x86: coding style fixes in arch/x86/lib/io_64.c
[wrt350n-kernel.git] / fs / xfs / xfs_vfsops.c
blob413587f0215578760d0109dc3825ceb296ce0fab
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_da_btree.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_btree.h"
40 #include "xfs_alloc.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_quota.h"
43 #include "xfs_error.h"
44 #include "xfs_bmap.h"
45 #include "xfs_rw.h"
46 #include "xfs_refcache.h"
47 #include "xfs_buf_item.h"
48 #include "xfs_log_priv.h"
49 #include "xfs_dir2_trace.h"
50 #include "xfs_extfree_item.h"
51 #include "xfs_acl.h"
52 #include "xfs_attr.h"
53 #include "xfs_clnt.h"
54 #include "xfs_mru_cache.h"
55 #include "xfs_filestream.h"
56 #include "xfs_fsops.h"
57 #include "xfs_vnodeops.h"
58 #include "xfs_vfsops.h"
61 int __init
62 xfs_init(void)
64 #ifdef XFS_DABUF_DEBUG
65 extern spinlock_t xfs_dabuf_global_lock;
66 spin_lock_init(&xfs_dabuf_global_lock);
67 #endif
70 * Initialize all of the zone allocators we use.
72 xfs_bmap_free_item_zone = kmem_zone_init(sizeof(xfs_bmap_free_item_t),
73 "xfs_bmap_free_item");
74 xfs_btree_cur_zone = kmem_zone_init(sizeof(xfs_btree_cur_t),
75 "xfs_btree_cur");
76 xfs_trans_zone = kmem_zone_init(sizeof(xfs_trans_t), "xfs_trans");
77 xfs_da_state_zone =
78 kmem_zone_init(sizeof(xfs_da_state_t), "xfs_da_state");
79 xfs_dabuf_zone = kmem_zone_init(sizeof(xfs_dabuf_t), "xfs_dabuf");
80 xfs_ifork_zone = kmem_zone_init(sizeof(xfs_ifork_t), "xfs_ifork");
81 xfs_acl_zone_init(xfs_acl_zone, "xfs_acl");
82 xfs_mru_cache_init();
83 xfs_filestream_init();
86 * The size of the zone allocated buf log item is the maximum
87 * size possible under XFS. This wastes a little bit of memory,
88 * but it is much faster.
90 xfs_buf_item_zone =
91 kmem_zone_init((sizeof(xfs_buf_log_item_t) +
92 (((XFS_MAX_BLOCKSIZE / XFS_BLI_CHUNK) /
93 NBWORD) * sizeof(int))),
94 "xfs_buf_item");
95 xfs_efd_zone =
96 kmem_zone_init((sizeof(xfs_efd_log_item_t) +
97 ((XFS_EFD_MAX_FAST_EXTENTS - 1) *
98 sizeof(xfs_extent_t))),
99 "xfs_efd_item");
100 xfs_efi_zone =
101 kmem_zone_init((sizeof(xfs_efi_log_item_t) +
102 ((XFS_EFI_MAX_FAST_EXTENTS - 1) *
103 sizeof(xfs_extent_t))),
104 "xfs_efi_item");
107 * These zones warrant special memory allocator hints
109 xfs_inode_zone =
110 kmem_zone_init_flags(sizeof(xfs_inode_t), "xfs_inode",
111 KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
112 KM_ZONE_SPREAD, NULL);
113 xfs_ili_zone =
114 kmem_zone_init_flags(sizeof(xfs_inode_log_item_t), "xfs_ili",
115 KM_ZONE_SPREAD, NULL);
116 xfs_icluster_zone =
117 kmem_zone_init_flags(sizeof(xfs_icluster_t), "xfs_icluster",
118 KM_ZONE_SPREAD, NULL);
121 * Allocate global trace buffers.
123 #ifdef XFS_ALLOC_TRACE
124 xfs_alloc_trace_buf = ktrace_alloc(XFS_ALLOC_TRACE_SIZE, KM_SLEEP);
125 #endif
126 #ifdef XFS_BMAP_TRACE
127 xfs_bmap_trace_buf = ktrace_alloc(XFS_BMAP_TRACE_SIZE, KM_SLEEP);
128 #endif
129 #ifdef XFS_BMBT_TRACE
130 xfs_bmbt_trace_buf = ktrace_alloc(XFS_BMBT_TRACE_SIZE, KM_SLEEP);
131 #endif
132 #ifdef XFS_ATTR_TRACE
133 xfs_attr_trace_buf = ktrace_alloc(XFS_ATTR_TRACE_SIZE, KM_SLEEP);
134 #endif
135 #ifdef XFS_DIR2_TRACE
136 xfs_dir2_trace_buf = ktrace_alloc(XFS_DIR2_GTRACE_SIZE, KM_SLEEP);
137 #endif
139 xfs_dir_startup();
141 #if (defined(DEBUG) || defined(INDUCE_IO_ERROR))
142 xfs_error_test_init();
143 #endif /* DEBUG || INDUCE_IO_ERROR */
145 xfs_init_procfs();
146 xfs_sysctl_register();
147 return 0;
150 void __exit
151 xfs_cleanup(void)
153 extern kmem_zone_t *xfs_inode_zone;
154 extern kmem_zone_t *xfs_efd_zone;
155 extern kmem_zone_t *xfs_efi_zone;
156 extern kmem_zone_t *xfs_icluster_zone;
158 xfs_cleanup_procfs();
159 xfs_sysctl_unregister();
160 xfs_refcache_destroy();
161 xfs_filestream_uninit();
162 xfs_mru_cache_uninit();
163 xfs_acl_zone_destroy(xfs_acl_zone);
165 #ifdef XFS_DIR2_TRACE
166 ktrace_free(xfs_dir2_trace_buf);
167 #endif
168 #ifdef XFS_ATTR_TRACE
169 ktrace_free(xfs_attr_trace_buf);
170 #endif
171 #ifdef XFS_BMBT_TRACE
172 ktrace_free(xfs_bmbt_trace_buf);
173 #endif
174 #ifdef XFS_BMAP_TRACE
175 ktrace_free(xfs_bmap_trace_buf);
176 #endif
177 #ifdef XFS_ALLOC_TRACE
178 ktrace_free(xfs_alloc_trace_buf);
179 #endif
181 kmem_zone_destroy(xfs_bmap_free_item_zone);
182 kmem_zone_destroy(xfs_btree_cur_zone);
183 kmem_zone_destroy(xfs_inode_zone);
184 kmem_zone_destroy(xfs_trans_zone);
185 kmem_zone_destroy(xfs_da_state_zone);
186 kmem_zone_destroy(xfs_dabuf_zone);
187 kmem_zone_destroy(xfs_buf_item_zone);
188 kmem_zone_destroy(xfs_efd_zone);
189 kmem_zone_destroy(xfs_efi_zone);
190 kmem_zone_destroy(xfs_ifork_zone);
191 kmem_zone_destroy(xfs_ili_zone);
192 kmem_zone_destroy(xfs_icluster_zone);
196 * xfs_start_flags
198 * This function fills in xfs_mount_t fields based on mount args.
