1 /* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2 * arch/sparc64/mm/init.c
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/percpu.h>
29 #include <asm/system.h>
31 #include <asm/pgalloc.h>
32 #include <asm/pgtable.h>
33 #include <asm/oplib.h>
34 #include <asm/iommu.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
40 #include <asm/starfire.h>
42 #include <asm/spitfire.h>
43 #include <asm/sections.h>
45 #include <asm/hypervisor.h>
47 #include <asm/sstate.h>
48 #include <asm/mdesc.h>
50 #define MAX_PHYS_ADDRESS (1UL << 42UL)
51 #define KPTE_BITMAP_CHUNK_SZ (256UL * 1024UL * 1024UL)
52 #define KPTE_BITMAP_BYTES \
53 ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
55 unsigned long kern_linear_pte_xor
[2] __read_mostly
;
57 /* A bitmap, one bit for every 256MB of physical memory. If the bit
58 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
59 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
61 unsigned long kpte_linear_bitmap
[KPTE_BITMAP_BYTES
/ sizeof(unsigned long)];
63 #ifndef CONFIG_DEBUG_PAGEALLOC
64 /* A special kernel TSB for 4MB and 256MB linear mappings.
65 * Space is allocated for this right after the trap table
66 * in arch/sparc64/kernel/head.S
68 extern struct tsb swapper_4m_tsb
[KERNEL_TSB4M_NENTRIES
];
73 static struct linux_prom64_registers pavail
[MAX_BANKS
] __initdata
;
74 static struct linux_prom64_registers pavail_rescan
[MAX_BANKS
] __initdata
;
75 static int pavail_ents __initdata
;
76 static int pavail_rescan_ents __initdata
;
78 static int cmp_p64(const void *a
, const void *b
)
80 const struct linux_prom64_registers
*x
= a
, *y
= b
;
82 if (x
->phys_addr
> y
->phys_addr
)
84 if (x
->phys_addr
< y
->phys_addr
)
89 static void __init
read_obp_memory(const char *property
,
90 struct linux_prom64_registers
*regs
,
93 int node
= prom_finddevice("/memory");
94 int prop_size
= prom_getproplen(node
, property
);
97 ents
= prop_size
/ sizeof(struct linux_prom64_registers
);
98 if (ents
> MAX_BANKS
) {
99 prom_printf("The machine has more %s property entries than "
100 "this kernel can support (%d).\n",
101 property
, MAX_BANKS
);
105 ret
= prom_getproperty(node
, property
, (char *) regs
, prop_size
);
107 prom_printf("Couldn't get %s property from /memory.\n");
111 /* Sanitize what we got from the firmware, by page aligning
114 for (i
= 0; i
< ents
; i
++) {
115 unsigned long base
, size
;
117 base
= regs
[i
].phys_addr
;
118 size
= regs
[i
].reg_size
;
121 if (base
& ~PAGE_MASK
) {
122 unsigned long new_base
= PAGE_ALIGN(base
);
124 size
-= new_base
- base
;
125 if ((long) size
< 0L)
130 /* If it is empty, simply get rid of it.
131 * This simplifies the logic of the other
132 * functions that process these arrays.
134 memmove(®s
[i
], ®s
[i
+ 1],
135 (ents
- i
- 1) * sizeof(regs
[0]));
140 regs
[i
].phys_addr
= base
;
141 regs
[i
].reg_size
= size
;
146 sort(regs
, ents
, sizeof(struct linux_prom64_registers
),
150 unsigned long *sparc64_valid_addr_bitmap __read_mostly
;
152 /* Kernel physical address base and size in bytes. */
153 unsigned long kern_base __read_mostly
;
154 unsigned long kern_size __read_mostly
;
156 /* Initial ramdisk setup */
157 extern unsigned long sparc_ramdisk_image64
;
158 extern unsigned int sparc_ramdisk_image
;
159 extern unsigned int sparc_ramdisk_size
;
161 struct page
*mem_map_zero __read_mostly
;
163 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly
;
165 unsigned long sparc64_kern_pri_context __read_mostly
;
166 unsigned long sparc64_kern_pri_nuc_bits __read_mostly
;
167 unsigned long sparc64_kern_sec_context __read_mostly
;
171 #ifdef CONFIG_DEBUG_DCFLUSH
172 atomic_t dcpage_flushes
= ATOMIC_INIT(0);
174 atomic_t dcpage_flushes_xcall
= ATOMIC_INIT(0);
178 inline void flush_dcache_page_impl(struct page
*page
)
180 BUG_ON(tlb_type
== hypervisor
);
181 #ifdef CONFIG_DEBUG_DCFLUSH
182 atomic_inc(&dcpage_flushes
);
185 #ifdef DCACHE_ALIASING_POSSIBLE
186 __flush_dcache_page(page_address(page
),
187 ((tlb_type
== spitfire
) &&
188 page_mapping(page
) != NULL
));
190 if (page_mapping(page
) != NULL
&&
191 tlb_type
== spitfire
)
192 __flush_icache_page(__pa(page_address(page
)));
196 #define PG_dcache_dirty PG_arch_1
197 #define PG_dcache_cpu_shift 32UL
198 #define PG_dcache_cpu_mask \
199 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
201 #define dcache_dirty_cpu(page) \
202 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
204 static __inline__
void set_dcache_dirty(struct page
*page
, int this_cpu
)
206 unsigned long mask
= this_cpu
;
207 unsigned long non_cpu_bits
;
209 non_cpu_bits
= ~(PG_dcache_cpu_mask
<< PG_dcache_cpu_shift
);
210 mask
= (mask
<< PG_dcache_cpu_shift
) | (1UL << PG_dcache_dirty
);
212 __asm__
__volatile__("1:\n\t"
214 "and %%g7, %1, %%g1\n\t"
215 "or %%g1, %0, %%g1\n\t"
216 "casx [%2], %%g7, %%g1\n\t"
218 "membar #StoreLoad | #StoreStore\n\t"
219 "bne,pn %%xcc, 1b\n\t"
222 : "r" (mask
), "r" (non_cpu_bits
), "r" (&page
->flags
)
226 static __inline__
void clear_dcache_dirty_cpu(struct page
*page
, unsigned long cpu
)
228 unsigned long mask
= (1UL << PG_dcache_dirty
);
230 __asm__
__volatile__("! test_and_clear_dcache_dirty\n"
233 "srlx %%g7, %4, %%g1\n\t"
234 "and %%g1, %3, %%g1\n\t"
236 "bne,pn %%icc, 2f\n\t"
237 " andn %%g7, %1, %%g1\n\t"
238 "casx [%2], %%g7, %%g1\n\t"
240 "membar #StoreLoad | #StoreStore\n\t"
241 "bne,pn %%xcc, 1b\n\t"
245 : "r" (cpu
), "r" (mask
), "r" (&page
->flags
),
246 "i" (PG_dcache_cpu_mask
),
247 "i" (PG_dcache_cpu_shift
)
251 static inline void tsb_insert(struct tsb
*ent
, unsigned long tag
, unsigned long pte
)
253 unsigned long tsb_addr
= (unsigned long) ent
;
255 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
256 tsb_addr
= __pa(tsb_addr
);
258 __tsb_insert(tsb_addr
, tag
, pte
);
261 unsigned long _PAGE_ALL_SZ_BITS __read_mostly
;
262 unsigned long _PAGE_SZBITS __read_mostly
;
264 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long address
, pte_t pte
)
266 struct mm_struct
*mm
;
268 unsigned long tag
, flags
;
269 unsigned long tsb_index
, tsb_hash_shift
;
271 if (tlb_type
!= hypervisor
) {
272 unsigned long pfn
= pte_pfn(pte
);
273 unsigned long pg_flags
;
276 if (pfn_valid(pfn
) &&
277 (page
= pfn_to_page(pfn
), page_mapping(page
)) &&
278 ((pg_flags
= page
->flags
) & (1UL << PG_dcache_dirty
))) {
279 int cpu
= ((pg_flags
>> PG_dcache_cpu_shift
) &
281 int this_cpu
= get_cpu();
283 /* This is just to optimize away some function calls
287 flush_dcache_page_impl(page
);
289 smp_flush_dcache_page_impl(page
, cpu
);
291 clear_dcache_dirty_cpu(page
, cpu
);
299 tsb_index
= MM_TSB_BASE
;
300 tsb_hash_shift
= PAGE_SHIFT
;
302 spin_lock_irqsave(&mm
->context
.lock
, flags
);
304 #ifdef CONFIG_HUGETLB_PAGE
305 if (mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
!= NULL
) {
306 if ((tlb_type
== hypervisor
&&
307 (pte_val(pte
) & _PAGE_SZALL_4V
) == _PAGE_SZHUGE_4V
) ||
308 (tlb_type
!= hypervisor
&&
309 (pte_val(pte
) & _PAGE_SZALL_4U
) == _PAGE_SZHUGE_4U
)) {
310 tsb_index
= MM_TSB_HUGE
;
311 tsb_hash_shift
= HPAGE_SHIFT
;
316 tsb
= mm
->context
.tsb_block
[tsb_index
].tsb
;
317 tsb
+= ((address
>> tsb_hash_shift
) &
318 (mm
->context
.tsb_block
[tsb_index
].tsb_nentries
- 1UL));
319 tag
= (address
>> 22UL);
320 tsb_insert(tsb
, tag
, pte_val(pte
));
322 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
325 void flush_dcache_page(struct page
*page
)
327 struct address_space
*mapping
;
330 if (tlb_type
== hypervisor
)
333 /* Do not bother with the expensive D-cache flush if it
334 * is merely the zero page. The 'bigcore' testcase in GDB
335 * causes this case to run millions of times.
