[PATCH] ocfs2: zero_user_page conversion
[wrt350n-kernel.git] / arch / ia64 / sn / kernel / setup.c
blob684b1c984a445e3ba5a818aef22cb8f6d8437979
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1999,2001-2006 Silicon Graphics, Inc. All rights reserved.
7 */
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/delay.h>
12 #include <linux/kernel.h>
13 #include <linux/kdev_t.h>
14 #include <linux/string.h>
15 #include <linux/screen_info.h>
16 #include <linux/console.h>
17 #include <linux/timex.h>
18 #include <linux/sched.h>
19 #include <linux/ioport.h>
20 #include <linux/mm.h>
21 #include <linux/serial.h>
22 #include <linux/irq.h>
23 #include <linux/bootmem.h>
24 #include <linux/mmzone.h>
25 #include <linux/interrupt.h>
26 #include <linux/acpi.h>
27 #include <linux/compiler.h>
28 #include <linux/sched.h>
29 #include <linux/root_dev.h>
30 #include <linux/nodemask.h>
31 #include <linux/pm.h>
32 #include <linux/efi.h>
34 #include <asm/io.h>
35 #include <asm/sal.h>
36 #include <asm/machvec.h>
37 #include <asm/system.h>
38 #include <asm/processor.h>
39 #include <asm/vga.h>
40 #include <asm/sn/arch.h>
41 #include <asm/sn/addrs.h>
42 #include <asm/sn/pda.h>
43 #include <asm/sn/nodepda.h>
44 #include <asm/sn/sn_cpuid.h>
45 #include <asm/sn/simulator.h>
46 #include <asm/sn/leds.h>
47 #include <asm/sn/bte.h>
48 #include <asm/sn/shub_mmr.h>
49 #include <asm/sn/clksupport.h>
50 #include <asm/sn/sn_sal.h>
51 #include <asm/sn/geo.h>
52 #include <asm/sn/sn_feature_sets.h>
53 #include "xtalk/xwidgetdev.h"
54 #include "xtalk/hubdev.h"
55 #include <asm/sn/klconfig.h>
58 DEFINE_PER_CPU(struct pda_s, pda_percpu);
60 #define MAX_PHYS_MEMORY (1UL << IA64_MAX_PHYS_BITS) /* Max physical address supported */
62 extern void bte_init_node(nodepda_t *, cnodeid_t);
64 extern void sn_timer_init(void);
65 extern unsigned long last_time_offset;
66 extern void (*ia64_mark_idle) (int);
67 extern void snidle(int);
68 extern unsigned long long (*ia64_printk_clock)(void);
70 unsigned long sn_rtc_cycles_per_second;
71 EXPORT_SYMBOL(sn_rtc_cycles_per_second);
73 DEFINE_PER_CPU(struct sn_hub_info_s, __sn_hub_info);
74 EXPORT_PER_CPU_SYMBOL(__sn_hub_info);
76 DEFINE_PER_CPU(short, __sn_cnodeid_to_nasid[MAX_COMPACT_NODES]);
77 EXPORT_PER_CPU_SYMBOL(__sn_cnodeid_to_nasid);
79 DEFINE_PER_CPU(struct nodepda_s *, __sn_nodepda);
80 EXPORT_PER_CPU_SYMBOL(__sn_nodepda);
82 char sn_system_serial_number_string[128];
83 EXPORT_SYMBOL(sn_system_serial_number_string);
84 u64 sn_partition_serial_number;
85 EXPORT_SYMBOL(sn_partition_serial_number);
86 u8 sn_partition_id;
87 EXPORT_SYMBOL(sn_partition_id);
88 u8 sn_system_size;
89 EXPORT_SYMBOL(sn_system_size);
90 u8 sn_sharing_domain_size;
91 EXPORT_SYMBOL(sn_sharing_domain_size);
92 u8 sn_coherency_id;
93 EXPORT_SYMBOL(sn_coherency_id);
94 u8 sn_region_size;
95 EXPORT_SYMBOL(sn_region_size);
96 int sn_prom_type; /* 0=hardware, 1=medusa/realprom, 2=medusa/fakeprom */
98 short physical_node_map[MAX_NUMALINK_NODES];
99 static unsigned long sn_prom_features[MAX_PROM_FEATURE_SETS];
101 EXPORT_SYMBOL(physical_node_map);
103 int num_cnodes;
105 static void sn_init_pdas(char **);
106 static void build_cnode_tables(void);
108 static nodepda_t *nodepdaindr[MAX_COMPACT_NODES];
111 * The format of "screen_info" is strange, and due to early i386-setup
112 * code. This is just enough to make the console code think we're on a
113 * VGA color display.
