(timeout);
1799 } else {
1800 PRINTD (DBG_LOAD|DBG_ERR, "command %d timed out", cmd);
1801 dump_registers (dev);
1802 dump_loader_block (lb);
1803 return -ETIMEDOUT;
1806 if (cmd == adapter_start) {
1807 // wait for start command to acknowledge...
1808 timeout = 100;
1809 while (rd_plain (dev, offsetof(amb_mem, doorbell)))
1810 if (timeout) {
1811 timeout = msleep_interruptible(timeout);
1812 } else {
1813 PRINTD (DBG_LOAD|DBG_ERR, "start command did not clear doorbell, res=%08x",
1814 be32_to_cpu (lb->result));
1815 dump_registers (dev);
1816 return -ETIMEDOUT;
1818 return 0;
1819 } else {
1820 return decode_loader_result (cmd, be32_to_cpu (lb->result));
1825 /* loader: determine loader version */
1827 static int __devinit get_loader_version (loader_block * lb,
1828 const amb_dev * dev, u32 * version) {
1829 int res;
1831 PRINTD (DBG_FLOW|DBG_LOAD, "get_loader_version");
1833 res = do_loader_command (lb, dev, get_version_number);
1834 if (res)
1835 return res;
1836 if (version)
1837 *version = be32_to_cpu (lb->payload.version);
1838 return 0;
1841 /* loader: write memory data blocks */
1843 static int __devinit loader_write (loader_block * lb,
1844 const amb_dev * dev, const u32 * data,
1845 u32 address, unsigned int count) {
1846 unsigned int i;
1847 transfer_block * tb = &lb->payload.transfer;
1849 PRINTD (DBG_FLOW|DBG_LOAD, "loader_write");
1851 if (count > MAX_TRANSFER_DATA)
1852 return -EINVAL;
1853 tb->address = cpu_to_be32 (address);
1854 tb->count = cpu_to_be32 (count);
1855 for (i = 0; i < count; ++i)
1856 tb->data[i] = cpu_to_be32 (data[i]);
1857 return do_loader_command (lb, dev, write_adapter_memory);
1860 /* loader: verify memory data blocks */
1862 static int __devinit loader_verify (loader_block * lb,
1863 const amb_dev * dev, const u32 * data,
1864 u32 address, unsigned int count) {
1865 unsigned int i;
1866 transfer_block * tb = &lb->payload.transfer;
1867 int res;
1869 PRINTD (DBG_FLOW|DBG_LOAD, "loader_verify");
1871 if (count > MAX_TRANSFER_DATA)
1872 return -EINVAL;
1873 tb->address = cpu_to_be32 (address);
1874 tb->count = cpu_to_be32 (count);
1875 res = do_loader_command (lb, dev, read_adapter_memory);
1876 if (!res)
1877 for (i = 0; i < count; ++i)
1878 if (tb->data[i] != cpu_to_be32 (data[i])) {
1879 res = -EINVAL;
1880 break;
1882 return res;
1885 /* loader: start microcode */
1887 static int __devinit loader_start (loader_block * lb,
1888 const amb_dev * dev, u32 address) {
1889 PRINTD (DBG_FLOW|DBG_LOAD, "loader_start");
1891 lb->payload.start = cpu_to_be32 (address);
1892 return do_loader_command (lb, dev, adapter_start);
1895 /********** reset card **********/
1897 static inline void sf (const char * msg)
1899 PRINTK (KERN_ERR, "self-test failed: %s", msg);
1902 static int amb_reset (amb_dev * dev, int diags) {
1903 u32 word;
1905 PRINTD (DBG_FLOW|DBG_LOAD, "amb_reset");
1907 word = rd_plain (dev, offsetof(amb_mem, reset_control));
1908 // put card into reset state
1909 wr_plain (dev, offsetof(amb_mem, reset_control), word | AMB_RESET_BITS);