199 * Note: the superblock has _not_ yet been read in.
201 STATIC int
202 xfs_start_flags(
203 struct xfs_mount_args *ap,
204 struct xfs_mount *mp)
206 /* Values are in BBs */
207 if ((ap->flags & XFSMNT_NOALIGN) != XFSMNT_NOALIGN) {
209 * At this point the superblock has not been read
210 * in, therefore we do not know the block size.
211 * Before the mount call ends we will convert
212 * these to FSBs.
214 mp->m_dalign = ap->sunit;
215 mp->m_swidth = ap->swidth;
218 if (ap->logbufs != -1 &&
219 ap->logbufs != 0 &&
220 (ap->logbufs < XLOG_MIN_ICLOGS ||
221 ap->logbufs > XLOG_MAX_ICLOGS)) {
222 cmn_err(CE_WARN,
223 "XFS: invalid logbufs value: %d [not %d-%d]",
224 ap->logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
225 return XFS_ERROR(EINVAL);
227 mp->m_logbufs = ap->logbufs;
228 if (ap->logbufsize != -1 &&
229 ap->logbufsize != 0 &&
230 (ap->logbufsize < XLOG_MIN_RECORD_BSIZE ||
231 ap->logbufsize > XLOG_MAX_RECORD_BSIZE ||
232 !is_power_of_2(ap->logbufsize))) {
233 cmn_err(CE_WARN,
234 "XFS: invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
235 ap->logbufsize);
236 return XFS_ERROR(EINVAL);
238 mp->m_logbsize = ap->logbufsize;
239 mp->m_fsname_len = strlen(ap->fsname) + 1;
240 mp->m_fsname = kmem_alloc(mp->m_fsname_len, KM_SLEEP);
241 strcpy(mp->m_fsname, ap->fsname);
242 if (ap->rtname[0]) {
243 mp->m_rtname = kmem_alloc(strlen(ap->rtname) + 1, KM_SLEEP);
244 strcpy(mp->m_rtname, ap->rtname);
246 if (ap->logname[0]) {
247 mp->m_logname = kmem_alloc(strlen(ap->logname) + 1, KM_SLEEP);
248 strcpy(mp->m_logname, ap->logname);
251 if (ap->flags & XFSMNT_WSYNC)
252 mp->m_flags |= XFS_MOUNT_WSYNC;
253 #if XFS_BIG_INUMS
254 if (ap->flags & XFSMNT_INO64) {
255 mp->m_flags |= XFS_MOUNT_INO64;
256 mp->m_inoadd = XFS_INO64_OFFSET;
258 #endif
259 if (ap->flags & XFSMNT_RETERR)
260 mp->m_flags |= XFS_MOUNT_RETERR;
261 if (ap->flags & XFSMNT_NOALIGN)
262 mp->m_flags |= XFS_MOUNT_NOALIGN;
263 if (ap->flags & XFSMNT_SWALLOC)
264 mp->m_flags |= XFS_MOUNT_SWALLOC;
265 if (ap->flags & XFSMNT_OSYNCISOSYNC)
266 mp->m_flags |= XFS_MOUNT_OSYNCISOSYNC;
267 if (ap->flags & XFSMNT_32BITINODES)
268 mp->m_flags |= XFS_MOUNT_32BITINODES;
270 if (ap->flags & XFSMNT_IOSIZE) {
271 if (ap->iosizelog > XFS_MAX_IO_LOG ||
272 ap->iosizelog < XFS_MIN_IO_LOG) {
273 cmn_err(CE_WARN,
274 "XFS: invalid log iosize: %d [not %d-%d]",
275 ap->iosizelog, XFS_MIN_IO_LOG,
276 XFS_MAX_IO_LOG);
277 return XFS_ERROR(EINVAL);
280 mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE;
281 mp->m_readio_log = mp->m_writeio_log = ap->iosizelog;
284 if (ap->flags & XFSMNT_IDELETE)
285 mp->m_flags |= XFS_MOUNT_IDELETE;
286 if (ap->flags & XFSMNT_DIRSYNC)
287 mp->m_flags |= XFS_MOUNT_DIRSYNC;
288 if (ap->flags & XFSMNT_ATTR2)
289 mp->m_flags |= XFS_MOUNT_ATTR2;
291 if (ap->flags2 & XFSMNT2_COMPAT_IOSIZE)
292 mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
295 * no recovery flag requires a read-only mount
297 if (ap->flags & XFSMNT_NORECOVERY) {
298 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
299 cmn_err(CE_WARN,
300 "XFS: tried to mount a FS read-write without recovery!");
301 return XFS_ERROR(EINVAL);
303 mp->m_flags |= XFS_MOUNT_NORECOVERY;
306 if (ap->flags & XFSMNT_NOUUID)
307 mp->m_flags |= XFS_MOUNT_NOUUID;
308 if (ap->flags & XFSMNT_BARRIER)
309 mp->m_flags |= XFS_MOUNT_BARRIER;
310 else
311 mp->m_flags &= ~XFS_MOUNT_BARRIER;
313 if (ap->flags2 & XFSMNT2_FILESTREAMS)
314 mp->m_flags |= XFS_MOUNT_FILESTREAMS;
316 if (ap->flags & XFSMNT_DMAPI)
317 mp->m_flags |= XFS_MOUNT_DMAPI;
318 return 0;
322 * This function fills in xfs_mount_t fields based on mount args.
