[PATCH] ocfs2: zero_user_page conversion
[wrt350n-kernel.git] / arch / sparc64 / mm / tsb.c
blob8eb8a7c76ec92fc171208f7b1b4179afebd3f12d
1 /* arch/sparc64/mm/tsb.c
3 * Copyright (C) 2006 David S. Miller <davem@davemloft.net>
4 */
6 #include <linux/kernel.h>
7 #include <asm/system.h>
8 #include <asm/page.h>
9 #include <asm/tlbflush.h>
10 #include <asm/tlb.h>
11 #include <asm/mmu_context.h>
12 #include <asm/pgtable.h>
13 #include <asm/tsb.h>
14 #include <asm/oplib.h>
16 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
18 static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
20 vaddr >>= hash_shift;
21 return vaddr & (nentries - 1);
24 static inline int tag_compare(unsigned long tag, unsigned long vaddr)
26 return (tag == (vaddr >> 22));
29 /* TSB flushes need only occur on the processor initiating the address
30 * space modification, not on each cpu the address space has run on.
31 * Only the TLB flush needs that treatment.
34 void flush_tsb_kernel_range(unsigned long start, unsigned long end)
36 unsigned long v;
38 for (v = start; v < end; v += PAGE_SIZE) {
39 unsigned long hash = tsb_hash(v, PAGE_SHIFT,
40 KERNEL_TSB_NENTRIES);
41 struct tsb *ent = &swapper_tsb[hash];
43 if (tag_compare(ent->tag, v)) {
44 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
45 membar_storeload_storestore();
50 static void __flush_tsb_one(struct mmu_gather *mp, unsigned long hash_shift, unsigned long tsb, unsigned long nentries)
52 unsigned long i;
54 for (i = 0; i < mp->tlb_nr; i++) {
55 unsigned long v = mp->vaddrs[i];
56 unsigned long tag, ent, hash;
58 v &= ~0x1UL;
60 hash = tsb_hash(v, hash_shift, nentries);
61 ent = tsb + (hash * sizeof(struct tsb));
62 tag = (v >> 22UL);
64 tsb_flush(ent, tag);
68 void flush_tsb_user(struct mmu_gather *mp)
70 struct mm_struct *mm = mp->mm;
71 unsigned long nentries, base, flags;
73 spin_lock_irqsave(&mm->context.lock, flags);
75 base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
76 nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
77 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
78 base = __pa(base);
79 __flush_tsb_one(mp, PAGE_SHIFT, base, nentries);
81 #ifdef CONFIG_HUGETLB_PAGE
82 if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
83 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
84 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
85 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
86 base = __pa(base);
87 __flush_tsb_one(mp, HPAGE_SHIFT, base, nentries);
89 #endif
90 spin_unlock_irqrestore(&mm->context.lock, flags);
93 #if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
94 #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K
95 #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K
96 #elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
97 #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_64K
98 #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_64K
99 #elif defined(CONFIG_SPARC64_PAGE_SIZE_512KB)
100 #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_512K
101 #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_512K
102 #elif defined(CONFIG_SPARC64_PAGE_SIZE_4MB)
103 #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_4MB
104 #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_4MB
105 #else
106 #error Broken base page size setting...
107 #endif
109 #ifdef CONFIG_HUGETLB_PAGE
110 #if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
111 #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_64K
112 #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_64K
113 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
114 #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_512K
115 #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_512K
116 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
117 #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB
118 #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB
119 #else
120 #error Broken huge page size setting...
121 #endif
122 #endif
124 static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
126 unsigned long tsb_reg, base, tsb_paddr;
127 unsigned long page_sz, tte;
129 mm->context.tsb_block[tsb_idx].tsb_nentries =
130 tsb_bytes / sizeof(struct tsb);
132 base = TSBMAP_BASE;
133 tte = pgprot_val(PAGE_KERNEL_LOCKED);
134 tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
135 BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
137 /* Use the smallest page size that can map the whole TSB
138 * in one TLB entry.
