x86: cpa self-test, WARN_ON()
[wrt350n-kernel.git] / drivers / firewire / fw-ohci.c
blob436a855a4c60700e2cc64f22446a57daf78ec504
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
33 #include <asm/page.h>
34 #include <asm/system.h>
36 #include "fw-ohci.h"
37 #include "fw-transaction.h"
39 #define DESCRIPTOR_OUTPUT_MORE 0
40 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
41 #define DESCRIPTOR_INPUT_MORE (2 << 12)
42 #define DESCRIPTOR_INPUT_LAST (3 << 12)
43 #define DESCRIPTOR_STATUS (1 << 11)
44 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
45 #define DESCRIPTOR_PING (1 << 7)
46 #define DESCRIPTOR_YY (1 << 6)
47 #define DESCRIPTOR_NO_IRQ (0 << 4)
48 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
49 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
50 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
51 #define DESCRIPTOR_WAIT (3 << 0)
53 struct descriptor {
54 __le16 req_count;
55 __le16 control;
56 __le32 data_address;
57 __le32 branch_address;
58 __le16 res_count;
59 __le16 transfer_status;
60 } __attribute__((aligned(16)));
62 struct db_descriptor {
63 __le16 first_size;
64 __le16 control;
65 __le16 second_req_count;
66 __le16 first_req_count;
67 __le32 branch_address;
68 __le16 second_res_count;
69 __le16 first_res_count;
70 __le32 reserved0;
71 __le32 first_buffer;
72 __le32 second_buffer;
73 __le32 reserved1;
74 } __attribute__((aligned(16)));
76 #define CONTROL_SET(regs) (regs)
77 #define CONTROL_CLEAR(regs) ((regs) + 4)
78 #define COMMAND_PTR(regs) ((regs) + 12)
79 #define CONTEXT_MATCH(regs) ((regs) + 16)
81 struct ar_buffer {
82 struct descriptor descriptor;
83 struct ar_buffer *next;
84 __le32 data[0];
87 struct ar_context {
88 struct fw_ohci *ohci;
89 struct ar_buffer *current_buffer;
90 struct ar_buffer *last_buffer;
91 void *pointer;
92 u32 regs;
93 struct tasklet_struct tasklet;
96 struct context;
98 typedef int (*descriptor_callback_t)(struct context *ctx,
99 struct descriptor *d,
100 struct descriptor *last);
101 struct context {
102 struct fw_ohci *ohci;
103 u32 regs;
105 struct descriptor *buffer;
106 dma_addr_t buffer_bus;
107 size_t buffer_size;
108 struct descriptor *head_descriptor;
109 struct descriptor *tail_descriptor;
110 struct descriptor *tail_descriptor_last;
111 struct descriptor *prev_descriptor;
113 descriptor_callback_t callback;
115 struct tasklet_struct tasklet;
118 #define IT_HEADER_SY(v) ((v) << 0)
119 #define IT_HEADER_TCODE(v) ((v) << 4)
120 #define IT_HEADER_CHANNEL(v) ((v) << 8)
121 #define IT_HEADER_TAG(v) ((v) << 14)
122 #define IT_HEADER_SPEED(v) ((v) << 16)
123 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
125 struct iso_context {
126 struct fw_iso_context base;
127 struct context context;
128 void *header;
129 size_t header_length;
132 #define CONFIG_ROM_SIZE 1024
134 struct fw_ohci {
135 struct fw_card card;
137 u32 version;
138 __iomem char *registers;
139 dma_addr_t self_id_bus;
140 __le32 *self_id_cpu;
141 struct tasklet_struct bus_reset_tasklet;
142 int node_id;
143 int generation;
144 int request_generation;
145 u32 bus_seconds;
148 * Spinlock for accessing fw_ohci data. Never call out of
149 * this driver with this lock held.
151 spinlock_t lock;
152 u32 self_id_buffer[512];
154 /* Config rom buffers */
155 __be32 *config_rom;
156 dma_addr_t config_rom_bus;
157 __be32 *next_config_rom;
158 dma_addr_t next_config_rom_bus;
159 u32 next_header;
161 struct ar_context ar_request_ctx;
162 struct ar_context ar_response_ctx;
163 struct context at_request_ctx;
164 struct context at_response_ctx;
166 u32 it_context_mask;
167 struct iso_context *it_context_list;
168 u32 ir_context_mask;
169 struct iso_context *ir_context_list;
172 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
174 return container_of(card, struct fw_ohci, card);
177 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
178 #define IR_CONTEXT_BUFFER_FILL 0x80000000
179 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
180 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
181 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
182 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
184 #define CONTEXT_RUN 0x8000
185 #define CONTEXT_WAKE 0x1000
186 #define CONTEXT_DEAD 0x0800
187 #define CONTEXT_ACTIVE 0x0400
189 #define OHCI1394_MAX_AT_REQ_RETRIES 0x2
190 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
191 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
193 #define FW_OHCI_MAJOR 240
194 #define OHCI1394_REGISTER_SIZE 0x800
195 #define OHCI_LOOP_COUNT 500
196 #define OHCI1394_PCI_HCI_Control 0x40
197 #define SELF_ID_BUF_SIZE 0x800
198 #define OHCI_TCODE_PHY_PACKET 0x0e
199 #define OHCI_VERSION_1_1 0x010010
200 #define ISO_BUFFER_SIZE (64 * 1024)
201 #define AT_BUFFER_SIZE 4096
203 static char ohci_driver_name[] = KBUILD_MODNAME;
205 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
207 writel(data, ohci->registers + offset);
210 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
212 return readl(ohci->registers + offset);
215 static inline void flush_writes(const struct fw_ohci *ohci)
217 /* Do a dummy read to flush writes. */
218 reg_read(ohci, OHCI1394_Version);
221 static int
222 ohci_update_phy_reg(struct fw_card *card, int addr,
223 int clear_bits, int set_bits)
225 struct fw_ohci *ohci = fw_ohci(card);
226 u32 val, old;
228 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
229 flush_writes(ohci);
230 msleep(2);
231 val = reg_read(ohci, OHCI1394_PhyControl);
232 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
233 fw_error("failed to set phy reg bits.\n");
234 return -EBUSY;
237 old = OHCI1394_PhyControl_ReadData(val);
238 old = (old & ~clear_bits) | set_bits;
239 reg_write(ohci, OHCI1394_PhyControl,
240 OHCI1394_PhyControl_Write(addr, old));
242 return 0;
245 static int ar_context_add_page(struct ar_context *ctx)
247 struct device *dev = ctx->ohci->card.device;
248 struct ar_buffer *ab;
249 dma_addr_t ab_bus;
250 size_t offset;
252 ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
253 if (ab == NULL)
254 return -ENOMEM;
256 ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
257 if (dma_mapping_error(ab_bus)) {
258 free_page((unsigned long) ab);
259 return -ENOMEM;
262 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
263 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
264 DESCRIPTOR_STATUS |
265 DESCRIPTOR_BRANCH_ALWAYS);
266 offset = offsetof(struct ar_buffer, data);
267 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
268 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
269 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
270 ab->descriptor.branch_address = 0;
272 dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
274 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
275 ctx->last_buffer->next = ab;
276 ctx->last_buffer = ab;
278 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
279 flush_writes(ctx->ohci);
281 return 0;
284 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
286 struct fw_ohci *ohci = ctx->ohci;
287 struct fw_packet p;
288 u32 status, length, tcode;
290 p.header[0] = le32_to_cpu(buffer[0]);
291 p.header[1] = le32_to_cpu(buffer[1]);
292 p.header[2] = le32_to_cpu(buffer[2]);
294 tcode = (p.header[0] >> 4) & 0x0f;
295 switch (tcode) {
296 case TCODE_WRITE_QUADLET_REQUEST:
297 case TCODE_READ_QUADLET_RESPONSE:
298 p.header[3] = (__force __u32) buffer[3];
299 p.header_length = 16;
300 p.payload_length = 0;
301 break;
303 case TCODE_READ_BLOCK_REQUEST :
304 p.header[3] = le32_to_cpu(buffer[3]);
305 p.header_length = 16;
306 p.payload_length = 0;
307 break;
309 case TCODE_WRITE_BLOCK_REQUEST:
310 case TCODE_READ_BLOCK_RESPONSE:
311 case TCODE_LOCK_REQUEST:
312 case TCODE_LOCK_RESPONSE:
313 p.header[3] = le32_to_cpu(buffer[3]);
314 p.header_length = 16;
315 p.payload_length = p.header[3] >> 16;
316 break;
318 case TCODE_WRITE_RESPONSE:
319 case TCODE_READ_QUADLET_REQUEST:
320 case OHCI_TCODE_PHY_PACKET:
321 p.header_length = 12;
322 p.payload_length = 0;
323 break;
326 p.payload = (void *) buffer + p.header_length;
328 /* FIXME: What to do about evt_* errors? */
329 length = (p.header_length + p.payload_length + 3) / 4;
330 status = le32_to_cpu(buffer[length]);
332 p.ack = ((status >> 16) & 0x1f) - 16;
333 p.speed = (status >> 21) & 0x7;
334 p.timestamp = status & 0xffff;
335 p.generation = ohci->request_generation;
338 * The OHCI bus reset handler synthesizes a phy packet with
339 * the new generation number when a bus reset happens (see
340 * section 8.4.2.3). This helps us determine when a request
341 * was received and make sure we send the response in the same
342 * generation. We only need this for requests; for responses
343 * we use the unique tlabel for finding the matching
344 * request.