323 * Note: the superblock _has_ now been read in.
325 STATIC int
326 xfs_finish_flags(
327 struct xfs_mount_args *ap,
328 struct xfs_mount *mp)
330 int ronly = (mp->m_flags & XFS_MOUNT_RDONLY);
332 /* Fail a mount where the logbuf is smaller then the log stripe */
333 if (XFS_SB_VERSION_HASLOGV2(&mp->m_sb)) {
334 if ((ap->logbufsize <= 0) &&
335 (mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE)) {
336 mp->m_logbsize = mp->m_sb.sb_logsunit;
337 } else if (ap->logbufsize > 0 &&
338 ap->logbufsize < mp->m_sb.sb_logsunit) {
339 cmn_err(CE_WARN,
340 "XFS: logbuf size must be greater than or equal to log stripe size");
341 return XFS_ERROR(EINVAL);
343 } else {
344 /* Fail a mount if the logbuf is larger than 32K */
345 if (ap->logbufsize > XLOG_BIG_RECORD_BSIZE) {
346 cmn_err(CE_WARN,
347 "XFS: logbuf size for version 1 logs must be 16K or 32K");
348 return XFS_ERROR(EINVAL);
352 if (XFS_SB_VERSION_HASATTR2(&mp->m_sb)) {
353 mp->m_flags |= XFS_MOUNT_ATTR2;
357 * prohibit r/w mounts of read-only filesystems
359 if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) {
360 cmn_err(CE_WARN,
361 "XFS: cannot mount a read-only filesystem as read-write");
362 return XFS_ERROR(EROFS);
366 * check for shared mount.
368 if (ap->flags & XFSMNT_SHARED) {
369 if (!XFS_SB_VERSION_HASSHARED(&mp->m_sb))
370 return XFS_ERROR(EINVAL);
373 * For IRIX 6.5, shared mounts must have the shared
374 * version bit set, have the persistent readonly
375 * field set, must be version 0 and can only be mounted
376 * read-only.
378 if (!ronly || !(mp->m_sb.sb_flags & XFS_SBF_READONLY) ||
379 (mp->m_sb.sb_shared_vn != 0))
380 return XFS_ERROR(EINVAL);
382 mp->m_flags |= XFS_MOUNT_SHARED;
385 * Shared XFS V0 can't deal with DMI. Return EINVAL.
387 if (mp->m_sb.sb_shared_vn == 0 && (ap->flags & XFSMNT_DMAPI))
388 return XFS_ERROR(EINVAL);
391 if (ap->flags & XFSMNT_UQUOTA) {
392 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE);
393 if (ap->flags & XFSMNT_UQUOTAENF)
394 mp->m_qflags |= XFS_UQUOTA_ENFD;
397 if (ap->flags & XFSMNT_GQUOTA) {
398 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE);
399 if (ap->flags & XFSMNT_GQUOTAENF)
400 mp->m_qflags |= XFS_OQUOTA_ENFD;
401 } else if (ap->flags & XFSMNT_PQUOTA) {
402 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE);
403 if (ap->flags & XFSMNT_PQUOTAENF)
404 mp->m_qflags |= XFS_OQUOTA_ENFD;
407 return 0;
411 * xfs_mount
413 * The file system configurations are:
414 * (1) device (partition) with data and internal log
415 * (2) logical volume with data and log subvolumes.
416 * (3) logical volume with data, log, and realtime subvolumes.
418 * We only have to handle opening the log and realtime volumes here if
419 * they are present. The data subvolume has already been opened by
420 * get_sb_bdev() and is stored in vfsp->vfs_super->s_bdev.
423 xfs_mount(
424 struct xfs_mount *mp,
425 struct xfs_mount_args *args,
426 cred_t *credp)
428 struct block_device *ddev, *logdev, *rtdev;
429 int flags = 0, error;
431 ddev = mp->m_super->s_bdev;
432 logdev = rtdev = NULL;
434 error = xfs_dmops_get(mp, args);
435 if (error)
436 return error;
437 error = xfs_qmops_get(mp, args);
438 if (error)
439 return error;
441 if (args->flags & XFSMNT_QUIET)
442 flags |= XFS_MFSI_QUIET;
445 * Open real time and log devices - order is important.
447 if (args->logname[0]) {
448 error = xfs_blkdev_get(mp, args->logname, &logdev);
449 if (error)
450 return error;
452 if (args->rtname[0]) {
453 error = xfs_blkdev_get(mp, args->rtname, &rtdev);
454 if (error) {
455 xfs_blkdev_put(logdev);
456 return error;
459 if (rtdev == ddev || rtdev == logdev) {
460 cmn_err(CE_WARN,
461 "XFS: Cannot mount filesystem with identical rtdev and ddev/logdev.");
462 xfs_blkdev_put(logdev);
463 xfs_blkdev_put(rtdev);
464 return EINVAL;
469 * Setup xfs_mount buffer target pointers
471 error = ENOMEM;
472 mp->m_ddev_targp = xfs_alloc_buftarg(ddev, 0);
473 if (!mp->m_ddev_targp) {
474 xfs_blkdev_put(logdev);
475 xfs_blkdev_put(rtdev);
476 return error;
478 if (rtdev) {
479 mp->m_rtdev_targp = xfs_alloc_buftarg(rtdev, 1);
480 if (!mp->m_rtdev_targp) {
481 xfs_blkdev_put(logdev);
482 xfs_blkdev_put(rtdev);
483 goto error0;
486 mp->m_logdev_targp = (logdev && logdev != ddev) ?
