[PATCH] ocfs2: zero_user_page conversion
[wrt350n-kernel.git] / arch / ppc / xmon / ppc.h
blob2345ecba1fe9faed25b8e0ba075152331f718562
1 /* ppc.h -- Header file for PowerPC opcode table
2 Copyright 1994 Free Software Foundation, Inc.
3 Written by Ian Lance Taylor, Cygnus Support
5 This file is part of GDB, GAS, and the GNU binutils.
7 GDB, GAS, and the GNU binutils are free software; you can redistribute
8 them and/or modify them under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either version
10 1, or (at your option) any later version.
12 GDB, GAS, and the GNU binutils are distributed in the hope that they
13 will be useful, but WITHOUT ANY WARRANTY; without even the implied
14 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
15 the GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this file; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 #ifndef PPC_H
22 #define PPC_H
24 /* The opcode table is an array of struct powerpc_opcode. */
26 struct powerpc_opcode
28 /* The opcode name. */
29 const char *name;
31 /* The opcode itself. Those bits which will be filled in with
32 operands are zeroes. */
33 unsigned long opcode;
35 /* The opcode mask. This is used by the disassembler. This is a
36 mask containing ones indicating those bits which must match the
37 opcode field, and zeroes indicating those bits which need not
38 match (and are presumably filled in by operands). */
39 unsigned long mask;
41 /* One bit flags for the opcode. These are used to indicate which
42 specific processors support the instructions. The defined values
43 are listed below. */
44 unsigned long flags;
46 /* An array of operand codes. Each code is an index into the
47 operand table. They appear in the order which the operands must
48 appear in assembly code, and are terminated by a zero. */
49 unsigned char operands[8];
52 /* The table itself is sorted by major opcode number, and is otherwise
53 in the order in which the disassembler should consider
54 instructions. */
55 extern const struct powerpc_opcode powerpc_opcodes[];
56 extern const int powerpc_num_opcodes;
58 /* Values defined for the flags field of a struct powerpc_opcode. */
60 /* Opcode is defined for the PowerPC architecture. */
61 #define PPC_OPCODE_PPC (01)
63 /* Opcode is defined for the POWER (RS/6000) architecture. */
64 #define PPC_OPCODE_POWER (02)
66 /* Opcode is defined for the POWER2 (Rios 2) architecture. */
67 #define PPC_OPCODE_POWER2 (04)
69 /* Opcode is only defined on 32 bit architectures. */
70 #define PPC_OPCODE_32 (010)
72 /* Opcode is only defined on 64 bit architectures. */
73 #define PPC_OPCODE_64 (020)
75 /* Opcode is supported by the Motorola PowerPC 601 processor. The 601
76 is assumed to support all PowerPC (PPC_OPCODE_PPC) instructions,
77 but it also supports many additional POWER instructions. */
78 #define PPC_OPCODE_601 (040)
80 /* A macro to extract the major opcode from an instruction. */
81 #define PPC_OP(i) (((i) >> 26) & 0x3f)
83 /* The operands table is an array of struct powerpc_operand. */
85 struct powerpc_operand
87 /* The number of bits in the operand. */
88 int bits;
90 /* How far the operand is left shifted in the instruction. */
91 int shift;
93 /* Insertion function. This is used by the assembler. To insert an
94 operand value into an instruction, check this field.
96 If it is NULL, execute
97 i |= (op & ((1 << o->bits) - 1)) << o->shift;
98 (i is the instruction which we are filling in, o is a pointer to
99 this structure, and op is the opcode value; this assumes twos
100 complement arithmetic).
102 If this field is not NULL, then simply call it with the
103 instruction and the operand value. It will return the new value
104 of the instruction. If the ERRMSG argument is not NULL, then if
105 the operand value is illegal, *ERRMSG will be set to a warning
106 string (the operand will be inserted in any case). If the
107 operand value is legal, *ERRMSG will be unchanged (most operands
108 can accept any value). */
109 unsigned long (*insert) PARAMS ((unsigned long instruction, long op,
110 const char **errmsg));
112 /* Extraction function. This is used by the disassembler. To
113 extract this operand type from an instruction, check this field.
115 If it is NULL, compute
116 op = ((i) >> o->shift) & ((1 << o->bits) - 1);
117 if ((o->flags & PPC_OPERAND_SIGNED) != 0
118 && (op & (1 << (o->bits - 1))) != 0)
119 op -= 1 << o->bits;
120 (i is the instruction, o is a pointer to this structure, and op
121 is the result; this assumes twos complement arithmetic).
