x86: coding style fixes in arch/x86/lib/io_64.c
[wrt350n-kernel.git] / drivers / md / dm-table.c
blobe75b1437b58b67ad8ecac097d6b3c50e9bf0b2ba
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/mutex.h>
18 #include <asm/atomic.h>
20 #define DM_MSG_PREFIX "table"
22 #define MAX_DEPTH 16
23 #define NODE_SIZE L1_CACHE_BYTES
24 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
25 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
27 struct dm_table {
28 struct mapped_device *md;
29 atomic_t holders;
31 /* btree table */
32 unsigned int depth;
33 unsigned int counts[MAX_DEPTH]; /* in nodes */
34 sector_t *index[MAX_DEPTH];
36 unsigned int num_targets;
37 unsigned int num_allocated;
38 sector_t *highs;
39 struct dm_target *targets;
42 * Indicates the rw permissions for the new logical
43 * device. This should be a combination of FMODE_READ
44 * and FMODE_WRITE.
46 int mode;
48 /* a list of devices used by this table */
49 struct list_head devices;
52 * These are optimistic limits taken from all the
53 * targets, some targets will need smaller limits.
55 struct io_restrictions limits;
57 /* events get handed up using this callback */
58 void (*event_fn)(void *);
59 void *event_context;
63 * Similar to ceiling(log_size(n))
65 static unsigned int int_log(unsigned int n, unsigned int base)
67 int result = 0;
69 while (n > 1) {
70 n = dm_div_up(n, base);
71 result++;
74 return result;
78 * Returns the minimum that is _not_ zero, unless both are zero.
80 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
83 * Combine two io_restrictions, always taking the lower value.
85 static void combine_restrictions_low(struct io_restrictions *lhs,
86 struct io_restrictions *rhs)
88 lhs->max_sectors =
89 min_not_zero(lhs->max_sectors, rhs->max_sectors);
91 lhs->max_phys_segments =
92 min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments);
94 lhs->max_hw_segments =
95 min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments);
97 lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size);
99 lhs->max_segment_size =
100 min_not_zero(lhs->max_segment_size, rhs->max_segment_size);
102 lhs->max_hw_sectors =
103 min_not_zero(lhs->max_hw_sectors, rhs->max_hw_sectors);
105 lhs->seg_boundary_mask =
106 min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask);
108 lhs->bounce_pfn = min_not_zero(lhs->bounce_pfn, rhs->bounce_pfn);
110 lhs->no_cluster |= rhs->no_cluster;
114 * Calculate the index of the child node of the n'th node k'th key.
116 static inline unsigned int get_child(unsigned int n, unsigned int k)
118 return (n * CHILDREN_PER_NODE) + k;
122 * Return the n'th node of level l from table t.
124 static inline sector_t *get_node(struct dm_table *t,
125 unsigned int l, unsigned int n)
127 return t->index[l] + (n * KEYS_PER_NODE);
131 * Return the highest key that you could lookup from the n'th
132 * node on level l of the btree.
134 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
136 for (; l < t->depth - 1; l++)
137 n = get_child(n, CHILDREN_PER_NODE - 1);
139 if (n >= t->counts[l])
140 return (sector_t) - 1;
142 return get_node(t, l, n)[KEYS_PER_NODE - 1];
146 * Fills in a level of the btree based on the highs of the level
147 * below it.
149 static int setup_btree_index(unsigned int l, struct dm_table *t)
151 unsigned int n, k;
152 sector_t *node;
154 for (n = 0U; n < t->counts[l]; n++) {
155 node = get_node(t, l, n);
157 for (k = 0U; k < KEYS_PER_NODE; k++)
158 node[k] = high(t, l + 1, get_child(n, k));
161 return 0;
164 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
166 unsigned long size;
167 void *addr;
170 * Check that we're not going to overflow.
172 if (nmemb > (ULONG_MAX / elem_size))
173 return NULL;
175 size = nmemb * elem_size;
176 addr = vmalloc(size);
177 if (addr)
178 memset(addr, 0, size);
180 return addr;
184 * highs, and targets are managed as dynamic arrays during a
185 * table load.
