[PATCH] ocfs2: zero_user_page conversion
[wrt350n-kernel.git] / arch / sparc64 / kernel / pci_sabre.c
blob22e1be5c7489aaf1420da8fb1c4becf437c2eb49
1 /* pci_sabre.c: Sabre specific PCI controller support.
3 * Copyright (C) 1997, 1998, 1999, 2007 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com)
6 */
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/pci.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/interrupt.h>
15 #include <asm/apb.h>
16 #include <asm/iommu.h>
17 #include <asm/irq.h>
18 #include <asm/smp.h>
19 #include <asm/oplib.h>
20 #include <asm/prom.h>
21 #include <asm/of_device.h>
23 #include "pci_impl.h"
24 #include "iommu_common.h"
26 /* All SABRE registers are 64-bits. The following accessor
27 * routines are how they are accessed. The REG parameter
28 * is a physical address.
30 #define sabre_read(__reg) \
31 ({ u64 __ret; \
32 __asm__ __volatile__("ldxa [%1] %2, %0" \
33 : "=r" (__ret) \
34 : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
35 : "memory"); \
36 __ret; \
38 #define sabre_write(__reg, __val) \
39 __asm__ __volatile__("stxa %0, [%1] %2" \
40 : /* no outputs */ \
41 : "r" (__val), "r" (__reg), \
42 "i" (ASI_PHYS_BYPASS_EC_E) \
43 : "memory")
45 /* SABRE PCI controller register offsets and definitions. */
46 #define SABRE_UE_AFSR 0x0030UL
47 #define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
48 #define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
49 #define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
50 #define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
51 #define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */
52 #define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */
53 #define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
54 #define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */
55 #define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */
56 #define SABRE_UECE_AFAR 0x0038UL
57 #define SABRE_CE_AFSR 0x0040UL
58 #define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
59 #define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
60 #define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
61 #define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
62 #define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */
63 #define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
64 #define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */
65 #define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */
66 #define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */
67 #define SABRE_IOMMU_CONTROL 0x0200UL
68 #define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */
69 #define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */
70 #define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */
71 #define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */
72 #define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */
73 #define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000
74 #define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000
75 #define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000
76 #define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000
77 #define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000
78 #define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000
79 #define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000
80 #define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
81 #define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */
82 #define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */
83 #define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */
84 #define SABRE_IOMMU_TSBBASE 0x0208UL
85 #define SABRE_IOMMU_FLUSH 0x0210UL
86 #define SABRE_IMAP_A_SLOT0 0x0c00UL
87 #define SABRE_IMAP_B_SLOT0 0x0c20UL
88 #define SABRE_IMAP_SCSI 0x1000UL
89 #define SABRE_IMAP_ETH 0x1008UL
90 #define SABRE_IMAP_BPP 0x1010UL
91 #define SABRE_IMAP_AU_REC 0x1018UL
92 #define SABRE_IMAP_AU_PLAY 0x1020UL
93 #define SABRE_IMAP_PFAIL 0x1028UL
94 #define SABRE_IMAP_KMS 0x1030UL
95 #define SABRE_IMAP_FLPY 0x1038UL
96 #define SABRE_IMAP_SHW 0x1040UL
97 #define SABRE_IMAP_KBD 0x1048UL
98 #define SABRE_IMAP_MS 0x1050UL
99 #define SABRE_IMAP_SER 0x1058UL
100 #define SABRE_IMAP_UE 0x1070UL
101 #define SABRE_IMAP_CE 0x1078UL
102 #define SABRE_IMAP_PCIERR 0x1080UL
103 #define SABRE_IMAP_GFX 0x1098UL
104 #define SABRE_IMAP_EUPA 0x10a0UL
105 #define SABRE_ICLR_A_SLOT0 0x1400UL
106 #define SABRE_ICLR_B_SLOT0 0x1480UL
107 #define SABRE_ICLR_SCSI 0x1800UL
108 #define SABRE_ICLR_ETH 0x1808UL
109 #define SABRE_ICLR_BPP 0x1810UL
110 #define SABRE_ICLR_AU_REC 0x1818UL
111 #define SABRE_ICLR_AU_PLAY 0x1820UL
112 #define SABRE_ICLR_PFAIL 0x1828UL
113 #define SABRE_ICLR_KMS 0x1830UL
114 #define SABRE_ICLR_FLPY 0x1838UL
115 #define SABRE_ICLR_SHW 0x1840UL
116 #define SABRE_ICLR_KBD 0x1848UL
117 #define SABRE_ICLR_MS 0x1850UL
118 #define SABRE_ICLR_SER 0x1858UL
119 #define SABRE_ICLR_UE 0x1870UL
120 #define SABRE_ICLR_CE 0x1878UL
121 #define SABRE_ICLR_PCIERR 0x1880UL
122 #define SABRE_WRSYNC 0x1c20UL
123 #define SABRE_PCICTRL 0x2000UL
124 #define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */
125 #define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */
126 #define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
