1 /* pci_sabre.c: Sabre specific PCI controller support.
3 * Copyright (C) 1997, 1998, 1999, 2007 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com)
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/pci.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/interrupt.h>
16 #include <asm/iommu.h>
19 #include <asm/oplib.h>
21 #include <asm/of_device.h>
24 #include "iommu_common.h"
26 /* All SABRE registers are 64-bits. The following accessor
27 * routines are how they are accessed. The REG parameter
28 * is a physical address.
30 #define sabre_read(__reg) \
32 __asm__ __volatile__("ldxa [%1] %2, %0" \
34 : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
38 #define sabre_write(__reg, __val) \
39 __asm__ __volatile__("stxa %0, [%1] %2" \
41 : "r" (__val), "r" (__reg), \
42 "i" (ASI_PHYS_BYPASS_EC_E) \
45 /* SABRE PCI controller register offsets and definitions. */
46 #define SABRE_UE_AFSR 0x0030UL
47 #define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
48 #define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
49 #define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
50 #define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
51 #define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */
52 #define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */
53 #define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
54 #define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */
55 #define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */
56 #define SABRE_UECE_AFAR 0x0038UL
57 #define SABRE_CE_AFSR 0x0040UL
58 #define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
59 #define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
60 #define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
61 #define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
62 #define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */
63 #define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
64 #define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */
65 #define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */
66 #define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */
67 #define SABRE_IOMMU_CONTROL 0x0200UL
68 #define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */
69 #define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */
70 #define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */
71 #define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */
72 #define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */
73 #define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000
74 #define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000
75 #define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000
76 #define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000
77 #define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000
78 #define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000
79 #define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000
80 #define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
81 #define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */
82 #define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */
83 #define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */
84 #define SABRE_IOMMU_TSBBASE 0x0208UL
85 #define SABRE_IOMMU_FLUSH 0x0210UL
86 #define SABRE_IMAP_A_SLOT0 0x0c00UL
87 #define SABRE_IMAP_B_SLOT0 0x0c20UL
88 #define SABRE_IMAP_SCSI 0x1000UL
89 #define SABRE_IMAP_ETH 0x1008UL
90 #define SABRE_IMAP_BPP 0x1010UL
91 #define SABRE_IMAP_AU_REC 0x1018UL
92 #define SABRE_IMAP_AU_PLAY 0x1020UL
93 #define SABRE_IMAP_PFAIL 0x1028UL
94 #define SABRE_IMAP_KMS 0x1030UL
95 #define SABRE_IMAP_FLPY 0x1038UL
96 #define SABRE_IMAP_SHW 0x1040UL
97 #define SABRE_IMAP_KBD 0x1048UL
98 #define SABRE_IMAP_MS 0x1050UL
99 #define SABRE_IMAP_SER 0x1058UL
100 #define SABRE_IMAP_UE 0x1070UL
101 #define SABRE_IMAP_CE 0x1078UL
102 #define SABRE_IMAP_PCIERR 0x1080UL
103 #define SABRE_IMAP_GFX 0x1098UL
104 #define SABRE_IMAP_EUPA 0x10a0UL
105 #define SABRE_ICLR_A_SLOT0 0x1400UL
106 #define SABRE_ICLR_B_SLOT0 0x1480UL
107 #define SABRE_ICLR_SCSI 0x1800UL
108 #define SABRE_ICLR_ETH 0x1808UL
109 #define SABRE_ICLR_BPP 0x1810UL
110 #define SABRE_ICLR_AU_REC 0x1818UL
111 #define SABRE_ICLR_AU_PLAY 0x1820UL
112 #define SABRE_ICLR_PFAIL 0x1828UL
113 #define SABRE_ICLR_KMS 0x1830UL
114 #define SABRE_ICLR_FLPY 0x1838UL
115 #define SABRE_ICLR_SHW 0x1840UL
116 #define SABRE_ICLR_KBD 0x1848UL
117 #define SABRE_ICLR_MS 0x1850UL
118 #define SABRE_ICLR_SER 0x1858UL
119 #define SABRE_ICLR_UE 0x1870UL
120 #define SABRE_ICLR_CE 0x1878UL
121 #define SABRE_ICLR_PCIERR 0x1880UL
122 #define SABRE_WRSYNC 0x1c20UL
123 #define SABRE_PCICTRL 0x2000UL
124 #define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */
125 #define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */
126 #define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
127 #define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */
128 #define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */
129 #define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */
130 #define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */
131 #define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */
132 #define SABRE_PIOAFSR 0x2010UL
133 #define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */
134 #define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */
135 #define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */
136 #define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */
137 #define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */
138 #define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */
139 #define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */
140 #define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */
141 #define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */
142 #define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */
143 #define SABRE_PIOAFAR 0x2018UL
144 #define SABRE_PCIDIAG 0x2020UL
145 #define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */
146 #define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */
147 #define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */
148 #define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */
149 #define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */
150 #define SABRE_PCITASR 0x2028UL
151 #define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */
152 #define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */
153 #define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */
154 #define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */
155 #define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */
156 #define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */
157 #define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */
158 #define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */
159 #define SABRE_PIOBUF_DIAG 0x5000UL
160 #define SABRE_DMABUF_DIAGLO 0x5100UL
161 #define SABRE_DMABUF_DIAGHI 0x51c0UL
162 #define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */
163 #define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */
164 #define SABRE_IOMMU_VADIAG 0xa400UL
165 #define SABRE_IOMMU_TCDIAG 0xa408UL
166 #define SABRE_IOMMU_TAG 0xa580UL
167 #define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */
168 #define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */
169 #define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */
170 #define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */
171 #define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */
172 #define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */
173 #define SABRE_IOMMU_DATA 0xa600UL
174 #define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */
175 #define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */
176 #define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */
177 #define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */
178 #define SABRE_PCI_IRQSTATE 0xa800UL
179 #define SABRE_OBIO_IRQSTATE 0xa808UL
180 #define SABRE_FFBCFG 0xf000UL
181 #define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */
182 #define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */
183 #define SABRE_MCCTRL0 0xf010UL
184 #define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */
185 #define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */
186 #define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */
187 #define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */
188 #define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */
189 #define SABRE_MCCTRL1 0xf018UL
190 #define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */
191 #define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */
192 #define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */
193 #define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */
194 #define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */
195 #define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */
196 #define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */
197 #define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */
198 #define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */
199 #define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */
200 #define SABRE_RESETCTRL 0xf020UL
202 #define SABRE_CONFIGSPACE 0x001000000UL
203 #define SABRE_IOSPACE 0x002000000UL
204 #define SABRE_IOSPACE_SIZE 0x000ffffffUL
205 #define SABRE_MEMSPACE 0x100000000UL
206 #define SABRE_MEMSPACE_SIZE 0x07fffffffUL
208 static int hummingbird_p
;
209 static struct pci_bus
*sabre_root_bus
;
211 /* SABRE error handling support. */
212 static void sabre_check_iommu_error(struct pci_pbm_info
*pbm
,
216 struct iommu
*iommu
= pbm
->iommu
;
217 unsigned long iommu_tag
[16];
218 unsigned long iommu_data
[16];
223 spin_lock_irqsave(&iommu
->lock
, flags
);
224 control
= sabre_read(iommu
->iommu_control
);
225 if (control
& SABRE_IOMMUCTRL_ERR
) {
228 /* Clear the error encountered bit.
229 * NOTE: On Sabre this is write 1 to clear,
230 * which is different from Psycho.
232 sabre_write(iommu
->iommu_control
, control
);
233 switch((control
& SABRE_IOMMUCTRL_ERRSTS
) >> 25UL) {
235 type_string
= "Invalid Error";
238 type_string
= "ECC Error";
241 type_string
= "Unknown";
244 printk("%s: IOMMU Error, type[%s]\n",
245 pbm
->name
, type_string
);
247 /* Enter diagnostic mode and probe for error'd
248 * entries in the IOTLB.
