[PATCH] ocfs2: zero_user_page conversion
[wrt350n-kernel.git] / arch / mips / math-emu / cp1emu.c
blobd7f05b0abe170c1deba01094ddea2e86da9806c7
1 /*
2 * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
4 * MIPS floating point support
5 * Copyright (C) 1994-2000 Algorithmics Ltd.
6 * http://www.algor.co.uk
8 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
9 * Copyright (C) 2000 MIPS Technologies, Inc.
11 * This program is free software; you can distribute it and/or modify it
12 * under the terms of the GNU General Public License (Version 2) as
13 * published by the Free Software Foundation.
15 * This program is distributed in the hope it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, write to the Free Software Foundation, Inc.,
22 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
24 * A complete emulator for MIPS coprocessor 1 instructions. This is
25 * required for #float(switch) or #float(trap), where it catches all
26 * COP1 instructions via the "CoProcessor Unusable" exception.
28 * More surprisingly it is also required for #float(ieee), to help out
29 * the hardware fpu at the boundaries of the IEEE-754 representation
30 * (denormalised values, infinities, underflow, etc). It is made
31 * quite nasty because emulation of some non-COP1 instructions is
32 * required, e.g. in branch delay slots.
34 * Note if you know that you won't have an fpu, then you'll get much
35 * better performance by compiling with -msoft-float!
37 #include <linux/sched.h>
38 #include <linux/debugfs.h>
40 #include <asm/inst.h>
41 #include <asm/bootinfo.h>
42 #include <asm/processor.h>
43 #include <asm/ptrace.h>
44 #include <asm/signal.h>
45 #include <asm/mipsregs.h>
46 #include <asm/fpu_emulator.h>
47 #include <asm/uaccess.h>
48 #include <asm/branch.h>
50 #include "ieee754.h"
51 #include "dsemul.h"
53 /* Strap kernel emulator for full MIPS IV emulation */
55 #ifdef __mips
56 #undef __mips
57 #endif
58 #define __mips 4
60 /* Function which emulates a floating point instruction. */
62 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
63 mips_instruction);
65 #if __mips >= 4 && __mips != 32
66 static int fpux_emu(struct pt_regs *,
67 struct mips_fpu_struct *, mips_instruction);
68 #endif
70 /* Further private data for which no space exists in mips_fpu_struct */
72 struct mips_fpu_emulator_stats fpuemustats;
74 /* Control registers */
76 #define FPCREG_RID 0 /* $0 = revision id */
77 #define FPCREG_CSR 31 /* $31 = csr */
79 /* Convert Mips rounding mode (0..3) to IEEE library modes. */
80 static const unsigned char ieee_rm[4] = {
81 [FPU_CSR_RN] = IEEE754_RN,
82 [FPU_CSR_RZ] = IEEE754_RZ,
83 [FPU_CSR_RU] = IEEE754_RU,
84 [FPU_CSR_RD] = IEEE754_RD,
86 /* Convert IEEE library modes to Mips rounding mode (0..3). */
87 static const unsigned char mips_rm[4] = {
88 [IEEE754_RN] = FPU_CSR_RN,
89 [IEEE754_RZ] = FPU_CSR_RZ,
90 [IEEE754_RD] = FPU_CSR_RD,
91 [IEEE754_RU] = FPU_CSR_RU,
94 #if __mips >= 4
95 /* convert condition code register number to csr bit */
96 static const unsigned int fpucondbit[8] = {
97 FPU_CSR_COND0,
98 FPU_CSR_COND1,
99 FPU_CSR_COND2,
100 FPU_CSR_COND3,
101 FPU_CSR_COND4,
102 FPU_CSR_COND5,
103 FPU_CSR_COND6,
104 FPU_CSR_COND7
106 #endif
110 * Redundant with logic already in kernel/branch.c,
111 * embedded in compute_return_epc. At some point,
112 * a single subroutine should be used across both
113 * modules.
115 static int isBranchInstr(mips_instruction * i)
117 switch (MIPSInst_OPCODE(*i)) {
118 case spec_op:
119 switch (MIPSInst_FUNC(*i)) {
120 case jalr_op:
121 case jr_op:
122 return 1;
124 break;
126 case bcond_op:
127 switch (MIPSInst_RT(*i)) {
128 case bltz_op:
129 case bgez_op:
130 case bltzl_op:
131 case bgezl_op:
132 case bltzal_op:
133 case bgezal_op:
134 case bltzall_op:
135 case bgezall_op:
136 return 1;
138 break;
140 case j_op:
141 case jal_op:
142 case jalx_op:
143 case beq_op:
144 case bne_op:
145 case blez_op:
146 case bgtz_op:
147 case beql_op:
148 case bnel_op:
149 case blezl_op:
150 case bgtzl_op:
151 return 1;
153 case cop0_op:
154 case cop1_op:
155 case cop2_op:
156 case cop1x_op:
157 if (MIPSInst_RS(*i) == bc_op)
158 return 1;
159 break;
162 return 0;
166 * In the Linux kernel, we support selection of FPR format on the
167 * basis of the Status.FR bit. This does imply that, if a full 32
168 * FPRs are desired, there needs to be a flip-flop that can be written
169 * to one at that bit position. In any case, O32 MIPS ABI uses
170 * only the even FPRs (Status.FR = 0).