347 if (p.ack + 16 == 0x09)
348 ohci->request_generation = (buffer[2] >> 16) & 0xff;
349 else if (ctx == &ohci->ar_request_ctx)
350 fw_core_handle_request(&ohci->card, &p);
351 else
352 fw_core_handle_response(&ohci->card, &p);
354 return buffer + length + 1;
357 static void ar_context_tasklet(unsigned long data)
359 struct ar_context *ctx = (struct ar_context *)data;
360 struct fw_ohci *ohci = ctx->ohci;
361 struct ar_buffer *ab;
362 struct descriptor *d;
363 void *buffer, *end;
365 ab = ctx->current_buffer;
366 d = &ab->descriptor;
368 if (d->res_count == 0) {
369 size_t size, rest, offset;
372 * This descriptor is finished and we may have a
373 * packet split across this and the next buffer. We
374 * reuse the page for reassembling the split packet.
377 offset = offsetof(struct ar_buffer, data);
378 dma_unmap_single(ohci->card.device,
379 le32_to_cpu(ab->descriptor.data_address) - offset,
380 PAGE_SIZE, DMA_BIDIRECTIONAL);
382 buffer = ab;
383 ab = ab->next;
384 d = &ab->descriptor;
385 size = buffer + PAGE_SIZE - ctx->pointer;
386 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
387 memmove(buffer, ctx->pointer, size);
388 memcpy(buffer + size, ab->data, rest);
389 ctx->current_buffer = ab;
390 ctx->pointer = (void *) ab->data + rest;
391 end = buffer + size + rest;
393 while (buffer < end)
394 buffer = handle_ar_packet(ctx, buffer);
396 free_page((unsigned long)buffer);
397 ar_context_add_page(ctx);
398 } else {
399 buffer = ctx->pointer;
400 ctx->pointer = end =
401 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
403 while (buffer < end)
404 buffer = handle_ar_packet(ctx, buffer);
408 static int
409 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
411 struct ar_buffer ab;
413 ctx->regs = regs;
414 ctx->ohci = ohci;
415 ctx->last_buffer = &ab;
416 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
418 ar_context_add_page(ctx);
419 ar_context_add_page(ctx);
420 ctx->current_buffer = ab.next;
421 ctx->pointer = ctx->current_buffer->data;
423 return 0;
426 static void ar_context_run(struct ar_context *ctx)
428 struct ar_buffer *ab = ctx->current_buffer;
429 dma_addr_t ab_bus;
430 size_t offset;
432 offset = offsetof(struct ar_buffer, data);
433 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
435 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
436 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
437 flush_writes(ctx->ohci);
440 static struct descriptor *
441 find_branch_descriptor(struct descriptor *d, int z)
443 int b, key;
445 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
446 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
448 /* figure out which descriptor the branch address goes in */
449 if (z == 2 && (b == 3 || key == 2))
450 return d;
451 else
452 return d + z - 1;
455 static void context_tasklet(unsigned long data)
457 struct context *ctx = (struct context *) data;
458 struct fw_ohci *ohci = ctx->ohci;
459 struct descriptor *d, *last;
460 u32 address;
461 int z;
463 dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
464 ctx->buffer_size, DMA_TO_DEVICE);
466 d = ctx->tail_descriptor;
467 last = ctx->tail_descriptor_last;
469 while (last->branch_address != 0) {
470 address = le32_to_cpu(last->branch_address);
471 z = address & 0xf;
472 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof(*d);
473 last = find_branch_descriptor(d, z);
475 if (!ctx->callback(ctx, d, last))
476 break;
478 ctx->tail_descriptor = d;
479 ctx->tail_descriptor_last = last;
483 static int
484 context_init(struct context *ctx, struct fw_ohci *ohci,
485 size_t buffer_size, u32 regs,
486 descriptor_callback_t callback)
488 ctx->ohci = ohci;
489 ctx->regs = regs;
490 ctx->buffer_size = buffer_size;
491 ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
492 if (ctx->buffer == NULL)
493 return -ENOMEM;
495 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
496 ctx->callback = callback;
498 ctx->buffer_bus =
499 dma_map_single(ohci->card.device, ctx->buffer,
500 buffer_size, DMA_TO_DEVICE);
501 if (dma_mapping_error(ctx->buffer_bus)) {
502 kfree(ctx->buffer);
503 return -ENOMEM;
506 ctx->head_descriptor = ctx->buffer;
507 ctx->prev_descriptor = ctx->buffer;
508 ctx->tail_descriptor = ctx->buffer;
509 ctx->tail_descriptor_last = ctx->buffer;
512 * We put a dummy descriptor in the buffer that has a NULL
513 * branch address and looks like it's been sent. That way we
514 * have a descriptor to append DMA programs to. Also, the
515 * ring buffer invariant is that it always has at least one
516 * element so that head == tail means buffer full.
519 memset(ctx->head_descriptor, 0, sizeof(*ctx->head_descriptor));
520 ctx->head_descriptor->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
521 ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
522 ctx->head_descriptor++;
524 return 0;
527 static void
528 context_release(struct context *ctx)
530 struct fw_card *card = &ctx->ohci->card;
532 dma_unmap_single(card->device, ctx->buffer_bus,
533 ctx->buffer_size, DMA_TO_DEVICE);
534 kfree(ctx->buffer);
537 static struct descriptor *
538 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
540 struct descriptor *d, *tail, *end;
542 d = ctx->head_descriptor;
543 tail = ctx->tail_descriptor;
544 end = ctx->buffer + ctx->buffer_size / sizeof(*d);
546 if (d + z <= tail) {
547 goto has_space;
548 } else if (d > tail && d + z <= end) {
549 goto has_space;
550 } else if (d > tail && ctx->buffer + z <= tail) {
551 d = ctx->buffer;
552 goto has_space;
555 return NULL;
557 has_space:
558 memset(d, 0, z * sizeof(*d));
559 *d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
561 return d;
564 static void context_run(struct context *ctx, u32 extra)
566 struct fw_ohci *ohci = ctx->ohci;
568 reg_write(ohci, COMMAND_PTR(ctx->regs),
569 le32_to_cpu(ctx->tail_descriptor_last->branch_address));
570 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
571 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
572 flush_writes(ohci);
575 static void context_append(struct context *ctx,
576 struct descriptor *d, int z, int extra)
578 dma_addr_t d_bus;
580 d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
582 ctx->head_descriptor = d + z + extra;
583 ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
584 ctx->prev_descriptor = find_branch_descriptor(d, z);
586 dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
587 ctx->buffer_size, DMA_TO_DEVICE);
589 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
590 flush_writes(ctx->ohci);
593 static void context_stop(struct context *ctx)
595 u32 reg;
596 int i;
598 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
599 flush_writes(ctx->ohci);
601 for (i = 0; i < 10; i++) {
602 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
603 if ((reg & CONTEXT_ACTIVE) == 0)
604 break;
606 fw_notify("context_stop: still active (0x%08x)\n", reg);
607 mdelay(1);
611 struct driver_data {
612 struct fw_packet *packet;
616 * This function apppends a packet to the DMA queue for transmission.
