x86: cpa self-test, WARN_ON()
[wrt350n-kernel.git] / drivers / media / dvb / frontends / tda1004x.c
blob8415a8a5247a09381f196ead24b4935d5b680c73
1 /*
2 Driver for Philips tda1004xh OFDM Demodulator
4 (c) 2003, 2004 Andrew de Quincey & Robert Schlabbach
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 * This driver needs external firmware. Please use the commands
24 * "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10045",
25 * "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10046" to
26 * download/extract them, and then copy them to /usr/lib/hotplug/firmware
27 * or /lib/firmware (depending on configuration of firmware hotplug).
29 #define TDA10045_DEFAULT_FIRMWARE "dvb-fe-tda10045.fw"
30 #define TDA10046_DEFAULT_FIRMWARE "dvb-fe-tda10046.fw"
32 #include <linux/init.h>
33 #include <linux/module.h>
34 #include <linux/device.h>
35 #include <linux/jiffies.h>
36 #include <linux/string.h>
37 #include <linux/slab.h>
39 #include "dvb_frontend.h"
40 #include "tda1004x.h"
42 static int debug;
43 #define dprintk(args...) \
44 do { \
45 if (debug) printk(KERN_DEBUG "tda1004x: " args); \
46 } while (0)
48 #define TDA1004X_CHIPID 0x00
49 #define TDA1004X_AUTO 0x01
50 #define TDA1004X_IN_CONF1 0x02
51 #define TDA1004X_IN_CONF2 0x03
52 #define TDA1004X_OUT_CONF1 0x04
53 #define TDA1004X_OUT_CONF2 0x05
54 #define TDA1004X_STATUS_CD 0x06
55 #define TDA1004X_CONFC4 0x07
56 #define TDA1004X_DSSPARE2 0x0C
57 #define TDA10045H_CODE_IN 0x0D
58 #define TDA10045H_FWPAGE 0x0E
59 #define TDA1004X_SCAN_CPT 0x10
60 #define TDA1004X_DSP_CMD 0x11
61 #define TDA1004X_DSP_ARG 0x12
62 #define TDA1004X_DSP_DATA1 0x13
63 #define TDA1004X_DSP_DATA2 0x14
64 #define TDA1004X_CONFADC1 0x15
65 #define TDA1004X_CONFC1 0x16
66 #define TDA10045H_S_AGC 0x1a
67 #define TDA10046H_AGC_TUN_LEVEL 0x1a
68 #define TDA1004X_SNR 0x1c
69 #define TDA1004X_CONF_TS1 0x1e
70 #define TDA1004X_CONF_TS2 0x1f
71 #define TDA1004X_CBER_RESET 0x20
72 #define TDA1004X_CBER_MSB 0x21
73 #define TDA1004X_CBER_LSB 0x22
74 #define TDA1004X_CVBER_LUT 0x23
75 #define TDA1004X_VBER_MSB 0x24
76 #define TDA1004X_VBER_MID 0x25
77 #define TDA1004X_VBER_LSB 0x26
78 #define TDA1004X_UNCOR 0x27
80 #define TDA10045H_CONFPLL_P 0x2D
81 #define TDA10045H_CONFPLL_M_MSB 0x2E
82 #define TDA10045H_CONFPLL_M_LSB 0x2F
83 #define TDA10045H_CONFPLL_N 0x30
85 #define TDA10046H_CONFPLL1 0x2D
86 #define TDA10046H_CONFPLL2 0x2F
87 #define TDA10046H_CONFPLL3 0x30
88 #define TDA10046H_TIME_WREF1 0x31
89 #define TDA10046H_TIME_WREF2 0x32
90 #define TDA10046H_TIME_WREF3 0x33
91 #define TDA10046H_TIME_WREF4 0x34
92 #define TDA10046H_TIME_WREF5 0x35
94 #define TDA10045H_UNSURW_MSB 0x31
95 #define TDA10045H_UNSURW_LSB 0x32
96 #define TDA10045H_WREF_MSB 0x33
97 #define TDA10045H_WREF_MID 0x34
98 #define TDA10045H_WREF_LSB 0x35
99 #define TDA10045H_MUXOUT 0x36
100 #define TDA1004X_CONFADC2 0x37
102 #define TDA10045H_IOFFSET 0x38
104 #define TDA10046H_CONF_TRISTATE1 0x3B
105 #define TDA10046H_CONF_TRISTATE2 0x3C
106 #define TDA10046H_CONF_POLARITY 0x3D
107 #define TDA10046H_FREQ_OFFSET 0x3E
108 #define TDA10046H_GPIO_OUT_SEL 0x41
109 #define TDA10046H_GPIO_SELECT 0x42
110 #define TDA10046H_AGC_CONF 0x43
111 #define TDA10046H_AGC_THR 0x44
112 #define TDA10046H_AGC_RENORM 0x45
113 #define TDA10046H_AGC_GAINS 0x46
114 #define TDA10046H_AGC_TUN_MIN 0x47
115 #define TDA10046H_AGC_TUN_MAX 0x48
116 #define TDA10046H_AGC_IF_MIN 0x49
117 #define TDA10046H_AGC_IF_MAX 0x4A
119 #define TDA10046H_FREQ_PHY2_MSB 0x4D
120 #define TDA10046H_FREQ_PHY2_LSB 0x4E
122 #define TDA10046H_CVBER_CTRL 0x4F
123 #define TDA10046H_AGC_IF_LEVEL 0x52