250 control
&= ~(SABRE_IOMMUCTRL_ERRSTS
| SABRE_IOMMUCTRL_ERR
);
251 sabre_write(iommu
->iommu_control
,
252 (control
| SABRE_IOMMUCTRL_DENAB
));
253 for (i
= 0; i
< 16; i
++) {
254 unsigned long base
= pbm
->controller_regs
;
257 sabre_read(base
+ SABRE_IOMMU_TAG
+ (i
* 8UL));
259 sabre_read(base
+ SABRE_IOMMU_DATA
+ (i
* 8UL));
260 sabre_write(base
+ SABRE_IOMMU_TAG
+ (i
* 8UL), 0);
261 sabre_write(base
+ SABRE_IOMMU_DATA
+ (i
* 8UL), 0);
263 sabre_write(iommu
->iommu_control
, control
);
265 for (i
= 0; i
< 16; i
++) {
266 unsigned long tag
, data
;
269 if (!(tag
& SABRE_IOMMUTAG_ERR
))
272 data
= iommu_data
[i
];
273 switch((tag
& SABRE_IOMMUTAG_ERRSTS
) >> 23UL) {
275 type_string
= "Invalid Error";
278 type_string
= "ECC Error";
281 type_string
= "Unknown";
284 printk("%s: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
285 pbm
->name
, i
, tag
, type_string
,
286 ((tag
& SABRE_IOMMUTAG_WRITE
) ? 1 : 0),
287 ((tag
& SABRE_IOMMUTAG_SIZE
) ? 64 : 8),
288 ((tag
& SABRE_IOMMUTAG_VPN
) << IOMMU_PAGE_SHIFT
));
289 printk("%s: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
291 ((data
& SABRE_IOMMUDATA_VALID
) ? 1 : 0),
292 ((data
& SABRE_IOMMUDATA_USED
) ? 1 : 0),
293 ((data
& SABRE_IOMMUDATA_CACHE
) ? 1 : 0),
294 ((data
& SABRE_IOMMUDATA_PPN
) << IOMMU_PAGE_SHIFT
));
297 spin_unlock_irqrestore(&iommu
->lock
, flags
);
300 static irqreturn_t
sabre_ue_intr(int irq
, void *dev_id
)
302 struct pci_pbm_info
*pbm
= dev_id
;
303 unsigned long afsr_reg
= pbm
->controller_regs
+ SABRE_UE_AFSR
;
304 unsigned long afar_reg
= pbm
->controller_regs
+ SABRE_UECE_AFAR
;
305 unsigned long afsr
, afar
, error_bits
;
308 /* Latch uncorrectable error status. */
309 afar
= sabre_read(afar_reg
);
310 afsr
= sabre_read(afsr_reg
);
312 /* Clear the primary/secondary error status bits. */
314 (SABRE_UEAFSR_PDRD
| SABRE_UEAFSR_PDWR
|
315 SABRE_UEAFSR_SDRD
| SABRE_UEAFSR_SDWR
|
316 SABRE_UEAFSR_SDTE
| SABRE_UEAFSR_PDTE
);
319 sabre_write(afsr_reg
, error_bits
);
322 printk("%s: Uncorrectable Error, primary error type[%s%s]\n",
324 ((error_bits
& SABRE_UEAFSR_PDRD
) ?
326 ((error_bits
& SABRE_UEAFSR_PDWR
) ?
327 "DMA Write" : "???")),
328 ((error_bits
& SABRE_UEAFSR_PDTE
) ?
329 ":Translation Error" : ""));
330 printk("%s: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
332 (afsr
& SABRE_UEAFSR_BMSK
) >> 32UL,
333 (afsr
& SABRE_UEAFSR_OFF
) >> 29UL,
334 ((afsr
& SABRE_UEAFSR_BLK
) ? 1 : 0));
335 printk("%s: UE AFAR [%016lx]\n", pbm
->name
, afar
);
336 printk("%s: UE Secondary errors [", pbm
->name
);
338 if (afsr
& SABRE_UEAFSR_SDRD
) {
340 printk("(DMA Read)");
342 if (afsr
& SABRE_UEAFSR_SDWR
) {
344 printk("(DMA Write)");
346 if (afsr
& SABRE_UEAFSR_SDTE
) {
348 printk("(Translation Error)");
354 /* Interrogate IOMMU for error status. */
355 sabre_check_iommu_error(pbm
, afsr
, afar
);
360 static irqreturn_t
sabre_ce_intr(int irq
, void *dev_id
)
362 struct pci_pbm_info
*pbm
= dev_id
;
363 unsigned long afsr_reg
= pbm
->controller_regs
+ SABRE_CE_AFSR
;
364 unsigned long afar_reg
= pbm
->controller_regs
+ SABRE_UECE_AFAR
;
365 unsigned long afsr
, afar
, error_bits
;
368 /* Latch error status. */
369 afar
= sabre_read(afar_reg
);
370 afsr
= sabre_read(afsr_reg
);
372 /* Clear primary/secondary error status bits. */
374 (SABRE_CEAFSR_PDRD
| SABRE_CEAFSR_PDWR
|
375 SABRE_CEAFSR_SDRD
| SABRE_CEAFSR_SDWR
);
378 sabre_write(afsr_reg
, error_bits
);
381 printk("%s: Correctable Error, primary error type[%s]\n",
383 ((error_bits
& SABRE_CEAFSR_PDRD
) ?