127 #define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */
128 #define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */
129 #define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */
130 #define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */
131 #define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */
132 #define SABRE_PIOAFSR 0x2010UL
133 #define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */
134 #define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */
135 #define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */
136 #define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */
137 #define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */
138 #define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */
139 #define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */
140 #define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */
141 #define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */
142 #define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */
143 #define SABRE_PIOAFAR 0x2018UL
144 #define SABRE_PCIDIAG 0x2020UL
145 #define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */
146 #define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */
147 #define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */
148 #define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */
149 #define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */
150 #define SABRE_PCITASR 0x2028UL
151 #define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */
152 #define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */
153 #define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */
154 #define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */
155 #define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */
156 #define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */
157 #define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */
158 #define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */
159 #define SABRE_PIOBUF_DIAG 0x5000UL
160 #define SABRE_DMABUF_DIAGLO 0x5100UL
161 #define SABRE_DMABUF_DIAGHI 0x51c0UL
162 #define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */
163 #define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */
164 #define SABRE_IOMMU_VADIAG 0xa400UL
165 #define SABRE_IOMMU_TCDIAG 0xa408UL
166 #define SABRE_IOMMU_TAG 0xa580UL
167 #define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */
168 #define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */
169 #define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */
170 #define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */
171 #define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */
172 #define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */
173 #define SABRE_IOMMU_DATA 0xa600UL
174 #define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */
175 #define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */
176 #define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */
177 #define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */
178 #define SABRE_PCI_IRQSTATE 0xa800UL
179 #define SABRE_OBIO_IRQSTATE 0xa808UL
180 #define SABRE_FFBCFG 0xf000UL
181 #define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */
182 #define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */
183 #define SABRE_MCCTRL0 0xf010UL
184 #define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */
185 #define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */
186 #define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */
187 #define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */
188 #define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */
189 #define SABRE_MCCTRL1 0xf018UL
190 #define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */
191 #define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */
192 #define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */
193 #define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */
194 #define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */
195 #define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */
196 #define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */
197 #define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */
198 #define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */
199 #define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */
200 #define SABRE_RESETCTRL 0xf020UL
202 #define SABRE_CONFIGSPACE 0x001000000UL
203 #define SABRE_IOSPACE 0x002000000UL
204 #define SABRE_IOSPACE_SIZE 0x000ffffffUL
205 #define SABRE_MEMSPACE 0x100000000UL
206 #define SABRE_MEMSPACE_SIZE 0x07fffffffUL
208 static int hummingbird_p;
209 static struct pci_bus *sabre_root_bus;
211 /* SABRE error handling support. */
212 static void sabre_check_iommu_error(struct pci_pbm_info *pbm,
213 unsigned long afsr,
214 unsigned long afar)
216 struct iommu *iommu = pbm->iommu;
217 unsigned long iommu_tag[16];
218 unsigned long iommu_data[16];
219 unsigned long flags;
220 u64 control;
221 int i;
223 spin_lock_irqsave(&iommu->lock, flags);
224 control = sabre_read(iommu->iommu_control);
225 if (control & SABRE_IOMMUCTRL_ERR) {
226 char *type_string;
228 /* Clear the error encountered bit.
229 * NOTE: On Sabre this is write 1 to clear,
230 * which is different from Psycho.