124 #define TDA10046H_CODE_CPT 0x57
125 #define TDA10046H_CODE_IN 0x58
128 static int tda1004x_write_byteI(struct tda1004x_state *state, int reg, int data)
130 int ret;
131 u8 buf[] = { reg, data };
132 struct i2c_msg msg = { .flags = 0, .buf = buf, .len = 2 };
134 dprintk("%s: reg=0x%x, data=0x%x\n", __FUNCTION__, reg, data);
136 msg.addr = state->config->demod_address;
137 ret = i2c_transfer(state->i2c, &msg, 1);
139 if (ret != 1)
140 dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n",
141 __FUNCTION__, reg, data, ret);
143 dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__,
144 reg, data, ret);
145 return (ret != 1) ? -1 : 0;
148 static int tda1004x_read_byte(struct tda1004x_state *state, int reg)
150 int ret;
151 u8 b0[] = { reg };
152 u8 b1[] = { 0 };
153 struct i2c_msg msg[] = {{ .flags = 0, .buf = b0, .len = 1 },
154 { .flags = I2C_M_RD, .buf = b1, .len = 1 }};
156 dprintk("%s: reg=0x%x\n", __FUNCTION__, reg);
158 msg[0].addr = state->config->demod_address;
159 msg[1].addr = state->config->demod_address;
160 ret = i2c_transfer(state->i2c, msg, 2);
162 if (ret != 2) {
163 dprintk("%s: error reg=0x%x, ret=%i\n", __FUNCTION__, reg,
164 ret);
165 return -1;
168 dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__,
169 reg, b1[0], ret);
170 return b1[0];
173 static int tda1004x_write_mask(struct tda1004x_state *state, int reg, int mask, int data)
175 int val;
176 dprintk("%s: reg=0x%x, mask=0x%x, data=0x%x\n", __FUNCTION__, reg,
177 mask, data);
179 // read a byte and check
180 val = tda1004x_read_byte(state, reg);
181 if (val < 0)
182 return val;
184 // mask if off
185 val = val & ~mask;
186 val |= data & 0xff;
188 // write it out again
189 return tda1004x_write_byteI(state, reg, val);
192 static int tda1004x_write_buf(struct tda1004x_state *state, int reg, unsigned char *buf, int len)
194 int i;
195 int result;
197 dprintk("%s: reg=0x%x, len=0x%x\n", __FUNCTION__, reg, len);
199 result = 0;
200 for (i = 0; i < len; i++) {
201 result = tda1004x_write_byteI(state, reg + i, buf[i]);
202 if (result != 0)
203 break;
206 return result;
209 static int tda1004x_enable_tuner_i2c(struct tda1004x_state *state)
211 int result;
212 dprintk("%s\n", __FUNCTION__);
214 result = tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 2);
215 msleep(20);
216 return result;
219 static int tda1004x_disable_tuner_i2c(struct tda1004x_state *state)
221 dprintk("%s\n", __FUNCTION__);
223 return tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 0);
226 static int tda10045h_set_bandwidth(struct tda1004x_state *state,
227 fe_bandwidth_t bandwidth)
229 static u8 bandwidth_6mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x60, 0x1e, 0xa7, 0x45, 0x4f };
230 static u8 bandwidth_7mhz[] = { 0x02, 0x00, 0x37, 0x00, 0x4a, 0x2f, 0x6d, 0x76, 0xdb };
231 static u8 bandwidth_8mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x48, 0x17, 0x89, 0xc7, 0x14 };
233 switch (bandwidth) {
234 case BANDWIDTH_6_MHZ:
235 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_6mhz, sizeof(bandwidth_6mhz));
236 break;
238 case BANDWIDTH_7_MHZ:
239 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_7mhz, sizeof(bandwidth_7mhz));
240 break;
242 case BANDWIDTH_8_MHZ:
243 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_8mhz, sizeof(bandwidth_8mhz));
244 break;
246 default:
247 return -EINVAL;
250 tda1004x_write_byteI(state, TDA10045H_IOFFSET, 0);
252 return 0;
255 static int tda10046h_set_bandwidth(struct tda1004x_state *state,
256 fe_bandwidth_t bandwidth)
258 static u8 bandwidth_6mhz_53M[] = { 0x7b, 0x2e, 0x11, 0xf0, 0xd2 };