617 * Must always be called with the ochi->lock held to ensure proper
618 * generation handling and locking around packet queue manipulation.
620 static int
621 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
623 struct fw_ohci *ohci = ctx->ohci;
624 dma_addr_t d_bus, uninitialized_var(payload_bus);
625 struct driver_data *driver_data;
626 struct descriptor *d, *last;
627 __le32 *header;
628 int z, tcode;
629 u32 reg;
631 d = context_get_descriptors(ctx, 4, &d_bus);
632 if (d == NULL) {
633 packet->ack = RCODE_SEND_ERROR;
634 return -1;
637 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
638 d[0].res_count = cpu_to_le16(packet->timestamp);
641 * The DMA format for asyncronous link packets is different
642 * from the IEEE1394 layout, so shift the fields around
643 * accordingly. If header_length is 8, it's a PHY packet, to
644 * which we need to prepend an extra quadlet.
647 header = (__le32 *) &d[1];
648 if (packet->header_length > 8) {
649 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
650 (packet->speed << 16));
651 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
652 (packet->header[0] & 0xffff0000));
653 header[2] = cpu_to_le32(packet->header[2]);
655 tcode = (packet->header[0] >> 4) & 0x0f;
656 if (TCODE_IS_BLOCK_PACKET(tcode))
657 header[3] = cpu_to_le32(packet->header[3]);
658 else
659 header[3] = (__force __le32) packet->header[3];
661 d[0].req_count = cpu_to_le16(packet->header_length);
662 } else {
663 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
664 (packet->speed << 16));
665 header[1] = cpu_to_le32(packet->header[0]);
666 header[2] = cpu_to_le32(packet->header[1]);
667 d[0].req_count = cpu_to_le16(12);
670 driver_data = (struct driver_data *) &d[3];
671 driver_data->packet = packet;
672 packet->driver_data = driver_data;
674 if (packet->payload_length > 0) {
675 payload_bus =
676 dma_map_single(ohci->card.device, packet->payload,
677 packet->payload_length, DMA_TO_DEVICE);
678 if (dma_mapping_error(payload_bus)) {
679 packet->ack = RCODE_SEND_ERROR;
680 return -1;
683 d[2].req_count = cpu_to_le16(packet->payload_length);
684 d[2].data_address = cpu_to_le32(payload_bus);
685 last = &d[2];
686 z = 3;
687 } else {
688 last = &d[0];
689 z = 2;
692 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
693 DESCRIPTOR_IRQ_ALWAYS |
694 DESCRIPTOR_BRANCH_ALWAYS);
696 /* FIXME: Document how the locking works. */
697 if (ohci->generation != packet->generation) {
698 if (packet->payload_length > 0)
699 dma_unmap_single(ohci->card.device, payload_bus,
700 packet->payload_length, DMA_TO_DEVICE);
701 packet->ack = RCODE_GENERATION;
702 return -1;
705 context_append(ctx, d, z, 4 - z);
707 /* If the context isn't already running, start it up. */
708 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
709 if ((reg & CONTEXT_RUN) == 0)
710 context_run(ctx, 0);
712 return 0;
715 static int handle_at_packet(struct context *context,
716 struct descriptor *d,
717 struct descriptor *last)
719 struct driver_data *driver_data;
720 struct fw_packet *packet;
721 struct fw_ohci *ohci = context->ohci;
722 dma_addr_t payload_bus;
723 int evt;
725 if (last->transfer_status == 0)
726 /* This descriptor isn't done yet, stop iteration. */
727 return 0;
729 driver_data = (struct driver_data *) &d[3];
730 packet = driver_data->packet;
731 if (packet == NULL)
732 /* This packet was cancelled, just continue. */
733 return 1;
735 payload_bus = le32_to_cpu(last->data_address);
736 if (payload_bus != 0)
737 dma_unmap_single(ohci->card.device, payload_bus,
738 packet->payload_length, DMA_TO_DEVICE);
740 evt = le16_to_cpu(last->transfer_status) & 0x1f;
741 packet->timestamp = le16_to_cpu(last->res_count);
743 switch (evt) {
744 case OHCI1394_evt_timeout:
745 /* Async response transmit timed out. */
746 packet->ack = RCODE_CANCELLED;
747 break;
749 case OHCI1394_evt_flushed:
751 * The packet was flushed should give same error as
752 * when we try to use a stale generation count.
754 packet->ack = RCODE_GENERATION;
755 break;
757 case OHCI1394_evt_missing_ack:
759 * Using a valid (current) generation count, but the
760 * node is not on the bus or not sending acks.