115 struct screen_info sn_screen_info = {
116 .orig_x = 0,
117 .orig_y = 0,
118 .orig_video_mode = 3,
119 .orig_video_cols = 80,
120 .orig_video_ega_bx = 3,
121 .orig_video_lines = 25,
122 .orig_video_isVGA = 1,
123 .orig_video_points = 16
127 * This routine can only be used during init, since
128 * smp_boot_data is an init data structure.
129 * We have to use smp_boot_data.cpu_phys_id to find
130 * the physical id of the processor because the normal
131 * cpu_physical_id() relies on data structures that
132 * may not be initialized yet.
135 static int __init pxm_to_nasid(int pxm)
137 int i;
138 int nid;
140 nid = pxm_to_node(pxm);
141 for (i = 0; i < num_node_memblks; i++) {
142 if (node_memblk[i].nid == nid) {
143 return NASID_GET(node_memblk[i].start_paddr);
146 return -1;
150 * early_sn_setup - early setup routine for SN platforms
152 * Sets up an initial console to aid debugging. Intended primarily
153 * for bringup. See start_kernel() in init/main.c.
156 void __init early_sn_setup(void)
158 efi_system_table_t *efi_systab;
159 efi_config_table_t *config_tables;
160 struct ia64_sal_systab *sal_systab;
161 struct ia64_sal_desc_entry_point *ep;
162 char *p;
163 int i, j;
166 * Parse enough of the SAL tables to locate the SAL entry point. Since, console
167 * IO on SN2 is done via SAL calls, early_printk won't work without this.
169 * This code duplicates some of the ACPI table parsing that is in efi.c & sal.c.
170 * Any changes to those file may have to be made here as well.
172 efi_systab = (efi_system_table_t *) __va(ia64_boot_param->efi_systab);
173 config_tables = __va(efi_systab->tables);
174 for (i = 0; i < efi_systab->nr_tables; i++) {
175 if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) ==
176 0) {
177 sal_systab = __va(config_tables[i].table);
178 p = (char *)(sal_systab + 1);
179 for (j = 0; j < sal_systab->entry_count; j++) {
180 if (*p == SAL_DESC_ENTRY_POINT) {
181 ep = (struct ia64_sal_desc_entry_point
182 *)p;
183 ia64_sal_handler_init(__va
184 (ep->sal_proc),
185 __va(ep->gp));
186 return;
188 p += SAL_DESC_SIZE(*p);
192 /* Uh-oh, SAL not available?? */
193 printk(KERN_ERR "failed to find SAL entry point\n");
196 extern int platform_intr_list[];
197 static int __cpuinitdata shub_1_1_found;
200 * sn_check_for_wars
202 * Set flag for enabling shub specific wars
205 static inline int __init is_shub_1_1(int nasid)
207 unsigned long id;
208 int rev;
210 if (is_shub2())
211 return 0;
212 id = REMOTE_HUB_L(nasid, SH1_SHUB_ID);
213 rev = (id & SH1_SHUB_ID_REVISION_MASK) >> SH1_SHUB_ID_REVISION_SHFT;
214 return rev <= 2;
217 static void __init sn_check_for_wars(void)
219 int cnode;
221 if (is_shub2()) {
222 /* none yet */
223 } else {
224 for_each_online_node(cnode) {
225 if (is_shub_1_1(cnodeid_to_nasid(cnode)))
226 shub_1_1_found = 1;
232 * Scan the EFI PCDP table (if it exists) for an acceptable VGA console
233 * output device. If one exists, pick it and set sn_legacy_{io,mem} to
234 * reflect the bus offsets needed to address it.