187 static int alloc_targets(struct dm_table *t, unsigned int num)
189 sector_t *n_highs;
190 struct dm_target *n_targets;
191 int n = t->num_targets;
194 * Allocate both the target array and offset array at once.
195 * Append an empty entry to catch sectors beyond the end of
196 * the device.
198 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
199 sizeof(sector_t));
200 if (!n_highs)
201 return -ENOMEM;
203 n_targets = (struct dm_target *) (n_highs + num);
205 if (n) {
206 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
207 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
210 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
211 vfree(t->highs);
213 t->num_allocated = num;
214 t->highs = n_highs;
215 t->targets = n_targets;
217 return 0;
220 int dm_table_create(struct dm_table **result, int mode,
221 unsigned num_targets, struct mapped_device *md)
223 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
225 if (!t)
226 return -ENOMEM;
228 INIT_LIST_HEAD(&t->devices);
229 atomic_set(&t->holders, 1);
231 if (!num_targets)
232 num_targets = KEYS_PER_NODE;
234 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
236 if (alloc_targets(t, num_targets)) {
237 kfree(t);
238 t = NULL;
239 return -ENOMEM;
242 t->mode = mode;
243 t->md = md;
244 *result = t;
245 return 0;
248 int dm_create_error_table(struct dm_table **result, struct mapped_device *md)
250 struct dm_table *t;
251 sector_t dev_size = 1;
252 int r;
255 * Find current size of device.
256 * Default to 1 sector if inactive.
258 t = dm_get_table(md);
259 if (t) {
260 dev_size = dm_table_get_size(t);
261 dm_table_put(t);
264 r = dm_table_create(&t, FMODE_READ, 1, md);
265 if (r)
266 return r;
268 r = dm_table_add_target(t, "error", 0, dev_size, NULL);
269 if (r)
270 goto out;
272 r = dm_table_complete(t);
273 if (r)
274 goto out;
276 *result = t;
278 out:
279 if (r)
280 dm_table_put(t);
282 return r;
284 EXPORT_SYMBOL_GPL(dm_create_error_table);
286 static void free_devices(struct list_head *devices)
288 struct list_head *tmp, *next;
290 list_for_each_safe(tmp, next, devices) {
291 struct dm_dev *dd = list_entry(tmp, struct dm_dev, list);
292 kfree(dd);
296 static void table_destroy(struct dm_table *t)
298 unsigned int i;
300 /* free the indexes (see dm_table_complete) */
301 if (t->depth >= 2)
302 vfree(t->index[t->depth - 2]);
304 /* free the targets */
305 for (i = 0; i < t->num_targets; i++) {
306 struct dm_target *tgt = t->targets + i;
308 if (tgt->type->dtr)
309 tgt->type->dtr(tgt);
311 dm_put_target_type(tgt->type);
314 vfree(t->highs);
316 /* free the device list */
317 if (t->devices.next != &t->devices) {
318 DMWARN("devices still present during destroy: "
319 "dm_table_remove_device calls missing");
321 free_devices(&t->devices);
324 kfree(t);
327 void dm_table_get(struct dm_table *t)
329 atomic_inc(&t->holders);
332 void dm_table_put(struct dm_table *t)
334 if (!t)
335 return;
337 if (atomic_dec_and_test(&t->holders))
338 table_destroy(t);
342 * Checks to see if we need to extend highs or targets.
344 static inline int check_space(struct dm_table *t)
346 if (t->num_targets >= t->num_allocated)
347 return alloc_targets(t, t->num_allocated * 2);
349 return 0;
353 * Convert a device path to a dev_t.
355 static int lookup_device(const char *path, dev_t *dev)
357 int r;
358 struct nameidata nd;
359 struct inode *inode;
361 if ((r = path_lookup(path, LOOKUP_FOLLOW, &nd)))
362 return r;
364 inode = nd.path.dentry->d_inode;
365 if (!inode) {
366 r = -ENOENT;
367 goto out;
370 if (!S_ISBLK(inode->i_mode)) {
371 r = -ENOTBLK;
372 goto out;
375 *dev = inode->i_rdev;
377 out:
378 path_put(&nd.path);
379 return r;
383 * See if we've already got a device in the list.