762 packet->ack = RCODE_NO_ACK;
763 break;
765 case ACK_COMPLETE + 0x10:
766 case ACK_PENDING + 0x10:
767 case ACK_BUSY_X + 0x10:
768 case ACK_BUSY_A + 0x10:
769 case ACK_BUSY_B + 0x10:
770 case ACK_DATA_ERROR + 0x10:
771 case ACK_TYPE_ERROR + 0x10:
772 packet->ack = evt - 0x10;
773 break;
775 default:
776 packet->ack = RCODE_SEND_ERROR;
777 break;
780 packet->callback(packet, &ohci->card, packet->ack);
782 return 1;
785 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
786 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
787 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
788 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
789 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
791 static void
792 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
794 struct fw_packet response;
795 int tcode, length, i;
797 tcode = HEADER_GET_TCODE(packet->header[0]);
798 if (TCODE_IS_BLOCK_PACKET(tcode))
799 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
800 else
801 length = 4;
803 i = csr - CSR_CONFIG_ROM;
804 if (i + length > CONFIG_ROM_SIZE) {
805 fw_fill_response(&response, packet->header,
806 RCODE_ADDRESS_ERROR, NULL, 0);
807 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
808 fw_fill_response(&response, packet->header,
809 RCODE_TYPE_ERROR, NULL, 0);
810 } else {
811 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
812 (void *) ohci->config_rom + i, length);
815 fw_core_handle_response(&ohci->card, &response);
818 static void
819 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
821 struct fw_packet response;
822 int tcode, length, ext_tcode, sel;
823 __be32 *payload, lock_old;
824 u32 lock_arg, lock_data;
826 tcode = HEADER_GET_TCODE(packet->header[0]);
827 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
828 payload = packet->payload;
829 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
831 if (tcode == TCODE_LOCK_REQUEST &&
832 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
833 lock_arg = be32_to_cpu(payload[0]);
834 lock_data = be32_to_cpu(payload[1]);
835 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
836 lock_arg = 0;
837 lock_data = 0;
838 } else {
839 fw_fill_response(&response, packet->header,
840 RCODE_TYPE_ERROR, NULL, 0);
841 goto out;
844 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
845 reg_write(ohci, OHCI1394_CSRData, lock_data);
846 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
847 reg_write(ohci, OHCI1394_CSRControl, sel);
849 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
850 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
851 else
852 fw_notify("swap not done yet\n");
854 fw_fill_response(&response, packet->header,
855 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
856 out:
857 fw_core_handle_response(&ohci->card, &response);
860 static void
861 handle_local_request(struct context *ctx, struct fw_packet *packet)
863 u64 offset;
864 u32 csr;
866 if (ctx == &ctx->ohci->at_request_ctx) {
867 packet->ack = ACK_PENDING;
868 packet->callback(packet, &ctx->ohci->card, packet->ack);
871 offset =
872 ((unsigned long long)
873 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
874 packet->header[2];
875 csr = offset - CSR_REGISTER_BASE;
877 /* Handle config rom reads. */
878 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
879 handle_local_rom(ctx->ohci, packet, csr);
880 else switch (csr) {
881 case CSR_BUS_MANAGER_ID:
882 case CSR_BANDWIDTH_AVAILABLE:
883 case CSR_CHANNELS_AVAILABLE_HI:
884 case CSR_CHANNELS_AVAILABLE_LO:
885 handle_local_lock(ctx->ohci, packet, csr);
886 break;
887 default:
888 if (ctx == &ctx->ohci->at_request_ctx)
889 fw_core_handle_request(&ctx->ohci->card, packet);
890 else
891 fw_core_handle_response(&ctx->ohci->card, packet);
892 break;
895 if (ctx == &ctx->ohci->at_response_ctx) {
896 packet->ack = ACK_COMPLETE;
897 packet->callback(packet, &ctx->ohci->card, packet->ack);
901 static void
902 at_context_transmit(struct context *ctx, struct fw_packet *packet)
904 unsigned long flags;
905 int retval;
907 spin_lock_irqsave(&ctx->ohci->lock, flags);
909 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
910 ctx->ohci->generation == packet->generation) {
911 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
912 handle_local_request(ctx, packet);
913 return;
916 retval = at_context_queue_packet(ctx, packet);
917 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
919 if (retval < 0)
920 packet->callback(packet, &ctx->ohci->card, packet->ack);
924 static void bus_reset_tasklet(unsigned long data)
926 struct fw_ohci *ohci = (struct fw_ohci *)data;
927 int self_id_count, i, j, reg;
928 int generation, new_generation;
929 unsigned long flags;
930 void *free_rom = NULL;
931 dma_addr_t free_rom_bus = 0;
933 reg = reg_read(ohci, OHCI1394_NodeID);
934 if (!(reg & OHCI1394_NodeID_idValid)) {
935 fw_notify("node ID not valid, new bus reset in progress\n");
936 return;
938 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
939 fw_notify("malconfigured bus\n");
940 return;
942 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
943 OHCI1394_NodeID_nodeNumber);
946 * The count in the SelfIDCount register is the number of
947 * bytes in the self ID receive buffer. Since we also receive
948 * the inverted quadlets and a header quadlet, we shift one
949 * bit extra to get the actual number of self IDs.
952 self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
953 generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
954 rmb();
956 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
957 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
958 fw_error("inconsistent self IDs\n");
959 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
961 rmb();
964 * Check the consistency of the self IDs we just read. The
965 * problem we face is that a new bus reset can start while we
966 * read out the self IDs from the DMA buffer. If this happens,
967 * the DMA buffer will be overwritten with new self IDs and we
968 * will read out inconsistent data. The OHCI specification
969 * (section 11.2) recommends a technique similar to
970 * linux/seqlock.h, where we remember the generation of the
971 * self IDs in the buffer before reading them out and compare
972 * it to the current generation after reading them out. If
973 * the two generations match we know we have a consistent set
974 * of self IDs.
977 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
978 if (new_generation != generation) {
979 fw_notify("recursive bus reset detected, "
980 "discarding self ids\n");
981 return;
984 /* FIXME: Document how the locking works. */
985 spin_lock_irqsave(&ohci->lock, flags);
987 ohci->generation = generation;
988 context_stop(&ohci->at_request_ctx);
989 context_stop(&ohci->at_response_ctx);
990 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
993 * This next bit is unrelated to the AT context stuff but we
994 * have to do it under the spinlock also. If a new config rom
995 * was set up before this reset, the old one is now no longer
996 * in use and we can free it. Update the config rom pointers
997 * to point to the current config rom and clear the
998 * next_config_rom pointer so a new udpate can take place.
1001 if (ohci->next_config_rom != NULL) {
1002 if (ohci->next_config_rom != ohci->config_rom) {
1003 free_rom = ohci->config_rom;
1004 free_rom_bus = ohci->config_rom_bus;
1006 ohci->config_rom = ohci->next_config_rom;
1007 ohci->config_rom_bus = ohci->next_config_rom_bus;
1008 ohci->next_config_rom = NULL;
1011 * Restore config_rom image and manually update
1012 * config_rom registers. Writing the header quadlet
1013 * will indicate that the config rom is ready, so we
1014 * do that last.
1016 reg_write(ohci, OHCI1394_BusOptions,
1017 be32_to_cpu(ohci->config_rom[2]));
1018 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1019 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1022 spin_unlock_irqrestore(&ohci->lock, flags);
1024 if (free_rom)
1025 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1026 free_rom, free_rom_bus);
1028 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1029 self_id_count, ohci->self_id_buffer);
1032 static irqreturn_t irq_handler(int irq, void *data)
1034 struct fw_ohci *ohci = data;
1035 u32 event, iso_event, cycle_time;
1036 int i;
1038 event = reg_read(ohci, OHCI1394_IntEventClear);
1040 if (!event || !~event)
1041 return IRQ_NONE;
1043 reg_write(ohci, OHCI1394_IntEventClear, event);
1045 if (event & OHCI1394_selfIDComplete)
1046 tasklet_schedule(&ohci->bus_reset_tasklet);
1048 if (event & OHCI1394_RQPkt)
1049 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1051 if (event & OHCI1394_RSPkt)
1052 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1054 if (event & OHCI1394_reqTxComplete)
1055 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1057 if (event & OHCI1394_respTxComplete)
1058 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1060 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1061 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1063 while (iso_event) {
1064 i = ffs(iso_event) - 1;
1065 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1066 iso_event &= ~(1 << i);
1069 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1070 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1072 while (iso_event) {
1073 i = ffs(iso_event) - 1;
1074 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1075 iso_event &= ~(1 << i);
1078 if (unlikely(event & OHCI1394_postedWriteErr))
1079 fw_error("PCI posted write error\n");
1081 if (event & OHCI1394_cycle64Seconds) {
1082 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1083 if ((cycle_time & 0x80000000) == 0)
1084 ohci->bus_seconds++;
1087 return IRQ_HANDLED;
1090 static int software_reset(struct fw_ohci *ohci)
1092 int i;
1094 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1096 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1097 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1098 OHCI1394_HCControl_softReset) == 0)
1099 return 0;
1100 msleep(1);
1103 return -EBUSY;
1106 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1108 struct fw_ohci *ohci = fw_ohci(card);
1109 struct pci_dev *dev = to_pci_dev(card->device);
1111 if (software_reset(ohci)) {
1112 fw_error("Failed to reset ohci card.\n");
1113 return -EBUSY;
1117 * Now enable LPS, which we need in order to start accessing
1118 * most of the registers. In fact, on some cards (ALI M5251),
1119 * accessing registers in the SClk domain without LPS enabled
1120 * will lock up the machine. Wait 50msec to make sure we have
1121 * full link enabled.