236 * Since pcdp support in SN is not supported in the 2.4 kernel (or at least
237 * the one lbs is based on) just declare the needed structs here.
239 * Reference spec http://www.dig64.org/specifications/DIG64_PCDPv20.pdf
241 * Returns 0 if no acceptable vga is found, !0 otherwise.
243 * Note: This stuff is duped here because Altix requires the PCDP to
244 * locate a usable VGA device due to lack of proper ACPI support. Structures
245 * could be used from drivers/firmware/pcdp.h, but it was decided that moving
246 * this file to a more public location just for Altix use was undesireable.
249 struct hcdp_uart_desc {
250 u8 pad[45];
253 struct pcdp {
254 u8 signature[4]; /* should be 'HCDP' */
255 u32 length;
256 u8 rev; /* should be >=3 for pcdp, <3 for hcdp */
257 u8 sum;
258 u8 oem_id[6];
259 u64 oem_tableid;
260 u32 oem_rev;
261 u32 creator_id;
262 u32 creator_rev;
263 u32 num_type0;
264 struct hcdp_uart_desc uart[0]; /* num_type0 of these */
265 /* pcdp descriptors follow */
266 } __attribute__((packed));
268 struct pcdp_device_desc {
269 u8 type;
270 u8 primary;
271 u16 length;
272 u16 index;
273 /* interconnect specific structure follows */
274 /* device specific structure follows that */
275 } __attribute__((packed));
277 struct pcdp_interface_pci {
278 u8 type; /* 1 == pci */
279 u8 reserved;
280 u16 length;
281 u8 segment;
282 u8 bus;
283 u8 dev;
284 u8 fun;
285 u16 devid;
286 u16 vendid;
287 u32 acpi_interrupt;
288 u64 mmio_tra;
289 u64 ioport_tra;
290 u8 flags;
291 u8 translation;
292 } __attribute__((packed));
294 struct pcdp_vga_device {
295 u8 num_eas_desc;
296 /* ACPI Extended Address Space Desc follows */
297 } __attribute__((packed));
299 /* from pcdp_device_desc.primary */
300 #define PCDP_PRIMARY_CONSOLE 0x01
302 /* from pcdp_device_desc.type */
303 #define PCDP_CONSOLE_INOUT 0x0
304 #define PCDP_CONSOLE_DEBUG 0x1
305 #define PCDP_CONSOLE_OUT 0x2
306 #define PCDP_CONSOLE_IN 0x3
307 #define PCDP_CONSOLE_TYPE_VGA 0x8
309 #define PCDP_CONSOLE_VGA (PCDP_CONSOLE_TYPE_VGA | PCDP_CONSOLE_OUT)
311 /* from pcdp_interface_pci.type */
312 #define PCDP_IF_PCI 1
314 /* from pcdp_interface_pci.translation */
315 #define PCDP_PCI_TRANS_IOPORT 0x02
316 #define PCDP_PCI_TRANS_MMIO 0x01
318 #if defined(CONFIG_VT) && defined(CONFIG_VGA_CONSOLE)
319 static void
320 sn_scan_pcdp(void)
322 u8 *bp;
323 struct pcdp *pcdp;
324 struct pcdp_device_desc device;
325 struct pcdp_interface_pci if_pci;
326 extern struct efi efi;
328 if (efi.hcdp == EFI_INVALID_TABLE_ADDR)
329 return; /* no hcdp/pcdp table */
331 pcdp = __va(efi.hcdp);
333 if (pcdp->rev < 3)
334 return; /* only support PCDP (rev >= 3) */
336 for (bp = (u8 *)&pcdp->uart[pcdp->num_type0];
337 bp < (u8 *)pcdp + pcdp->length;
338 bp += device.length) {
339 memcpy(&device, bp, sizeof(device));
340 if (! (device.primary & PCDP_PRIMARY_CONSOLE))
341 continue; /* not primary console */
343 if (device.type != PCDP_CONSOLE_VGA)
344 continue; /* not VGA descriptor */
346 memcpy(&if_pci, bp+sizeof(device), sizeof(if_pci));
347 if (if_pci.type != PCDP_IF_PCI)
348 continue; /* not PCI interconnect */
350 if (if_pci.translation & PCDP_PCI_TRANS_IOPORT)
351 vga_console_iobase = if_pci.ioport_tra;