1910 // wait a short while
1911 udelay (10);
1912 #if 1
1913 // put card into known good state
1914 wr_plain (dev, offsetof(amb_mem, interrupt_control), AMB_DOORBELL_BITS);
1915 // clear all interrupts just in case
1916 wr_plain (dev, offsetof(amb_mem, interrupt), -1);
1917 #endif
1918 // clear self-test done flag
1919 wr_plain (dev, offsetof(amb_mem, mb.loader.ready), 0);
1920 // take card out of reset state
1921 wr_plain (dev, offsetof(amb_mem, reset_control), word &~ AMB_RESET_BITS);
1923 if (diags) {
1924 unsigned long timeout;
1925 // 4.2 second wait
1926 msleep(4200);
1927 // half second time-out
1928 timeout = 500;
1929 while (!rd_plain (dev, offsetof(amb_mem, mb.loader.ready)))
1930 if (timeout) {
1931 timeout = msleep_interruptible(timeout);
1932 } else {
1933 PRINTD (DBG_LOAD|DBG_ERR, "reset timed out");
1934 return -ETIMEDOUT;
1937 // get results of self-test
1938 // XXX double check byte-order
1939 word = rd_mem (dev, offsetof(amb_mem, mb.loader.result));
1940 if (word & SELF_TEST_FAILURE) {
1941 if (word & GPINT_TST_FAILURE)
1942 sf ("interrupt");
1943 if (word & SUNI_DATA_PATTERN_FAILURE)
1944 sf ("SUNI data pattern");
1945 if (word & SUNI_DATA_BITS_FAILURE)
1946 sf ("SUNI data bits");
1947 if (word & SUNI_UTOPIA_FAILURE)
1948 sf ("SUNI UTOPIA interface");
1949 if (word & SUNI_FIFO_FAILURE)
1950 sf ("SUNI cell buffer FIFO");
1951 if (word & SRAM_FAILURE)
1952 sf ("bad SRAM");
1953 // better return value?
1954 return -EIO;
1958 return 0;
1961 /********** transfer and start the microcode **********/
1963 static int __devinit ucode_init (loader_block * lb, amb_dev * dev) {
1964 unsigned int i = 0;
1965 unsigned int total = 0;
1966 const u32 * pointer = ucode_data;
1967 u32 address;
1968 unsigned int count;
1969 int res;
1971 PRINTD (DBG_FLOW|DBG_LOAD, "ucode_init");
1973 while (address = ucode_regions[i].start,
1974 count = ucode_regions[i].count) {
1975 PRINTD (DBG_LOAD, "starting region (%x, %u)", address, count);
1976 while (count) {
1977 unsigned int words;
1978 if (count <= MAX_TRANSFER_DATA)
1979 words = count;
1980 else
1981 words = MAX_TRANSFER_DATA;
1982 total += words;
1983 res = loader_write (lb, dev, pointer, address, words);
1984 if (res)
1985 return res;
1986 res = loader_verify (lb, dev, pointer, address, words);
1987 if (res)
1988 return res;
1989 count -= words;
1990 address += sizeof(u32) * words;
1991 pointer += words;
1993 i += 1;
1995 if (*pointer == ATM_POISON) {
1996 return loader_start (lb, dev, ucode_start);
1997 } else {
1998 // cast needed as there is no %? for pointer differnces
1999 PRINTD (DBG_LOAD|DBG_ERR,
2000 "offset=%li, *pointer=%x, address=%x, total=%u",
2001 (long) (pointer - ucode_data), *pointer, address, total);
2002 PRINTK (KERN_ERR, "incorrect microcode data");
2003 return -ENOMEM;
2007 /********** give adapter parameters **********/
2009 static inline __be32 bus_addr(void * addr) {
2010 return cpu_to_be32 (virt_to_bus (addr));
2013 static int __devinit amb_talk (amb_dev * dev) {