385 ((error_bits
& SABRE_CEAFSR_PDWR
) ?
386 "DMA Write" : "???")));
388 /* XXX Use syndrome and afar to print out module string just like
389 * XXX UDB CE trap handler does... -DaveM
391 printk("%s: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
394 (afsr
& SABRE_CEAFSR_ESYND
) >> 48UL,
395 (afsr
& SABRE_CEAFSR_BMSK
) >> 32UL,
396 (afsr
& SABRE_CEAFSR_OFF
) >> 29UL,
397 ((afsr
& SABRE_CEAFSR_BLK
) ? 1 : 0));
398 printk("%s: CE AFAR [%016lx]\n", pbm
->name
, afar
);
399 printk("%s: CE Secondary errors [", pbm
->name
);
401 if (afsr
& SABRE_CEAFSR_SDRD
) {
403 printk("(DMA Read)");
405 if (afsr
& SABRE_CEAFSR_SDWR
) {
407 printk("(DMA Write)");
416 static irqreturn_t
sabre_pcierr_intr_other(struct pci_pbm_info
*pbm
)
418 unsigned long csr_reg
, csr
, csr_error_bits
;
419 irqreturn_t ret
= IRQ_NONE
;
422 csr_reg
= pbm
->controller_regs
+ SABRE_PCICTRL
;
423 csr
= sabre_read(csr_reg
);
425 csr
& SABRE_PCICTRL_SERR
;
426 if (csr_error_bits
) {
427 /* Clear the errors. */
428 sabre_write(csr_reg
, csr
);
431 if (csr_error_bits
& SABRE_PCICTRL_SERR
)
432 printk("%s: PCI SERR signal asserted.\n",
436 pci_bus_read_config_word(sabre_root_bus
, 0,
438 if (stat
& (PCI_STATUS_PARITY
|
439 PCI_STATUS_SIG_TARGET_ABORT
|
440 PCI_STATUS_REC_TARGET_ABORT
|
441 PCI_STATUS_REC_MASTER_ABORT
|
442 PCI_STATUS_SIG_SYSTEM_ERROR
)) {
443 printk("%s: PCI bus error, PCI_STATUS[%04x]\n",
445 pci_bus_write_config_word(sabre_root_bus
, 0,
452 static irqreturn_t
sabre_pcierr_intr(int irq
, void *dev_id
)
454 struct pci_pbm_info
*pbm
= dev_id
;
455 unsigned long afsr_reg
, afar_reg
;
456 unsigned long afsr
, afar
, error_bits
;
459 afsr_reg
= pbm
->controller_regs
+ SABRE_PIOAFSR
;
460 afar_reg
= pbm
->controller_regs
+ SABRE_PIOAFAR
;
462 /* Latch error status. */
463 afar
= sabre_read(afar_reg
);
464 afsr
= sabre_read(afsr_reg
);
466 /* Clear primary/secondary error status bits. */
468 (SABRE_PIOAFSR_PMA
| SABRE_PIOAFSR_PTA
|
469 SABRE_PIOAFSR_PRTRY
| SABRE_PIOAFSR_PPERR
|
470 SABRE_PIOAFSR_SMA
| SABRE_PIOAFSR_STA
|
471 SABRE_PIOAFSR_SRTRY
| SABRE_PIOAFSR_SPERR
);
473 return sabre_pcierr_intr_other(pbm
);
474 sabre_write(afsr_reg
, error_bits
);
477 printk("%s: PCI Error, primary error type[%s]\n",
479 (((error_bits
& SABRE_PIOAFSR_PMA
) ?