140 switch (tsb_bytes) {
141 case 8192 << 0:
142 tsb_reg = 0x0UL;
143 #ifdef DCACHE_ALIASING_POSSIBLE
144 base += (tsb_paddr & 8192);
145 #endif
146 page_sz = 8192;
147 break;
149 case 8192 << 1:
150 tsb_reg = 0x1UL;
151 page_sz = 64 * 1024;
152 break;
154 case 8192 << 2:
155 tsb_reg = 0x2UL;
156 page_sz = 64 * 1024;
157 break;
159 case 8192 << 3:
160 tsb_reg = 0x3UL;
161 page_sz = 64 * 1024;
162 break;
164 case 8192 << 4:
165 tsb_reg = 0x4UL;
166 page_sz = 512 * 1024;
167 break;
169 case 8192 << 5:
170 tsb_reg = 0x5UL;
171 page_sz = 512 * 1024;
172 break;
174 case 8192 << 6:
175 tsb_reg = 0x6UL;
176 page_sz = 512 * 1024;
177 break;
179 case 8192 << 7:
180 tsb_reg = 0x7UL;
181 page_sz = 4 * 1024 * 1024;
182 break;
184 default:
185 BUG();
187 tte |= pte_sz_bits(page_sz);
189 if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
190 /* Physical mapping, no locked TLB entry for TSB. */
191 tsb_reg |= tsb_paddr;
193 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
194 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
195 mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
196 } else {
197 tsb_reg |= base;
198 tsb_reg |= (tsb_paddr & (page_sz - 1UL));
199 tte |= (tsb_paddr & ~(page_sz - 1UL));
201 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
202 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
203 mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
206 /* Setup the Hypervisor TSB descriptor. */
207 if (tlb_type == hypervisor) {
208 struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
210 switch (tsb_idx) {
211 case MM_TSB_BASE:
212 hp->pgsz_idx = HV_PGSZ_IDX_BASE;
213 break;
214 #ifdef CONFIG_HUGETLB_PAGE
215 case MM_TSB_HUGE:
216 hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
217 break;
218 #endif
219 default:
220 BUG();
222 hp->assoc = 1;
223 hp->num_ttes = tsb_bytes / 16;
224 hp->ctx_idx = 0;
225 switch (tsb_idx) {
226 case MM_TSB_BASE:
227 hp->pgsz_mask = HV_PGSZ_MASK_BASE;
228 break;
229 #ifdef CONFIG_HUGETLB_PAGE
230 case MM_TSB_HUGE:
231 hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
232 break;
233 #endif
234 default:
235 BUG();
237 hp->tsb_base = tsb_paddr;
238 hp->resv = 0;
242 static struct kmem_cache *tsb_caches[8] __read_mostly;
244 static const char *tsb_cache_names[8] = {
245 "tsb_8KB",
246 "tsb_16KB",
247 "tsb_32KB",
248 "tsb_64KB",
249 "tsb_128KB",
250 "tsb_256KB",
251 "tsb_512KB",
252 "tsb_1MB",
255 void __init pgtable_cache_init(void)
257 unsigned long i;
259 for (i = 0; i < 8; i++) {
260 unsigned long size = 8192 << i;
261 const char *name = tsb_cache_names[i];
263 tsb_caches[i] = kmem_cache_create(name,
264 size, size,
266 NULL, NULL);
267 if (!tsb_caches[i]) {
268 prom_printf("Could not create %s cache\n", name);
269 prom_halt();
274 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
275 * do_sparc64_fault() invokes this routine to try and grow it.
277 * When we reach the maximum TSB size supported, we stick ~0UL into
278 * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
279 * will not trigger any longer.
281 * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
282 * of two. The TSB must be aligned to it's size, so f.e. a 512K TSB
283 * must be 512K aligned. It also must be physically contiguous, so we
284 * cannot use vmalloc().
286 * The idea here is to grow the TSB when the RSS of the process approaches
287 * the number of entries that the current TSB can hold at once. Currently,
288 * we trigger when the RSS hits 3/4 of the TSB capacity.
290 void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
292 unsigned long max_tsb_size = 1 * 1024 * 1024;
293 unsigned long new_size, old_size, flags;
294 struct tsb *old_tsb, *new_tsb;
295 unsigned long new_cache_index, old_cache_index;
296 unsigned long new_rss_limit;
297 gfp_t gfp_flags;
299 if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
300 max_tsb_size = (PAGE_SIZE << MAX_ORDER);
302 new_cache_index = 0;
303 for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
304 unsigned long n_entries = new_size / sizeof(struct tsb);
306 n_entries = (n_entries * 3) / 4;
307 if (n_entries > rss)
308 break;
310 new_cache_index++;
313 if (new_size == max_tsb_size)
314 new_rss_limit = ~0UL;
315 else
316 new_rss_limit = ((new_size / sizeof(struct tsb)) * 3) / 4;
318 retry_tsb_alloc:
319 gfp_flags = GFP_KERNEL;
320 if (new_size > (PAGE_SIZE * 2))
321 gfp_flags = __GFP_NOWARN | __GFP_NORETRY;
323 new_tsb = kmem_cache_alloc(tsb_caches[new_cache_index], gfp_flags);
324 if (unlikely(!new_tsb)) {
325 /* Not being able to fork due to a high-order TSB
326 * allocation failure is very bad behavior. Just back
327 * down to a 0-order allocation and force no TSB
328 * growing for this address space.
330 if (mm->context.tsb_block[tsb_index].tsb == NULL &&
331 new_cache_index > 0) {
332 new_cache_index = 0;
333 new_size = 8192;
334 new_rss_limit = ~0UL;
335 goto retry_tsb_alloc;
338 /* If we failed on a TSB grow, we are under serious
339 * memory pressure so don't try to grow any more.