2014 adap_talk_block a;
2015 unsigned char pool;
2016 unsigned long timeout;
2018 PRINTD (DBG_FLOW, "amb_talk %p", dev);
2020 a.command_start = bus_addr (dev->cq.ptrs.start);
2021 a.command_end = bus_addr (dev->cq.ptrs.limit);
2022 a.tx_start = bus_addr (dev->txq.in.start);
2023 a.tx_end = bus_addr (dev->txq.in.limit);
2024 a.txcom_start = bus_addr (dev->txq.out.start);
2025 a.txcom_end = bus_addr (dev->txq.out.limit);
2027 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
2028 // the other "a" items are set up by the adapter
2029 a.rec_struct[pool].buffer_start = bus_addr (dev->rxq[pool].in.start);
2030 a.rec_struct[pool].buffer_end = bus_addr (dev->rxq[pool].in.limit);
2031 a.rec_struct[pool].rx_start = bus_addr (dev->rxq[pool].out.start);
2032 a.rec_struct[pool].rx_end = bus_addr (dev->rxq[pool].out.limit);
2033 a.rec_struct[pool].buffer_size = cpu_to_be32 (dev->rxq[pool].buffer_size);
2036 #ifdef AMB_NEW_MICROCODE
2037 // disable fast PLX prefetching
2038 a.init_flags = 0;
2039 #endif
2041 // pass the structure
2042 wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (&a));
2044 // 2.2 second wait (must not touch doorbell during 2 second DMA test)
2045 msleep(2200);
2046 // give the adapter another half second?
2047 timeout = 500;
2048 while (rd_plain (dev, offsetof(amb_mem, doorbell)))
2049 if (timeout) {
2050 timeout = msleep_interruptible(timeout);
2051 } else {
2052 PRINTD (DBG_INIT|DBG_ERR, "adapter init timed out");
2053 return -ETIMEDOUT;
2056 return 0;
2059 // get microcode version
2060 static void __devinit amb_ucode_version (amb_dev * dev) {
2061 u32 major;
2062 u32 minor;
2063 command cmd;
2064 cmd.request = cpu_to_be32 (SRB_GET_VERSION);
2065 while (command_do (dev, &cmd)) {
2066 set_current_state(TASK_UNINTERRUPTIBLE);
2067 schedule();
2069 major = be32_to_cpu (cmd.args.version.major);
2070 minor = be32_to_cpu (cmd.args.version.minor);
2071 PRINTK (KERN_INFO, "microcode version is %u.%u", major, minor);
2074 // get end station address
2075 static void __devinit amb_esi (amb_dev * dev, u8 * esi) {
2076 u32 lower4;
2077 u16 upper2;
2078 command cmd;
2080 cmd.request = cpu_to_be32 (SRB_GET_BIA);
2081 while (command_do (dev, &cmd)) {
2082 set_current_state(TASK_UNINTERRUPTIBLE);
2083 schedule();
2085 lower4 = be32_to_cpu (cmd.args.bia.lower4);
2086 upper2 = be32_to_cpu (cmd.args.bia.upper2);
2087 PRINTD (DBG_LOAD, "BIA: lower4: %08x, upper2 %04x", lower4, upper2);
2089 if (esi) {
2090 unsigned int i;
2092 PRINTDB (DBG_INIT, "ESI:");
2093 for (i = 0; i < ESI_LEN; ++i) {
2094 if (i < 4)
2095 esi[i] = bitrev8(lower4>>(8*i));
2096 else
2097 esi[i] = bitrev8(upper2>>(8*(i-4)));
2098 PRINTDM (DBG_INIT, " %02x", esi[i]);
2101 PRINTDE (DBG_INIT, "");
2104 return;
2107 static void fixup_plx_window (amb_dev *dev, loader_block *lb)
2109 // fix up the PLX-mapped window base address to match the block
2110 unsigned long blb;
2111 u32 mapreg;
2112 blb = virt_to_bus(lb);
2113 // the kernel stack had better not ever cross a 1Gb boundary!