173 #define CP0_STATUS_FR_SUPPORT
175 #ifdef CP0_STATUS_FR_SUPPORT
176 #define FR_BIT ST0_FR
177 #else
178 #define FR_BIT 0
179 #endif
181 #define SIFROMREG(si,x) ((si) = \
182 (xcp->cp0_status & FR_BIT) || !(x & 1) ? \
183 (int)ctx->fpr[x] : \
184 (int)(ctx->fpr[x & ~1] >> 32 ))
185 #define SITOREG(si,x) (ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] = \
186 (xcp->cp0_status & FR_BIT) || !(x & 1) ? \
187 ctx->fpr[x & ~1] >> 32 << 32 | (u32)(si) : \
188 ctx->fpr[x & ~1] << 32 >> 32 | (u64)(si) << 32)
190 #define DIFROMREG(di,x) ((di) = \
191 ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)])
192 #define DITOREG(di,x) (ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] \
193 = (di))
195 #define SPFROMREG(sp,x) SIFROMREG((sp).bits,x)
196 #define SPTOREG(sp,x) SITOREG((sp).bits,x)
197 #define DPFROMREG(dp,x) DIFROMREG((dp).bits,x)
198 #define DPTOREG(dp,x) DITOREG((dp).bits,x)
201 * Emulate the single floating point instruction pointed at by EPC.
202 * Two instructions if the instruction is in a branch delay slot.
205 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx)
207 mips_instruction ir;
208 void * emulpc, *contpc;
209 unsigned int cond;
211 if (get_user(ir, (mips_instruction __user *) xcp->cp0_epc)) {
212 fpuemustats.errors++;
213 return SIGBUS;
216 /* XXX NEC Vr54xx bug workaround */
217 if ((xcp->cp0_cause & CAUSEF_BD) && !isBranchInstr(&ir))
218 xcp->cp0_cause &= ~CAUSEF_BD;
220 if (xcp->cp0_cause & CAUSEF_BD) {
222 * The instruction to be emulated is in a branch delay slot
223 * which means that we have to emulate the branch instruction
224 * BEFORE we do the cop1 instruction.
226 * This branch could be a COP1 branch, but in that case we
227 * would have had a trap for that instruction, and would not
228 * come through this route.
230 * Linux MIPS branch emulator operates on context, updating the
231 * cp0_epc.
233 emulpc = (void *) (xcp->cp0_epc + 4); /* Snapshot emulation target */
235 if (__compute_return_epc(xcp)) {
236 #ifdef CP1DBG
237 printk("failed to emulate branch at %p\n",
238 (void *) (xcp->cp0_epc));
239 #endif
240 return SIGILL;
242 if (get_user(ir, (mips_instruction __user *) emulpc)) {
243 fpuemustats.errors++;
244 return SIGBUS;
246 /* __compute_return_epc() will have updated cp0_epc */
247 contpc = (void *) xcp->cp0_epc;
248 /* In order not to confuse ptrace() et al, tweak context */
249 xcp->cp0_epc = (unsigned long) emulpc - 4;
250 } else {
251 emulpc = (void *) xcp->cp0_epc;
252 contpc = (void *) (xcp->cp0_epc + 4);
255 emul:
256 fpuemustats.emulated++;
257 switch (MIPSInst_OPCODE(ir)) {
258 case ldc1_op:{
259 u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
260 MIPSInst_SIMM(ir));
261 u64 val;
263 fpuemustats.loads++;
264 if (get_user(val, va)) {
265 fpuemustats.errors++;
266 return SIGBUS;
268 DITOREG(val, MIPSInst_RT(ir));
269 break;
272 case sdc1_op:{
273 u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
274 MIPSInst_SIMM(ir));
275 u64 val;
277 fpuemustats.stores++;
278 DIFROMREG(val, MIPSInst_RT(ir));
279 if (put_user(val, va)) {
280 fpuemustats.errors++;
281 return SIGBUS;
283 break;
286 case lwc1_op:{
287 u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
288 MIPSInst_SIMM(ir));
289 u32 val;
291 fpuemustats.loads++;
292 if (get_user(val, va)) {
293 fpuemustats.errors++;
294 return SIGBUS;
296 SITOREG(val, MIPSInst_RT(ir));
297 break;
300 case swc1_op:{
301 u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
302 MIPSInst_SIMM(ir));
303 u32 val;
305 fpuemustats.stores++;
306 SIFROMREG(val, MIPSInst_RT(ir));
307 if (put_user(val, va)) {
308 fpuemustats.errors++;
309 return SIGBUS;
311 break;
314 case cop1_op:
315 switch (MIPSInst_RS(ir)) {
317 #if defined(__mips64)
318 case dmfc_op:
319 /* copregister fs -> gpr[rt] */