385 static struct dm_dev *find_device(struct list_head *l, dev_t dev)
387 struct dm_dev *dd;
389 list_for_each_entry (dd, l, list)
390 if (dd->bdev->bd_dev == dev)
391 return dd;
393 return NULL;
397 * Open a device so we can use it as a map destination.
399 static int open_dev(struct dm_dev *d, dev_t dev, struct mapped_device *md)
401 static char *_claim_ptr = "I belong to device-mapper";
402 struct block_device *bdev;
404 int r;
406 BUG_ON(d->bdev);
408 bdev = open_by_devnum(dev, d->mode);
409 if (IS_ERR(bdev))
410 return PTR_ERR(bdev);
411 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md));
412 if (r)
413 blkdev_put(bdev);
414 else
415 d->bdev = bdev;
416 return r;
420 * Close a device that we've been using.
422 static void close_dev(struct dm_dev *d, struct mapped_device *md)
424 if (!d->bdev)
425 return;
427 bd_release_from_disk(d->bdev, dm_disk(md));
428 blkdev_put(d->bdev);
429 d->bdev = NULL;
433 * If possible, this checks an area of a destination device is valid.
435 static int check_device_area(struct dm_dev *dd, sector_t start, sector_t len)
437 sector_t dev_size = dd->bdev->bd_inode->i_size >> SECTOR_SHIFT;
439 if (!dev_size)
440 return 1;
442 return ((start < dev_size) && (len <= (dev_size - start)));
446 * This upgrades the mode on an already open dm_dev. Being
447 * careful to leave things as they were if we fail to reopen the
448 * device.
450 static int upgrade_mode(struct dm_dev *dd, int new_mode, struct mapped_device *md)
452 int r;
453 struct dm_dev dd_copy;
454 dev_t dev = dd->bdev->bd_dev;
456 dd_copy = *dd;
458 dd->mode |= new_mode;
459 dd->bdev = NULL;
460 r = open_dev(dd, dev, md);
461 if (!r)
462 close_dev(&dd_copy, md);
463 else
464 *dd = dd_copy;
466 return r;
470 * Add a device to the list, or just increment the usage count if
471 * it's already present.
473 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
474 const char *path, sector_t start, sector_t len,
475 int mode, struct dm_dev **result)
477 int r;
478 dev_t uninitialized_var(dev);
479 struct dm_dev *dd;
480 unsigned int major, minor;
482 BUG_ON(!t);
484 if (sscanf(path, "%u:%u", &major, &minor) == 2) {
485 /* Extract the major/minor numbers */
486 dev = MKDEV(major, minor);
487 if (MAJOR(dev) != major || MINOR(dev) != minor)
488 return -EOVERFLOW;
489 } else {
490 /* convert the path to a device */
491 if ((r = lookup_device(path, &dev)))
492 return r;
495 dd = find_device(&t->devices, dev);
496 if (!dd) {
497 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
498 if (!dd)
499 return -ENOMEM;
501 dd->mode = mode;
502 dd->bdev = NULL;
504 if ((r = open_dev(dd, dev, t->md))) {
505 kfree(dd);
506 return r;
509 format_dev_t(dd->name, dev);
511 atomic_set(&dd->count, 0);
512 list_add(&dd->list, &t->devices);
514 } else if (dd->mode != (mode | dd->mode)) {
515 r = upgrade_mode(dd, mode, t->md);
516 if (r)
517 return r;
519 atomic_inc(&dd->count);
521 if (!check_device_area(dd, start, len)) {
522 DMWARN("device %s too small for target", path);
523 dm_put_device(ti, dd);
524 return -EINVAL;
527 *result = dd;
529 return 0;
532 void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev)
534 struct request_queue *q = bdev_get_queue(bdev);
535 struct io_restrictions *rs = &ti->limits;
538 * Combine the device limits low.
540 * FIXME: if we move an io_restriction struct
541 * into q this would just be a call to
542 * combine_restrictions_low()
544 rs->max_sectors =
545 min_not_zero(rs->max_sectors, q->max_sectors);
547 /* FIXME: Device-Mapper on top of RAID-0 breaks because DM
548 * currently doesn't honor MD's merge_bvec_fn routine.