2114 mapreg = rd_plain (dev, offsetof(amb_mem, stuff[10]));
2115 mapreg &= ~onegigmask;
2116 mapreg |= blb & onegigmask;
2117 wr_plain (dev, offsetof(amb_mem, stuff[10]), mapreg);
2118 return;
2121 static int __devinit amb_init (amb_dev * dev)
2123 loader_block lb;
2125 u32 version;
2127 if (amb_reset (dev, 1)) {
2128 PRINTK (KERN_ERR, "card reset failed!");
2129 } else {
2130 fixup_plx_window (dev, &lb);
2132 if (get_loader_version (&lb, dev, &version)) {
2133 PRINTK (KERN_INFO, "failed to get loader version");
2134 } else {
2135 PRINTK (KERN_INFO, "loader version is %08x", version);
2137 if (ucode_init (&lb, dev)) {
2138 PRINTK (KERN_ERR, "microcode failure");
2139 } else if (create_queues (dev, cmds, txs, rxs, rxs_bs)) {
2140 PRINTK (KERN_ERR, "failed to get memory for queues");
2141 } else {
2143 if (amb_talk (dev)) {
2144 PRINTK (KERN_ERR, "adapter did not accept queues");
2145 } else {
2147 amb_ucode_version (dev);
2148 return 0;
2150 } /* amb_talk */
2152 destroy_queues (dev);
2153 } /* create_queues, ucode_init */
2155 amb_reset (dev, 0);
2156 } /* get_loader_version */
2158 } /* amb_reset */
2160 return -EINVAL;
2163 static void setup_dev(amb_dev *dev, struct pci_dev *pci_dev)
2165 unsigned char pool;
2167 // set up known dev items straight away
2168 dev->pci_dev = pci_dev;
2169 pci_set_drvdata(pci_dev, dev);
2171 dev->iobase = pci_resource_start (pci_dev, 1);
2172 dev->irq = pci_dev->irq;
2173 dev->membase = bus_to_virt(pci_resource_start(pci_dev, 0));
2175 // flags (currently only dead)
2176 dev->flags = 0;
2178 // Allocate cell rates (fibre)
2179 // ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2180 // to be really pedantic, this should be ATM_OC3c_PCR
2181 dev->tx_avail = ATM_OC3_PCR;
2182 dev->rx_avail = ATM_OC3_PCR;
2184 #ifdef FILL_RX_POOLS_IN_BH
2185 // initialise bottom half
2186 INIT_WORK(&dev->bh, (void (*)(void *)) fill_rx_pools, dev);
2187 #endif
2189 // semaphore for txer/rxer modifications - we cannot use a
2190 // spinlock as the critical region needs to switch processes
2191 init_MUTEX (&dev->vcc_sf);
2192 // queue manipulation spinlocks; we want atomic reads and
2193 // writes to the queue descriptors (handles IRQ and SMP)
2194 // consider replacing "int pending" -> "atomic_t available"
2195 // => problem related to who gets to move queue pointers
2196 spin_lock_init (&dev->cq.lock);
2197 spin_lock_init (&dev->txq.lock);
2198 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2199 spin_lock_init (&dev->rxq[pool].lock);
2202 static void setup_pci_dev(struct pci_dev *pci_dev)
2204 unsigned char lat;
2206 // enable bus master accesses
2207 pci_set_master(pci_dev);
2209 // frobnicate latency (upwards, usually)
2210 pci_read_config_byte (pci_dev, PCI_LATENCY_TIMER, &lat);
2212 if (!pci_lat)
2213 pci_lat = (lat < MIN_PCI_LATENCY) ? MIN_PCI_LATENCY : lat;
2215 if (lat != pci_lat) {
2216 PRINTK (KERN_INFO, "Changing PCI latency timer from %hu to %hu",
2217 lat, pci_lat);
2218 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2222 static int __devinit amb_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2224 amb_dev * dev;
2225 int err;