337 if (page
== ZERO_PAGE(0))
340 this_cpu
= get_cpu();
342 mapping
= page_mapping(page
);
343 if (mapping
&& !mapping_mapped(mapping
)) {
344 int dirty
= test_bit(PG_dcache_dirty
, &page
->flags
);
346 int dirty_cpu
= dcache_dirty_cpu(page
);
348 if (dirty_cpu
== this_cpu
)
350 smp_flush_dcache_page_impl(page
, dirty_cpu
);
352 set_dcache_dirty(page
, this_cpu
);
354 /* We could delay the flush for the !page_mapping
355 * case too. But that case is for exec env/arg
356 * pages and those are %99 certainly going to get
357 * faulted into the tlb (and thus flushed) anyways.
359 flush_dcache_page_impl(page
);
366 void __kprobes
flush_icache_range(unsigned long start
, unsigned long end
)
368 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
369 if (tlb_type
== spitfire
) {
372 /* This code only runs on Spitfire cpus so this is
373 * why we can assume _PAGE_PADDR_4U.
375 for (kaddr
= start
; kaddr
< end
; kaddr
+= PAGE_SIZE
) {
376 unsigned long paddr
, mask
= _PAGE_PADDR_4U
;
378 if (kaddr
>= PAGE_OFFSET
)
379 paddr
= kaddr
& mask
;
381 pgd_t
*pgdp
= pgd_offset_k(kaddr
);
382 pud_t
*pudp
= pud_offset(pgdp
, kaddr
);
383 pmd_t
*pmdp
= pmd_offset(pudp
, kaddr
);
384 pte_t
*ptep
= pte_offset_kernel(pmdp
, kaddr
);
386 paddr
= pte_val(*ptep
) & mask
;
388 __flush_icache_page(paddr
);
395 unsigned long total
= 0, reserved
= 0;
396 unsigned long shared
= 0, cached
= 0;
399 printk(KERN_INFO
"Mem-info:\n");
401 printk(KERN_INFO
"Free swap: %6ldkB\n",
402 nr_swap_pages
<< (PAGE_SHIFT
-10));
403 for_each_online_pgdat(pgdat
) {
404 unsigned long i
, flags
;
406 pgdat_resize_lock(pgdat
, &flags
);
407 for (i
= 0; i
< pgdat
->node_spanned_pages
; i
++) {
408 struct page
*page
= pgdat_page_nr(pgdat
, i
);
410 if (PageReserved(page
))
412 else if (PageSwapCache(page
))
414 else if (page_count(page
))
415 shared
+= page_count(page
) - 1;
417 pgdat_resize_unlock(pgdat
, &flags
);
420 printk(KERN_INFO
"%lu pages of RAM\n", total
);
421 printk(KERN_INFO
"%lu reserved pages\n", reserved
);
422 printk(KERN_INFO
"%lu pages shared\n", shared
);
423 printk(KERN_INFO
"%lu pages swap cached\n", cached
);
425 printk(KERN_INFO
"%lu pages dirty\n",
426 global_page_state(NR_FILE_DIRTY
));
427 printk(KERN_INFO
"%lu pages writeback\n",
428 global_page_state(NR_WRITEBACK
));
429 printk(KERN_INFO
"%lu pages mapped\n",
430 global_page_state(NR_FILE_MAPPED
));
431 printk(KERN_INFO
"%lu pages slab\n",
432 global_page_state(NR_SLAB_RECLAIMABLE
) +
433 global_page_state(NR_SLAB_UNRECLAIMABLE
));
434 printk(KERN_INFO
"%lu pages pagetables\n",
435 global_page_state(NR_PAGETABLE
));
438 void mmu_info(struct seq_file
*m
)
440 if (tlb_type
== cheetah
)
441 seq_printf(m
, "MMU Type\t: Cheetah\n");
442 else if (tlb_type
== cheetah_plus
)
443 seq_printf(m
, "MMU Type\t: Cheetah+\n");
444 else if (tlb_type
== spitfire
)
445 seq_printf(m
, "MMU Type\t: Spitfire\n");
446 else if (tlb_type
== hypervisor
)
447 seq_printf(m
, "MMU Type\t: Hypervisor (sun4v)\n");
449 seq_printf(m
, "MMU Type\t: ???\n");
451 #ifdef CONFIG_DEBUG_DCFLUSH
452 seq_printf(m
, "DCPageFlushes\t: %d\n",
453 atomic_read(&dcpage_flushes
));
455 seq_printf(m
, "DCPageFlushesXC\t: %d\n",
456 atomic_read(&dcpage_flushes_xcall
));
457 #endif /* CONFIG_SMP */
458 #endif /* CONFIG_DEBUG_DCFLUSH */
461 struct linux_prom_translation
{
467 /* Exported for kernel TLB miss handling in ktlb.S */
468 struct linux_prom_translation prom_trans
[512] __read_mostly
;
469 unsigned int prom_trans_ents __read_mostly
;
471 /* Exported for SMP bootup purposes. */
472 unsigned long kern_locked_tte_data
;
474 /* The obp translations are saved based on 8k pagesize, since obp can
475 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
476 * HI_OBP_ADDRESS range are handled in ktlb.S.