549 * In this case, we'll force DM to use PAGE_SIZE or
550 * smaller I/O, just to be safe. A better fix is in the
551 * works, but add this for the time being so it will at
552 * least operate correctly.
554 if (q->merge_bvec_fn)
555 rs->max_sectors =
556 min_not_zero(rs->max_sectors,
557 (unsigned int) (PAGE_SIZE >> 9));
559 rs->max_phys_segments =
560 min_not_zero(rs->max_phys_segments,
561 q->max_phys_segments);
563 rs->max_hw_segments =
564 min_not_zero(rs->max_hw_segments, q->max_hw_segments);
566 rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size);
568 rs->max_segment_size =
569 min_not_zero(rs->max_segment_size, q->max_segment_size);
571 rs->max_hw_sectors =
572 min_not_zero(rs->max_hw_sectors, q->max_hw_sectors);
574 rs->seg_boundary_mask =
575 min_not_zero(rs->seg_boundary_mask,
576 q->seg_boundary_mask);
578 rs->bounce_pfn = min_not_zero(rs->bounce_pfn, q->bounce_pfn);
580 rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
582 EXPORT_SYMBOL_GPL(dm_set_device_limits);
584 int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
585 sector_t len, int mode, struct dm_dev **result)
587 int r = __table_get_device(ti->table, ti, path,
588 start, len, mode, result);
590 if (!r)
591 dm_set_device_limits(ti, (*result)->bdev);
593 return r;
597 * Decrement a devices use count and remove it if necessary.
599 void dm_put_device(struct dm_target *ti, struct dm_dev *dd)
601 if (atomic_dec_and_test(&dd->count)) {
602 close_dev(dd, ti->table->md);
603 list_del(&dd->list);
604 kfree(dd);
609 * Checks to see if the target joins onto the end of the table.
611 static int adjoin(struct dm_table *table, struct dm_target *ti)
613 struct dm_target *prev;
615 if (!table->num_targets)
616 return !ti->begin;
618 prev = &table->targets[table->num_targets - 1];
619 return (ti->begin == (prev->begin + prev->len));
623 * Used to dynamically allocate the arg array.
625 static char **realloc_argv(unsigned *array_size, char **old_argv)
627 char **argv;
628 unsigned new_size;
630 new_size = *array_size ? *array_size * 2 : 64;
631 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
632 if (argv) {
633 memcpy(argv, old_argv, *array_size * sizeof(*argv));
634 *array_size = new_size;
637 kfree(old_argv);
638 return argv;
642 * Destructively splits up the argument list to pass to ctr.
644 int dm_split_args(int *argc, char ***argvp, char *input)
646 char *start, *end = input, *out, **argv = NULL;
647 unsigned array_size = 0;
649 *argc = 0;
651 if (!input) {
652 *argvp = NULL;
653 return 0;
656 argv = realloc_argv(&array_size, argv);
657 if (!argv)
658 return -ENOMEM;
660 while (1) {
661 start = end;
663 /* Skip whitespace */
664 while (*start && isspace(*start))
665 start++;
667 if (!*start)
668 break; /* success, we hit the end */
670 /* 'out' is used to remove any back-quotes */
671 end = out = start;
672 while (*end) {
673 /* Everything apart from '\0' can be quoted */
674 if (*end == '\\' && *(end + 1)) {
675 *out++ = *(end + 1);
676 end += 2;
677 continue;
680 if (isspace(*end))
681 break; /* end of token */
683 *out++ = *end++;
686 /* have we already filled the array ? */
687 if ((*argc + 1) > array_size) {
688 argv = realloc_argv(&array_size, argv);
689 if (!argv)
690 return -ENOMEM;
693 /* we know this is whitespace */
694 if (*end)
695 end++;
697 /* terminate the string and put it in the array */
698 *out = '\0';
699 argv[*argc] = start;
700 (*argc)++;
703 *argvp = argv;
704 return 0;
707 static void check_for_valid_limits(struct io_restrictions *rs)
709 if (!rs->max_sectors)
710 rs->max_sectors = SAFE_MAX_SECTORS;
711 if (!rs->max_hw_sectors)
712 rs->max_hw_sectors = SAFE_MAX_SECTORS;
713 if (!rs->max_phys_segments)