353 if (if_pci.translation & PCDP_PCI_TRANS_MMIO)
354 vga_console_membase =
355 if_pci.mmio_tra | __IA64_UNCACHED_OFFSET;
357 break; /* once we find the primary, we're done */
360 #endif
362 static unsigned long sn2_rtc_initial;
364 static unsigned long long ia64_sn2_printk_clock(void)
366 unsigned long rtc_now = rtc_time();
368 return (rtc_now - sn2_rtc_initial) *
369 (1000000000 / sn_rtc_cycles_per_second);
373 * sn_setup - SN platform setup routine
374 * @cmdline_p: kernel command line
376 * Handles platform setup for SN machines. This includes determining
377 * the RTC frequency (via a SAL call), initializing secondary CPUs, and
378 * setting up per-node data areas. The console is also initialized here.
380 void __init sn_setup(char **cmdline_p)
382 long status, ticks_per_sec, drift;
383 u32 version = sn_sal_rev();
384 extern void sn_cpu_init(void);
386 sn2_rtc_initial = rtc_time();
387 ia64_sn_plat_set_error_handling_features(); // obsolete
388 ia64_sn_set_os_feature(OSF_MCA_SLV_TO_OS_INIT_SLV);
389 ia64_sn_set_os_feature(OSF_FEAT_LOG_SBES);
391 * Note: The calls to notify the PROM of ACPI and PCI Segment
392 * support must be done prior to acpi_load_tables(), as
393 * an ACPI capable PROM will rebuild the DSDT as result
394 * of the call.
396 ia64_sn_set_os_feature(OSF_PCISEGMENT_ENABLE);
397 ia64_sn_set_os_feature(OSF_ACPI_ENABLE);
399 /* Load the new DSDT and SSDT tables into the global table list. */
400 acpi_table_init();
402 #if defined(CONFIG_VT) && defined(CONFIG_VGA_CONSOLE)
404 * Handle SN vga console.
406 * SN systems do not have enough ACPI table information
407 * being passed from prom to identify VGA adapters and the legacy
408 * addresses to access them. Until that is done, SN systems rely
409 * on the PCDP table to identify the primary VGA console if one
410 * exists.
412 * However, kernel PCDP support is optional, and even if it is built
413 * into the kernel, it will not be used if the boot cmdline contains
414 * console= directives.
416 * So, to work around this mess, we duplicate some of the PCDP code
417 * here so that the primary VGA console (as defined by PCDP) will
418 * work on SN systems even if a different console (e.g. serial) is
419 * selected on the boot line (or CONFIG_EFI_PCDP is off).
422 if (! vga_console_membase)
423 sn_scan_pcdp();
426 * Setup legacy IO space.
427 * vga_console_iobase maps to PCI IO Space address 0 on the
428 * bus containing the VGA console.
430 if (vga_console_iobase) {
431 io_space[0].mmio_base =
432 (unsigned long) ioremap(vga_console_iobase, 0);
433 io_space[0].sparse = 0;
436 if (vga_console_membase) {
437 /* usable vga ... make tty0 the preferred default console */
438 if (!strstr(*cmdline_p, "console="))
439 add_preferred_console("tty", 0, NULL);
440 } else {
441 printk(KERN_DEBUG "SGI: Disabling VGA console\n");
442 if (!strstr(*cmdline_p, "console="))
443 add_preferred_console("ttySG", 0, NULL);
444 #ifdef CONFIG_DUMMY_CONSOLE
445 conswitchp = &dummy_con;
446 #else
447 conswitchp = NULL;
448 #endif /* CONFIG_DUMMY_CONSOLE */
450 #endif /* def(CONFIG_VT) && def(CONFIG_VGA_CONSOLE) */
452 MAX_DMA_ADDRESS = PAGE_OFFSET + MAX_PHYS_MEMORY;
455 * Build the tables for managing cnodes.