487 xfs_alloc_buftarg(logdev, 1) : mp->m_ddev_targp;
488 if (!mp->m_logdev_targp) {
489 xfs_blkdev_put(logdev);
490 xfs_blkdev_put(rtdev);
491 goto error0;
495 * Setup flags based on mount(2) options and then the superblock
497 error = xfs_start_flags(args, mp);
498 if (error)
499 goto error1;
500 error = xfs_readsb(mp, flags);
501 if (error)
502 goto error1;
503 error = xfs_finish_flags(args, mp);
504 if (error)
505 goto error2;
508 * Setup xfs_mount buffer target pointers based on superblock
510 error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_blocksize,
511 mp->m_sb.sb_sectsize);
512 if (!error && logdev && logdev != ddev) {
513 unsigned int log_sector_size = BBSIZE;
515 if (XFS_SB_VERSION_HASSECTOR(&mp->m_sb))
516 log_sector_size = mp->m_sb.sb_logsectsize;
517 error = xfs_setsize_buftarg(mp->m_logdev_targp,
518 mp->m_sb.sb_blocksize,
519 log_sector_size);
521 if (!error && rtdev)
522 error = xfs_setsize_buftarg(mp->m_rtdev_targp,
523 mp->m_sb.sb_blocksize,
524 mp->m_sb.sb_sectsize);
525 if (error)
526 goto error2;
528 if (mp->m_flags & XFS_MOUNT_BARRIER)
529 xfs_mountfs_check_barriers(mp);
531 if ((error = xfs_filestream_mount(mp)))
532 goto error2;
534 error = xfs_mountfs(mp, flags);
535 if (error)
536 goto error2;
538 XFS_SEND_MOUNT(mp, DM_RIGHT_NULL, args->mtpt, args->fsname);
540 return 0;
542 error2:
543 if (mp->m_sb_bp)
544 xfs_freesb(mp);
545 error1:
546 xfs_binval(mp->m_ddev_targp);
547 if (logdev && logdev != ddev)
548 xfs_binval(mp->m_logdev_targp);
549 if (rtdev)
550 xfs_binval(mp->m_rtdev_targp);
551 error0:
552 xfs_unmountfs_close(mp, credp);
553 xfs_qmops_put(mp);
554 xfs_dmops_put(mp);
555 return error;
559 xfs_unmount(
560 xfs_mount_t *mp,
561 int flags,
562 cred_t *credp)
564 xfs_inode_t *rip;
565 bhv_vnode_t *rvp;
566 int unmount_event_wanted = 0;
567 int unmount_event_flags = 0;
568 int xfs_unmountfs_needed = 0;
569 int error;
571 rip = mp->m_rootip;
572 rvp = XFS_ITOV(rip);
574 #ifdef HAVE_DMAPI
575 if (mp->m_flags & XFS_MOUNT_DMAPI) {
576 error = XFS_SEND_PREUNMOUNT(mp,
577 rvp, DM_RIGHT_NULL, rvp, DM_RIGHT_NULL,
578 NULL, NULL, 0, 0,
579 (mp->m_dmevmask & (1<<DM_EVENT_PREUNMOUNT))?
580 0:DM_FLAGS_UNWANTED);
581 if (error)
582 return XFS_ERROR(error);
583 unmount_event_wanted = 1;
584 unmount_event_flags = (mp->m_dmevmask & (1<<DM_EVENT_UNMOUNT))?
585 0 : DM_FLAGS_UNWANTED;
587 #endif
589 * First blow any referenced inode from this file system
590 * out of the reference cache, and delete the timer.
592 xfs_refcache_purge_mp(mp);
595 * Blow away any referenced inode in the filestreams cache.
596 * This can and will cause log traffic as inodes go inactive
597 * here.
599 xfs_filestream_unmount(mp);
601 XFS_bflush(mp->m_ddev_targp);
602 error = xfs_unmount_flush(mp, 0);
603 if (error)
604 goto out;
606 ASSERT(vn_count(rvp) == 1);
609 * Drop the reference count
611 VN_RELE(rvp);
614 * If we're forcing a shutdown, typically because of a media error,
615 * we want to make sure we invalidate dirty pages that belong to
616 * referenced vnodes as well.
618 if (XFS_FORCED_SHUTDOWN(mp)) {
619 error = xfs_sync(mp, SYNC_WAIT | SYNC_CLOSE);
620 ASSERT(error != EFSCORRUPTED);
622 xfs_unmountfs_needed = 1;
624 out:
625 /* Send DMAPI event, if required.
626 * Then do xfs_unmountfs() if needed.
627 * Then return error (or zero).
629 if (unmount_event_wanted) {
630 /* Note: mp structure must still exist for
631 * XFS_SEND_UNMOUNT() call.
633 XFS_SEND_UNMOUNT(mp, error == 0 ? rvp : NULL,
634 DM_RIGHT_NULL, 0, error, unmount_event_flags);
636 if (xfs_unmountfs_needed) {
638 * Call common unmount function to flush to disk
639 * and free the super block buffer & mount structures.
641 xfs_unmountfs(mp, credp);
642 xfs_qmops_put(mp);
643 xfs_dmops_put(mp);
644 kmem_free(mp, sizeof(xfs_mount_t));
647 return XFS_ERROR(error);
650 STATIC int
651 xfs_quiesce_fs(
652 xfs_mount_t *mp)
654 int count = 0, pincount;
656 xfs_refcache_purge_mp(mp);
657 xfs_flush_buftarg(mp->m_ddev_targp, 0);
658 xfs_finish_reclaim_all(mp, 0);
660 /* This loop must run at least twice.
661 * The first instance of the loop will flush
662 * most meta data but that will generate more
663 * meta data (typically directory updates).
664 * Which then must be flushed and logged before
665 * we can write the unmount record.