341 if (mm->context.tsb_block[tsb_index].tsb != NULL)
342 mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
343 return;
346 /* Mark all tags as invalid. */
347 tsb_init(new_tsb, new_size);
349 /* Ok, we are about to commit the changes. If we are
350 * growing an existing TSB the locking is very tricky,
351 * so WATCH OUT!
353 * We have to hold mm->context.lock while committing to the
354 * new TSB, this synchronizes us with processors in
355 * flush_tsb_user() and switch_mm() for this address space.
357 * But even with that lock held, processors run asynchronously
358 * accessing the old TSB via TLB miss handling. This is OK
359 * because those actions are just propagating state from the
360 * Linux page tables into the TSB, page table mappings are not
361 * being changed. If a real fault occurs, the processor will
362 * synchronize with us when it hits flush_tsb_user(), this is
363 * also true for the case where vmscan is modifying the page
364 * tables. The only thing we need to be careful with is to
365 * skip any locked TSB entries during copy_tsb().
367 * When we finish committing to the new TSB, we have to drop
368 * the lock and ask all other cpus running this address space
369 * to run tsb_context_switch() to see the new TSB table.
371 spin_lock_irqsave(&mm->context.lock, flags);
373 old_tsb = mm->context.tsb_block[tsb_index].tsb;
374 old_cache_index =
375 (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
376 old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
377 sizeof(struct tsb));
380 /* Handle multiple threads trying to grow the TSB at the same time.
381 * One will get in here first, and bump the size and the RSS limit.
382 * The others will get in here next and hit this check.
384 if (unlikely(old_tsb &&
385 (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
386 spin_unlock_irqrestore(&mm->context.lock, flags);
388 kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
389 return;
392 mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
394 if (old_tsb) {
395 extern void copy_tsb(unsigned long old_tsb_base,
396 unsigned long old_tsb_size,
397 unsigned long new_tsb_base,
398 unsigned long new_tsb_size);
399 unsigned long old_tsb_base = (unsigned long) old_tsb;
400 unsigned long new_tsb_base = (unsigned long) new_tsb;
402 if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
403 old_tsb_base = __pa(old_tsb_base);
404 new_tsb_base = __pa(new_tsb_base);
406 copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
409 mm->context.tsb_block[tsb_index].tsb = new_tsb;
410 setup_tsb_params(mm, tsb_index, new_size);
412 spin_unlock_irqrestore(&mm->context.lock, flags);
414 /* If old_tsb is NULL, we're being invoked for the first time
415 * from init_new_context().
417 if (old_tsb) {
418 /* Reload it on the local cpu. */
419 tsb_context_switch(mm);
421 /* Now force other processors to do the same. */
422 smp_tsb_sync(mm);
424 /* Now it is safe to free the old tsb. */
425 kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
429 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
431 #ifdef CONFIG_HUGETLB_PAGE
432 unsigned long huge_pte_count;
433 #endif
434 unsigned int i;
436 spin_lock_init(&mm->context.lock);
438 mm->context.sparc64_ctx_val = 0UL;
440 #ifdef CONFIG_HUGETLB_PAGE
441 /* We reset it to zero because the fork() page copying
442 * will re-increment the counters as the parent PTEs are
443 * copied into the child address space.
445 huge_pte_count = mm->context.huge_pte_count;
446 mm->context.huge_pte_count = 0;
447 #endif
449 /* copy_mm() copies over the parent's mm_struct before calling
450 * us, so we need to zero out the TSB pointer or else tsb_grow()
451 * will be confused and think there is an older TSB to free up.
453 for (i = 0; i < MM_NUM_TSBS; i++)
454 mm->context.tsb_block[i].tsb = NULL;
456 /* If this is fork, inherit the parent's TSB size. We would
457 * grow it to that size on the first page fault anyways.
459 tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
461 #ifdef CONFIG_HUGETLB_PAGE
462 if (unlikely(huge_pte_count))
463 tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
464 #endif
466 if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
467 return -ENOMEM;
469 return 0;
472 static void tsb_destroy_one(struct tsb_config *tp)
474 unsigned long cache_index;
476 if (!tp->tsb)
477 return;
478 cache_index = tp->tsb_reg_val & 0x7UL;
479 kmem_cache_free(tsb_caches[cache_index], tp->tsb);
480 tp->tsb = NULL;
481 tp->tsb_reg_val = 0UL;
484 void destroy_context(struct mm_struct *mm)
486 unsigned long flags, i;
488 for (i = 0; i < MM_NUM_TSBS; i++)
489 tsb_destroy_one(&mm->context.tsb_block[i]);
491 spin_lock_irqsave(&ctx_alloc_lock, flags);
493 if (CTX_VALID(mm->context)) {
494 unsigned long nr = CTX_NRBITS(mm->context);
495 mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
498 spin_unlock_irqrestore(&ctx_alloc_lock, flags);