478 static inline int in_obp_range(unsigned long vaddr
)
480 return (vaddr
>= LOW_OBP_ADDRESS
&&
481 vaddr
< HI_OBP_ADDRESS
);
484 static int cmp_ptrans(const void *a
, const void *b
)
486 const struct linux_prom_translation
*x
= a
, *y
= b
;
488 if (x
->virt
> y
->virt
)
490 if (x
->virt
< y
->virt
)
495 /* Read OBP translations property into 'prom_trans[]'. */
496 static void __init
read_obp_translations(void)
498 int n
, node
, ents
, first
, last
, i
;
500 node
= prom_finddevice("/virtual-memory");
501 n
= prom_getproplen(node
, "translations");
502 if (unlikely(n
== 0 || n
== -1)) {
503 prom_printf("prom_mappings: Couldn't get size.\n");
506 if (unlikely(n
> sizeof(prom_trans
))) {
507 prom_printf("prom_mappings: Size %Zd is too big.\n", n
);
511 if ((n
= prom_getproperty(node
, "translations",
512 (char *)&prom_trans
[0],
513 sizeof(prom_trans
))) == -1) {
514 prom_printf("prom_mappings: Couldn't get property.\n");
518 n
= n
/ sizeof(struct linux_prom_translation
);
522 sort(prom_trans
, ents
, sizeof(struct linux_prom_translation
),
525 /* Now kick out all the non-OBP entries. */
526 for (i
= 0; i
< ents
; i
++) {
527 if (in_obp_range(prom_trans
[i
].virt
))
531 for (; i
< ents
; i
++) {
532 if (!in_obp_range(prom_trans
[i
].virt
))
537 for (i
= 0; i
< (last
- first
); i
++) {
538 struct linux_prom_translation
*src
= &prom_trans
[i
+ first
];
539 struct linux_prom_translation
*dest
= &prom_trans
[i
];
543 for (; i
< ents
; i
++) {
544 struct linux_prom_translation
*dest
= &prom_trans
[i
];
545 dest
->virt
= dest
->size
= dest
->data
= 0x0UL
;
548 prom_trans_ents
= last
- first
;
550 if (tlb_type
== spitfire
) {
551 /* Clear diag TTE bits. */
552 for (i
= 0; i
< prom_trans_ents
; i
++)
553 prom_trans
[i
].data
&= ~0x0003fe0000000000UL
;
557 static void __init
hypervisor_tlb_lock(unsigned long vaddr
,
561 unsigned long ret
= sun4v_mmu_map_perm_addr(vaddr
, 0, pte
, mmu
);
564 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
565 "errors with %lx\n", vaddr
, 0, pte
, mmu
, ret
);
570 static unsigned long kern_large_tte(unsigned long paddr
);
572 static void __init
remap_kernel(void)
574 unsigned long phys_page
, tte_vaddr
, tte_data
;
575 int tlb_ent
= sparc64_highest_locked_tlbent();
577 tte_vaddr
= (unsigned long) KERNBASE
;
578 phys_page
= (prom_boot_mapping_phys_low
>> 22UL) << 22UL;
579 tte_data
= kern_large_tte(phys_page
);
581 kern_locked_tte_data
= tte_data
;
583 /* Now lock us into the TLBs via Hypervisor or OBP. */
584 if (tlb_type
== hypervisor
) {
585 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_DMMU
);
586 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_IMMU
);
588 tte_vaddr
+= 0x400000;
589 tte_data
+= 0x400000;
590 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_DMMU
);
591 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_IMMU
);
594 prom_dtlb_load(tlb_ent
, tte_data
, tte_vaddr
);
595 prom_itlb_load(tlb_ent
, tte_data
, tte_vaddr
);
598 prom_dtlb_load(tlb_ent
,
600 tte_vaddr
+ 0x400000);
601 prom_itlb_load(tlb_ent
,
603 tte_vaddr
+ 0x400000);
605 sparc64_highest_unlocked_tlb_ent
= tlb_ent
- 1;
607 if (tlb_type
== cheetah_plus
) {
608 sparc64_kern_pri_context
= (CTX_CHEETAH_PLUS_CTX0
|
609 CTX_CHEETAH_PLUS_NUC
);
610 sparc64_kern_pri_nuc_bits
= CTX_CHEETAH_PLUS_NUC
;
611 sparc64_kern_sec_context
= CTX_CHEETAH_PLUS_CTX0
;
616 static void __init
inherit_prom_mappings(void)
618 read_obp_translations();
620 /* Now fixup OBP's idea about where we really are mapped. */
621 prom_printf("Remapping the kernel... ");
623 prom_printf("done.\n");
626 void prom_world(int enter
)
629 set_fs((mm_segment_t
) { get_thread_current_ds() });
631 __asm__
__volatile__("flushw");
634 #ifdef DCACHE_ALIASING_POSSIBLE
635 void __flush_dcache_range(unsigned long start
, unsigned long end
)
639 if (tlb_type
== spitfire
) {
642 for (va
= start
; va
< end
; va
+= 32) {
643 spitfire_put_dcache_tag(va
& 0x3fe0, 0x0);
647 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
650 for (va
= start
; va
< end
; va
+= 32)
651 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
655 "i" (ASI_DCACHE_INVALIDATE
));
658 #endif /* DCACHE_ALIASING_POSSIBLE */
660 /* get_new_mmu_context() uses "cache + 1". */
661 DEFINE_SPINLOCK(ctx_alloc_lock
);
662 unsigned long tlb_context_cache
= CTX_FIRST_VERSION
- 1;
663 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
664 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
665 DECLARE_BITMAP(mmu_context_bmap
, MAX_CTX_NR
);
667 /* Caller does TLB context flushing on local CPU if necessary.
668 * The caller also ensures that CTX_VALID(mm->context) is false.
670 * We must be careful about boundary cases so that we never
671 * let the user have CTX 0 (nucleus) or we ever use a CTX
672 * version of zero (and thus NO_CONTEXT would not be caught
673 * by version mis-match tests in mmu_context.h).
675 * Always invoked with interrupts disabled.
677 void get_new_mmu_context(struct mm_struct
*mm
)
679 unsigned long ctx
, new_ctx
;
680 unsigned long orig_pgsz_bits
;
684 spin_lock_irqsave(&ctx_alloc_lock
, flags
);
685 orig_pgsz_bits
= (mm
->context
.sparc64_ctx_val
& CTX_PGSZ_MASK
);
686 ctx
= (tlb_context_cache
+ 1) & CTX_NR_MASK
;
687 new_ctx
= find_next_zero_bit(mmu_context_bmap
, 1 << CTX_NR_BITS
, ctx
);
689 if (new_ctx
>= (1 << CTX_NR_BITS
)) {
690 new_ctx
= find_next_zero_bit(mmu_context_bmap
, ctx
, 1);
691 if (new_ctx
>= ctx
) {
693 new_ctx
= (tlb_context_cache
& CTX_VERSION_MASK
) +
696 new_ctx
= CTX_FIRST_VERSION
;
698 /* Don't call memset, for 16 entries that's just
701 mmu_context_bmap
[0] = 3;
702 mmu_context_bmap
[1] = 0;
703 mmu_context_bmap
[2] = 0;
704 mmu_context_bmap
[3] = 0;
705 for (i
= 4; i
< CTX_BMAP_SLOTS
; i
+= 4) {
706 mmu_context_bmap
[i
+ 0] = 0;
707 mmu_context_bmap
[i
+ 1] = 0;
708 mmu_context_bmap
[i
+ 2] = 0;
709 mmu_context_bmap
[i
+ 3] = 0;
715 mmu_context_bmap
[new_ctx
>>6] |= (1UL << (new_ctx
& 63));
716 new_ctx
|= (tlb_context_cache
& CTX_VERSION_MASK
);
718 tlb_context_cache
= new_ctx
;
719 mm
->context
.sparc64_ctx_val
= new_ctx
| orig_pgsz_bits
;
720 spin_unlock_irqrestore(&ctx_alloc_lock
, flags
);
722 if (unlikely(new_version
))
723 smp_new_mmu_context_version();
726 /* Find a free area for the bootmem map, avoiding the kernel image
727 * and the initial ramdisk.