123 If this field is not NULL, then simply call it with the
124 instruction value. It will return the value of the operand. If
125 the INVALID argument is not NULL, *INVALID will be set to
126 non-zero if this operand type can not actually be extracted from
127 this operand (i.e., the instruction does not match). If the
128 operand is valid, *INVALID will not be changed. */
129 long (*extract) PARAMS ((unsigned long instruction, int *invalid));
131 /* One bit syntax flags. */
132 unsigned long flags;
135 /* Elements in the table are retrieved by indexing with values from
136 the operands field of the powerpc_opcodes table. */
138 extern const struct powerpc_operand powerpc_operands[];
140 /* Values defined for the flags field of a struct powerpc_operand. */
142 /* This operand takes signed values. */
143 #define PPC_OPERAND_SIGNED (01)
145 /* This operand takes signed values, but also accepts a full positive
146 range of values when running in 32 bit mode. That is, if bits is
147 16, it takes any value from -0x8000 to 0xffff. In 64 bit mode,
148 this flag is ignored. */
149 #define PPC_OPERAND_SIGNOPT (02)
151 /* This operand does not actually exist in the assembler input. This
152 is used to support extended mnemonics such as mr, for which two
153 operands fields are identical. The assembler should call the
154 insert function with any op value. The disassembler should call
155 the extract function, ignore the return value, and check the value
156 placed in the valid argument. */
157 #define PPC_OPERAND_FAKE (04)
159 /* The next operand should be wrapped in parentheses rather than
160 separated from this one by a comma. This is used for the load and
161 store instructions which want their operands to look like
162 reg,displacement(reg)
164 #define PPC_OPERAND_PARENS (010)
166 /* This operand may use the symbolic names for the CR fields, which
168 lt 0 gt 1 eq 2 so 3 un 3
169 cr0 0 cr1 1 cr2 2 cr3 3
170 cr4 4 cr5 5 cr6 6 cr7 7
171 These may be combined arithmetically, as in cr2*4+gt. These are
172 only supported on the PowerPC, not the POWER. */
173 #define PPC_OPERAND_CR (020)
175 /* This operand names a register. The disassembler uses this to print
176 register names with a leading 'r'. */
177 #define PPC_OPERAND_GPR (040)
179 /* This operand names a floating point register. The disassembler
180 prints these with a leading 'f'. */
181 #define PPC_OPERAND_FPR (0100)
183 /* This operand is a relative branch displacement. The disassembler
184 prints these symbolically if possible. */
185 #define PPC_OPERAND_RELATIVE (0200)
187 /* This operand is an absolute branch address. The disassembler
188 prints these symbolically if possible. */
189 #define PPC_OPERAND_ABSOLUTE (0400)
191 /* This operand is optional, and is zero if omitted. This is used for
192 the optional BF and L fields in the comparison instructions. The
193 assembler must count the number of operands remaining on the line,
194 and the number of operands remaining for the opcode, and decide
195 whether this operand is present or not. The disassembler should
196 print this operand out only if it is not zero. */
197 #define PPC_OPERAND_OPTIONAL (01000)
199 /* This flag is only used with PPC_OPERAND_OPTIONAL. If this operand
200 is omitted, then for the next operand use this operand value plus
201 1, ignoring the next operand field for the opcode. This wretched
202 hack is needed because the Power rotate instructions can take
203 either 4 or 5 operands. The disassembler should print this operand
204 out regardless of the PPC_OPERAND_OPTIONAL field. */
205 #define PPC_OPERAND_NEXT (02000)
207 /* This operand should be regarded as a negative number for the
208 purposes of overflow checking (i.e., the normal most negative
209 number is disallowed and one more than the normal most positive
210 number is allowed). This flag will only be set for a signed
211 operand. */
212 #define PPC_OPERAND_NEGATIVE (04000)
214 /* The POWER and PowerPC assemblers use a few macros. We keep them
215 with the operands table for simplicity. The macro table is an
216 array of struct powerpc_macro. */
218 struct powerpc_macro
220 /* The macro name. */
221 const char *name;
223 /* The number of operands the macro takes. */
224 unsigned int operands;
226 /* One bit flags for the opcode. These are used to indicate which
227 specific processors support the instructions. The values are the
228 same as those for the struct powerpc_opcode flags field. */
229 unsigned long flags;
231 /* A format string to turn the macro into a normal instruction.
232 Each %N in the string is replaced with operand number N (zero
233 based). */
234 const char *format;
237 extern const struct powerpc_macro powerpc_macros[];
238 extern const int powerpc_num_macros;
240 #endif /* PPC_H */