1123 reg_write(ohci, OHCI1394_HCControlSet,
1124 OHCI1394_HCControl_LPS |
1125 OHCI1394_HCControl_postedWriteEnable);
1126 flush_writes(ohci);
1127 msleep(50);
1129 reg_write(ohci, OHCI1394_HCControlClear,
1130 OHCI1394_HCControl_noByteSwapData);
1132 reg_write(ohci, OHCI1394_LinkControlSet,
1133 OHCI1394_LinkControl_rcvSelfID |
1134 OHCI1394_LinkControl_cycleTimerEnable |
1135 OHCI1394_LinkControl_cycleMaster);
1137 reg_write(ohci, OHCI1394_ATRetries,
1138 OHCI1394_MAX_AT_REQ_RETRIES |
1139 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1140 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1142 ar_context_run(&ohci->ar_request_ctx);
1143 ar_context_run(&ohci->ar_response_ctx);
1145 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1146 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1147 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1148 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1149 reg_write(ohci, OHCI1394_IntMaskSet,
1150 OHCI1394_selfIDComplete |
1151 OHCI1394_RQPkt | OHCI1394_RSPkt |
1152 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1153 OHCI1394_isochRx | OHCI1394_isochTx |
1154 OHCI1394_postedWriteErr | OHCI1394_cycle64Seconds |
1155 OHCI1394_masterIntEnable);
1157 /* Activate link_on bit and contender bit in our self ID packets.*/
1158 if (ohci_update_phy_reg(card, 4, 0,
1159 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1160 return -EIO;
1163 * When the link is not yet enabled, the atomic config rom
1164 * update mechanism described below in ohci_set_config_rom()
1165 * is not active. We have to update ConfigRomHeader and
1166 * BusOptions manually, and the write to ConfigROMmap takes
1167 * effect immediately. We tie this to the enabling of the
1168 * link, so we have a valid config rom before enabling - the
1169 * OHCI requires that ConfigROMhdr and BusOptions have valid
1170 * values before enabling.
1172 * However, when the ConfigROMmap is written, some controllers
1173 * always read back quadlets 0 and 2 from the config rom to
1174 * the ConfigRomHeader and BusOptions registers on bus reset.
1175 * They shouldn't do that in this initial case where the link
1176 * isn't enabled. This means we have to use the same
1177 * workaround here, setting the bus header to 0 and then write
1178 * the right values in the bus reset tasklet.
1181 if (config_rom) {
1182 ohci->next_config_rom =
1183 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1184 &ohci->next_config_rom_bus,
1185 GFP_KERNEL);
1186 if (ohci->next_config_rom == NULL)
1187 return -ENOMEM;
1189 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1190 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1191 } else {
1193 * In the suspend case, config_rom is NULL, which
1194 * means that we just reuse the old config rom.
1196 ohci->next_config_rom = ohci->config_rom;
1197 ohci->next_config_rom_bus = ohci->config_rom_bus;
1200 ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1201 ohci->next_config_rom[0] = 0;
1202 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1203 reg_write(ohci, OHCI1394_BusOptions,
1204 be32_to_cpu(ohci->next_config_rom[2]));
1205 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1207 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1209 if (request_irq(dev->irq, irq_handler,
1210 IRQF_SHARED, ohci_driver_name, ohci)) {
1211 fw_error("Failed to allocate shared interrupt %d.\n",
1212 dev->irq);
1213 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1214 ohci->config_rom, ohci->config_rom_bus);
1215 return -EIO;
1218 reg_write(ohci, OHCI1394_HCControlSet,
1219 OHCI1394_HCControl_linkEnable |
1220 OHCI1394_HCControl_BIBimageValid);
1221 flush_writes(ohci);
1224 * We are ready to go, initiate bus reset to finish the
1225 * initialization.
1228 fw_core_initiate_bus_reset(&ohci->card, 1);
1230 return 0;
1233 static int
1234 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1236 struct fw_ohci *ohci;
1237 unsigned long flags;
1238 int retval = -EBUSY;
1239 __be32 *next_config_rom;
1240 dma_addr_t next_config_rom_bus;
1242 ohci = fw_ohci(card);
1245 * When the OHCI controller is enabled, the config rom update
1246 * mechanism is a bit tricky, but easy enough to use. See
1247 * section 5.5.6 in the OHCI specification.
1249 * The OHCI controller caches the new config rom address in a
1250 * shadow register (ConfigROMmapNext) and needs a bus reset
1251 * for the changes to take place. When the bus reset is
1252 * detected, the controller loads the new values for the
1253 * ConfigRomHeader and BusOptions registers from the specified
1254 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1255 * shadow register. All automatically and atomically.
1257 * Now, there's a twist to this story. The automatic load of
1258 * ConfigRomHeader and BusOptions doesn't honor the
1259 * noByteSwapData bit, so with a be32 config rom, the
1260 * controller will load be32 values in to these registers
1261 * during the atomic update, even on litte endian
1262 * architectures. The workaround we use is to put a 0 in the
1263 * header quadlet; 0 is endian agnostic and means that the
1264 * config rom isn't ready yet. In the bus reset tasklet we
1265 * then set up the real values for the two registers.
1267 * We use ohci->lock to avoid racing with the code that sets
1268 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1271 next_config_rom =
1272 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1273 &next_config_rom_bus, GFP_KERNEL);
1274 if (next_config_rom == NULL)
1275 return -ENOMEM;
1277 spin_lock_irqsave(&ohci->lock, flags);
1279 if (ohci->next_config_rom == NULL) {
1280 ohci->next_config_rom = next_config_rom;
1281 ohci->next_config_rom_bus = next_config_rom_bus;
1283 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1284 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1285 length * 4);
1287 ohci->next_header = config_rom[0];
1288 ohci->next_config_rom[0] = 0;
1290 reg_write(ohci, OHCI1394_ConfigROMmap,
1291 ohci->next_config_rom_bus);
1292 retval = 0;
1295 spin_unlock_irqrestore(&ohci->lock, flags);
1298 * Now initiate a bus reset to have the changes take
1299 * effect. We clean up the old config rom memory and DMA
1300 * mappings in the bus reset tasklet, since the OHCI
1301 * controller could need to access it before the bus reset
1302 * takes effect.
1304 if (retval == 0)
1305 fw_core_initiate_bus_reset(&ohci->card, 1);
1306 else
1307 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1308 next_config_rom, next_config_rom_bus);
1310 return retval;
1313 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1315 struct fw_ohci *ohci = fw_ohci(card);
1317 at_context_transmit(&ohci->at_request_ctx, packet);
1320 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1322 struct fw_ohci *ohci = fw_ohci(card);
1324 at_context_transmit(&ohci->at_response_ctx, packet);
1327 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1329 struct fw_ohci *ohci = fw_ohci(card);
1330 struct context *ctx = &ohci->at_request_ctx;
1331 struct driver_data *driver_data = packet->driver_data;
1332 int retval = -ENOENT;
1334 tasklet_disable(&ctx->tasklet);
1336 if (packet->ack != 0)
1337 goto out;
1339 driver_data->packet = NULL;
1340 packet->ack = RCODE_CANCELLED;
1341 packet->callback(packet, &ohci->card, packet->ack);
1342 retval = 0;
1344 out:
1345 tasklet_enable(&ctx->tasklet);
1347 return retval;
1350 static int
1351 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1353 struct fw_ohci *ohci = fw_ohci(card);
1354 unsigned long flags;
1355 int n, retval = 0;
1358 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1359 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1362 spin_lock_irqsave(&ohci->lock, flags);
1364 if (ohci->generation != generation) {
1365 retval = -ESTALE;
1366 goto out;
1370 * Note, if the node ID contains a non-local bus ID, physical DMA is
1371 * enabled for _all_ nodes on remote buses.