729 static unsigned long __init
choose_bootmap_pfn(unsigned long start_pfn
,
730 unsigned long end_pfn
)
732 unsigned long avoid_start
, avoid_end
, bootmap_size
;
735 bootmap_size
= bootmem_bootmap_pages(end_pfn
- start_pfn
);
736 bootmap_size
<<= PAGE_SHIFT
;
738 avoid_start
= avoid_end
= 0;
739 #ifdef CONFIG_BLK_DEV_INITRD
740 avoid_start
= initrd_start
;
741 avoid_end
= PAGE_ALIGN(initrd_end
);
744 #ifdef CONFIG_DEBUG_BOOTMEM
745 prom_printf("choose_bootmap_pfn: kern[%lx:%lx] avoid[%lx:%lx]\n",
746 kern_base
, PAGE_ALIGN(kern_base
+ kern_size
),
747 avoid_start
, avoid_end
);
749 for (i
= 0; i
< pavail_ents
; i
++) {
750 unsigned long start
, end
;
752 start
= pavail
[i
].phys_addr
;
753 end
= start
+ pavail
[i
].reg_size
;
755 while (start
< end
) {
756 if (start
>= kern_base
&&
757 start
< PAGE_ALIGN(kern_base
+ kern_size
)) {
758 start
= PAGE_ALIGN(kern_base
+ kern_size
);
761 if (start
>= avoid_start
&& start
< avoid_end
) {
766 if ((end
- start
) < bootmap_size
)
769 if (start
< kern_base
&&
770 (start
+ bootmap_size
) > kern_base
) {
771 start
= PAGE_ALIGN(kern_base
+ kern_size
);
775 if (start
< avoid_start
&&
776 (start
+ bootmap_size
) > avoid_start
) {
781 /* OK, it doesn't overlap anything, use it. */
782 #ifdef CONFIG_DEBUG_BOOTMEM
783 prom_printf("choose_bootmap_pfn: Using %lx [%lx]\n",
784 start
>> PAGE_SHIFT
, start
);
786 return start
>> PAGE_SHIFT
;
790 prom_printf("Cannot find free area for bootmap, aborting.\n");
794 static void __init
trim_pavail(unsigned long *cur_size_p
,
795 unsigned long *end_of_phys_p
)
797 unsigned long to_trim
= *cur_size_p
- cmdline_memory_size
;
798 unsigned long avoid_start
, avoid_end
;
801 to_trim
= PAGE_ALIGN(to_trim
);
803 avoid_start
= avoid_end
= 0;
804 #ifdef CONFIG_BLK_DEV_INITRD
805 avoid_start
= initrd_start
;
806 avoid_end
= PAGE_ALIGN(initrd_end
);
809 /* Trim some pavail[] entries in order to satisfy the
810 * requested "mem=xxx" kernel command line specification.
812 * We must not trim off the kernel image area nor the
813 * initial ramdisk range (if any). Also, we must not trim
814 * any pavail[] entry down to zero in order to preserve
815 * the invariant that all pavail[] entries have a non-zero
816 * size which is assumed by all of the code in here.
818 for (i
= 0; i
< pavail_ents
; i
++) {
819 unsigned long start
, end
, kern_end
;
820 unsigned long trim_low
, trim_high
, n
;
822 kern_end
= PAGE_ALIGN(kern_base
+ kern_size
);
824 trim_low
= start
= pavail
[i
].phys_addr
;
825 trim_high
= end
= start
+ pavail
[i
].reg_size
;
827 if (kern_base
>= start
&&
829 trim_low
= kern_base
;
833 if (kern_end
>= start
&&
835 trim_high
= kern_end
;
838 avoid_start
>= start
&&
840 if (trim_low
> avoid_start
)
841 trim_low
= avoid_start
;
842 if (avoid_end
>= end
)
846 avoid_end
>= start
&&
848 if (trim_high
< avoid_end
)
849 trim_high
= avoid_end
;
852 if (trim_high
<= trim_low
)
855 if (trim_low
== start
&& trim_high
== end
) {
856 /* Whole chunk is available for trimming.
857 * Trim all except one page, in order to keep
860 n
= (end
- start
) - PAGE_SIZE
;
865 pavail
[i
].phys_addr
+= n
;
866 pavail
[i
].reg_size
-= n
;
870 n
= (trim_low
- start
);
875 pavail
[i
].phys_addr
+= n
;
876 pavail
[i
].reg_size
-= n
;
884 pavail
[i
].reg_size
-= n
;
896 for (i
= 0; i
< pavail_ents
; i
++) {
897 *end_of_phys_p
= pavail
[i
].phys_addr
+
899 *cur_size_p
+= pavail
[i
].reg_size
;
903 /* About pages_avail, this is the value we will use to calculate
904 * the zholes_size[] argument given to free_area_init_node(). The
905 * page allocator uses this to calculate nr_kernel_pages,
906 * nr_all_pages and zone->present_pages. On NUMA it is used
907 * to calculate zone->min_unmapped_pages and zone->min_slab_pages.
909 * So this number should really be set to what the page allocator
910 * actually ends up with. This means:
911 * 1) It should include bootmem map pages, we'll release those.
912 * 2) It should not include the kernel image, except for the
913 * __init sections which we will also release.
914 * 3) It should include the initrd image, since we'll release
917 static unsigned long __init
bootmem_init(unsigned long *pages_avail
,
918 unsigned long phys_base
)
920 unsigned long bootmap_size
, end_pfn
;
921 unsigned long end_of_phys_memory
= 0UL;
922 unsigned long bootmap_pfn
, bytes_avail
, size
;
925 #ifdef CONFIG_DEBUG_BOOTMEM
926 prom_printf("bootmem_init: Scan pavail, ");
930 for (i
= 0; i
< pavail_ents
; i
++) {
931 end_of_phys_memory
= pavail
[i
].phys_addr
+
933 bytes_avail
+= pavail
[i
].reg_size
;
936 /* Determine the location of the initial ramdisk before trying
937 * to honor the "mem=xxx" command line argument. We must know
938 * where the kernel image and the ramdisk image are so that we
939 * do not trim those two areas from the physical memory map.
942 #ifdef CONFIG_BLK_DEV_INITRD
943 /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
944 if (sparc_ramdisk_image
|| sparc_ramdisk_image64
) {
945 unsigned long ramdisk_image
= sparc_ramdisk_image
?