320 if (MIPSInst_RT(ir) != 0) {
321 DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
322 MIPSInst_RD(ir));
324 break;
326 case dmtc_op:
327 /* copregister fs <- rt */
328 DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
329 break;
330 #endif
332 case mfc_op:
333 /* copregister rd -> gpr[rt] */
334 if (MIPSInst_RT(ir) != 0) {
335 SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
336 MIPSInst_RD(ir));
338 break;
340 case mtc_op:
341 /* copregister rd <- rt */
342 SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
343 break;
345 case cfc_op:{
346 /* cop control register rd -> gpr[rt] */
347 u32 value;
349 if (ir == CP1UNDEF) {
350 return do_dsemulret(xcp);
352 if (MIPSInst_RD(ir) == FPCREG_CSR) {
353 value = ctx->fcr31;
354 value = (value & ~0x3) | mips_rm[value & 0x3];
355 #ifdef CSRTRACE
356 printk("%p gpr[%d]<-csr=%08x\n",
357 (void *) (xcp->cp0_epc),
358 MIPSInst_RT(ir), value);
359 #endif
361 else if (MIPSInst_RD(ir) == FPCREG_RID)
362 value = 0;
363 else
364 value = 0;
365 if (MIPSInst_RT(ir))
366 xcp->regs[MIPSInst_RT(ir)] = value;
367 break;
370 case ctc_op:{
371 /* copregister rd <- rt */
372 u32 value;
374 if (MIPSInst_RT(ir) == 0)
375 value = 0;
376 else
377 value = xcp->regs[MIPSInst_RT(ir)];
379 /* we only have one writable control reg
381 if (MIPSInst_RD(ir) == FPCREG_CSR) {
382 #ifdef CSRTRACE
383 printk("%p gpr[%d]->csr=%08x\n",
384 (void *) (xcp->cp0_epc),
385 MIPSInst_RT(ir), value);
386 #endif
387 value &= (FPU_CSR_FLUSH | FPU_CSR_ALL_E | FPU_CSR_ALL_S | 0x03);
388 ctx->fcr31 &= ~(FPU_CSR_FLUSH | FPU_CSR_ALL_E | FPU_CSR_ALL_S | 0x03);
389 /* convert to ieee library modes */
390 ctx->fcr31 |= (value & ~0x3) | ieee_rm[value & 0x3];
392 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
393 return SIGFPE;
395 break;
398 case bc_op:{
399 int likely = 0;
401 if (xcp->cp0_cause & CAUSEF_BD)
402 return SIGILL;
404 #if __mips >= 4
405 cond = ctx->fcr31 & fpucondbit[MIPSInst_RT(ir) >> 2];
406 #else
407 cond = ctx->fcr31 & FPU_CSR_COND;
408 #endif
409 switch (MIPSInst_RT(ir) & 3) {
410 case bcfl_op:
411 likely = 1;
412 case bcf_op:
413 cond = !cond;
414 break;
415 case bctl_op:
416 likely = 1;
417 case bct_op:
418 break;
419 default:
420 /* thats an illegal instruction */
421 return SIGILL;
424 xcp->cp0_cause |= CAUSEF_BD;
425 if (cond) {
426 /* branch taken: emulate dslot
427 * instruction
429 xcp->cp0_epc += 4;
430 contpc = (void *)
431 (xcp->cp0_epc +
432 (MIPSInst_SIMM(ir) << 2));
434 if (get_user(ir,
435 (mips_instruction __user *) xcp->cp0_epc)) {
436 fpuemustats.errors++;
437 return SIGBUS;
440 switch (MIPSInst_OPCODE(ir)) {
441 case lwc1_op:
442 case swc1_op:
443 #if (__mips >= 2 || defined(__mips64))
444 case ldc1_op:
445 case sdc1_op:
446 #endif
447 case cop1_op:
448 #if __mips >= 4 && __mips != 32
449 case cop1x_op:
450 #endif
451 /* its one of ours */
452 goto emul;
453 #if __mips >= 4
454 case spec_op:
455 if (MIPSInst_FUNC(ir) == movc_op)
456 goto emul;
457 break;
458 #endif
462 * Single step the non-cp1
463 * instruction in the dslot
465 return mips_dsemul(xcp, ir, (unsigned long) contpc);
467 else {
468 /* branch not taken */
469 if (likely) {
471 * branch likely nullifies
472 * dslot if not taken
474 xcp->cp0_epc += 4;
475 contpc += 4;
477 * else continue & execute
478 * dslot as normal insn
482 break;
485 default:
486 if (!(MIPSInst_RS(ir) & 0x10))
487 return SIGILL;
489 int sig;
491 /* a real fpu computation instruction */
492 if ((sig = fpu_emu(xcp, ctx, ir)))
493 return sig;
496 break;
498 #if __mips >= 4 && __mips != 32
499 case cop1x_op:{
500 int sig;
502 if ((sig = fpux_emu(xcp, ctx, ir)))
503 return sig;
504 break;
506 #endif
508 #if __mips >= 4
509 case spec_op:
510 if (MIPSInst_FUNC(ir) != movc_op)
511 return SIGILL;
512 cond = fpucondbit[MIPSInst_RT(ir) >> 2];