259 static u8 bandwidth_7mhz_53M[] = { 0x6a, 0x02, 0x6a, 0x43, 0x9f };
260 static u8 bandwidth_8mhz_53M[] = { 0x5c, 0x32, 0xc2, 0x96, 0x6d };
262 static u8 bandwidth_6mhz_48M[] = { 0x70, 0x02, 0x49, 0x24, 0x92 };
263 static u8 bandwidth_7mhz_48M[] = { 0x60, 0x02, 0xaa, 0xaa, 0xab };
264 static u8 bandwidth_8mhz_48M[] = { 0x54, 0x03, 0x0c, 0x30, 0xc3 };
265 int tda10046_clk53m;
267 if ((state->config->if_freq == TDA10046_FREQ_045) ||
268 (state->config->if_freq == TDA10046_FREQ_052))
269 tda10046_clk53m = 0;
270 else
271 tda10046_clk53m = 1;
272 switch (bandwidth) {
273 case BANDWIDTH_6_MHZ:
274 if (tda10046_clk53m)
275 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_53M,
276 sizeof(bandwidth_6mhz_53M));
277 else
278 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_48M,
279 sizeof(bandwidth_6mhz_48M));
280 if (state->config->if_freq == TDA10046_FREQ_045) {
281 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0a);
282 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xab);
284 break;
286 case BANDWIDTH_7_MHZ:
287 if (tda10046_clk53m)
288 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_53M,
289 sizeof(bandwidth_7mhz_53M));
290 else
291 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_48M,
292 sizeof(bandwidth_7mhz_48M));
293 if (state->config->if_freq == TDA10046_FREQ_045) {
294 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
295 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
297 break;
299 case BANDWIDTH_8_MHZ:
300 if (tda10046_clk53m)
301 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_53M,
302 sizeof(bandwidth_8mhz_53M));
303 else
304 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_48M,
305 sizeof(bandwidth_8mhz_48M));
306 if (state->config->if_freq == TDA10046_FREQ_045) {
307 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
308 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x55);
310 break;
312 default:
313 return -EINVAL;
316 return 0;
319 static int tda1004x_do_upload(struct tda1004x_state *state,
320 unsigned char *mem, unsigned int len,
321 u8 dspCodeCounterReg, u8 dspCodeInReg)
323 u8 buf[65];
324 struct i2c_msg fw_msg = { .flags = 0, .buf = buf, .len = 0 };
325 int tx_size;
326 int pos = 0;
328 /* clear code counter */
329 tda1004x_write_byteI(state, dspCodeCounterReg, 0);
330 fw_msg.addr = state->config->demod_address;
332 buf[0] = dspCodeInReg;
333 while (pos != len) {
334 // work out how much to send this time
335 tx_size = len - pos;
336 if (tx_size > 0x10)
337 tx_size = 0x10;
339 // send the chunk
340 memcpy(buf + 1, mem + pos, tx_size);
341 fw_msg.len = tx_size + 1;
342 if (i2c_transfer(state->i2c, &fw_msg, 1) != 1) {
343 printk(KERN_ERR "tda1004x: Error during firmware upload\n");
344 return -EIO;
346 pos += tx_size;
348 dprintk("%s: fw_pos=0x%x\n", __FUNCTION__, pos);
350 // give the DSP a chance to settle 03/10/05 Hac
351 msleep(100);
353 return 0;
356 static int tda1004x_check_upload_ok(struct tda1004x_state *state)
358 u8 data1, data2;
359 unsigned long timeout;
361 if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
362 timeout = jiffies + 2 * HZ;
363 while(!(tda1004x_read_byte(state, TDA1004X_STATUS_CD) & 0x20)) {
364 if (time_after(jiffies, timeout)) {
365 printk(KERN_ERR "tda1004x: timeout waiting for DSP ready\n");
366 break;
368 msleep(1);
370 } else
371 msleep(100);
373 // check upload was OK
374 tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0); // we want to read from the DSP
375 tda1004x_write_byteI(state, TDA1004X_DSP_CMD, 0x67);
377 data1 = tda1004x_read_byte(state, TDA1004X_DSP_DATA1);
378 data2 = tda1004x_read_byte(state, TDA1004X_DSP_DATA2);