946 sparc_ramdisk_image
: sparc_ramdisk_image64
;
947 ramdisk_image
-= KERNBASE
;
948 initrd_start
= ramdisk_image
+ phys_base
;
949 initrd_end
= initrd_start
+ sparc_ramdisk_size
;
950 if (initrd_end
> end_of_phys_memory
) {
951 printk(KERN_CRIT
"initrd extends beyond end of memory "
952 "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
953 initrd_end
, end_of_phys_memory
);
960 if (cmdline_memory_size
&&
961 bytes_avail
> cmdline_memory_size
)
962 trim_pavail(&bytes_avail
,
963 &end_of_phys_memory
);
965 *pages_avail
= bytes_avail
>> PAGE_SHIFT
;
967 end_pfn
= end_of_phys_memory
>> PAGE_SHIFT
;
969 /* Initialize the boot-time allocator. */
970 max_pfn
= max_low_pfn
= end_pfn
;
971 min_low_pfn
= (phys_base
>> PAGE_SHIFT
);
973 bootmap_pfn
= choose_bootmap_pfn(min_low_pfn
, end_pfn
);
975 #ifdef CONFIG_DEBUG_BOOTMEM
976 prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
977 min_low_pfn
, bootmap_pfn
, max_low_pfn
);
979 bootmap_size
= init_bootmem_node(NODE_DATA(0), bootmap_pfn
,
980 min_low_pfn
, end_pfn
);
982 /* Now register the available physical memory with the
985 for (i
= 0; i
< pavail_ents
; i
++) {
986 #ifdef CONFIG_DEBUG_BOOTMEM
987 prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
988 i
, pavail
[i
].phys_addr
, pavail
[i
].reg_size
);
990 free_bootmem(pavail
[i
].phys_addr
, pavail
[i
].reg_size
);
993 #ifdef CONFIG_BLK_DEV_INITRD
995 size
= initrd_end
- initrd_start
;
997 /* Reserve the initrd image area. */
998 #ifdef CONFIG_DEBUG_BOOTMEM
999 prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
1000 initrd_start
, initrd_end
);
1002 reserve_bootmem(initrd_start
, size
);
1004 initrd_start
+= PAGE_OFFSET
;
1005 initrd_end
+= PAGE_OFFSET
;
1008 /* Reserve the kernel text/data/bss. */
1009 #ifdef CONFIG_DEBUG_BOOTMEM
1010 prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base
, kern_size
);
1012 reserve_bootmem(kern_base
, kern_size
);
1013 *pages_avail
-= PAGE_ALIGN(kern_size
) >> PAGE_SHIFT
;
1015 /* Add back in the initmem pages. */
1016 size
= ((unsigned long)(__init_end
) & PAGE_MASK
) -
1017 PAGE_ALIGN((unsigned long)__init_begin
);
1018 *pages_avail
+= size
>> PAGE_SHIFT
;
1020 /* Reserve the bootmem map. We do not account for it
1021 * in pages_avail because we will release that memory
1022 * in free_all_bootmem.
1024 size
= bootmap_size
;
1025 #ifdef CONFIG_DEBUG_BOOTMEM
1026 prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
1027 (bootmap_pfn
<< PAGE_SHIFT
), size
);
1029 reserve_bootmem((bootmap_pfn
<< PAGE_SHIFT
), size
);
1031 for (i
= 0; i
< pavail_ents
; i
++) {
1032 unsigned long start_pfn
, end_pfn
;
1034 start_pfn
= pavail
[i
].phys_addr
>> PAGE_SHIFT
;
1035 end_pfn
= (start_pfn
+ (pavail
[i
].reg_size
>> PAGE_SHIFT
));
1036 #ifdef CONFIG_DEBUG_BOOTMEM
1037 prom_printf("memory_present(0, %lx, %lx)\n",
1038 start_pfn
, end_pfn
);
1040 memory_present(0, start_pfn
, end_pfn
);
1048 static struct linux_prom64_registers pall
[MAX_BANKS
] __initdata
;
1049 static int pall_ents __initdata
;
1051 #ifdef CONFIG_DEBUG_PAGEALLOC
1052 static unsigned long kernel_map_range(unsigned long pstart
, unsigned long pend
, pgprot_t prot
)
1054 unsigned long vstart
= PAGE_OFFSET
+ pstart
;
1055 unsigned long vend
= PAGE_OFFSET
+ pend
;
1056 unsigned long alloc_bytes
= 0UL;
1058 if ((vstart
& ~PAGE_MASK
) || (vend
& ~PAGE_MASK
)) {
1059 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1064 while (vstart
< vend
) {
1065 unsigned long this_end
, paddr
= __pa(vstart
);
1066 pgd_t
*pgd
= pgd_offset_k(vstart
);
1071 pud
= pud_offset(pgd
, vstart
);
1072 if (pud_none(*pud
)) {
1075 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1076 alloc_bytes
+= PAGE_SIZE
;
1077 pud_populate(&init_mm
, pud
, new);
1080 pmd
= pmd_offset(pud
, vstart
);
1081 if (!pmd_present(*pmd
)) {
1084 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1085 alloc_bytes
+= PAGE_SIZE
;
1086 pmd_populate_kernel(&init_mm
, pmd
, new);
1089 pte
= pte_offset_kernel(pmd
, vstart
);
1090 this_end
= (vstart
+ PMD_SIZE
) & PMD_MASK
;
1091 if (this_end
> vend
)
1094 while (vstart
< this_end
) {
1095 pte_val(*pte
) = (paddr
| pgprot_val(prot
));
1097 vstart
+= PAGE_SIZE
;
1106 extern unsigned int kvmap_linear_patch
[1];
1107 #endif /* CONFIG_DEBUG_PAGEALLOC */
1109 static void __init
mark_kpte_bitmap(unsigned long start
, unsigned long end
)
1111 const unsigned long shift_256MB
= 28;
1112 const unsigned long mask_256MB
= ((1UL << shift_256MB
) - 1UL);
1113 const unsigned long size_256MB
= (1UL << shift_256MB
);
1115 while (start
< end
) {
1118 remains
= end
- start
;
1119 if (remains
< size_256MB
)
1122 if (start
& mask_256MB
) {
1123 start
= (start
+ size_256MB
) & ~mask_256MB
;
1127 while (remains
>= size_256MB
) {
1128 unsigned long index
= start
>> shift_256MB
;
1130 __set_bit(index
, kpte_linear_bitmap
);
1132 start
+= size_256MB
;
1133 remains
-= size_256MB
;
1138 static void __init
kernel_physical_mapping_init(void)
1141 #ifdef CONFIG_DEBUG_PAGEALLOC
1142 unsigned long mem_alloced
= 0UL;
1145 read_obp_memory("reg", &pall
[0], &pall_ents
);
1147 for (i
= 0; i
< pall_ents
; i
++) {
1148 unsigned long phys_start
, phys_end
;
1150 phys_start
= pall
[i
].phys_addr
;
1151 phys_end
= phys_start
+ pall
[i
].reg_size
;
1153 mark_kpte_bitmap(phys_start
, phys_end
);
1155 #ifdef CONFIG_DEBUG_PAGEALLOC
1156 mem_alloced
+= kernel_map_range(phys_start
, phys_end
,
1161 #ifdef CONFIG_DEBUG_PAGEALLOC
1162 printk("Allocated %ld bytes for kernel page tables.\n",
1165 kvmap_linear_patch
[0] = 0x01000000; /* nop */
1166 flushi(&kvmap_linear_patch
[0]);
1172 #ifdef CONFIG_DEBUG_PAGEALLOC
1173 void kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1175 unsigned long phys_start
= page_to_pfn(page
) << PAGE_SHIFT
;
1176 unsigned long phys_end
= phys_start
+ (numpages
* PAGE_SIZE
);
1178 kernel_map_range(phys_start
, phys_end
,
1179 (enable
? PAGE_KERNEL
: __pgprot(0)));
1181 flush_tsb_kernel_range(PAGE_OFFSET
+ phys_start
,
1182 PAGE_OFFSET
+ phys_end
);
1184 /* we should perform an IPI and flush all tlbs,
1185 * but that can deadlock->flush only current cpu.