513 if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
514 xcp->regs[MIPSInst_RD(ir)] =
515 xcp->regs[MIPSInst_RS(ir)];
516 break;
517 #endif
519 default:
520 return SIGILL;
523 /* we did it !! */
524 xcp->cp0_epc = (unsigned long) contpc;
525 xcp->cp0_cause &= ~CAUSEF_BD;
527 return 0;
531 * Conversion table from MIPS compare ops 48-63
532 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
534 static const unsigned char cmptab[8] = {
535 0, /* cmp_0 (sig) cmp_sf */
536 IEEE754_CUN, /* cmp_un (sig) cmp_ngle */
537 IEEE754_CEQ, /* cmp_eq (sig) cmp_seq */
538 IEEE754_CEQ | IEEE754_CUN, /* cmp_ueq (sig) cmp_ngl */
539 IEEE754_CLT, /* cmp_olt (sig) cmp_lt */
540 IEEE754_CLT | IEEE754_CUN, /* cmp_ult (sig) cmp_nge */
541 IEEE754_CLT | IEEE754_CEQ, /* cmp_ole (sig) cmp_le */
542 IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN, /* cmp_ule (sig) cmp_ngt */
546 #if __mips >= 4 && __mips != 32
549 * Additional MIPS4 instructions
552 #define DEF3OP(name, p, f1, f2, f3) \
553 static ieee754##p fpemu_##p##_##name (ieee754##p r, ieee754##p s, \
554 ieee754##p t) \
556 struct _ieee754_csr ieee754_csr_save; \
557 s = f1 (s, t); \
558 ieee754_csr_save = ieee754_csr; \
559 s = f2 (s, r); \
560 ieee754_csr_save.cx |= ieee754_csr.cx; \
561 ieee754_csr_save.sx |= ieee754_csr.sx; \
562 s = f3 (s); \
563 ieee754_csr.cx |= ieee754_csr_save.cx; \
564 ieee754_csr.sx |= ieee754_csr_save.sx; \
565 return s; \
568 static ieee754dp fpemu_dp_recip(ieee754dp d)
570 return ieee754dp_div(ieee754dp_one(0), d);
573 static ieee754dp fpemu_dp_rsqrt(ieee754dp d)
575 return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
578 static ieee754sp fpemu_sp_recip(ieee754sp s)
580 return ieee754sp_div(ieee754sp_one(0), s);
583 static ieee754sp fpemu_sp_rsqrt(ieee754sp s)
585 return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
588 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add,);
589 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub,);
590 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
591 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
592 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add,);
593 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub,);
594 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
595 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
597 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
598 mips_instruction ir)
600 unsigned rcsr = 0; /* resulting csr */
602 fpuemustats.cp1xops++;
604 switch (MIPSInst_FMA_FFMT(ir)) {
605 case s_fmt:{ /* 0 */
607 ieee754sp(*handler) (ieee754sp, ieee754sp, ieee754sp);
608 ieee754sp fd, fr, fs, ft;
609 u32 __user *va;
610 u32 val;
612 switch (MIPSInst_FUNC(ir)) {
613 case lwxc1_op:
614 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
615 xcp->regs[MIPSInst_FT(ir)]);
617 fpuemustats.loads++;
618 if (get_user(val, va)) {
619 fpuemustats.errors++;
620 return SIGBUS;
622 SITOREG(val, MIPSInst_FD(ir));
623 break;
625 case swxc1_op:
626 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
627 xcp->regs[MIPSInst_FT(ir)]);
629 fpuemustats.stores++;
631 SIFROMREG(val, MIPSInst_FS(ir));
632 if (put_user(val, va)) {
633 fpuemustats.errors++;
634 return SIGBUS;
636 break;
638 case madd_s_op:
639 handler = fpemu_sp_madd;
640 goto scoptop;
641 case msub_s_op:
642 handler = fpemu_sp_msub;
643 goto scoptop;
644 case nmadd_s_op:
645 handler = fpemu_sp_nmadd;
646 goto scoptop;
647 case nmsub_s_op:
648 handler = fpemu_sp_nmsub;
649 goto scoptop;
651 scoptop:
652 SPFROMREG(fr, MIPSInst_FR(ir));
653 SPFROMREG(fs, MIPSInst_FS(ir));
654 SPFROMREG(ft, MIPSInst_FT(ir));
655 fd = (*handler) (fr, fs, ft);
656 SPTOREG(fd, MIPSInst_FD(ir));
658 copcsr:
659 if (ieee754_cxtest(IEEE754_INEXACT))
660 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