481 ((error_bits
& SABRE_PIOAFSR_PTA
) ?
483 ((error_bits
& SABRE_PIOAFSR_PRTRY
) ?
484 "Excessive Retries" :
485 ((error_bits
& SABRE_PIOAFSR_PPERR
) ?
486 "Parity Error" : "???"))))));
487 printk("%s: bytemask[%04lx] was_block(%d)\n",
489 (afsr
& SABRE_PIOAFSR_BMSK
) >> 32UL,
490 (afsr
& SABRE_PIOAFSR_BLK
) ? 1 : 0);
491 printk("%s: PCI AFAR [%016lx]\n", pbm
->name
, afar
);
492 printk("%s: PCI Secondary errors [", pbm
->name
);
494 if (afsr
& SABRE_PIOAFSR_SMA
) {
496 printk("(Master Abort)");
498 if (afsr
& SABRE_PIOAFSR_STA
) {
500 printk("(Target Abort)");
502 if (afsr
& SABRE_PIOAFSR_SRTRY
) {
504 printk("(Excessive Retries)");
506 if (afsr
& SABRE_PIOAFSR_SPERR
) {
508 printk("(Parity Error)");
514 /* For the error types shown, scan both PCI buses for devices
515 * which have logged that error type.
518 /* If we see a Target Abort, this could be the result of an
519 * IOMMU translation error of some sort. It is extremely
520 * useful to log this information as usually it indicates
521 * a bug in the IOMMU support code or a PCI device driver.
523 if (error_bits
& (SABRE_PIOAFSR_PTA
| SABRE_PIOAFSR_STA
)) {
524 sabre_check_iommu_error(pbm
, afsr
, afar
);
525 pci_scan_for_target_abort(pbm
, pbm
->pci_bus
);
527 if (error_bits
& (SABRE_PIOAFSR_PMA
| SABRE_PIOAFSR_SMA
))
528 pci_scan_for_master_abort(pbm
, pbm
->pci_bus
);
530 /* For excessive retries, SABRE/PBM will abort the device
531 * and there is no way to specifically check for excessive
532 * retries in the config space status registers. So what
533 * we hope is that we'll catch it via the master/target
537 if (error_bits
& (SABRE_PIOAFSR_PPERR
| SABRE_PIOAFSR_SPERR
))
538 pci_scan_for_parity_error(pbm
, pbm
->pci_bus
);
543 static void sabre_register_error_handlers(struct pci_pbm_info
*pbm
)
545 struct device_node
*dp
= pbm
->prom_node
;
546 struct of_device
*op
;
547 unsigned long base
= pbm
->controller_regs
;
551 if (pbm
->chip_type
== PBM_CHIP_TYPE_SABRE
)
554 op
= of_find_device_by_node(dp
);
558 /* Sabre/Hummingbird IRQ property layout is:
564 if (op
->num_irqs
< 4)
567 /* We clear the error bits in the appropriate AFSR before
568 * registering the handler so that we don't get spurious
571 sabre_write(base
+ SABRE_UE_AFSR
,
572 (SABRE_UEAFSR_PDRD
| SABRE_UEAFSR_PDWR
|
573 SABRE_UEAFSR_SDRD
| SABRE_UEAFSR_SDWR
|
574 SABRE_UEAFSR_SDTE
| SABRE_UEAFSR_PDTE
));
576 err
= request_irq(op
->irqs
[1], sabre_ue_intr
, 0, "SABRE_UE", pbm
);
578 printk(KERN_WARNING
"%s: Couldn't register UE, err=%d.\n",
581 sabre_write(base
+ SABRE_CE_AFSR
,
582 (SABRE_CEAFSR_PDRD
| SABRE_CEAFSR_PDWR
|
583 SABRE_CEAFSR_SDRD
| SABRE_CEAFSR_SDWR
));
585 err
= request_irq(op
->irqs
[2], sabre_ce_intr
, 0, "SABRE_CE", pbm
);
587 printk(KERN_WARNING
"%s: Couldn't register CE, err=%d.\n",
589 err
= request_irq(op
->irqs
[0], sabre_pcierr_intr
, 0,
590 "SABRE_PCIERR", pbm
);
592 printk(KERN_WARNING
"%s: Couldn't register PCIERR, err=%d.\n",
595 tmp
= sabre_read(base
+ SABRE_PCICTRL
);
596 tmp
|= SABRE_PCICTRL_ERREN