379 if (data1 != 0x67 || data2 < 0x20 || data2 > 0x2e) {
380 printk(KERN_INFO "tda1004x: found firmware revision %x -- invalid\n", data2);
381 return -EIO;
383 printk(KERN_INFO "tda1004x: found firmware revision %x -- ok\n", data2);
384 return 0;
387 static int tda10045_fwupload(struct dvb_frontend* fe)
389 struct tda1004x_state* state = fe->demodulator_priv;
390 int ret;
391 const struct firmware *fw;
393 /* don't re-upload unless necessary */
394 if (tda1004x_check_upload_ok(state) == 0)
395 return 0;
397 /* request the firmware, this will block until someone uploads it */
398 printk(KERN_INFO "tda1004x: waiting for firmware upload (%s)...\n", TDA10045_DEFAULT_FIRMWARE);
399 ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE);
400 if (ret) {
401 printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
402 return ret;
405 /* reset chip */
406 tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0);
407 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
408 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
409 msleep(10);
411 /* set parameters */
412 tda10045h_set_bandwidth(state, BANDWIDTH_8_MHZ);
414 ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10045H_FWPAGE, TDA10045H_CODE_IN);
415 release_firmware(fw);
416 if (ret)
417 return ret;
418 printk(KERN_INFO "tda1004x: firmware upload complete\n");
420 /* wait for DSP to initialise */
421 /* DSPREADY doesn't seem to work on the TDA10045H */
422 msleep(100);
424 return tda1004x_check_upload_ok(state);
427 static void tda10046_init_plls(struct dvb_frontend* fe)
429 struct tda1004x_state* state = fe->demodulator_priv;
430 int tda10046_clk53m;
432 if ((state->config->if_freq == TDA10046_FREQ_045) ||
433 (state->config->if_freq == TDA10046_FREQ_052))
434 tda10046_clk53m = 0;
435 else
436 tda10046_clk53m = 1;
438 tda1004x_write_byteI(state, TDA10046H_CONFPLL1, 0xf0);
439 if(tda10046_clk53m) {
440 printk(KERN_INFO "tda1004x: setting up plls for 53MHz sampling clock\n");
441 tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x08); // PLL M = 8
442 } else {
443 printk(KERN_INFO "tda1004x: setting up plls for 48MHz sampling clock\n");
444 tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x03); // PLL M = 3
446 if (state->config->xtal_freq == TDA10046_XTAL_4M ) {
447 dprintk("%s: setting up PLLs for a 4 MHz Xtal\n", __FUNCTION__);
448 tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 0); // PLL P = N = 0
449 } else {
450 dprintk("%s: setting up PLLs for a 16 MHz Xtal\n", __FUNCTION__);
451 tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 3); // PLL P = 0, N = 3
453 if(tda10046_clk53m)
454 tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x67);
455 else
456 tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x72);
457 /* Note clock frequency is handled implicitly */
458 switch (state->config->if_freq) {
459 case TDA10046_FREQ_045:
460 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
461 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
462 break;
463 case TDA10046_FREQ_052:
464 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
465 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xc7);
466 break;
467 case TDA10046_FREQ_3617:
468 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
469 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x59);
470 break;
471 case TDA10046_FREQ_3613:
472 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
473 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x3f);
474 break;
476 tda10046h_set_bandwidth(state, BANDWIDTH_8_MHZ); // default bandwidth 8 MHz
477 /* let the PLLs settle */