661 if (ieee754_cxtest(IEEE754_UNDERFLOW))
662 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
663 if (ieee754_cxtest(IEEE754_OVERFLOW))
664 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
665 if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
666 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
668 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
669 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
670 /*printk ("SIGFPE: fpu csr = %08x\n",
671 ctx->fcr31); */
672 return SIGFPE;
675 break;
677 default:
678 return SIGILL;
680 break;
683 case d_fmt:{ /* 1 */
684 ieee754dp(*handler) (ieee754dp, ieee754dp, ieee754dp);
685 ieee754dp fd, fr, fs, ft;
686 u64 __user *va;
687 u64 val;
689 switch (MIPSInst_FUNC(ir)) {
690 case ldxc1_op:
691 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
692 xcp->regs[MIPSInst_FT(ir)]);
694 fpuemustats.loads++;
695 if (get_user(val, va)) {
696 fpuemustats.errors++;
697 return SIGBUS;
699 DITOREG(val, MIPSInst_FD(ir));
700 break;
702 case sdxc1_op:
703 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
704 xcp->regs[MIPSInst_FT(ir)]);
706 fpuemustats.stores++;
707 DIFROMREG(val, MIPSInst_FS(ir));
708 if (put_user(val, va)) {
709 fpuemustats.errors++;
710 return SIGBUS;
712 break;
714 case madd_d_op:
715 handler = fpemu_dp_madd;
716 goto dcoptop;
717 case msub_d_op:
718 handler = fpemu_dp_msub;
719 goto dcoptop;
720 case nmadd_d_op:
721 handler = fpemu_dp_nmadd;
722 goto dcoptop;
723 case nmsub_d_op:
724 handler = fpemu_dp_nmsub;
725 goto dcoptop;
727 dcoptop:
728 DPFROMREG(fr, MIPSInst_FR(ir));
729 DPFROMREG(fs, MIPSInst_FS(ir));
730 DPFROMREG(ft, MIPSInst_FT(ir));
731 fd = (*handler) (fr, fs, ft);
732 DPTOREG(fd, MIPSInst_FD(ir));
733 goto copcsr;
735 default:
736 return SIGILL;
738 break;
741 case 0x7: /* 7 */
742 if (MIPSInst_FUNC(ir) != pfetch_op) {
743 return SIGILL;
745 /* ignore prefx operation */
746 break;
748 default:
749 return SIGILL;
752 return 0;
754 #endif
759 * Emulate a single COP1 arithmetic instruction.
761 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
762 mips_instruction ir)
764 int rfmt; /* resulting format */
765 unsigned rcsr = 0; /* resulting csr */
766 unsigned cond;
767 union {
768 ieee754dp d;
769 ieee754sp s;
770 int w;
771 #ifdef __mips64
772 s64 l;
773 #endif
774 } rv; /* resulting value */
776 fpuemustats.cp1ops++;
777 switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
778 case s_fmt:{ /* 0 */
779 union {
780 ieee754sp(*b) (ieee754sp, ieee754sp);
781 ieee754sp(*u) (ieee754sp);
782 } handler;
784 switch (MIPSInst_FUNC(ir)) {
785 /* binary ops */
786 case fadd_op:
787 handler.b = ieee754sp_add;
788 goto scopbop;
789 case fsub_op:
790 handler.b = ieee754sp_sub;
791 goto scopbop;
792 case fmul_op:
793 handler.b = ieee754sp_mul;
794 goto scopbop;
795 case fdiv_op:
796 handler.b = ieee754sp_div;
797 goto scopbop;
799 /* unary ops */
800 #if __mips >= 2 || defined(__mips64)
801 case fsqrt_op:
802 handler.u = ieee754sp_sqrt;
803 goto scopuop;
804 #endif
805 #if __mips >= 4 && __mips != 32
806 case frsqrt_op:
807 handler.u = fpemu_sp_rsqrt;
808 goto scopuop;
809 case frecip_op:
810 handler.u = fpemu_sp_recip;
811 goto scopuop;
812 #endif
813 #if __mips >= 4
814 case fmovc_op:
815 cond = fpucondbit[MIPSInst_FT(ir) >> 2];
816 if (((ctx->fcr31 & cond) != 0) !=
817 ((MIPSInst_FT(ir) & 1) != 0))
818 return 0;
819 SPFROMREG(rv.s, MIPSInst_FS(ir));
820 break;
821 case fmovz_op:
822 if (xcp->regs[MIPSInst_FT(ir)] != 0)
823 return 0;
824 SPFROMREG(rv.s, MIPSInst_FS(ir));
825 break;
826 case fmovn_op:
827 if (xcp->regs[MIPSInst_FT(ir)] == 0)
828 return 0;
829 SPFROMREG(rv.s, MIPSInst_FS(ir));
830 break;
831 #endif
832 case fabs_op:
833 handler.u = ieee754sp_abs;
834 goto scopuop;