457 build_cnode_tables();
459 status =
460 ia64_sal_freq_base(SAL_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec,
461 &drift);
462 if (status != 0 || ticks_per_sec < 100000) {
463 printk(KERN_WARNING
464 "unable to determine platform RTC clock frequency, guessing.\n");
465 /* PROM gives wrong value for clock freq. so guess */
466 sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
467 } else
468 sn_rtc_cycles_per_second = ticks_per_sec;
470 platform_intr_list[ACPI_INTERRUPT_CPEI] = IA64_CPE_VECTOR;
472 ia64_printk_clock = ia64_sn2_printk_clock;
474 printk("SGI SAL version %x.%02x\n", version >> 8, version & 0x00FF);
477 * we set the default root device to /dev/hda
478 * to make simulation easy
480 ROOT_DEV = Root_HDA1;
483 * Create the PDAs and NODEPDAs for all the cpus.
485 sn_init_pdas(cmdline_p);
487 ia64_mark_idle = &snidle;
490 * For the bootcpu, we do this here. All other cpus will make the
491 * call as part of cpu_init in slave cpu initialization.
493 sn_cpu_init();
495 #ifdef CONFIG_SMP
496 init_smp_config();
497 #endif
498 screen_info = sn_screen_info;
500 sn_timer_init();
503 * set pm_power_off to a SAL call to allow
504 * sn machines to power off. The SAL call can be replaced
505 * by an ACPI interface call when ACPI is fully implemented
506 * for sn.
508 pm_power_off = ia64_sn_power_down;
509 current->thread.flags |= IA64_THREAD_MIGRATION;
513 * sn_init_pdas - setup node data areas
515 * One time setup for Node Data Area. Called by sn_setup().
517 static void __init sn_init_pdas(char **cmdline_p)
519 cnodeid_t cnode;
522 * Allocate & initalize the nodepda for each node.
524 for_each_online_node(cnode) {
525 nodepdaindr[cnode] =
526 alloc_bootmem_node(NODE_DATA(cnode), sizeof(nodepda_t));
527 memset(nodepdaindr[cnode], 0, sizeof(nodepda_t));
528 memset(nodepdaindr[cnode]->phys_cpuid, -1,
529 sizeof(nodepdaindr[cnode]->phys_cpuid));
530 spin_lock_init(&nodepdaindr[cnode]->ptc_lock);
534 * Allocate & initialize nodepda for TIOs. For now, put them on node 0.
536 for (cnode = num_online_nodes(); cnode < num_cnodes; cnode++) {
537 nodepdaindr[cnode] =
538 alloc_bootmem_node(NODE_DATA(0), sizeof(nodepda_t));
539 memset(nodepdaindr[cnode], 0, sizeof(nodepda_t));
543 * Now copy the array of nodepda pointers to each nodepda.
545 for (cnode = 0; cnode < num_cnodes; cnode++)
546 memcpy(nodepdaindr[cnode]->pernode_pdaindr, nodepdaindr,
547 sizeof(nodepdaindr));
550 * Set up IO related platform-dependent nodepda fields.
551 * The following routine actually sets up the hubinfo struct
552 * in nodepda.
554 for_each_online_node(cnode) {
555 bte_init_node(nodepdaindr[cnode], cnode);
559 * Initialize the per node hubdev. This includes IO Nodes and
560 * headless/memless nodes.
562 for (cnode = 0; cnode < num_cnodes; cnode++) {
563 hubdev_init_node(nodepdaindr[cnode], cnode);
568 * sn_cpu_init - initialize per-cpu data areas
569 * @cpuid: cpuid of the caller
571 * Called during cpu initialization on each cpu as it starts.