1374 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1375 if (n < 32)
1376 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1377 else
1378 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1380 flush_writes(ohci);
1381 out:
1382 spin_unlock_irqrestore(&ohci->lock, flags);
1383 return retval;
1386 static u64
1387 ohci_get_bus_time(struct fw_card *card)
1389 struct fw_ohci *ohci = fw_ohci(card);
1390 u32 cycle_time;
1391 u64 bus_time;
1393 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1394 bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1396 return bus_time;
1399 static int handle_ir_dualbuffer_packet(struct context *context,
1400 struct descriptor *d,
1401 struct descriptor *last)
1403 struct iso_context *ctx =
1404 container_of(context, struct iso_context, context);
1405 struct db_descriptor *db = (struct db_descriptor *) d;
1406 __le32 *ir_header;
1407 size_t header_length;
1408 void *p, *end;
1409 int i;
1411 if (db->first_res_count > 0 && db->second_res_count > 0)
1412 /* This descriptor isn't done yet, stop iteration. */
1413 return 0;
1415 header_length = le16_to_cpu(db->first_req_count) -
1416 le16_to_cpu(db->first_res_count);
1418 i = ctx->header_length;
1419 p = db + 1;
1420 end = p + header_length;
1421 while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1423 * The iso header is byteswapped to little endian by
1424 * the controller, but the remaining header quadlets
1425 * are big endian. We want to present all the headers
1426 * as big endian, so we have to swap the first
1427 * quadlet.
1429 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1430 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1431 i += ctx->base.header_size;
1432 p += ctx->base.header_size + 4;
1435 ctx->header_length = i;
1437 if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1438 ir_header = (__le32 *) (db + 1);
1439 ctx->base.callback(&ctx->base,
1440 le32_to_cpu(ir_header[0]) & 0xffff,
1441 ctx->header_length, ctx->header,
1442 ctx->base.callback_data);
1443 ctx->header_length = 0;
1446 return 1;
1449 static int handle_ir_packet_per_buffer(struct context *context,
1450 struct descriptor *d,
1451 struct descriptor *last)
1453 struct iso_context *ctx =
1454 container_of(context, struct iso_context, context);
1455 struct descriptor *pd = d + 1;
1456 __le32 *ir_header;
1457 size_t header_length;
1458 void *p, *end;
1459 int i, z;
1461 if (pd->res_count == pd->req_count)
1462 /* Descriptor(s) not done yet, stop iteration */
1463 return 0;
1465 header_length = le16_to_cpu(d->req_count);
1467 i = ctx->header_length;
1468 z = le32_to_cpu(pd->branch_address) & 0xf;
1469 p = d + z;
1470 end = p + header_length;
1472 while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1474 * The iso header is byteswapped to little endian by
1475 * the controller, but the remaining header quadlets
1476 * are big endian. We want to present all the headers
1477 * as big endian, so we have to swap the first quadlet.
1479 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1480 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1481 i += ctx->base.header_size;
1482 p += ctx->base.header_size + 4;
1485 ctx->header_length = i;
1487 if (le16_to_cpu(pd->control) & DESCRIPTOR_IRQ_ALWAYS) {
1488 ir_header = (__le32 *) (d + z);
1489 ctx->base.callback(&ctx->base,
1490 le32_to_cpu(ir_header[0]) & 0xffff,
1491 ctx->header_length, ctx->header,
1492 ctx->base.callback_data);
1493 ctx->header_length = 0;
1497 return 1;
1500 static int handle_it_packet(struct context *context,
1501 struct descriptor *d,
1502 struct descriptor *last)
1504 struct iso_context *ctx =
1505 container_of(context, struct iso_context, context);
1507 if (last->transfer_status == 0)
1508 /* This descriptor isn't done yet, stop iteration. */
1509 return 0;
1511 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1512 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1513 0, NULL, ctx->base.callback_data);
1515 return 1;
1518 static struct fw_iso_context *
1519 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1521 struct fw_ohci *ohci = fw_ohci(card);
1522 struct iso_context *ctx, *list;
1523 descriptor_callback_t callback;
1524 u32 *mask, regs;
1525 unsigned long flags;
1526 int index, retval = -ENOMEM;
1528 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1529 mask = &ohci->it_context_mask;
1530 list = ohci->it_context_list;
1531 callback = handle_it_packet;
1532 } else {
1533 mask = &ohci->ir_context_mask;
1534 list = ohci->ir_context_list;
1535 if (ohci->version >= OHCI_VERSION_1_1)
1536 callback = handle_ir_dualbuffer_packet;
1537 else
1538 callback = handle_ir_packet_per_buffer;
1541 spin_lock_irqsave(&ohci->lock, flags);
1542 index = ffs(*mask) - 1;
1543 if (index >= 0)
1544 *mask &= ~(1 << index);
1545 spin_unlock_irqrestore(&ohci->lock, flags);
1547 if (index < 0)
1548 return ERR_PTR(-EBUSY);
1550 if (type == FW_ISO_CONTEXT_TRANSMIT)
1551 regs = OHCI1394_IsoXmitContextBase(index);
1552 else
1553 regs = OHCI1394_IsoRcvContextBase(index);
1555 ctx = &list[index];
1556 memset(ctx, 0, sizeof(*ctx));
1557 ctx->header_length = 0;
1558 ctx->header = (void *) __get_free_page(GFP_KERNEL);
1559 if (ctx->header == NULL)
1560 goto out;
1562 retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
1563 regs, callback);
1564 if (retval < 0)
1565 goto out_with_header;
1567 return &ctx->base;
1569 out_with_header:
1570 free_page((unsigned long)ctx->header);
1571 out:
1572 spin_lock_irqsave(&ohci->lock, flags);
1573 *mask |= 1 << index;
1574 spin_unlock_irqrestore(&ohci->lock, flags);
1576 return ERR_PTR(retval);
1579 static int ohci_start_iso(struct fw_iso_context *base,
1580 s32 cycle, u32 sync, u32 tags)
1582 struct iso_context *ctx = container_of(base, struct iso_context, base);
1583 struct fw_ohci *ohci = ctx->context.ohci;
1584 u32 control, match;
1585 int index;
1587 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1588 index = ctx - ohci->it_context_list;
1589 match = 0;
1590 if (cycle >= 0)
1591 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1592 (cycle & 0x7fff) << 16;
1594 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1595 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1596 context_run(&ctx->context, match);
1597 } else {
1598 index = ctx - ohci->ir_context_list;
1599 control = IR_CONTEXT_ISOCH_HEADER;
1600 if (ohci->version >= OHCI_VERSION_1_1)
1601 control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1602 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1603 if (cycle >= 0) {
1604 match |= (cycle & 0x07fff) << 12;
1605 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1608 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1609 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1610 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1611 context_run(&ctx->context, control);
1614 return 0;
1617 static int ohci_stop_iso(struct fw_iso_context *base)
1619 struct fw_ohci *ohci = fw_ohci(base->card);
1620 struct iso_context *ctx = container_of(base, struct iso_context, base);
1621 int index;
1623 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1624 index = ctx - ohci->it_context_list;
1625 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1626 } else {
1627 index = ctx - ohci->ir_context_list;
1628 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1630 flush_writes(ohci);
1631 context_stop(&ctx->context);
1633 return 0;
1636 static void ohci_free_iso_context(struct fw_iso_context *base)
1638 struct fw_ohci *ohci = fw_ohci(base->card);
1639 struct iso_context *ctx = container_of(base, struct iso_context, base);
1640 unsigned long flags;
1641 int index;
1643 ohci_stop_iso(base);
1644 context_release(&ctx->context);
1645 free_page((unsigned long)ctx->header);
1647 spin_lock_irqsave(&ohci->lock, flags);
1649 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1650 index = ctx - ohci->it_context_list;
1651 ohci->it_context_mask |= 1 << index;
1652 } else {
1653 index = ctx - ohci->ir_context_list;
1654 ohci->ir_context_mask |= 1 << index;
1657 spin_unlock_irqrestore(&ohci->lock, flags);
1660 static int
1661 ohci_queue_iso_transmit(struct fw_iso_context *base,
1662 struct fw_iso_packet *packet,
1663 struct fw_iso_buffer *buffer,
1664 unsigned long payload)
1666 struct iso_context *ctx = container_of(base, struct iso_context, base);
1667 struct descriptor *d, *last, *pd;
1668 struct fw_iso_packet *p;
1669 __le32 *header;
1670 dma_addr_t d_bus, page_bus;
1671 u32 z, header_z, payload_z, irq;
1672 u32 payload_index, payload_end_index, next_page_index;
1673 int page, end_page, i, length, offset;
1676 * FIXME: Cycle lost behavior should be configurable: lose
1677 * packet, retransmit or terminate..