667 do {
668 xfs_syncsub(mp, SYNC_INODE_QUIESCE, NULL);
669 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
670 if (!pincount) {
671 delay(50);
672 count++;
674 } while (count < 2);
676 return 0;
680 * Second stage of a quiesce. The data is already synced, now we have to take
681 * care of the metadata. New transactions are already blocked, so we need to
682 * wait for any remaining transactions to drain out before proceding.
684 void
685 xfs_attr_quiesce(
686 xfs_mount_t *mp)
688 /* wait for all modifications to complete */
689 while (atomic_read(&mp->m_active_trans) > 0)
690 delay(100);
692 /* flush inodes and push all remaining buffers out to disk */
693 xfs_quiesce_fs(mp);
695 ASSERT_ALWAYS(atomic_read(&mp->m_active_trans) == 0);
697 /* Push the superblock and write an unmount record */
698 xfs_log_sbcount(mp, 1);
699 xfs_log_unmount_write(mp);
700 xfs_unmountfs_writesb(mp);
704 xfs_mntupdate(
705 struct xfs_mount *mp,
706 int *flags,
707 struct xfs_mount_args *args)
709 if (!(*flags & MS_RDONLY)) { /* rw/ro -> rw */
710 if (mp->m_flags & XFS_MOUNT_RDONLY)
711 mp->m_flags &= ~XFS_MOUNT_RDONLY;
712 if (args->flags & XFSMNT_BARRIER) {
713 mp->m_flags |= XFS_MOUNT_BARRIER;
714 xfs_mountfs_check_barriers(mp);
715 } else {
716 mp->m_flags &= ~XFS_MOUNT_BARRIER;
718 } else if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { /* rw -> ro */
719 xfs_filestream_flush(mp);
720 xfs_sync(mp, SYNC_DATA_QUIESCE);
721 xfs_attr_quiesce(mp);
722 mp->m_flags |= XFS_MOUNT_RDONLY;
724 return 0;
728 * xfs_unmount_flush implements a set of flush operation on special
729 * inodes, which are needed as a separate set of operations so that
730 * they can be called as part of relocation process.
733 xfs_unmount_flush(
734 xfs_mount_t *mp, /* Mount structure we are getting
735 rid of. */
736 int relocation) /* Called from vfs relocation. */
738 xfs_inode_t *rip = mp->m_rootip;
739 xfs_inode_t *rbmip;
740 xfs_inode_t *rsumip = NULL;
741 bhv_vnode_t *rvp = XFS_ITOV(rip);
742 int error;
744 xfs_ilock(rip, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
745 xfs_iflock(rip);
748 * Flush out the real time inodes.
750 if ((rbmip = mp->m_rbmip) != NULL) {
751 xfs_ilock(rbmip, XFS_ILOCK_EXCL);
752 xfs_iflock(rbmip);
753 error = xfs_iflush(rbmip, XFS_IFLUSH_SYNC);
754 xfs_iunlock(rbmip, XFS_ILOCK_EXCL);
756 if (error == EFSCORRUPTED)
757 goto fscorrupt_out;
759 ASSERT(vn_count(XFS_ITOV(rbmip)) == 1);
761 rsumip = mp->m_rsumip;
762 xfs_ilock(rsumip, XFS_ILOCK_EXCL);
763 xfs_iflock(rsumip);
764 error = xfs_iflush(rsumip, XFS_IFLUSH_SYNC);
765 xfs_iunlock(rsumip, XFS_ILOCK_EXCL);
767 if (error == EFSCORRUPTED)
768 goto fscorrupt_out;
770 ASSERT(vn_count(XFS_ITOV(rsumip)) == 1);
774 * Synchronously flush root inode to disk
776 error = xfs_iflush(rip, XFS_IFLUSH_SYNC);
777 if (error == EFSCORRUPTED)
778 goto fscorrupt_out2;
780 if (vn_count(rvp) != 1 && !relocation) {
781 xfs_iunlock(rip, XFS_ILOCK_EXCL);
782 return XFS_ERROR(EBUSY);
786 * Release dquot that rootinode, rbmino and rsumino might be holding,
787 * flush and purge the quota inodes.
789 error = XFS_QM_UNMOUNT(mp);
790 if (error == EFSCORRUPTED)
791 goto fscorrupt_out2;
793 if (rbmip) {
794 VN_RELE(XFS_ITOV(rbmip));
795 VN_RELE(XFS_ITOV(rsumip));
798 xfs_iunlock(rip, XFS_ILOCK_EXCL);
799 return 0;
801 fscorrupt_out:
802 xfs_ifunlock(rip);
804 fscorrupt_out2:
805 xfs_iunlock(rip, XFS_ILOCK_EXCL);
807 return XFS_ERROR(EFSCORRUPTED);
811 * xfs_sync flushes any pending I/O to file system vfsp.
813 * This routine is called by vfs_sync() to make sure that things make it
814 * out to disk eventually, on sync() system calls to flush out everything,
815 * and when the file system is unmounted. For the vfs_sync() case, all
816 * we really need to do is sync out the log to make all of our meta-data
817 * updates permanent (except for timestamps). For calls from pflushd(),
818 * dirty pages are kept moving by calling pdflush() on the inodes
819 * containing them. We also flush the inodes that we can lock without
820 * sleeping and the superblock if we can lock it without sleeping from
821 * vfs_sync() so that items at the tail of the log are always moving out.
823 * Flags:
824 * SYNC_BDFLUSH - We're being called from vfs_sync() so we don't want
825 * to sleep if we can help it. All we really need
826 * to do is ensure that the log is synced at least
827 * periodically. We also push the inodes and
828 * superblock if we can lock them without sleeping
829 * and they are not pinned.
830 * SYNC_ATTR - We need to flush the inodes. If SYNC_BDFLUSH is not
831 * set, then we really want to lock each inode and flush
832 * it.
833 * SYNC_WAIT - All the flushes that take place in this call should
834 * be synchronous.