714 rs->max_phys_segments = MAX_PHYS_SEGMENTS;
715 if (!rs->max_hw_segments)
716 rs->max_hw_segments = MAX_HW_SEGMENTS;
717 if (!rs->hardsect_size)
718 rs->hardsect_size = 1 << SECTOR_SHIFT;
719 if (!rs->max_segment_size)
720 rs->max_segment_size = MAX_SEGMENT_SIZE;
721 if (!rs->seg_boundary_mask)
722 rs->seg_boundary_mask = -1;
723 if (!rs->bounce_pfn)
724 rs->bounce_pfn = -1;
727 int dm_table_add_target(struct dm_table *t, const char *type,
728 sector_t start, sector_t len, char *params)
730 int r = -EINVAL, argc;
731 char **argv;
732 struct dm_target *tgt;
734 if ((r = check_space(t)))
735 return r;
737 tgt = t->targets + t->num_targets;
738 memset(tgt, 0, sizeof(*tgt));
740 if (!len) {
741 DMERR("%s: zero-length target", dm_device_name(t->md));
742 return -EINVAL;
745 tgt->type = dm_get_target_type(type);
746 if (!tgt->type) {
747 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
748 type);
749 return -EINVAL;
752 tgt->table = t;
753 tgt->begin = start;
754 tgt->len = len;
755 tgt->error = "Unknown error";
758 * Does this target adjoin the previous one ?
760 if (!adjoin(t, tgt)) {
761 tgt->error = "Gap in table";
762 r = -EINVAL;
763 goto bad;
766 r = dm_split_args(&argc, &argv, params);
767 if (r) {
768 tgt->error = "couldn't split parameters (insufficient memory)";
769 goto bad;
772 r = tgt->type->ctr(tgt, argc, argv);
773 kfree(argv);
774 if (r)
775 goto bad;
777 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
779 /* FIXME: the plan is to combine high here and then have
780 * the merge fn apply the target level restrictions. */
781 combine_restrictions_low(&t->limits, &tgt->limits);
782 return 0;
784 bad:
785 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
786 dm_put_target_type(tgt->type);
787 return r;
790 static int setup_indexes(struct dm_table *t)
792 int i;
793 unsigned int total = 0;
794 sector_t *indexes;
796 /* allocate the space for *all* the indexes */
797 for (i = t->depth - 2; i >= 0; i--) {
798 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
799 total += t->counts[i];
802 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
803 if (!indexes)
804 return -ENOMEM;
806 /* set up internal nodes, bottom-up */
807 for (i = t->depth - 2; i >= 0; i--) {
808 t->index[i] = indexes;
809 indexes += (KEYS_PER_NODE * t->counts[i]);
810 setup_btree_index(i, t);
813 return 0;
817 * Builds the btree to index the map.
819 int dm_table_complete(struct dm_table *t)
821 int r = 0;
822 unsigned int leaf_nodes;
824 check_for_valid_limits(&t->limits);
826 /* how many indexes will the btree have ? */
827 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
828 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
830 /* leaf layer has already been set up */
831 t->counts[t->depth - 1] = leaf_nodes;
832 t->index[t->depth - 1] = t->highs;
834 if (t->depth >= 2)
835 r = setup_indexes(t);
837 return r;
840 static DEFINE_MUTEX(_event_lock);
841 void dm_table_event_callback(struct dm_table *t,
842 void (*fn)(void *), void *context)
844 mutex_lock(&_event_lock);
845 t->event_fn = fn;
846 t->event_context = context;
847 mutex_unlock(&_event_lock);
850 void dm_table_event(struct dm_table *t)
853 * You can no longer call dm_table_event() from interrupt
854 * context, use a bottom half instead.
856 BUG_ON(in_interrupt());
858 mutex_lock(&_event_lock);
859 if (t->event_fn)
860 t->event_fn(t->event_context);
861 mutex_unlock(&_event_lock);
864 sector_t dm_table_get_size(struct dm_table *t)
866 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
869 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
871 if (index >= t->num_targets)
872 return NULL;
874 return t->targets + index;
878 * Search the btree for the correct target.