1680 p = packet;
1681 payload_index = payload;
1683 if (p->skip)
1684 z = 1;
1685 else
1686 z = 2;
1687 if (p->header_length > 0)
1688 z++;
1690 /* Determine the first page the payload isn't contained in. */
1691 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1692 if (p->payload_length > 0)
1693 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1694 else
1695 payload_z = 0;
1697 z += payload_z;
1699 /* Get header size in number of descriptors. */
1700 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1702 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1703 if (d == NULL)
1704 return -ENOMEM;
1706 if (!p->skip) {
1707 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1708 d[0].req_count = cpu_to_le16(8);
1710 header = (__le32 *) &d[1];
1711 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
1712 IT_HEADER_TAG(p->tag) |
1713 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
1714 IT_HEADER_CHANNEL(ctx->base.channel) |
1715 IT_HEADER_SPEED(ctx->base.speed));
1716 header[1] =
1717 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1718 p->payload_length));
1721 if (p->header_length > 0) {
1722 d[2].req_count = cpu_to_le16(p->header_length);
1723 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1724 memcpy(&d[z], p->header, p->header_length);
1727 pd = d + z - payload_z;
1728 payload_end_index = payload_index + p->payload_length;
1729 for (i = 0; i < payload_z; i++) {
1730 page = payload_index >> PAGE_SHIFT;
1731 offset = payload_index & ~PAGE_MASK;
1732 next_page_index = (page + 1) << PAGE_SHIFT;
1733 length =
1734 min(next_page_index, payload_end_index) - payload_index;
1735 pd[i].req_count = cpu_to_le16(length);
1737 page_bus = page_private(buffer->pages[page]);
1738 pd[i].data_address = cpu_to_le32(page_bus + offset);
1740 payload_index += length;
1743 if (p->interrupt)
1744 irq = DESCRIPTOR_IRQ_ALWAYS;
1745 else
1746 irq = DESCRIPTOR_NO_IRQ;
1748 last = z == 2 ? d : d + z - 1;
1749 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1750 DESCRIPTOR_STATUS |
1751 DESCRIPTOR_BRANCH_ALWAYS |
1752 irq);
1754 context_append(&ctx->context, d, z, header_z);
1756 return 0;
1759 static int
1760 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
1761 struct fw_iso_packet *packet,
1762 struct fw_iso_buffer *buffer,
1763 unsigned long payload)
1765 struct iso_context *ctx = container_of(base, struct iso_context, base);
1766 struct db_descriptor *db = NULL;
1767 struct descriptor *d;
1768 struct fw_iso_packet *p;
1769 dma_addr_t d_bus, page_bus;
1770 u32 z, header_z, length, rest;
1771 int page, offset, packet_count, header_size;
1774 * FIXME: Cycle lost behavior should be configurable: lose
1775 * packet, retransmit or terminate..
1778 if (packet->skip) {
1779 d = context_get_descriptors(&ctx->context, 2, &d_bus);
1780 if (d == NULL)
1781 return -ENOMEM;
1783 db = (struct db_descriptor *) d;
1784 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1785 DESCRIPTOR_BRANCH_ALWAYS |
1786 DESCRIPTOR_WAIT);
1787 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1788 context_append(&ctx->context, d, 2, 0);
1791 p = packet;
1792 z = 2;
1795 * The OHCI controller puts the status word in the header
1796 * buffer too, so we need 4 extra bytes per packet.
1798 packet_count = p->header_length / ctx->base.header_size;
1799 header_size = packet_count * (ctx->base.header_size + 4);
1801 /* Get header size in number of descriptors. */
1802 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1803 page = payload >> PAGE_SHIFT;
1804 offset = payload & ~PAGE_MASK;
1805 rest = p->payload_length;
1807 /* FIXME: make packet-per-buffer/dual-buffer a context option */
1808 while (rest > 0) {
1809 d = context_get_descriptors(&ctx->context,
1810 z + header_z, &d_bus);
1811 if (d == NULL)
1812 return -ENOMEM;
1814 db = (struct db_descriptor *) d;
1815 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1816 DESCRIPTOR_BRANCH_ALWAYS);
1817 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1818 db->first_req_count = cpu_to_le16(header_size);
1819 db->first_res_count = db->first_req_count;
1820 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
1822 if (offset + rest < PAGE_SIZE)
1823 length = rest;
1824 else
1825 length = PAGE_SIZE - offset;
1827 db->second_req_count = cpu_to_le16(length);
1828 db->second_res_count = db->second_req_count;
1829 page_bus = page_private(buffer->pages[page]);
1830 db->second_buffer = cpu_to_le32(page_bus + offset);
1832 if (p->interrupt && length == rest)
1833 db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1835 context_append(&ctx->context, d, z, header_z);
1836 offset = (offset + length) & ~PAGE_MASK;
1837 rest -= length;
1838 page++;
1841 return 0;
1844 static int
1845 ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
1846 struct fw_iso_packet *packet,
1847 struct fw_iso_buffer *buffer,
1848 unsigned long payload)
1850 struct iso_context *ctx = container_of(base, struct iso_context, base);
1851 struct descriptor *d = NULL, *pd = NULL;
1852 struct fw_iso_packet *p;
1853 dma_addr_t d_bus, page_bus;
1854 u32 z, header_z, rest;
1855 int i, page, offset, packet_count, header_size;
1857 if (packet->skip) {
1858 d = context_get_descriptors(&ctx->context, 1, &d_bus);
1859 if (d == NULL)
1860 return -ENOMEM;
1862 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
1863 DESCRIPTOR_INPUT_LAST |
1864 DESCRIPTOR_BRANCH_ALWAYS |
1865 DESCRIPTOR_WAIT);
1866 context_append(&ctx->context, d, 1, 0);
1869 /* one descriptor for header, one for payload */
1870 /* FIXME: handle cases where we need multiple desc. for payload */
1871 z = 2;
1872 p = packet;
1875 * The OHCI controller puts the status word in the
1876 * buffer too, so we need 4 extra bytes per packet.