232 sabre_write(iommu->iommu_control, control);
233 switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) {
234 case 1:
235 type_string = "Invalid Error";
236 break;
237 case 3:
238 type_string = "ECC Error";
239 break;
240 default:
241 type_string = "Unknown";
242 break;
244 printk("%s: IOMMU Error, type[%s]\n",
245 pbm->name, type_string);
247 /* Enter diagnostic mode and probe for error'd
248 * entries in the IOTLB.
250 control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR);
251 sabre_write(iommu->iommu_control,
252 (control | SABRE_IOMMUCTRL_DENAB));
253 for (i = 0; i < 16; i++) {
254 unsigned long base = pbm->controller_regs;
256 iommu_tag[i] =
257 sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL));
258 iommu_data[i] =
259 sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL));
260 sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0);
261 sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0);
263 sabre_write(iommu->iommu_control, control);
265 for (i = 0; i < 16; i++) {
266 unsigned long tag, data;
268 tag = iommu_tag[i];
269 if (!(tag & SABRE_IOMMUTAG_ERR))
270 continue;
272 data = iommu_data[i];
273 switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) {
274 case 1:
275 type_string = "Invalid Error";
276 break;
277 case 3:
278 type_string = "ECC Error";
279 break;
280 default:
281 type_string = "Unknown";
282 break;
284 printk("%s: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
285 pbm->name, i, tag, type_string,
286 ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0),
287 ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8),
288 ((tag & SABRE_IOMMUTAG_VPN) << IOMMU_PAGE_SHIFT));
289 printk("%s: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
290 pbm->name, i, data,
291 ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0),
292 ((data & SABRE_IOMMUDATA_USED) ? 1 : 0),
293 ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0),
294 ((data & SABRE_IOMMUDATA_PPN) << IOMMU_PAGE_SHIFT));
297 spin_unlock_irqrestore(&iommu->lock, flags);
300 static irqreturn_t sabre_ue_intr(int irq, void *dev_id)
302 struct pci_pbm_info *pbm = dev_id;
303 unsigned long afsr_reg = pbm->controller_regs + SABRE_UE_AFSR;
304 unsigned long afar_reg = pbm->controller_regs + SABRE_UECE_AFAR;
305 unsigned long afsr, afar, error_bits;
306 int reported;
308 /* Latch uncorrectable error status. */
309 afar = sabre_read(afar_reg);
310 afsr = sabre_read(afsr_reg);
312 /* Clear the primary/secondary error status bits. */
313 error_bits = afsr &
314 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
315 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
316 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
317 if (!error_bits)
318 return IRQ_NONE;
319 sabre_write(afsr_reg, error_bits);
321 /* Log the error. */
322 printk("%s: Uncorrectable Error, primary error type[%s%s]\n",
323 pbm->name,
324 ((error_bits & SABRE_UEAFSR_PDRD) ?
325 "DMA Read" :
326 ((error_bits & SABRE_UEAFSR_PDWR) ?
327 "DMA Write" : "???")),
328 ((error_bits & SABRE_UEAFSR_PDTE) ?
329 ":Translation Error" : ""));
330 printk("%s: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
331 pbm->name,
332 (afsr & SABRE_UEAFSR_BMSK) >> 32UL,
333 (afsr & SABRE_UEAFSR_OFF) >> 29UL,
334 ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
335 printk("%s: UE AFAR [%016lx]\n", pbm->name, afar);
336 printk("%s: UE Secondary errors [", pbm->name);
337 reported = 0;
338 if (afsr & SABRE_UEAFSR_SDRD) {
339 reported++;
340 printk("(DMA Read)");
342 if (afsr & SABRE_UEAFSR_SDWR) {
343 reported++;
344 printk("(DMA Write)");
346 if (afsr & SABRE_UEAFSR_SDTE) {
347 reported++;
348 printk("(Translation Error)");
350 if (!reported)
351 printk("(none)");
352 printk("]\n");
354 /* Interrogate IOMMU for error status. */
355 sabre_check_iommu_error(pbm, afsr, afar);
357 return IRQ_HANDLED;
360 static irqreturn_t sabre_ce_intr(int irq, void *dev_id)
362 struct pci_pbm_info *pbm = dev_id;
363 unsigned long afsr_reg = pbm->controller_regs + SABRE_CE_AFSR;
364 unsigned long afar_reg = pbm->controller_regs + SABRE_UECE_AFAR;
365 unsigned long afsr, afar, error_bits;
366 int reported;
368 /* Latch error status. */
369 afar = sabre_read(afar_reg);
370 afsr = sabre_read(afsr_reg);
372 /* Clear primary/secondary error status bits. */
373 error_bits = afsr &
374 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
375 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
376 if (!error_bits)
377 return IRQ_NONE;
378 sabre_write(afsr_reg, error_bits);
380 /* Log the error. */
381 printk("%s: Correctable Error, primary error type[%s]\n",
382 pbm->name,
383 ((error_bits & SABRE_CEAFSR_PDRD) ?