880 * Caller should check returned pointer with dm_target_is_valid()
881 * to trap I/O beyond end of device.
883 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
885 unsigned int l, n = 0, k = 0;
886 sector_t *node;
888 for (l = 0; l < t->depth; l++) {
889 n = get_child(n, k);
890 node = get_node(t, l, n);
892 for (k = 0; k < KEYS_PER_NODE; k++)
893 if (node[k] >= sector)
894 break;
897 return &t->targets[(KEYS_PER_NODE * n) + k];
900 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q)
903 * Make sure we obey the optimistic sub devices
904 * restrictions.
906 blk_queue_max_sectors(q, t->limits.max_sectors);
907 q->max_phys_segments = t->limits.max_phys_segments;
908 q->max_hw_segments = t->limits.max_hw_segments;
909 q->hardsect_size = t->limits.hardsect_size;
910 q->max_segment_size = t->limits.max_segment_size;
911 q->max_hw_sectors = t->limits.max_hw_sectors;
912 q->seg_boundary_mask = t->limits.seg_boundary_mask;
913 q->bounce_pfn = t->limits.bounce_pfn;
914 if (t->limits.no_cluster)
915 q->queue_flags &= ~(1 << QUEUE_FLAG_CLUSTER);
916 else
917 q->queue_flags |= (1 << QUEUE_FLAG_CLUSTER);
921 unsigned int dm_table_get_num_targets(struct dm_table *t)
923 return t->num_targets;
926 struct list_head *dm_table_get_devices(struct dm_table *t)
928 return &t->devices;
931 int dm_table_get_mode(struct dm_table *t)
933 return t->mode;
936 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
938 int i = t->num_targets;
939 struct dm_target *ti = t->targets;
941 while (i--) {
942 if (postsuspend) {
943 if (ti->type->postsuspend)
944 ti->type->postsuspend(ti);
945 } else if (ti->type->presuspend)
946 ti->type->presuspend(ti);
948 ti++;
952 void dm_table_presuspend_targets(struct dm_table *t)
954 if (!t)
955 return;
957 return suspend_targets(t, 0);
960 void dm_table_postsuspend_targets(struct dm_table *t)
962 if (!t)
963 return;
965 return suspend_targets(t, 1);
968 int dm_table_resume_targets(struct dm_table *t)
970 int i, r = 0;
972 for (i = 0; i < t->num_targets; i++) {
973 struct dm_target *ti = t->targets + i;
975 if (!ti->type->preresume)
976 continue;
978 r = ti->type->preresume(ti);
979 if (r)
980 return r;
983 for (i = 0; i < t->num_targets; i++) {
984 struct dm_target *ti = t->targets + i;
986 if (ti->type->resume)
987 ti->type->resume(ti);
990 return 0;
993 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
995 struct dm_dev *dd;
996 struct list_head *devices = dm_table_get_devices(t);
997 int r = 0;
999 list_for_each_entry(dd, devices, list) {
1000 struct request_queue *q = bdev_get_queue(dd->bdev);
1001 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1004 return r;
1007 void dm_table_unplug_all(struct dm_table *t)
1009 struct dm_dev *dd;
1010 struct list_head *devices = dm_table_get_devices(t);
1012 list_for_each_entry(dd, devices, list) {
1013 struct request_queue *q = bdev_get_queue(dd->bdev);
1015 blk_unplug(q);
1019 struct mapped_device *dm_table_get_md(struct dm_table *t)
1021 dm_get(t->md);
1023 return t->md;
1026 EXPORT_SYMBOL(dm_vcalloc);
1027 EXPORT_SYMBOL(dm_get_device);
1028 EXPORT_SYMBOL(dm_put_device);
1029 EXPORT_SYMBOL(dm_table_event);
1030 EXPORT_SYMBOL(dm_table_get_size);
1031 EXPORT_SYMBOL(dm_table_get_mode);
1032 EXPORT_SYMBOL(dm_table_get_md);
1033 EXPORT_SYMBOL(dm_table_put);
1034 EXPORT_SYMBOL(dm_table_get);
1035 EXPORT_SYMBOL(dm_table_unplug_all);