2226 unsigned int irq;
2228 err = pci_enable_device(pci_dev);
2229 if (err < 0) {
2230 PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2231 goto out;
2234 // read resources from PCI configuration space
2235 irq = pci_dev->irq;
2237 if (pci_dev->device == PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD) {
2238 PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2239 err = -EINVAL;
2240 goto out_disable;
2243 PRINTD (DBG_INFO, "found Madge ATM adapter (amb) at"
2244 " IO %llx, IRQ %u, MEM %p",
2245 (unsigned long long)pci_resource_start(pci_dev, 1),
2246 irq, bus_to_virt(pci_resource_start(pci_dev, 0)));
2248 // check IO region
2249 err = pci_request_region(pci_dev, 1, DEV_LABEL);
2250 if (err < 0) {
2251 PRINTK (KERN_ERR, "IO range already in use!");
2252 goto out_disable;
2255 dev = kzalloc(sizeof(amb_dev), GFP_KERNEL);
2256 if (!dev) {
2257 PRINTK (KERN_ERR, "out of memory!");
2258 err = -ENOMEM;
2259 goto out_release;
2262 setup_dev(dev, pci_dev);
2264 err = amb_init(dev);
2265 if (err < 0) {
2266 PRINTK (KERN_ERR, "adapter initialisation failure");
2267 goto out_free;
2270 setup_pci_dev(pci_dev);
2272 // grab (but share) IRQ and install handler
2273 err = request_irq(irq, interrupt_handler, IRQF_SHARED, DEV_LABEL, dev);
2274 if (err < 0) {
2275 PRINTK (KERN_ERR, "request IRQ failed!");
2276 goto out_reset;
2279 dev->atm_dev = atm_dev_register (DEV_LABEL, &amb_ops, -1, NULL);
2280 if (!dev->atm_dev) {
2281 PRINTD (DBG_ERR, "failed to register Madge ATM adapter");
2282 err = -EINVAL;
2283 goto out_free_irq;
2286 PRINTD (DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2287 dev->atm_dev->number, dev, dev->atm_dev);
2288 dev->atm_dev->dev_data = (void *) dev;
2290 // register our address
2291 amb_esi (dev, dev->atm_dev->esi);
2293 // 0 bits for vpi, 10 bits for vci
2294 dev->atm_dev->ci_range.vpi_bits = NUM_VPI_BITS;
2295 dev->atm_dev->ci_range.vci_bits = NUM_VCI_BITS;
2297 init_timer(&dev->housekeeping);
2298 dev->housekeeping.function = do_housekeeping;
2299 dev->housekeeping.data = (unsigned long) dev;
2300 mod_timer(&dev->housekeeping, jiffies);
2302 // enable host interrupts
2303 interrupts_on (dev);
2305 out:
2306 return err;
2308 out_free_irq:
2309 free_irq(irq, dev);
2310 out_reset:
2311 amb_reset(dev, 0);
2312 out_free:
2313 kfree(dev);
2314 out_release:
2315 pci_release_region(pci_dev, 1);
2316 out_disable:
2317 pci_disable_device(pci_dev);
2318 goto out;
2322 static void __devexit amb_remove_one(struct pci_dev *pci_dev)
2324 struct amb_dev *dev;
2326 dev = pci_get_drvdata(pci_dev);
2328 PRINTD(DBG_INFO|DBG_INIT, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2329 del_timer_sync(&dev->housekeeping);
2330 // the drain should not be necessary
2331 drain_rx_pools(dev);
2332 interrupts_off(dev);
2333 amb_reset(dev, 0);
2334 free_irq(dev->irq, dev);
2335 pci_disable_device(pci_dev);
2336 destroy_queues(dev);
2337 atm_dev_deregister(dev->atm_dev);
2338 kfree(dev);
2339 pci_release_region(pci_dev, 1);
2342 static void __init amb_check_args (void) {
2343 unsigned char pool;
2344 unsigned int max_rx_size;
2346 #ifdef DEBUG_AMBASSADOR