1878 packet_count = p->header_length / ctx->base.header_size;
1879 header_size = packet_count * (ctx->base.header_size + 4);
1881 /* Get header size in number of descriptors. */
1882 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1883 page = payload >> PAGE_SHIFT;
1884 offset = payload & ~PAGE_MASK;
1885 rest = p->payload_length;
1887 for (i = 0; i < packet_count; i++) {
1888 /* d points to the header descriptor */
1889 d = context_get_descriptors(&ctx->context,
1890 z + header_z, &d_bus);
1891 if (d == NULL)
1892 return -ENOMEM;
1894 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE);
1895 d->req_count = cpu_to_le16(header_size);
1896 d->res_count = d->req_count;
1897 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
1899 /* pd points to the payload descriptor */
1900 pd = d + 1;
1901 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
1902 DESCRIPTOR_INPUT_LAST |
1903 DESCRIPTOR_BRANCH_ALWAYS);
1904 if (p->interrupt)
1905 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1907 pd->req_count = cpu_to_le16(rest);
1908 pd->res_count = pd->req_count;
1910 page_bus = page_private(buffer->pages[page]);
1911 pd->data_address = cpu_to_le32(page_bus + offset);
1913 context_append(&ctx->context, d, z, header_z);
1916 return 0;
1919 static int
1920 ohci_queue_iso(struct fw_iso_context *base,
1921 struct fw_iso_packet *packet,
1922 struct fw_iso_buffer *buffer,
1923 unsigned long payload)
1925 struct iso_context *ctx = container_of(base, struct iso_context, base);
1927 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
1928 return ohci_queue_iso_transmit(base, packet, buffer, payload);
1929 else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
1930 return ohci_queue_iso_receive_dualbuffer(base, packet,
1931 buffer, payload);
1932 else
1933 return ohci_queue_iso_receive_packet_per_buffer(base, packet,
1934 buffer,
1935 payload);
1938 static const struct fw_card_driver ohci_driver = {
1939 .name = ohci_driver_name,
1940 .enable = ohci_enable,
1941 .update_phy_reg = ohci_update_phy_reg,
1942 .set_config_rom = ohci_set_config_rom,
1943 .send_request = ohci_send_request,
1944 .send_response = ohci_send_response,
1945 .cancel_packet = ohci_cancel_packet,
1946 .enable_phys_dma = ohci_enable_phys_dma,
1947 .get_bus_time = ohci_get_bus_time,
1949 .allocate_iso_context = ohci_allocate_iso_context,
1950 .free_iso_context = ohci_free_iso_context,
1951 .queue_iso = ohci_queue_iso,
1952 .start_iso = ohci_start_iso,
1953 .stop_iso = ohci_stop_iso,
1956 static int __devinit
1957 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1959 struct fw_ohci *ohci;
1960 u32 bus_options, max_receive, link_speed;
1961 u64 guid;
1962 int err;
1963 size_t size;
1965 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
1966 if (ohci == NULL) {
1967 fw_error("Could not malloc fw_ohci data.\n");
1968 return -ENOMEM;
1971 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1973 err = pci_enable_device(dev);
1974 if (err) {
1975 fw_error("Failed to enable OHCI hardware.\n");
1976 goto fail_put_card;
1979 pci_set_master(dev);
1980 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1981 pci_set_drvdata(dev, ohci);
1983 spin_lock_init(&ohci->lock);
1985 tasklet_init(&ohci->bus_reset_tasklet,
1986 bus_reset_tasklet, (unsigned long)ohci);
1988 err = pci_request_region(dev, 0, ohci_driver_name);
1989 if (err) {
1990 fw_error("MMIO resource unavailable\n");
1991 goto fail_disable;
1994 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1995 if (ohci->registers == NULL) {
1996 fw_error("Failed to remap registers\n");
1997 err = -ENXIO;
1998 goto fail_iomem;
2001 ar_context_init(&ohci->ar_request_ctx, ohci,
2002 OHCI1394_AsReqRcvContextControlSet);
2004 ar_context_init(&ohci->ar_response_ctx, ohci,
2005 OHCI1394_AsRspRcvContextControlSet);
2007 context_init(&ohci->at_request_ctx, ohci, AT_BUFFER_SIZE,
2008 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2010 context_init(&ohci->at_response_ctx, ohci, AT_BUFFER_SIZE,
2011 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2013 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2014 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2015 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2016 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2017 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2019 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2020 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2021 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2022 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2023 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2025 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2026 fw_error("Out of memory for it/ir contexts.\n");
2027 err = -ENOMEM;
2028 goto fail_registers;
2031 /* self-id dma buffer allocation */
2032 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2033 SELF_ID_BUF_SIZE,
2034 &ohci->self_id_bus,
2035 GFP_KERNEL);
2036 if (ohci->self_id_cpu == NULL) {
2037 fw_error("Out of memory for self ID buffer.\n");
2038 err = -ENOMEM;
2039 goto fail_registers;
2042 bus_options = reg_read(ohci, OHCI1394_BusOptions);
2043 max_receive = (bus_options >> 12) & 0xf;
2044 link_speed = bus_options & 0x7;
2045 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2046 reg_read(ohci, OHCI1394_GUIDLo);
2048 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2049 if (err < 0)
2050 goto fail_self_id;
2052 ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2053 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2054 dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
2055 return 0;
2057 fail_self_id:
2058 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2059 ohci->self_id_cpu, ohci->self_id_bus);
2060 fail_registers:
2061 kfree(ohci->it_context_list);
2062 kfree(ohci->ir_context_list);
2063 pci_iounmap(dev, ohci->registers);
2064 fail_iomem:
2065 pci_release_region(dev, 0);
2066 fail_disable:
2067 pci_disable_device(dev);
2068 fail_put_card:
2069 fw_card_put(&ohci->card);
2071 return err;
2074 static void pci_remove(struct pci_dev *dev)
2076 struct fw_ohci *ohci;
2078 ohci = pci_get_drvdata(dev);
2079 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2080 flush_writes(ohci);
2081 fw_core_remove_card(&ohci->card);
2084 * FIXME: Fail all pending packets here, now that the upper
2085 * layers can't queue any more.
2088 software_reset(ohci);
2089 free_irq(dev->irq, ohci);
2090 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2091 ohci->self_id_cpu, ohci->self_id_bus);
2092 kfree(ohci->it_context_list);
2093 kfree(ohci->ir_context_list);
2094 pci_iounmap(dev, ohci->registers);
2095 pci_release_region(dev, 0);
2096 pci_disable_device(dev);
2097 fw_card_put(&ohci->card);
2099 fw_notify("Removed fw-ohci device.\n");
2102 #ifdef CONFIG_PM
2103 static int pci_suspend(struct pci_dev *pdev, pm_message_t state)
2105 struct fw_ohci *ohci = pci_get_drvdata(pdev);
2106 int err;
2108 software_reset(ohci);
2109 free_irq(pdev->irq, ohci);
2110 err = pci_save_state(pdev);
2111 if (err) {
2112 fw_error("pci_save_state failed\n");
2113 return err;
2115 err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
2116 if (err)
2117 fw_error("pci_set_power_state failed with %d\n", err);
2119 return 0;
2122 static int pci_resume(struct pci_dev *pdev)
2124 struct fw_ohci *ohci = pci_get_drvdata(pdev);
2125 int err;
2127 pci_set_power_state(pdev, PCI_D0);
2128 pci_restore_state(pdev);
2129 err = pci_enable_device(pdev);
2130 if (err) {
2131 fw_error("pci_enable_device failed\n");
2132 return err;
2135 return ohci_enable(&ohci->card, NULL, 0);
2137 #endif
2139 static struct pci_device_id pci_table[] = {
2140 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2144 MODULE_DEVICE_TABLE(pci, pci_table);
2146 static struct pci_driver fw_ohci_pci_driver = {
2147 .name = ohci_driver_name,
2148 .id_table = pci_table,
2149 .probe = pci_probe,
2150 .remove = pci_remove,
2151 #ifdef CONFIG_PM
2152 .resume = pci_resume,
2153 .suspend = pci_suspend,
2154 #endif
2157 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2158 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2159 MODULE_LICENSE("GPL");
2161 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2162 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2163 MODULE_ALIAS("ohci1394");
2164 #endif
2166 static int __init fw_ohci_init(void)
2168 return pci_register_driver(&fw_ohci_pci_driver);
2171 static void __exit fw_ohci_cleanup(void)
2173 pci_unregister_driver(&fw_ohci_pci_driver);
2176 module_init(fw_ohci_init);
2177 module_exit(fw_ohci_cleanup);