572 * Currently, initializes the per-cpu data area for SNIA.
573 * Also sets up a few fields in the nodepda. Also known as
574 * platform_cpu_init() by the ia64 machvec code.
576 void __cpuinit sn_cpu_init(void)
578 int cpuid;
579 int cpuphyid;
580 int nasid;
581 int subnode;
582 int slice;
583 int cnode;
584 int i;
585 static int wars_have_been_checked, set_cpu0_number;
587 cpuid = smp_processor_id();
588 if (cpuid == 0 && IS_MEDUSA()) {
589 if (ia64_sn_is_fake_prom())
590 sn_prom_type = 2;
591 else
592 sn_prom_type = 1;
593 printk(KERN_INFO "Running on medusa with %s PROM\n",
594 (sn_prom_type == 1) ? "real" : "fake");
597 memset(pda, 0, sizeof(pda));
598 if (ia64_sn_get_sn_info(0, &sn_hub_info->shub2,
599 &sn_hub_info->nasid_bitmask,
600 &sn_hub_info->nasid_shift,
601 &sn_system_size, &sn_sharing_domain_size,
602 &sn_partition_id, &sn_coherency_id,
603 &sn_region_size))
604 BUG();
605 sn_hub_info->as_shift = sn_hub_info->nasid_shift - 2;
608 * Don't check status. The SAL call is not supported on all PROMs
609 * but a failure is harmless.
610 * Architechtuallly, cpu_init is always called twice on cpu 0. We
611 * should set cpu_number on cpu 0 once.
613 if (cpuid == 0) {
614 if (!set_cpu0_number) {
615 (void) ia64_sn_set_cpu_number(cpuid);
616 set_cpu0_number = 1;
618 } else
619 (void) ia64_sn_set_cpu_number(cpuid);
622 * The boot cpu makes this call again after platform initialization is
623 * complete.
625 if (nodepdaindr[0] == NULL)
626 return;
628 for (i = 0; i < MAX_PROM_FEATURE_SETS; i++)
629 if (ia64_sn_get_prom_feature_set(i, &sn_prom_features[i]) != 0)
630 break;
632 cpuphyid = get_sapicid();
634 if (ia64_sn_get_sapic_info(cpuphyid, &nasid, &subnode, &slice))
635 BUG();
637 for (i=0; i < MAX_NUMNODES; i++) {
638 if (nodepdaindr[i]) {
639 nodepdaindr[i]->phys_cpuid[cpuid].nasid = nasid;
640 nodepdaindr[i]->phys_cpuid[cpuid].slice = slice;
641 nodepdaindr[i]->phys_cpuid[cpuid].subnode = subnode;
645 cnode = nasid_to_cnodeid(nasid);
647 sn_nodepda = nodepdaindr[cnode];
649 pda->led_address =
650 (typeof(pda->led_address)) (LED0 + (slice << LED_CPU_SHIFT));
651 pda->led_state = LED_ALWAYS_SET;
652 pda->hb_count = HZ / 2;
653 pda->hb_state = 0;
654 pda->idle_flag = 0;
656 if (cpuid != 0) {
657 /* copy cpu 0's sn_cnodeid_to_nasid table to this cpu's */
658 memcpy(sn_cnodeid_to_nasid,
659 (&per_cpu(__sn_cnodeid_to_nasid, 0)),
660 sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));
664 * Check for WARs.
665 * Only needs to be done once, on BSP.
666 * Has to be done after loop above, because it uses this cpu's
667 * sn_cnodeid_to_nasid table which was just initialized if this
668 * isn't cpu 0.
669 * Has to be done before assignment below.
671 if (!wars_have_been_checked) {
672 sn_check_for_wars();
673 wars_have_been_checked = 1;
675 sn_hub_info->shub_1_1_found = shub_1_1_found;
678 * Set up addresses of PIO/MEM write status registers.