1187 __flush_tlb_kernel_range(PAGE_OFFSET
+ phys_start
,
1188 PAGE_OFFSET
+ phys_end
);
1192 unsigned long __init
find_ecache_flush_span(unsigned long size
)
1196 for (i
= 0; i
< pavail_ents
; i
++) {
1197 if (pavail
[i
].reg_size
>= size
)
1198 return pavail
[i
].phys_addr
;
1204 static void __init
tsb_phys_patch(void)
1206 struct tsb_ldquad_phys_patch_entry
*pquad
;
1207 struct tsb_phys_patch_entry
*p
;
1209 pquad
= &__tsb_ldquad_phys_patch
;
1210 while (pquad
< &__tsb_ldquad_phys_patch_end
) {
1211 unsigned long addr
= pquad
->addr
;
1213 if (tlb_type
== hypervisor
)
1214 *(unsigned int *) addr
= pquad
->sun4v_insn
;
1216 *(unsigned int *) addr
= pquad
->sun4u_insn
;
1218 __asm__
__volatile__("flush %0"
1225 p
= &__tsb_phys_patch
;
1226 while (p
< &__tsb_phys_patch_end
) {
1227 unsigned long addr
= p
->addr
;
1229 *(unsigned int *) addr
= p
->insn
;
1231 __asm__
__volatile__("flush %0"
1239 /* Don't mark as init, we give this to the Hypervisor. */
1240 #ifndef CONFIG_DEBUG_PAGEALLOC
1241 #define NUM_KTSB_DESCR 2
1243 #define NUM_KTSB_DESCR 1
1245 static struct hv_tsb_descr ktsb_descr
[NUM_KTSB_DESCR
];
1246 extern struct tsb swapper_tsb
[KERNEL_TSB_NENTRIES
];
1248 static void __init
sun4v_ktsb_init(void)
1250 unsigned long ktsb_pa
;
1252 /* First KTSB for PAGE_SIZE mappings. */
1253 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
1255 switch (PAGE_SIZE
) {
1258 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_8K
;
1259 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_8K
;
1263 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_64K
;
1264 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_64K
;
1268 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_512K
;
1269 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_512K
;
1272 case 4 * 1024 * 1024:
1273 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_4MB
;
1274 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_4MB
;
1278 ktsb_descr
[0].assoc
= 1;
1279 ktsb_descr
[0].num_ttes
= KERNEL_TSB_NENTRIES
;
1280 ktsb_descr
[0].ctx_idx
= 0;
1281 ktsb_descr
[0].tsb_base
= ktsb_pa
;
1282 ktsb_descr
[0].resv
= 0;
1284 #ifndef CONFIG_DEBUG_PAGEALLOC
1285 /* Second KTSB for 4MB/256MB mappings. */
1286 ktsb_pa
= (kern_base
+
1287 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
1289 ktsb_descr
[1].pgsz_idx
= HV_PGSZ_IDX_4MB
;
1290 ktsb_descr
[1].pgsz_mask
= (HV_PGSZ_MASK_4MB
|
1291 HV_PGSZ_MASK_256MB
);
1292 ktsb_descr
[1].assoc
= 1;
1293 ktsb_descr
[1].num_ttes
= KERNEL_TSB4M_NENTRIES
;
1294 ktsb_descr
[1].ctx_idx
= 0;
1295 ktsb_descr
[1].tsb_base
= ktsb_pa
;
1296 ktsb_descr
[1].resv
= 0;
1300 void __cpuinit
sun4v_ktsb_register(void)
1302 unsigned long pa
, ret
;
1304 pa
= kern_base
+ ((unsigned long)&ktsb_descr
[0] - KERNBASE
);
1306 ret
= sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR
, pa
);
1308 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1309 "errors with %lx\n", pa
, ret
);
1314 /* paging_init() sets up the page tables */
1316 extern void cheetah_ecache_flush_init(void);
1317 extern void sun4v_patch_tlb_handlers(void);
1319 extern void cpu_probe(void);
1320 extern void central_probe(void);
1322 static unsigned long last_valid_pfn
;
1323 pgd_t swapper_pg_dir
[2048];
1325 static void sun4u_pgprot_init(void);
1326 static void sun4v_pgprot_init(void);
1328 void __init
paging_init(void)
1330 unsigned long end_pfn
, pages_avail
, shift
, phys_base
;
1331 unsigned long real_end
, i
;
1333 /* These build time checkes make sure that the dcache_dirty_cpu()
1334 * page->flags usage will work.
1336 * When a page gets marked as dcache-dirty, we store the
1337 * cpu number starting at bit 32 in the page->flags. Also,
1338 * functions like clear_dcache_dirty_cpu use the cpu mask
1339 * in 13-bit signed-immediate instruction fields.
1341 BUILD_BUG_ON(FLAGS_RESERVED
!= 32);
1342 BUILD_BUG_ON(SECTIONS_WIDTH
+ NODES_WIDTH
+ ZONES_WIDTH
+
1343 ilog2(roundup_pow_of_two(NR_CPUS
)) > FLAGS_RESERVED
);
1344 BUILD_BUG_ON(NR_CPUS
> 4096);
1346 kern_base
= (prom_boot_mapping_phys_low
>> 22UL) << 22UL;
1347 kern_size
= (unsigned long)&_end
- (unsigned long)KERNBASE
;
1351 /* Invalidate both kernel TSBs. */
1352 memset(swapper_tsb
, 0x40, sizeof(swapper_tsb
));
1353 #ifndef CONFIG_DEBUG_PAGEALLOC
1354 memset(swapper_4m_tsb
, 0x40, sizeof(swapper_4m_tsb
));
1357 if (tlb_type
== hypervisor
)
1358 sun4v_pgprot_init();
1360 sun4u_pgprot_init();
1362 if (tlb_type
== cheetah_plus
||
1363 tlb_type
== hypervisor
)
1366 if (tlb_type
== hypervisor
) {
1367 sun4v_patch_tlb_handlers();
1371 /* Find available physical memory... */
1372 read_obp_memory("available", &pavail
[0], &pavail_ents
);
1374 phys_base
= 0xffffffffffffffffUL
;
1375 for (i
= 0; i
< pavail_ents
; i
++)
1376 phys_base
= min(phys_base
, pavail
[i
].phys_addr
);
1378 set_bit(0, mmu_context_bmap
);
1380 shift
= kern_base
+ PAGE_OFFSET
- ((unsigned long)KERNBASE
);
1382 real_end
= (unsigned long)_end
;
1383 if ((real_end
> ((unsigned long)KERNBASE
+ 0x400000)))
1385 if ((real_end
> ((unsigned long)KERNBASE
+ 0x800000))) {
1386 prom_printf("paging_init: Kernel > 8MB, too large.\n");
1390 /* Set kernel pgd to upper alias so physical page computations
1393 init_mm
.pgd
+= ((shift
) / (sizeof(pgd_t
)));
1395 memset(swapper_low_pmd_dir
, 0, sizeof(swapper_low_pmd_dir
));
1397 /* Now can init the kernel/bad page tables. */
1398 pud_set(pud_offset(&swapper_pg_dir
[0], 0),
1399 swapper_low_pmd_dir
+ (shift
/ sizeof(pgd_t
)));
1401 inherit_prom_mappings();
1403 /* Ok, we can use our TLB miss and window trap handlers safely. */
1408 if (tlb_type
== hypervisor
)
1409 sun4v_ktsb_register();
1411 /* Setup bootmem... */
1413 last_valid_pfn
= end_pfn
= bootmem_init(&pages_avail
, phys_base
);
1415 max_mapnr
= last_valid_pfn
;
1417 kernel_physical_mapping_init();
1419 real_setup_per_cpu_areas();
1421 prom_build_devicetree();
1423 if (tlb_type
== hypervisor
)
1427 unsigned long zones_size
[MAX_NR_ZONES
];
1428 unsigned long zholes_size
[MAX_NR_ZONES
];
1431 for (znum
= 0; znum
< MAX_NR_ZONES
; znum
++)
1432 zones_size
[znum
] = zholes_size
[znum
] = 0;
1434 zones_size
[ZONE_NORMAL
] = end_pfn
;
1435 zholes_size
[ZONE_NORMAL
] = end_pfn
- pages_avail
;
1437 free_area_init_node(0, &contig_page_data
, zones_size
,
1438 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
,
1442 prom_printf("Booting Linux...\n");
1448 static void __init
taint_real_pages(void)
1452 read_obp_memory("available", &pavail_rescan
[0], &pavail_rescan_ents
);
1454 /* Find changes discovered in the physmem available rescan and
1455 * reserve the lost portions in the bootmem maps.