835 * SYNC_DELWRI - This tells us to push dirty pages associated with
836 * inodes. SYNC_WAIT and SYNC_BDFLUSH are used to
837 * determine if they should be flushed sync, async, or
838 * delwri.
839 * SYNC_CLOSE - This flag is passed when the system is being
840 * unmounted. We should sync and invalidate everything.
841 * SYNC_FSDATA - This indicates that the caller would like to make
842 * sure the superblock is safe on disk. We can ensure
843 * this by simply making sure the log gets flushed
844 * if SYNC_BDFLUSH is set, and by actually writing it
845 * out otherwise.
846 * SYNC_IOWAIT - The caller wants us to wait for all data I/O to complete
847 * before we return (including direct I/O). Forms the drain
848 * side of the write barrier needed to safely quiesce the
849 * filesystem.
853 xfs_sync(
854 xfs_mount_t *mp,
855 int flags)
857 int error;
860 * Get the Quota Manager to flush the dquots.
862 * If XFS quota support is not enabled or this filesystem
863 * instance does not use quotas XFS_QM_DQSYNC will always
864 * return zero.
866 error = XFS_QM_DQSYNC(mp, flags);
867 if (error) {
869 * If we got an IO error, we will be shutting down.
870 * So, there's nothing more for us to do here.
872 ASSERT(error != EIO || XFS_FORCED_SHUTDOWN(mp));
873 if (XFS_FORCED_SHUTDOWN(mp))
874 return XFS_ERROR(error);
877 if (flags & SYNC_IOWAIT)
878 xfs_filestream_flush(mp);
880 return xfs_syncsub(mp, flags, NULL);
884 * xfs sync routine for internal use
886 * This routine supports all of the flags defined for the generic vfs_sync
887 * interface as explained above under xfs_sync.
891 xfs_sync_inodes(
892 xfs_mount_t *mp,
893 int flags,
894 int *bypassed)
896 xfs_inode_t *ip = NULL;
897 bhv_vnode_t *vp = NULL;
898 int error;
899 int last_error;
900 uint64_t fflag;
901 uint lock_flags;
902 uint base_lock_flags;
903 boolean_t mount_locked;
904 boolean_t vnode_refed;
905 int preempt;
906 xfs_iptr_t *ipointer;
907 #ifdef DEBUG
908 boolean_t ipointer_in = B_FALSE;
910 #define IPOINTER_SET ipointer_in = B_TRUE
911 #define IPOINTER_CLR ipointer_in = B_FALSE
912 #else
913 #define IPOINTER_SET
914 #define IPOINTER_CLR
915 #endif
918 /* Insert a marker record into the inode list after inode ip. The list
919 * must be locked when this is called. After the call the list will no
920 * longer be locked.
922 #define IPOINTER_INSERT(ip, mp) { \
923 ASSERT(ipointer_in == B_FALSE); \
924 ipointer->ip_mnext = ip->i_mnext; \
925 ipointer->ip_mprev = ip; \
926 ip->i_mnext = (xfs_inode_t *)ipointer; \
927 ipointer->ip_mnext->i_mprev = (xfs_inode_t *)ipointer; \
928 preempt = 0; \
929 XFS_MOUNT_IUNLOCK(mp); \
930 mount_locked = B_FALSE; \
931 IPOINTER_SET; \
934 /* Remove the marker from the inode list. If the marker was the only item
935 * in the list then there are no remaining inodes and we should zero out
936 * the whole list. If we are the current head of the list then move the head
937 * past us.
939 #define IPOINTER_REMOVE(ip, mp) { \
940 ASSERT(ipointer_in == B_TRUE); \
941 if (ipointer->ip_mnext != (xfs_inode_t *)ipointer) { \
942 ip = ipointer->ip_mnext; \
943 ip->i_mprev = ipointer->ip_mprev; \
944 ipointer->ip_mprev->i_mnext = ip; \
945 if (mp->m_inodes == (xfs_inode_t *)ipointer) { \
946 mp->m_inodes = ip; \
948 } else { \
949 ASSERT(mp->m_inodes == (xfs_inode_t *)ipointer); \
950 mp->m_inodes = NULL; \
951 ip = NULL; \
953 IPOINTER_CLR; \
956 #define XFS_PREEMPT_MASK 0x7f
958 ASSERT(!(flags & SYNC_BDFLUSH));
960 if (bypassed)
961 *bypassed = 0;
962 if (mp->m_flags & XFS_MOUNT_RDONLY)
963 return 0;
964 error = 0;
965 last_error = 0;
966 preempt = 0;
968 /* Allocate a reference marker */
969 ipointer = (xfs_iptr_t *)kmem_zalloc(sizeof(xfs_iptr_t), KM_SLEEP);
971 fflag = XFS_B_ASYNC; /* default is don't wait */
972 if (flags & SYNC_DELWRI)
973 fflag = XFS_B_DELWRI;
974 if (flags & SYNC_WAIT)
975 fflag = 0; /* synchronous overrides all */
977 base_lock_flags = XFS_ILOCK_SHARED;
978 if (flags & (SYNC_DELWRI | SYNC_CLOSE)) {
980 * We need the I/O lock if we're going to call any of
981 * the flush/inval routines.
983 base_lock_flags |= XFS_IOLOCK_SHARED;
986 XFS_MOUNT_ILOCK(mp);
988 ip = mp->m_inodes;
990 mount_locked = B_TRUE;
991 vnode_refed = B_FALSE;
993 IPOINTER_CLR;
995 do {
996 ASSERT(ipointer_in == B_FALSE);
997 ASSERT(vnode_refed == B_FALSE);
999 lock_flags = base_lock_flags;
1002 * There were no inodes in the list, just break out
1003 * of the loop.
1005 if (ip == NULL) {
1006 break;
1010 * We found another sync thread marker - skip it
1012 if (ip->i_mount == NULL) {
1013 ip = ip->i_mnext;
1014 continue;
1017 vp = XFS_ITOV_NULL(ip);
1020 * If the vnode is gone then this is being torn down,
1021 * call reclaim if it is flushed, else let regular flush
1022 * code deal with it later in the loop.