681 u64 pio1[] = {SH1_PIO_WRITE_STATUS_0, 0, SH1_PIO_WRITE_STATUS_1, 0};
682 u64 pio2[] = {SH2_PIO_WRITE_STATUS_0, SH2_PIO_WRITE_STATUS_2,
683 SH2_PIO_WRITE_STATUS_1, SH2_PIO_WRITE_STATUS_3};
684 u64 *pio;
685 pio = is_shub1() ? pio1 : pio2;
686 pda->pio_write_status_addr =
687 (volatile unsigned long *)GLOBAL_MMR_ADDR(nasid, pio[slice]);
688 pda->pio_write_status_val = is_shub1() ? SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK : 0;
692 * WAR addresses for SHUB 1.x.
694 if (local_node_data->active_cpu_count++ == 0 && is_shub1()) {
695 int buddy_nasid;
696 buddy_nasid =
697 cnodeid_to_nasid(numa_node_id() ==
698 num_online_nodes() - 1 ? 0 : numa_node_id() + 1);
699 pda->pio_shub_war_cam_addr =
700 (volatile unsigned long *)GLOBAL_MMR_ADDR(nasid,
701 SH1_PI_CAM_CONTROL);
706 * Build tables for converting between NASIDs and cnodes.
708 static inline int __init board_needs_cnode(int type)
710 return (type == KLTYPE_SNIA || type == KLTYPE_TIO);
713 void __init build_cnode_tables(void)
715 int nasid;
716 int node;
717 lboard_t *brd;
719 memset(physical_node_map, -1, sizeof(physical_node_map));
720 memset(sn_cnodeid_to_nasid, -1,
721 sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));
724 * First populate the tables with C/M bricks. This ensures that
725 * cnode == node for all C & M bricks.
727 for_each_online_node(node) {
728 nasid = pxm_to_nasid(node_to_pxm(node));
729 sn_cnodeid_to_nasid[node] = nasid;
730 physical_node_map[nasid] = node;
734 * num_cnodes is total number of C/M/TIO bricks. Because of the 256 node
735 * limit on the number of nodes, we can't use the generic node numbers
736 * for this. Note that num_cnodes is incremented below as TIOs or
737 * headless/memoryless nodes are discovered.
739 num_cnodes = num_online_nodes();
741 /* fakeprom does not support klgraph */
742 if (IS_RUNNING_ON_FAKE_PROM())
743 return;
745 /* Find TIOs & headless/memoryless nodes and add them to the tables */
746 for_each_online_node(node) {
747 kl_config_hdr_t *klgraph_header;
748 nasid = cnodeid_to_nasid(node);
749 klgraph_header = ia64_sn_get_klconfig_addr(nasid);
750 if (klgraph_header == NULL)
751 BUG();
752 brd = NODE_OFFSET_TO_LBOARD(nasid, klgraph_header->ch_board_info);
753 while (brd) {
754 if (board_needs_cnode(brd->brd_type) && physical_node_map[brd->brd_nasid] < 0) {
755 sn_cnodeid_to_nasid[num_cnodes] = brd->brd_nasid;
756 physical_node_map[brd->brd_nasid] = num_cnodes++;
758 brd = find_lboard_next(brd);
764 nasid_slice_to_cpuid(int nasid, int slice)
766 long cpu;
768 for (cpu = 0; cpu < NR_CPUS; cpu++)
769 if (cpuid_to_nasid(cpu) == nasid &&
770 cpuid_to_slice(cpu) == slice)
771 return cpu;
773 return -1;
776 int sn_prom_feature_available(int id)
778 if (id >= BITS_PER_LONG * MAX_PROM_FEATURE_SETS)
779 return 0;
780 return test_bit(id, sn_prom_features);
783 void
784 sn_kernel_launch_event(void)
786 /* ignore status until we understand possible failure, if any*/
787 if (ia64_sn_kernel_launch_event())
788 printk(KERN_ERR "KEXEC is not supported in this PROM, Please update the PROM.\n");
790 EXPORT_SYMBOL(sn_prom_feature_available);