384 "DMA Read" :
385 ((error_bits & SABRE_CEAFSR_PDWR) ?
386 "DMA Write" : "???")));
388 /* XXX Use syndrome and afar to print out module string just like
389 * XXX UDB CE trap handler does... -DaveM
391 printk("%s: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
392 "was_block(%d)\n",
393 pbm->name,
394 (afsr & SABRE_CEAFSR_ESYND) >> 48UL,
395 (afsr & SABRE_CEAFSR_BMSK) >> 32UL,
396 (afsr & SABRE_CEAFSR_OFF) >> 29UL,
397 ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
398 printk("%s: CE AFAR [%016lx]\n", pbm->name, afar);
399 printk("%s: CE Secondary errors [", pbm->name);
400 reported = 0;
401 if (afsr & SABRE_CEAFSR_SDRD) {
402 reported++;
403 printk("(DMA Read)");
405 if (afsr & SABRE_CEAFSR_SDWR) {
406 reported++;
407 printk("(DMA Write)");
409 if (!reported)
410 printk("(none)");
411 printk("]\n");
413 return IRQ_HANDLED;
416 static irqreturn_t sabre_pcierr_intr_other(struct pci_pbm_info *pbm)
418 unsigned long csr_reg, csr, csr_error_bits;
419 irqreturn_t ret = IRQ_NONE;
420 u16 stat;
422 csr_reg = pbm->controller_regs + SABRE_PCICTRL;
423 csr = sabre_read(csr_reg);
424 csr_error_bits =
425 csr & SABRE_PCICTRL_SERR;
426 if (csr_error_bits) {
427 /* Clear the errors. */
428 sabre_write(csr_reg, csr);
430 /* Log 'em. */
431 if (csr_error_bits & SABRE_PCICTRL_SERR)
432 printk("%s: PCI SERR signal asserted.\n",
433 pbm->name);
434 ret = IRQ_HANDLED;
436 pci_bus_read_config_word(sabre_root_bus, 0,
437 PCI_STATUS, &stat);
438 if (stat & (PCI_STATUS_PARITY |
439 PCI_STATUS_SIG_TARGET_ABORT |
440 PCI_STATUS_REC_TARGET_ABORT |
441 PCI_STATUS_REC_MASTER_ABORT |
442 PCI_STATUS_SIG_SYSTEM_ERROR)) {
443 printk("%s: PCI bus error, PCI_STATUS[%04x]\n",
444 pbm->name, stat);
445 pci_bus_write_config_word(sabre_root_bus, 0,
446 PCI_STATUS, 0xffff);
447 ret = IRQ_HANDLED;
449 return ret;
452 static irqreturn_t sabre_pcierr_intr(int irq, void *dev_id)
454 struct pci_pbm_info *pbm = dev_id;
455 unsigned long afsr_reg, afar_reg;
456 unsigned long afsr, afar, error_bits;
457 int reported;
459 afsr_reg = pbm->controller_regs + SABRE_PIOAFSR;
460 afar_reg = pbm->controller_regs + SABRE_PIOAFAR;
462 /* Latch error status. */
463 afar = sabre_read(afar_reg);
464 afsr = sabre_read(afsr_reg);
466 /* Clear primary/secondary error status bits. */
467 error_bits = afsr &
468 (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA |
469 SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR |
470 SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA |
471 SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR);
472 if (!error_bits)
473 return sabre_pcierr_intr_other(pbm);
474 sabre_write(afsr_reg, error_bits);
476 /* Log the error. */
477 printk("%s: PCI Error, primary error type[%s]\n",
478 pbm->name,
479 (((error_bits & SABRE_PIOAFSR_PMA) ?
480 "Master Abort" :
481 ((error_bits & SABRE_PIOAFSR_PTA) ?