1025 if (vp == NULL) {
1026 /* Skip ones already in reclaim */
1027 if (ip->i_flags & XFS_IRECLAIM) {
1028 ip = ip->i_mnext;
1029 continue;
1031 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL) == 0) {
1032 ip = ip->i_mnext;
1033 } else if ((xfs_ipincount(ip) == 0) &&
1034 xfs_iflock_nowait(ip)) {
1035 IPOINTER_INSERT(ip, mp);
1037 xfs_finish_reclaim(ip, 1,
1038 XFS_IFLUSH_DELWRI_ELSE_ASYNC);
1040 XFS_MOUNT_ILOCK(mp);
1041 mount_locked = B_TRUE;
1042 IPOINTER_REMOVE(ip, mp);
1043 } else {
1044 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1045 ip = ip->i_mnext;
1047 continue;
1050 if (VN_BAD(vp)) {
1051 ip = ip->i_mnext;
1052 continue;
1055 if (XFS_FORCED_SHUTDOWN(mp) && !(flags & SYNC_CLOSE)) {
1056 XFS_MOUNT_IUNLOCK(mp);
1057 kmem_free(ipointer, sizeof(xfs_iptr_t));
1058 return 0;
1062 * Try to lock without sleeping. We're out of order with
1063 * the inode list lock here, so if we fail we need to drop
1064 * the mount lock and try again. If we're called from
1065 * bdflush() here, then don't bother.
1067 * The inode lock here actually coordinates with the
1068 * almost spurious inode lock in xfs_ireclaim() to prevent
1069 * the vnode we handle here without a reference from
1070 * being freed while we reference it. If we lock the inode
1071 * while it's on the mount list here, then the spurious inode
1072 * lock in xfs_ireclaim() after the inode is pulled from
1073 * the mount list will sleep until we release it here.
1074 * This keeps the vnode from being freed while we reference
1075 * it.
1077 if (xfs_ilock_nowait(ip, lock_flags) == 0) {
1078 if (vp == NULL) {
1079 ip = ip->i_mnext;
1080 continue;
1083 vp = vn_grab(vp);
1084 if (vp == NULL) {
1085 ip = ip->i_mnext;
1086 continue;
1089 IPOINTER_INSERT(ip, mp);
1090 xfs_ilock(ip, lock_flags);
1092 ASSERT(vp == XFS_ITOV(ip));
1093 ASSERT(ip->i_mount == mp);
1095 vnode_refed = B_TRUE;
1098 /* From here on in the loop we may have a marker record
1099 * in the inode list.
1103 * If we have to flush data or wait for I/O completion
1104 * we need to drop the ilock that we currently hold.
1105 * If we need to drop the lock, insert a marker if we
1106 * have not already done so.
1108 if ((flags & (SYNC_CLOSE|SYNC_IOWAIT)) ||
1109 ((flags & SYNC_DELWRI) && VN_DIRTY(vp))) {
1110 if (mount_locked) {
1111 IPOINTER_INSERT(ip, mp);
1113 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1115 if (flags & SYNC_CLOSE) {
1116 /* Shutdown case. Flush and invalidate. */
1117 if (XFS_FORCED_SHUTDOWN(mp))
1118 xfs_tosspages(ip, 0, -1,
1119 FI_REMAPF);
1120 else
1121 error = xfs_flushinval_pages(ip,
1122 0, -1, FI_REMAPF);
1123 } else if ((flags & SYNC_DELWRI) && VN_DIRTY(vp)) {
1124 error = xfs_flush_pages(ip, 0,
1125 -1, fflag, FI_NONE);
1129 * When freezing, we need to wait ensure all I/O (including direct
1130 * I/O) is complete to ensure no further data modification can take
1131 * place after this point
1133 if (flags & SYNC_IOWAIT)
1134 vn_iowait(ip);
1136 xfs_ilock(ip, XFS_ILOCK_SHARED);
1139 if ((flags & SYNC_ATTR) &&
1140 (ip->i_update_core ||
1141 (ip->i_itemp && ip->i_itemp->ili_format.ilf_fields))) {
1142 if (mount_locked)
1143 IPOINTER_INSERT(ip, mp);
1145 if (flags & SYNC_WAIT) {
1146 xfs_iflock(ip);
1147 error = xfs_iflush(ip, XFS_IFLUSH_SYNC);
1150 * If we can't acquire the flush lock, then the inode
1151 * is already being flushed so don't bother waiting.
1153 * If we can lock it then do a delwri flush so we can
1154 * combine multiple inode flushes in each disk write.
1156 } else if (xfs_iflock_nowait(ip)) {
1157 error = xfs_iflush(ip, XFS_IFLUSH_DELWRI);
1158 } else if (bypassed) {
1159 (*bypassed)++;
1163 if (lock_flags != 0) {
1164 xfs_iunlock(ip, lock_flags);
1167 if (vnode_refed) {
1169 * If we had to take a reference on the vnode
1170 * above, then wait until after we've unlocked
1171 * the inode to release the reference. This is
1172 * because we can be already holding the inode
1173 * lock when VN_RELE() calls xfs_inactive().
1175 * Make sure to drop the mount lock before calling
1176 * VN_RELE() so that we don't trip over ourselves if
1177 * we have to go for the mount lock again in the
1178 * inactive code.
1180 if (mount_locked) {
1181 IPOINTER_INSERT(ip, mp);
1184 VN_RELE(vp);
1186 vnode_refed = B_FALSE;
1189 if (error) {
1190 last_error = error;
1194 * bail out if the filesystem is corrupted.
1196 if (error == EFSCORRUPTED) {
1197 if (!mount_locked) {
1198 XFS_MOUNT_ILOCK(mp);
1199 IPOINTER_REMOVE(ip, mp);
1201 XFS_MOUNT_IUNLOCK(mp);
1202 ASSERT(ipointer_in == B_FALSE);
1203 kmem_free(ipointer, sizeof(xfs_iptr_t));
1204 return XFS_ERROR(error);
1207 /* Let other threads have a chance at the mount lock
1208 * if we have looped many times without dropping the
1209 * lock.