;
597 sabre_write(base
+ SABRE_PCICTRL
, tmp
);
600 static void apb_init(struct pci_bus
*sabre_bus
)
602 struct pci_dev
*pdev
;
604 list_for_each_entry(pdev
, &sabre_bus
->devices
, bus_list
) {
605 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
606 pdev
->device
== PCI_DEVICE_ID_SUN_SIMBA
) {
609 pci_read_config_word(pdev
, PCI_COMMAND
, &word16
);
610 word16
|= PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
|
611 PCI_COMMAND_MASTER
| PCI_COMMAND_MEMORY
|
613 pci_write_config_word(pdev
, PCI_COMMAND
, word16
);
615 /* Status register bits are "write 1 to clear". */
616 pci_write_config_word(pdev
, PCI_STATUS
, 0xffff);
617 pci_write_config_word(pdev
, PCI_SEC_STATUS
, 0xffff);
619 /* Use a primary/seconday latency timer value
622 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 64);
623 pci_write_config_byte(pdev
, PCI_SEC_LATENCY_TIMER
, 64);
625 /* Enable reporting/forwarding of master aborts,
628 pci_write_config_byte(pdev
, PCI_BRIDGE_CONTROL
,
629 (PCI_BRIDGE_CTL_PARITY
|
630 PCI_BRIDGE_CTL_SERR
|
631 PCI_BRIDGE_CTL_MASTER_ABORT
));
636 static void sabre_scan_bus(struct pci_pbm_info
*pbm
)
640 /* The APB bridge speaks to the Sabre host PCI bridge
641 * at 66Mhz, but the front side of APB runs at 33Mhz
644 * Hummingbird systems do not use APB, so they run
648 pbm
->is_66mhz_capable
= 1;
650 pbm
->is_66mhz_capable
= 0;
652 /* This driver has not been verified to handle
653 * multiple SABREs yet, so trap this.
655 * Also note that the SABRE host bridge is hardwired
659 prom_printf("SABRE: Multiple controllers unsupported.\n");
664 pbm
->pci_bus
= pci_scan_one_pbm(pbm
);
668 sabre_root_bus
= pbm
->pci_bus
;
670 apb_init(pbm
->pci_bus
);
672 sabre_register_error_handlers(pbm
);
675 static void sabre_iommu_init(struct pci_pbm_info
*pbm
,
676 int tsbsize
, unsigned long dvma_offset
,
679 struct iommu
*iommu
= pbm
->iommu
;
683 /* Register addresses. */
684 iommu
->iommu_control
= pbm
->controller_regs
+ SABRE_IOMMU_CONTROL
;
685 iommu
->iommu_tsbbase
= pbm
->controller_regs
+ SABRE_IOMMU_TSBBASE
;
686 iommu
->iommu_flush
= pbm
->controller_regs
+ SABRE_IOMMU_FLUSH
;
687 iommu
->write_complete_reg
= pbm
->controller_regs
+ SABRE_WRSYNC
;
688 /* Sabre's IOMMU lacks ctx flushing. */
689 iommu
->iommu_ctxflush
= 0;
691 /* Invalidate TLB Entries. */
692 control
= sabre_read(pbm
->controller_regs
+ SABRE_IOMMU_CONTROL
);
693 control
|= SABRE_IOMMUCTRL_DENAB
;
694 sabre_write(pbm
->controller_regs
+ SABRE_IOMMU_CONTROL
, control
);
696 for(i
= 0; i
< 16; i
++) {
697 sabre_write(pbm
->controller_regs
+ SABRE_IOMMU_TAG
+ (i
* 8UL), 0);
698 sabre_write(pbm
->controller_regs
+ SABRE_IOMMU_DATA
+ (i
* 8UL), 0);
701 /* Leave diag mode enabled for full-flushing done
704 pci_iommu_table_init(iommu
, tsbsize
* 1024 * 8, dvma_offset
, dma_mask
);
706 sabre_write(pbm
->controller_regs
+ SABRE_IOMMU_TSBBASE
,
707 __pa(iommu
->page_table
));
709 control
= sabre_read(pbm
->controller_regs
+ SABRE_IOMMU_CONTROL
);
710 control
&= ~(SABRE_IOMMUCTRL_TSBSZ