482 "Target Abort" :
483 ((error_bits & SABRE_PIOAFSR_PRTRY) ?
484 "Excessive Retries" :
485 ((error_bits & SABRE_PIOAFSR_PPERR) ?
486 "Parity Error" : "???"))))));
487 printk("%s: bytemask[%04lx] was_block(%d)\n",
488 pbm->name,
489 (afsr & SABRE_PIOAFSR_BMSK) >> 32UL,
490 (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0);
491 printk("%s: PCI AFAR [%016lx]\n", pbm->name, afar);
492 printk("%s: PCI Secondary errors [", pbm->name);
493 reported = 0;
494 if (afsr & SABRE_PIOAFSR_SMA) {
495 reported++;
496 printk("(Master Abort)");
498 if (afsr & SABRE_PIOAFSR_STA) {
499 reported++;
500 printk("(Target Abort)");
502 if (afsr & SABRE_PIOAFSR_SRTRY) {
503 reported++;
504 printk("(Excessive Retries)");
506 if (afsr & SABRE_PIOAFSR_SPERR) {
507 reported++;
508 printk("(Parity Error)");
510 if (!reported)
511 printk("(none)");
512 printk("]\n");
514 /* For the error types shown, scan both PCI buses for devices
515 * which have logged that error type.
518 /* If we see a Target Abort, this could be the result of an
519 * IOMMU translation error of some sort. It is extremely
520 * useful to log this information as usually it indicates
521 * a bug in the IOMMU support code or a PCI device driver.
523 if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) {
524 sabre_check_iommu_error(pbm, afsr, afar);
525 pci_scan_for_target_abort(pbm, pbm->pci_bus);
527 if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA))
528 pci_scan_for_master_abort(pbm, pbm->pci_bus);
530 /* For excessive retries, SABRE/PBM will abort the device
531 * and there is no way to specifically check for excessive
532 * retries in the config space status registers. So what
533 * we hope is that we'll catch it via the master/target
534 * abort events.
537 if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR))
538 pci_scan_for_parity_error(pbm, pbm->pci_bus);
540 return IRQ_HANDLED;
543 static void sabre_register_error_handlers(struct pci_pbm_info *pbm)
545 struct device_node *dp = pbm->prom_node;
546 struct of_device *op;
547 unsigned long base = pbm->controller_regs;
548 u64 tmp;
549 int err;
551 if (pbm->chip_type == PBM_CHIP_TYPE_SABRE)
552 dp = dp->parent;
554 op = of_find_device_by_node(dp);
555 if (!op)
556 return;
558 /* Sabre/Hummingbird IRQ property layout is:
559 * 0: PCI ERR
560 * 1: UE ERR
561 * 2: CE ERR
562 * 3: POWER FAIL
564 if (op->num_irqs < 4)
565 return;
567 /* We clear the error bits in the appropriate AFSR before
568 * registering the handler so that we don't get spurious
569 * interrupts.
571 sabre_write(base + SABRE_UE_AFSR,
572 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
573 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
574 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE));
576 err = request_irq(op->irqs[1], sabre_ue_intr, 0, "SABRE_UE", pbm);
577 if (err)
578 printk(KERN_WARNING "%s: Couldn't register UE, err=%d.\n",
579 pbm->name, err);
581 sabre_write(base + SABRE_CE_AFSR,
582 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
583 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR));
585 err = request_irq(op->irqs[2], sabre_ce_intr, 0, "SABRE_CE", pbm);
586 if (err)
587 printk(KERN_WARNING "%s: Couldn't register CE, err=%d.\n",
588 pbm->name, err);
589 err = request_irq(op->irqs[0], sabre_pcierr_intr, 0,
590 "SABRE_PCIERR", pbm);
591 if (err)
592 printk(KERN_WARNING "%s: Couldn't register PCIERR, err=%d.\n",
593 pbm->name, err);
595 tmp = sabre_read(base + SABRE_PCICTRL);
596 tmp |= SABRE_PCICTRL_ERREN;
597 sabre_write(base + SABRE_PCICTRL, tmp);
600 static void apb_init(struct pci_bus *sabre_bus)
602 struct pci_dev *pdev;
604 list_for_each_entry(pdev, &sabre_bus->devices, bus_list) {
605 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
606 pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
607 u16 word16;
609 pci_read_config_word(pdev, PCI_COMMAND, &word16);
610 word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
611 PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
612 PCI_COMMAND_IO;
613 pci_write_config_word(pdev, PCI_COMMAND, word16);
615 /* Status register bits are "write 1 to clear". */
616 pci_write_config_word(pdev, PCI_STATUS, 0xffff);
617 pci_write_config_word(pdev, PCI_SEC_STATUS, 0xffff);
619 /* Use a primary/seconday latency timer value
620 * of 64.