835 case fneg_op:
836 handler.u = ieee754sp_neg;
837 goto scopuop;
838 case fmov_op:
839 /* an easy one */
840 SPFROMREG(rv.s, MIPSInst_FS(ir));
841 goto copcsr;
843 /* binary op on handler */
844 scopbop:
846 ieee754sp fs, ft;
848 SPFROMREG(fs, MIPSInst_FS(ir));
849 SPFROMREG(ft, MIPSInst_FT(ir));
851 rv.s = (*handler.b) (fs, ft);
852 goto copcsr;
854 scopuop:
856 ieee754sp fs;
858 SPFROMREG(fs, MIPSInst_FS(ir));
859 rv.s = (*handler.u) (fs);
860 goto copcsr;
862 copcsr:
863 if (ieee754_cxtest(IEEE754_INEXACT))
864 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
865 if (ieee754_cxtest(IEEE754_UNDERFLOW))
866 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
867 if (ieee754_cxtest(IEEE754_OVERFLOW))
868 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
869 if (ieee754_cxtest(IEEE754_ZERO_DIVIDE))
870 rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
871 if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
872 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
873 break;
875 /* unary conv ops */
876 case fcvts_op:
877 return SIGILL; /* not defined */
878 case fcvtd_op:{
879 ieee754sp fs;
881 SPFROMREG(fs, MIPSInst_FS(ir));
882 rv.d = ieee754dp_fsp(fs);
883 rfmt = d_fmt;
884 goto copcsr;
886 case fcvtw_op:{
887 ieee754sp fs;
889 SPFROMREG(fs, MIPSInst_FS(ir));
890 rv.w = ieee754sp_tint(fs);
891 rfmt = w_fmt;
892 goto copcsr;
895 #if __mips >= 2 || defined(__mips64)
896 case fround_op:
897 case ftrunc_op:
898 case fceil_op:
899 case ffloor_op:{
900 unsigned int oldrm = ieee754_csr.rm;
901 ieee754sp fs;
903 SPFROMREG(fs, MIPSInst_FS(ir));
904 ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
905 rv.w = ieee754sp_tint(fs);
906 ieee754_csr.rm = oldrm;
907 rfmt = w_fmt;
908 goto copcsr;
910 #endif /* __mips >= 2 */
912 #if defined(__mips64)
913 case fcvtl_op:{
914 ieee754sp fs;
916 SPFROMREG(fs, MIPSInst_FS(ir));
917 rv.l = ieee754sp_tlong(fs);
918 rfmt = l_fmt;
919 goto copcsr;
922 case froundl_op:
923 case ftruncl_op:
924 case fceill_op:
925 case ffloorl_op:{
926 unsigned int oldrm = ieee754_csr.rm;
927 ieee754sp fs;
929 SPFROMREG(fs, MIPSInst_FS(ir));
930 ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
931 rv.l = ieee754sp_tlong(fs);
932 ieee754_csr.rm = oldrm;
933 rfmt = l_fmt;
934 goto copcsr;
936 #endif /* defined(__mips64) */
938 default:
939 if (MIPSInst_FUNC(ir) >= fcmp_op) {
940 unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
941 ieee754sp fs, ft;
943 SPFROMREG(fs, MIPSInst_FS(ir));
944 SPFROMREG(ft, MIPSInst_FT(ir));
945 rv.w = ieee754sp_cmp(fs, ft,
946 cmptab[cmpop & 0x7], cmpop & 0x8);
947 rfmt = -1;
948 if ((cmpop & 0x8) && ieee754_cxtest
949 (IEEE754_INVALID_OPERATION))
950 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
951 else
952 goto copcsr;
955 else {
956 return SIGILL;
958 break;
960 break;
963 case d_fmt:{
964 union {
965 ieee754dp(*b) (ieee754dp, ieee754dp);
966 ieee754dp(*u) (ieee754dp);
967 } handler;
969 switch (MIPSInst_FUNC(ir)) {
970 /* binary ops */
971 case fadd_op:
972 handler.b = ieee754dp_add;
973 goto dcopbop;
974 case fsub_op:
975 handler.b = ieee754dp_sub;
976 goto dcopbop;
977 case fmul_op:
978 handler.b = ieee754dp_mul;
979 goto dcopbop;
980 case fdiv_op:
981 handler.b = ieee754dp_div;
982 goto dcopbop;
984 /* unary ops */
985 #if __mips >= 2 || defined(__mips64)
986 case fsqrt_op:
987 handler.u = ieee754dp_sqrt;
988 goto dcopuop;
989 #endif
990 #if __mips >= 4 && __mips != 32
991 case frsqrt_op:
992 handler.u = fpemu_dp_rsqrt;
993 goto dcopuop;
994 case frecip_op:
995 handler.u = fpemu_dp_recip;
996 goto dcopuop;
997 #endif
998 #if __mips >= 4
999 case fmovc_op:
1000 cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1001 if (((ctx->fcr31 & cond) != 0) !=
1002 ((MIPSInst_FT(ir) & 1) != 0))
1003 return 0;