1457 for (i
= 0; i
< pavail_ents
; i
++) {
1458 unsigned long old_start
, old_end
;
1460 old_start
= pavail
[i
].phys_addr
;
1461 old_end
= old_start
+
1463 while (old_start
< old_end
) {
1466 for (n
= 0; n
< pavail_rescan_ents
; n
++) {
1467 unsigned long new_start
, new_end
;
1469 new_start
= pavail_rescan
[n
].phys_addr
;
1470 new_end
= new_start
+
1471 pavail_rescan
[n
].reg_size
;
1473 if (new_start
<= old_start
&&
1474 new_end
>= (old_start
+ PAGE_SIZE
)) {
1475 set_bit(old_start
>> 22,
1476 sparc64_valid_addr_bitmap
);
1480 reserve_bootmem(old_start
, PAGE_SIZE
);
1483 old_start
+= PAGE_SIZE
;
1488 int __init
page_in_phys_avail(unsigned long paddr
)
1494 for (i
= 0; i
< pavail_rescan_ents
; i
++) {
1495 unsigned long start
, end
;
1497 start
= pavail_rescan
[i
].phys_addr
;
1498 end
= start
+ pavail_rescan
[i
].reg_size
;
1500 if (paddr
>= start
&& paddr
< end
)
1503 if (paddr
>= kern_base
&& paddr
< (kern_base
+ kern_size
))
1505 #ifdef CONFIG_BLK_DEV_INITRD
1506 if (paddr
>= __pa(initrd_start
) &&
1507 paddr
< __pa(PAGE_ALIGN(initrd_end
)))
1514 void __init
mem_init(void)
1516 unsigned long codepages
, datapages
, initpages
;
1517 unsigned long addr
, last
;
1520 i
= last_valid_pfn
>> ((22 - PAGE_SHIFT
) + 6);
1522 sparc64_valid_addr_bitmap
= (unsigned long *) alloc_bootmem(i
<< 3);
1523 if (sparc64_valid_addr_bitmap
== NULL
) {
1524 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1527 memset(sparc64_valid_addr_bitmap
, 0, i
<< 3);
1529 addr
= PAGE_OFFSET
+ kern_base
;
1530 last
= PAGE_ALIGN(kern_size
) + addr
;
1531 while (addr
< last
) {
1532 set_bit(__pa(addr
) >> 22, sparc64_valid_addr_bitmap
);
1538 high_memory
= __va(last_valid_pfn
<< PAGE_SHIFT
);
1540 #ifdef CONFIG_DEBUG_BOOTMEM
1541 prom_printf("mem_init: Calling free_all_bootmem().\n");
1544 /* We subtract one to account for the mem_map_zero page
1547 totalram_pages
= num_physpages
= free_all_bootmem() - 1;
1550 * Set up the zero page, mark it reserved, so that page count
1551 * is not manipulated when freeing the page from user ptes.
1553 mem_map_zero
= alloc_pages(GFP_KERNEL
|__GFP_ZERO
, 0);
1554 if (mem_map_zero
== NULL
) {
1555 prom_printf("paging_init: Cannot alloc zero page.\n");
1558 SetPageReserved(mem_map_zero
);
1560 codepages
= (((unsigned long) _etext
) - ((unsigned long) _start
));
1561 codepages
= PAGE_ALIGN(codepages
) >> PAGE_SHIFT
;
1562 datapages
= (((unsigned long) _edata
) - ((unsigned long) _etext
));
1563 datapages
= PAGE_ALIGN(datapages
) >> PAGE_SHIFT
;
1564 initpages
= (((unsigned long) __init_end
) - ((unsigned long) __init_begin
));
1565 initpages
= PAGE_ALIGN(initpages
) >> PAGE_SHIFT
;
1567 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1568 nr_free_pages() << (PAGE_SHIFT
-10),
1569 codepages
<< (PAGE_SHIFT
-10),
1570 datapages
<< (PAGE_SHIFT
-10),
1571 initpages
<< (PAGE_SHIFT
-10),
1572 PAGE_OFFSET
, (last_valid_pfn
<< PAGE_SHIFT
));
1574 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
)
1575 cheetah_ecache_flush_init();
1578 void free_initmem(void)
1580 unsigned long addr
, initend
;
1583 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1585 addr
= PAGE_ALIGN((unsigned long)(__init_begin
));
1586 initend
= (unsigned long)(__init_end
) & PAGE_MASK
;
1587 for (; addr
< initend
; addr
+= PAGE_SIZE
) {
1592 ((unsigned long) __va(kern_base
)) -
1593 ((unsigned long) KERNBASE
));
1594 memset((void *)addr
, POISON_FREE_INITMEM
, PAGE_SIZE
);
1595 p
= virt_to_page(page
);
1597 ClearPageReserved(p
);
1605 #ifdef CONFIG_BLK_DEV_INITRD
1606 void free_initrd_mem(unsigned long start
, unsigned long end
)
1609 printk ("Freeing initrd memory: %ldk freed\n", (end
- start
) >> 10);
1610 for (; start
< end
; start
+= PAGE_SIZE
) {
1611 struct page
*p
= virt_to_page(start
);
1613 ClearPageReserved(p
);
1622 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
1623 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
1624 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1625 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1626 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1627 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1629 pgprot_t PAGE_KERNEL __read_mostly
;
1630 EXPORT_SYMBOL(PAGE_KERNEL
);
1632 pgprot_t PAGE_KERNEL_LOCKED __read_mostly
;
1633 pgprot_t PAGE_COPY __read_mostly
;
1635 pgprot_t PAGE_SHARED __read_mostly
;
1636 EXPORT_SYMBOL(PAGE_SHARED
);
1638 pgprot_t PAGE_EXEC __read_mostly
;
1639 unsigned long pg_iobits __read_mostly
;
1641 unsigned long _PAGE_IE __read_mostly
;
1642 EXPORT_SYMBOL(_PAGE_IE
);
1644 unsigned long _PAGE_E __read_mostly
;
1645 EXPORT_SYMBOL(_PAGE_E
);
1647 unsigned long _PAGE_CACHE __read_mostly
;
1648 EXPORT_SYMBOL(_PAGE_CACHE
);
1650 static void prot_init_common(unsigned long page_none
,
1651 unsigned long page_shared
,
1652 unsigned long page_copy
,
1653 unsigned long page_readonly
,
1654 unsigned long page_exec_bit
)
1656 PAGE_COPY
= __pgprot(page_copy
);
1657 PAGE_SHARED
= __pgprot(page_shared
);
1659 protection_map
[0x0] = __pgprot(page_none
);
1660 protection_map
[0x1] = __pgprot(page_readonly
& ~page_exec_bit
);
1661 protection_map
[0x2] = __pgprot(page_copy
& ~page_exec_bit
);
1662 protection_map
[0x3] = __pgprot(page_copy
& ~page_exec_bit
);
1663 protection_map
[0x4] = __pgprot(page_readonly
);
1664 protection_map
[0x5] = __pgprot(page_readonly
);
1665 protection_map
[0x6] = __pgprot(page_copy
);
1666 protection_map
[0x7] = __pgprot(page_copy
);
1667 protection_map
[0x8] = __pgprot(page_none
);
1668 protection_map
[0x9] = __pgprot(page_readonly
& ~page_exec_bit
);
1669 protection_map
[0xa] = __pgprot(page_shared
& ~page_exec_bit
);
1670 protection_map
[0xb] = __pgprot(page_shared
& ~page_exec_bit
);
1671 protection_map
[0xc] = __pgprot(page_readonly
);
1672 protection_map
[0xd] = __pgprot(page_readonly
);
1673 protection_map
[0xe] = __pgprot(page_shared
);
1674 protection_map
[0xf] = __pgprot(page_shared
);
1677 static void __init
sun4u_pgprot_init(void)
1679 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
1680 unsigned long page_exec_bit
;
1682 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
1683 _PAGE_CACHE_4U