622 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 64);
623 pci_write_config_byte(pdev, PCI_SEC_LATENCY_TIMER, 64);
625 /* Enable reporting/forwarding of master aborts,
626 * parity, and SERR.
628 pci_write_config_byte(pdev, PCI_BRIDGE_CONTROL,
629 (PCI_BRIDGE_CTL_PARITY |
630 PCI_BRIDGE_CTL_SERR |
631 PCI_BRIDGE_CTL_MASTER_ABORT));
636 static void sabre_scan_bus(struct pci_pbm_info *pbm)
638 static int once;
640 /* The APB bridge speaks to the Sabre host PCI bridge
641 * at 66Mhz, but the front side of APB runs at 33Mhz
642 * for both segments.
644 * Hummingbird systems do not use APB, so they run
645 * at 66MHZ.
647 if (hummingbird_p)
648 pbm->is_66mhz_capable = 1;
649 else
650 pbm->is_66mhz_capable = 0;
652 /* This driver has not been verified to handle
653 * multiple SABREs yet, so trap this.
655 * Also note that the SABRE host bridge is hardwired
656 * to live at bus 0.
658 if (once != 0) {
659 prom_printf("SABRE: Multiple controllers unsupported.\n");
660 prom_halt();
662 once++;
664 pbm->pci_bus = pci_scan_one_pbm(pbm);
665 if (!pbm->pci_bus)
666 return;
668 sabre_root_bus = pbm->pci_bus;
670 apb_init(pbm->pci_bus);
672 sabre_register_error_handlers(pbm);
675 static void sabre_iommu_init(struct pci_pbm_info *pbm,
676 int tsbsize, unsigned long dvma_offset,
677 u32 dma_mask)
679 struct iommu *iommu = pbm->iommu;
680 unsigned long i;
681 u64 control;
683 /* Register addresses. */
684 iommu->iommu_control = pbm->controller_regs + SABRE_IOMMU_CONTROL;
685 iommu->iommu_tsbbase = pbm->controller_regs + SABRE_IOMMU_TSBBASE;
686 iommu->iommu_flush = pbm->controller_regs + SABRE_IOMMU_FLUSH;
687 iommu->write_complete_reg = pbm->controller_regs + SABRE_WRSYNC;
688 /* Sabre's IOMMU lacks ctx flushing. */
689 iommu->iommu_ctxflush = 0;
691 /* Invalidate TLB Entries. */
692 control = sabre_read(pbm->controller_regs + SABRE_IOMMU_CONTROL);
693 control |= SABRE_IOMMUCTRL_DENAB;
694 sabre_write(pbm->controller_regs + SABRE_IOMMU_CONTROL, control);
696 for(i = 0; i < 16; i++) {
697 sabre_write(pbm->controller_regs + SABRE_IOMMU_TAG + (i * 8UL), 0);
698 sabre_write(pbm->controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0);
701 /* Leave diag mode enabled for full-flushing done
702 * in pci_iommu.c
704 pci_iommu_table_init(iommu, tsbsize * 1024 * 8, dvma_offset, dma_mask);
706 sabre_write(pbm->controller_regs + SABRE_IOMMU_TSBBASE,
707 __pa(iommu->page_table));
709 control = sabre_read(pbm->controller_regs + SABRE_IOMMU_CONTROL);
710 control &= ~(SABRE_IOMMUCTRL_TSBSZ | SABRE_IOMMUCTRL_TBWSZ);
711 control |= SABRE_IOMMUCTRL_ENAB;
712 switch(tsbsize) {
713 case 64:
714 control |= SABRE_IOMMU_TSBSZ_64K;
715 break;
716 case 128:
717 control |= SABRE_IOMMU_TSBSZ_128K;
718 break;
719 default:
720 prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize);
721 prom_halt();
722 break;
724 sabre_write(pbm->controller_regs + SABRE_IOMMU_CONTROL, control);
727 static void sabre_pbm_init(struct pci_controller_info *p, struct pci_pbm_info *pbm, struct device_node *dp)
729 pbm->name = dp->full_name;