1004 DPFROMREG(rv.d, MIPSInst_FS(ir));
1005 break;
1006 case fmovz_op:
1007 if (xcp->regs[MIPSInst_FT(ir)] != 0)
1008 return 0;
1009 DPFROMREG(rv.d, MIPSInst_FS(ir));
1010 break;
1011 case fmovn_op:
1012 if (xcp->regs[MIPSInst_FT(ir)] == 0)
1013 return 0;
1014 DPFROMREG(rv.d, MIPSInst_FS(ir));
1015 break;
1016 #endif
1017 case fabs_op:
1018 handler.u = ieee754dp_abs;
1019 goto dcopuop;
1021 case fneg_op:
1022 handler.u = ieee754dp_neg;
1023 goto dcopuop;
1025 case fmov_op:
1026 /* an easy one */
1027 DPFROMREG(rv.d, MIPSInst_FS(ir));
1028 goto copcsr;
1030 /* binary op on handler */
1031 dcopbop:{
1032 ieee754dp fs, ft;
1034 DPFROMREG(fs, MIPSInst_FS(ir));
1035 DPFROMREG(ft, MIPSInst_FT(ir));
1037 rv.d = (*handler.b) (fs, ft);
1038 goto copcsr;
1040 dcopuop:{
1041 ieee754dp fs;
1043 DPFROMREG(fs, MIPSInst_FS(ir));
1044 rv.d = (*handler.u) (fs);
1045 goto copcsr;
1048 /* unary conv ops */
1049 case fcvts_op:{
1050 ieee754dp fs;
1052 DPFROMREG(fs, MIPSInst_FS(ir));
1053 rv.s = ieee754sp_fdp(fs);
1054 rfmt = s_fmt;
1055 goto copcsr;
1057 case fcvtd_op:
1058 return SIGILL; /* not defined */
1060 case fcvtw_op:{
1061 ieee754dp fs;
1063 DPFROMREG(fs, MIPSInst_FS(ir));
1064 rv.w = ieee754dp_tint(fs); /* wrong */
1065 rfmt = w_fmt;
1066 goto copcsr;
1069 #if __mips >= 2 || defined(__mips64)
1070 case fround_op:
1071 case ftrunc_op:
1072 case fceil_op:
1073 case ffloor_op:{
1074 unsigned int oldrm = ieee754_csr.rm;
1075 ieee754dp fs;
1077 DPFROMREG(fs, MIPSInst_FS(ir));
1078 ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
1079 rv.w = ieee754dp_tint(fs);
1080 ieee754_csr.rm = oldrm;
1081 rfmt = w_fmt;
1082 goto copcsr;
1084 #endif
1086 #if defined(__mips64)
1087 case fcvtl_op:{
1088 ieee754dp fs;
1090 DPFROMREG(fs, MIPSInst_FS(ir));
1091 rv.l = ieee754dp_tlong(fs);
1092 rfmt = l_fmt;
1093 goto copcsr;
1096 case froundl_op:
1097 case ftruncl_op:
1098 case fceill_op:
1099 case ffloorl_op:{
1100 unsigned int oldrm = ieee754_csr.rm;
1101 ieee754dp fs;
1103 DPFROMREG(fs, MIPSInst_FS(ir));
1104 ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
1105 rv.l = ieee754dp_tlong(fs);
1106 ieee754_csr.rm = oldrm;
1107 rfmt = l_fmt;
1108 goto copcsr;
1110 #endif /* __mips >= 3 */
1112 default:
1113 if (MIPSInst_FUNC(ir) >= fcmp_op) {
1114 unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1115 ieee754dp fs, ft;
1117 DPFROMREG(fs, MIPSInst_FS(ir));
1118 DPFROMREG(ft, MIPSInst_FT(ir));
1119 rv.w = ieee754dp_cmp(fs, ft,
1120 cmptab[cmpop & 0x7], cmpop & 0x8);
1121 rfmt = -1;
1122 if ((cmpop & 0x8)
1124 ieee754_cxtest
1125 (IEEE754_INVALID_OPERATION))
1126 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1127 else
1128 goto copcsr;
1131 else {
1132 return SIGILL;
1134 break;
1136 break;
1139 case w_fmt:{
1140 ieee754sp fs;
1142 switch (MIPSInst_FUNC(ir)) {
1143 case fcvts_op:
1144 /* convert word to single precision real */
1145 SPFROMREG(fs, MIPSInst_FS(ir));
1146 rv.s = ieee754sp_fint(fs.bits);
1147 rfmt = s_fmt;
1148 goto copcsr;
1149 case fcvtd_op:
1150 /* convert word to double precision real */
1151 SPFROMREG(fs, MIPSInst_FS(ir));
1152 rv.d = ieee754dp_fint(fs.bits);
1153 rfmt = d_fmt;
1154 goto copcsr;
1155 default:
1156 return SIGILL;
1158 break;
1161 #if defined(__mips64)
1162 case l_fmt:{
1163 switch (MIPSInst_FUNC(ir)) {
1164 case fcvts_op:
1165 /* convert long to single precision real */
1166 rv.s = ieee754sp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1167 rfmt = s_fmt;
1168 goto copcsr;
1169 case fcvtd_op:
1170 /* convert long to double precision real */
1171 rv.d = ieee754dp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1172 rfmt = d_fmt;
1173 goto copcsr;
1174 default:
1175 return SIGILL;
1177 break;
1179 #endif
1181 default:
1182 return SIGILL;
1186 * Update the fpu CSR register for this operation.