2347 PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2348 #else
2349 if (debug)
2350 PRINTK (KERN_NOTICE, "no debugging support");
2351 #endif
2353 if (cmds < MIN_QUEUE_SIZE)
2354 PRINTK (KERN_NOTICE, "cmds has been raised to %u",
2355 cmds = MIN_QUEUE_SIZE);
2357 if (txs < MIN_QUEUE_SIZE)
2358 PRINTK (KERN_NOTICE, "txs has been raised to %u",
2359 txs = MIN_QUEUE_SIZE);
2361 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2362 if (rxs[pool] < MIN_QUEUE_SIZE)
2363 PRINTK (KERN_NOTICE, "rxs[%hu] has been raised to %u",
2364 pool, rxs[pool] = MIN_QUEUE_SIZE);
2366 // buffers sizes should be greater than zero and strictly increasing
2367 max_rx_size = 0;
2368 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2369 if (rxs_bs[pool] <= max_rx_size)
2370 PRINTK (KERN_NOTICE, "useless pool (rxs_bs[%hu] = %u)",
2371 pool, rxs_bs[pool]);
2372 else
2373 max_rx_size = rxs_bs[pool];
2375 if (rx_lats < MIN_RX_BUFFERS)
2376 PRINTK (KERN_NOTICE, "rx_lats has been raised to %u",
2377 rx_lats = MIN_RX_BUFFERS);
2379 return;
2382 /********** module stuff **********/
2384 MODULE_AUTHOR(maintainer_string);
2385 MODULE_DESCRIPTION(description_string);
2386 MODULE_LICENSE("GPL");
2387 module_param(debug, ushort, 0644);
2388 module_param(cmds, uint, 0);
2389 module_param(txs, uint, 0);
2390 module_param_array(rxs, uint, NULL, 0);
2391 module_param_array(rxs_bs, uint, NULL, 0);
2392 module_param(rx_lats, uint, 0);
2393 module_param(pci_lat, byte, 0);
2394 MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2395 MODULE_PARM_DESC(cmds, "number of command queue entries");
2396 MODULE_PARM_DESC(txs, "number of TX queue entries");
2397 MODULE_PARM_DESC(rxs, "number of RX queue entries [" __MODULE_STRING(NUM_RX_POOLS) "]");
2398 MODULE_PARM_DESC(rxs_bs, "size of RX buffers [" __MODULE_STRING(NUM_RX_POOLS) "]");
2399 MODULE_PARM_DESC(rx_lats, "number of extra buffers to cope with RX latencies");
2400 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2402 /********** module entry **********/
2404 static struct pci_device_id amb_pci_tbl[] = {
2405 { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR, PCI_ANY_ID, PCI_ANY_ID,
2406 0, 0, 0 },
2407 { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD, PCI_ANY_ID, PCI_ANY_ID,
2408 0, 0, 0 },
2409 { 0, }
2412 MODULE_DEVICE_TABLE(pci, amb_pci_tbl);
2414 static struct pci_driver amb_driver = {
2415 .name = "amb",
2416 .probe = amb_probe,
2417 .remove = __devexit_p(amb_remove_one),
2418 .id_table = amb_pci_tbl,
2421 static int __init amb_module_init (void)
2423 PRINTD (DBG_FLOW|DBG_INIT, "init_module");
2425 // sanity check - cast needed as printk does not support %Zu
2426 if (sizeof(amb_mem) != 4*16 + 4*12) {
2427 PRINTK (KERN_ERR, "Fix amb_mem (is %lu words).",
2428 (unsigned long) sizeof(amb_mem));
2429 return -ENOMEM;
2432 show_version();
2434 amb_check_args();
2436 // get the juice
2437 return pci_register_driver(&amb_driver);
2440 /********** module exit **********/
2442 static void __exit amb_module_exit (void)
2444 PRINTD (DBG_FLOW|DBG_INIT, "cleanup_module");
2446 pci_unregister_driver(&amb_driver);
2449 module_init(amb_module_init);
2450 module_exit(amb_module_exit);