730 printk("%s: SABRE PCI Bus Module\n", pbm->name);
732 pbm->scan_bus = sabre_scan_bus;
733 pbm->pci_ops = &sun4u_pci_ops;
734 pbm->config_space_reg_bits = 8;
736 pbm->index = pci_num_pbms++;
738 pbm->chip_type = PBM_CHIP_TYPE_SABRE;
739 pbm->parent = p;
740 pbm->prom_node = dp;
741 pci_get_pbm_props(pbm);
743 pci_determine_mem_io_space(pbm);
746 void sabre_init(struct device_node *dp, char *model_name)
748 const struct linux_prom64_registers *pr_regs;
749 struct pci_controller_info *p;
750 struct pci_pbm_info *pbm;
751 struct iommu *iommu;
752 int tsbsize;
753 const u32 *vdma;
754 u32 upa_portid, dma_mask;
755 u64 clear_irq;
757 hummingbird_p = 0;
758 if (!strcmp(model_name, "pci108e,a001"))
759 hummingbird_p = 1;
760 else if (!strcmp(model_name, "SUNW,sabre")) {
761 const char *compat = of_get_property(dp, "compatible", NULL);
762 if (compat && !strcmp(compat, "pci108e,a001"))
763 hummingbird_p = 1;
764 if (!hummingbird_p) {
765 struct device_node *dp;
767 /* Of course, Sun has to encode things a thousand
768 * different ways, inconsistently.
770 for_each_node_by_type(dp, "cpu") {
771 if (!strcmp(dp->name, "SUNW,UltraSPARC-IIe"))
772 hummingbird_p = 1;
777 p = kzalloc(sizeof(*p), GFP_ATOMIC);
778 if (!p) {
779 prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n");
780 prom_halt();
783 iommu = kzalloc(sizeof(*iommu), GFP_ATOMIC);
784 if (!iommu) {
785 prom_printf("SABRE: Error, kmalloc(pci_iommu) failed.\n");
786 prom_halt();
788 pbm = &p->pbm_A;
789 pbm->iommu = iommu;
791 upa_portid = of_getintprop_default(dp, "upa-portid", 0xff);
793 pbm->next = pci_pbm_root;
794 pci_pbm_root = pbm;
796 pbm->portid = upa_portid;
799 * Map in SABRE register set and report the presence of this SABRE.
802 pr_regs = of_get_property(dp, "reg", NULL);
805 * First REG in property is base of entire SABRE register space.
807 pbm->controller_regs = pr_regs[0].phys_addr;
809 /* Clear interrupts */
811 /* PCI first */
812 for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8)
813 sabre_write(pbm->controller_regs + clear_irq, 0x0UL);
815 /* Then OBIO */
816 for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8)
817 sabre_write(pbm->controller_regs + clear_irq, 0x0UL);
819 /* Error interrupts are enabled later after the bus scan. */
820 sabre_write(pbm->controller_regs + SABRE_PCICTRL,
821 (SABRE_PCICTRL_MRLEN | SABRE_PCICTRL_SERR |
822 SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN));
824 /* Now map in PCI config space for entire SABRE. */
825 pbm->config_space =
826 (pbm->controller_regs + SABRE_CONFIGSPACE);
828 vdma = of_get_property(dp, "virtual-dma", NULL);
830 dma_mask = vdma[0];
831 switch(vdma[1]) {
832 case 0x20000000:
833 dma_mask |= 0x1fffffff;
834 tsbsize = 64;
835 break;
836 case 0x40000000:
837 dma_mask |= 0x3fffffff;
838 tsbsize = 128;
839 break;
841 case 0x80000000:
842 dma_mask |= 0x7fffffff;
843 tsbsize = 128;
844 break;
845 default:
846 prom_printf("SABRE: strange virtual-dma size.\n");
847 prom_halt();
850 sabre_iommu_init(pbm, tsbsize, vdma[0], dma_mask);
853 * Look for APB underneath.
855 sabre_pbm_init(p, pbm, dp);