1187 * If an exception is required, generate a tidy SIGFPE exception,
1188 * without updating the result register.
1189 * Note: cause exception bits do not accumulate, they are rewritten
1190 * for each op; only the flag/sticky bits accumulate.
1192 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1193 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1194 /*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
1195 return SIGFPE;
1199 * Now we can safely write the result back to the register file.
1201 switch (rfmt) {
1202 case -1:{
1203 #if __mips >= 4
1204 cond = fpucondbit[MIPSInst_FD(ir) >> 2];
1205 #else
1206 cond = FPU_CSR_COND;
1207 #endif
1208 if (rv.w)
1209 ctx->fcr31 |= cond;
1210 else
1211 ctx->fcr31 &= ~cond;
1212 break;
1214 case d_fmt:
1215 DPTOREG(rv.d, MIPSInst_FD(ir));
1216 break;
1217 case s_fmt:
1218 SPTOREG(rv.s, MIPSInst_FD(ir));
1219 break;
1220 case w_fmt:
1221 SITOREG(rv.w, MIPSInst_FD(ir));
1222 break;
1223 #if defined(__mips64)
1224 case l_fmt:
1225 DITOREG(rv.l, MIPSInst_FD(ir));
1226 break;
1227 #endif
1228 default:
1229 return SIGILL;
1232 return 0;
1235 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1236 int has_fpu)
1238 unsigned long oldepc, prevepc;
1239 mips_instruction insn;
1240 int sig = 0;
1242 oldepc = xcp->cp0_epc;
1243 do {
1244 prevepc = xcp->cp0_epc;
1246 if (get_user(insn, (mips_instruction __user *) xcp->cp0_epc)) {
1247 fpuemustats.errors++;
1248 return SIGBUS;
1250 if (insn == 0)
1251 xcp->cp0_epc += 4; /* skip nops */
1252 else {
1254 * The 'ieee754_csr' is an alias of
1255 * ctx->fcr31. No need to copy ctx->fcr31 to
1256 * ieee754_csr. But ieee754_csr.rm is ieee
1257 * library modes. (not mips rounding mode)
1259 /* convert to ieee library modes */
1260 ieee754_csr.rm = ieee_rm[ieee754_csr.rm];
1261 sig = cop1Emulate(xcp, ctx);
1262 /* revert to mips rounding mode */
1263 ieee754_csr.rm = mips_rm[ieee754_csr.rm];
1266 if (has_fpu)
1267 break;
1268 if (sig)
1269 break;
1271 cond_resched();
1272 } while (xcp->cp0_epc > prevepc);
1274 /* SIGILL indicates a non-fpu instruction */
1275 if (sig == SIGILL && xcp->cp0_epc != oldepc)
1276 /* but if epc has advanced, then ignore it */
1277 sig = 0;
1279 return sig;
1282 #ifdef CONFIG_DEBUG_FS
1283 extern struct dentry *mips_debugfs_dir;
1284 static int __init debugfs_fpuemu(void)
1286 struct dentry *d, *dir;
1287 int i;
1288 static struct {
1289 const char *name;
1290 unsigned int *v;
1291 } vars[] __initdata = {
1292 { "emulated", &fpuemustats.emulated },
1293 { "loads", &fpuemustats.loads },
1294 { "stores", &fpuemustats.stores },
1295 { "cp1ops", &fpuemustats.cp1ops },
1296 { "cp1xops", &fpuemustats.cp1xops },
1297 { "errors", &fpuemustats.errors },
1300 if (!mips_debugfs_dir)
1301 return -ENODEV;
1302 dir = debugfs_create_dir("fpuemustats", mips_debugfs_dir);
1303 if (IS_ERR(dir))
1304 return PTR_ERR(dir);
1305 for (i = 0; i < ARRAY_SIZE(vars); i++) {
1306 d = debugfs_create_u32(vars[i].name, S_IRUGO, dir, vars[i].v);
1307 if (IS_ERR(d))
1308 return PTR_ERR(d);
1310 return 0;
1312 __initcall(debugfs_fpuemu);
1313 #endif