| SABRE_IOMMUCTRL_TBWSZ
);
711 control
|= SABRE_IOMMUCTRL_ENAB
;
714 control
|= SABRE_IOMMU_TSBSZ_64K
;
717 control
|= SABRE_IOMMU_TSBSZ_128K
;
720 prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize
);
724 sabre_write(pbm
->controller_regs
+ SABRE_IOMMU_CONTROL
, control
);
727 static void sabre_pbm_init(struct pci_controller_info
*p
, struct pci_pbm_info
*pbm
, struct device_node
*dp
)
729 pbm
->name
= dp
->full_name
;
730 printk("%s: SABRE PCI Bus Module\n", pbm
->name
);
732 pbm
->scan_bus
= sabre_scan_bus
;
733 pbm
->pci_ops
= &sun4u_pci_ops
;
734 pbm
->config_space_reg_bits
= 8;
736 pbm
->index
= pci_num_pbms
++;
738 pbm
->chip_type
= PBM_CHIP_TYPE_SABRE
;
741 pci_get_pbm_props(pbm
);
743 pci_determine_mem_io_space(pbm
);
746 void sabre_init(struct device_node
*dp
, char *model_name
)
748 const struct linux_prom64_registers
*pr_regs
;
749 struct pci_controller_info
*p
;
750 struct pci_pbm_info
*pbm
;
754 u32 upa_portid
, dma_mask
;
758 if (!strcmp(model_name
, "pci108e,a001"))
760 else if (!strcmp(model_name
, "SUNW,sabre")) {
761 const char *compat
= of_get_property(dp
, "compatible", NULL
);
762 if (compat
&& !strcmp(compat
, "pci108e,a001"))
764 if (!hummingbird_p
) {
765 struct device_node
*dp
;
767 /* Of course, Sun has to encode things a thousand
768 * different ways, inconsistently.
770 for_each_node_by_type(dp
, "cpu") {
771 if (!strcmp(dp
->name
, "SUNW,UltraSPARC-IIe"))
777 p
= kzalloc(sizeof(*p
), GFP_ATOMIC
);
779 prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n");
783 iommu
= kzalloc(sizeof(*iommu
), GFP_ATOMIC
);
785 prom_printf("SABRE: Error, kmalloc(pci_iommu) failed.\n");
791 upa_portid
= of_getintprop_default(dp
, "upa-portid", 0xff);
793 pbm
->next
= pci_pbm_root
;
796 pbm
->portid
= upa_portid
;
799 * Map in SABRE register set and report the presence of this SABRE.
802 pr_regs
= of_get_property(dp
, "reg", NULL
);
805 * First REG in property is base of entire SABRE register space.
807 pbm
->controller_regs
= pr_regs
[0].phys_addr
;
809 /* Clear interrupts */
812 for (clear_irq
= SABRE_ICLR_A_SLOT0
; clear_irq
< SABRE_ICLR_B_SLOT0
+ 0x80; clear_irq
+= 8)
813 sabre_write(pbm
->controller_regs
+ clear_irq
, 0x0UL
);
816 for (clear_irq
= SABRE_ICLR_SCSI
; clear_irq
< SABRE_ICLR_SCSI
+ 0x80; clear_irq
+= 8)
817 sabre_write(pbm
->controller_regs
+ clear_irq
, 0x0UL
);
819 /* Error interrupts are enabled later after the bus scan. */
820 sabre_write(pbm
->controller_regs
+ SABRE_PCICTRL
,
821 (SABRE_PCICTRL_MRLEN
| SABRE_PCICTRL_SERR
|
822 SABRE_PCICTRL_ARBPARK
| SABRE_PCICTRL_AEN
));
824 /* Now map in PCI config space for entire SABRE. */
826 (pbm
->controller_regs
+ SABRE_CONFIGSPACE
);
828 vdma
= of_get_property(dp
, "virtual-dma", NULL
);
833 dma_mask
|= 0x1fffffff;
837 dma_mask
|= 0x3fffffff;
842 dma_mask
|= 0x7fffffff;
846 prom_printf("SABRE: strange virtual-dma size.\n");
850 sabre_iommu_init(pbm
, tsbsize
, vdma
[0], dma_mask
);
853 * Look for APB underneath.
855 sabre_pbm_init(p
, pbm
, dp
);