1211 if ((++preempt & XFS_PREEMPT_MASK) == 0) {
1212 if (mount_locked) {
1213 IPOINTER_INSERT(ip, mp);
1217 if (mount_locked == B_FALSE) {
1218 XFS_MOUNT_ILOCK(mp);
1219 mount_locked = B_TRUE;
1220 IPOINTER_REMOVE(ip, mp);
1221 continue;
1224 ASSERT(ipointer_in == B_FALSE);
1225 ip = ip->i_mnext;
1227 } while (ip != mp->m_inodes);
1229 XFS_MOUNT_IUNLOCK(mp);
1231 ASSERT(ipointer_in == B_FALSE);
1233 kmem_free(ipointer, sizeof(xfs_iptr_t));
1234 return XFS_ERROR(last_error);
1238 * xfs sync routine for internal use
1240 * This routine supports all of the flags defined for the generic vfs_sync
1241 * interface as explained above under xfs_sync.
1245 xfs_syncsub(
1246 xfs_mount_t *mp,
1247 int flags,
1248 int *bypassed)
1250 int error = 0;
1251 int last_error = 0;
1252 uint log_flags = XFS_LOG_FORCE;
1253 xfs_buf_t *bp;
1254 xfs_buf_log_item_t *bip;
1257 * Sync out the log. This ensures that the log is periodically
1258 * flushed even if there is not enough activity to fill it up.
1260 if (flags & SYNC_WAIT)
1261 log_flags |= XFS_LOG_SYNC;
1263 xfs_log_force(mp, (xfs_lsn_t)0, log_flags);
1265 if (flags & (SYNC_ATTR|SYNC_DELWRI)) {
1266 if (flags & SYNC_BDFLUSH)
1267 xfs_finish_reclaim_all(mp, 1);
1268 else
1269 error = xfs_sync_inodes(mp, flags, bypassed);
1273 * Flushing out dirty data above probably generated more
1274 * log activity, so if this isn't vfs_sync() then flush
1275 * the log again.
1277 if (flags & SYNC_DELWRI) {
1278 xfs_log_force(mp, (xfs_lsn_t)0, log_flags);
1281 if (flags & SYNC_FSDATA) {
1283 * If this is vfs_sync() then only sync the superblock
1284 * if we can lock it without sleeping and it is not pinned.
1286 if (flags & SYNC_BDFLUSH) {
1287 bp = xfs_getsb(mp, XFS_BUF_TRYLOCK);
1288 if (bp != NULL) {
1289 bip = XFS_BUF_FSPRIVATE(bp,xfs_buf_log_item_t*);
1290 if ((bip != NULL) &&
1291 xfs_buf_item_dirty(bip)) {
1292 if (!(XFS_BUF_ISPINNED(bp))) {
1293 XFS_BUF_ASYNC(bp);
1294 error = xfs_bwrite(mp, bp);
1295 } else {
1296 xfs_buf_relse(bp);
1298 } else {
1299 xfs_buf_relse(bp);
1302 } else {
1303 bp = xfs_getsb(mp, 0);
1305 * If the buffer is pinned then push on the log so
1306 * we won't get stuck waiting in the write for
1307 * someone, maybe ourselves, to flush the log.
1308 * Even though we just pushed the log above, we
1309 * did not have the superblock buffer locked at
1310 * that point so it can become pinned in between
1311 * there and here.
1313 if (XFS_BUF_ISPINNED(bp))
1314 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
1315 if (flags & SYNC_WAIT)
1316 XFS_BUF_UNASYNC(bp);
1317 else
1318 XFS_BUF_ASYNC(bp);
1319 error = xfs_bwrite(mp, bp);
1321 if (error) {
1322 last_error = error;
1327 * If this is the periodic sync, then kick some entries out of
1328 * the reference cache. This ensures that idle entries are
1329 * eventually kicked out of the cache.
1331 if (flags & SYNC_REFCACHE) {
1332 if (flags & SYNC_WAIT)
1333 xfs_refcache_purge_mp(mp);
1334 else
1335 xfs_refcache_purge_some(mp);
1339 * If asked, update the disk superblock with incore counter values if we
1340 * are using non-persistent counters so that they don't get too far out
1341 * of sync if we crash or get a forced shutdown. We don't want to force
1342 * this to disk, just get a transaction into the iclogs....
1344 if (flags & SYNC_SUPER)
1345 xfs_log_sbcount(mp, 0);
1348 * Now check to see if the log needs a "dummy" transaction.
1351 if (!(flags & SYNC_REMOUNT) && xfs_log_need_covered(mp)) {
1352 xfs_trans_t *tp;
1353 xfs_inode_t *ip;
1356 * Put a dummy transaction in the log to tell
1357 * recovery that all others are OK.
1359 tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
1360 if ((error = xfs_trans_reserve(tp, 0,
1361 XFS_ICHANGE_LOG_RES(mp),
1362 0, 0, 0))) {
1363 xfs_trans_cancel(tp, 0);
1364 return error;
1367 ip = mp->m_rootip;
1368 xfs_ilock(ip, XFS_ILOCK_EXCL);
1370 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1371 xfs_trans_ihold(tp, ip);
1372 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1373 error = xfs_trans_commit(tp, 0);
1374 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1375 xfs_log_force(mp, (xfs_lsn_t)0, log_flags);
1379 * When shutting down, we need to insure that the AIL is pushed
1380 * to disk or the filesystem can appear corrupt from the PROM.
1382 if ((flags & (SYNC_CLOSE|SYNC_WAIT)) == (SYNC_CLOSE|SYNC_WAIT)) {
1383 XFS_bflush(mp->m_ddev_targp);
1384 if (mp->m_rtdev_targp) {
1385 XFS_bflush(mp->m_rtdev_targp);
1389 return XFS_ERROR(last_error);