| _PAGE_P_4U
|
1684 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
1686 PAGE_KERNEL_LOCKED
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
1687 _PAGE_CACHE_4U
| _PAGE_P_4U
|
1688 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
1689 _PAGE_EXEC_4U
| _PAGE_L_4U
);
1690 PAGE_EXEC
= __pgprot(_PAGE_EXEC_4U
);
1692 _PAGE_IE
= _PAGE_IE_4U
;
1693 _PAGE_E
= _PAGE_E_4U
;
1694 _PAGE_CACHE
= _PAGE_CACHE_4U
;
1696 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| __DIRTY_BITS_4U
|
1697 __ACCESS_BITS_4U
| _PAGE_E_4U
);
1699 #ifdef CONFIG_DEBUG_PAGEALLOC
1700 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZBITS_4U
) ^
1703 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4U
) ^
1706 kern_linear_pte_xor
[0] |= (_PAGE_CP_4U
| _PAGE_CV_4U
|
1707 _PAGE_P_4U
| _PAGE_W_4U
);
1709 /* XXX Should use 256MB on Panther. XXX */
1710 kern_linear_pte_xor
[1] = kern_linear_pte_xor
[0];
1712 _PAGE_SZBITS
= _PAGE_SZBITS_4U
;
1713 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ4MB_4U
| _PAGE_SZ512K_4U
|
1714 _PAGE_SZ64K_4U
| _PAGE_SZ8K_4U
|
1715 _PAGE_SZ32MB_4U
| _PAGE_SZ256MB_4U
);
1718 page_none
= _PAGE_PRESENT_4U
| _PAGE_ACCESSED_4U
| _PAGE_CACHE_4U
;
1719 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
1720 __ACCESS_BITS_4U
| _PAGE_WRITE_4U
| _PAGE_EXEC_4U
);
1721 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
1722 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
1723 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
1724 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
1726 page_exec_bit
= _PAGE_EXEC_4U
;
1728 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
1732 static void __init
sun4v_pgprot_init(void)
1734 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
1735 unsigned long page_exec_bit
;
1737 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4V
| _PAGE_VALID
|
1738 _PAGE_CACHE_4V
| _PAGE_P_4V
|
1739 __ACCESS_BITS_4V
| __DIRTY_BITS_4V
|
1741 PAGE_KERNEL_LOCKED
= PAGE_KERNEL
;
1742 PAGE_EXEC
= __pgprot(_PAGE_EXEC_4V
);
1744 _PAGE_IE
= _PAGE_IE_4V
;
1745 _PAGE_E
= _PAGE_E_4V
;
1746 _PAGE_CACHE
= _PAGE_CACHE_4V
;
1748 #ifdef CONFIG_DEBUG_PAGEALLOC
1749 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZBITS_4V
) ^
1752 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4V
) ^
1755 kern_linear_pte_xor
[0] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
1756 _PAGE_P_4V
| _PAGE_W_4V
);
1758 #ifdef CONFIG_DEBUG_PAGEALLOC
1759 kern_linear_pte_xor
[1] = (_PAGE_VALID
| _PAGE_SZBITS_4V
) ^
1762 kern_linear_pte_xor
[1] = (_PAGE_VALID
| _PAGE_SZ256MB_4V
) ^
1765 kern_linear_pte_xor
[1] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
1766 _PAGE_P_4V
| _PAGE_W_4V
);
1768 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| __DIRTY_BITS_4V
|
1769 __ACCESS_BITS_4V
| _PAGE_E_4V
);
1771 _PAGE_SZBITS
= _PAGE_SZBITS_4V
;
1772 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ16GB_4V
| _PAGE_SZ2GB_4V
|
1773 _PAGE_SZ256MB_4V
| _PAGE_SZ32MB_4V
|
1774 _PAGE_SZ4MB_4V
| _PAGE_SZ512K_4V
|
1775 _PAGE_SZ64K_4V
| _PAGE_SZ8K_4V
);
1777 page_none
= _PAGE_PRESENT_4V
| _PAGE_ACCESSED_4V
| _PAGE_CACHE_4V
;
1778 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
1779 __ACCESS_BITS_4V
| _PAGE_WRITE_4V
| _PAGE_EXEC_4V
);
1780 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
1781 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
1782 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
1783 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
1785 page_exec_bit
= _PAGE_EXEC_4V
;
1787 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
1791 unsigned long pte_sz_bits(unsigned long sz
)
1793 if (tlb_type
== hypervisor
) {
1797 return _PAGE_SZ8K_4V
;
1799 return _PAGE_SZ64K_4V
;
1801 return _PAGE_SZ512K_4V
;
1802 case 4 * 1024 * 1024:
1803 return _PAGE_SZ4MB_4V
;
1809 return _PAGE_SZ8K_4U
;
1811 return _PAGE_SZ64K_4U
;
1813 return _PAGE_SZ512K_4U
;
1814 case 4 * 1024 * 1024:
1815 return _PAGE_SZ4MB_4U
;
1820 pte_t
mk_pte_io(unsigned long page
, pgprot_t prot
, int space
, unsigned long page_size
)
1824 pte_val(pte
) = page
| pgprot_val(pgprot_noncached(prot
));
1825 pte_val(pte
) |= (((unsigned long)space
) << 32);
1826 pte_val(pte
) |= pte_sz_bits(page_size
);
1831 static unsigned long kern_large_tte(unsigned long paddr
)
1835 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
1836 _PAGE_CP_4U
| _PAGE_CV_4U
| _PAGE_P_4U
|
1837 _PAGE_EXEC_4U
| _PAGE_L_4U
| _PAGE_W_4U
);
1838 if (tlb_type
== hypervisor
)
1839 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
1840 _PAGE_CP_4V
| _PAGE_CV_4V
| _PAGE_P_4V
|
1841 _PAGE_EXEC_4V
| _PAGE_W_4V
);
1846 /* If not locked, zap it. */
1847 void __flush_tlb_all(void)
1849 unsigned long pstate
;
1852 __asm__
__volatile__("flushw\n\t"
1853 "rdpr %%pstate, %0\n\t"
1854 "wrpr %0, %1, %%pstate"
1857 if (tlb_type
== spitfire
) {
1858 for (i
= 0; i
< 64; i
++) {
1859 /* Spitfire Errata #32 workaround */
1860 /* NOTE: Always runs on spitfire, so no
1861 * cheetah+ page size encodings.
1863 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
1867 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
1869 if (!(spitfire_get_dtlb_data(i
) & _PAGE_L_4U
)) {
1870 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
1873 : "r" (TLB_TAG_ACCESS
), "i" (ASI_DMMU
));
1874 spitfire_put_dtlb_data(i
, 0x0UL
);
1877 /* Spitfire Errata #32 workaround */
1878 /* NOTE: Always runs on spitfire, so no
1879 * cheetah+ page size encodings.
1881 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
1885 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
1887 if (!(spitfire_get_itlb_data(i
) & _PAGE_L_4U
)) {
1888 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
1891 : "r" (TLB_TAG_ACCESS
), "i" (ASI_IMMU
));
1892 spitfire_put_itlb_data(i
, 0x0UL
);
1895 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
1896 cheetah_flush_dtlb_all();
1897 cheetah_flush_itlb_all();
1899 __asm__
__volatile__("wrpr %0, 0, %%pstate"
1903 #ifdef CONFIG_MEMORY_HOTPLUG
1905 void online_page(struct page
*page
)
1907 ClearPageReserved(page
);
1908 init_page_count(page
);
1914 int remove_memory(u64 start
, u64 size
)
1919 #endif /* CONFIG_MEMORY_HOTPLUG */