478 msleep(120);
481 static int tda10046_fwupload(struct dvb_frontend* fe)
483 struct tda1004x_state* state = fe->demodulator_priv;
484 int ret;
485 const struct firmware *fw;
487 /* reset + wake up chip */
488 if (state->config->xtal_freq == TDA10046_XTAL_4M) {
489 tda1004x_write_byteI(state, TDA1004X_CONFC4, 0);
490 } else {
491 dprintk("%s: 16MHz Xtal, reducing I2C speed\n", __FUNCTION__);
492 tda1004x_write_byteI(state, TDA1004X_CONFC4, 0x80);
494 tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 1, 0);
495 /* set GPIO 1 and 3 */
496 if (state->config->gpio_config != TDA10046_GPTRI) {
497 tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE2, 0x33);
498 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x0f, state->config->gpio_config &0x0f);
500 /* let the clocks recover from sleep */
501 msleep(10);
503 /* The PLLs need to be reprogrammed after sleep */
504 tda10046_init_plls(fe);
505 tda1004x_write_mask(state, TDA1004X_CONFADC2, 0xc0, 0);
507 /* don't re-upload unless necessary */
508 if (tda1004x_check_upload_ok(state) == 0)
509 return 0;
511 printk(KERN_INFO "tda1004x: trying to boot from eeprom\n");
512 tda1004x_write_mask(state, TDA1004X_CONFC4, 4, 4);
513 msleep(300);
514 /* don't re-upload unless necessary */
515 if (tda1004x_check_upload_ok(state) == 0)
516 return 0;
518 if (state->config->request_firmware != NULL) {
519 /* request the firmware, this will block until someone uploads it */
520 printk(KERN_INFO "tda1004x: waiting for firmware upload...\n");
521 ret = state->config->request_firmware(fe, &fw, TDA10046_DEFAULT_FIRMWARE);
522 if (ret) {
523 /* remain compatible to old bug: try to load with tda10045 image name */
524 ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE);
525 if (ret) {
526 printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
527 return ret;
528 } else {
529 printk(KERN_INFO "tda1004x: please rename the firmware file to %s\n",
530 TDA10046_DEFAULT_FIRMWARE);
533 } else {
534 printk(KERN_ERR "tda1004x: no request function defined, can't upload from file\n");
535 return -EIO;
537 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8); // going to boot from HOST
538 ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10046H_CODE_CPT, TDA10046H_CODE_IN);
539 release_firmware(fw);
540 return tda1004x_check_upload_ok(state);
543 static int tda1004x_encode_fec(int fec)
545 // convert known FEC values
546 switch (fec) {
547 case FEC_1_2:
548 return 0;
549 case FEC_2_3:
550 return 1;
551 case FEC_3_4:
552 return 2;
553 case FEC_5_6:
554 return 3;
555 case FEC_7_8:
556 return 4;
559 // unsupported
560 return -EINVAL;
563 static int tda1004x_decode_fec(int tdafec)
565 // convert known FEC values
566 switch (tdafec) {
567 case 0:
568 return FEC_1_2;
569 case 1:
570 return FEC_2_3;
571 case 2:
572 return FEC_3_4;
573 case 3:
574 return FEC_5_6;
575 case 4:
576 return FEC_7_8;
579 // unsupported
580 return -1;
583 static int tda1004x_write(struct dvb_frontend* fe, u8 *buf, int len)
585 struct tda1004x_state* state = fe->demodulator_priv;
587 if (len != 2)
588 return -EINVAL;
590 return tda1004x_write_byteI(state, buf[0], buf[1]);
593 static int tda10045_init(struct dvb_frontend* fe)
595 struct tda1004x_state* state = fe->demodulator_priv;
597 dprintk("%s\n", __FUNCTION__);
599 if (tda10045_fwupload(fe)) {
600 printk("tda1004x: firmware upload failed\n");
601 return -EIO;
604 tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0); // wake up the ADC
606 // tda setup
607 tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
608 tda1004x_write_mask(state, TDA1004X_AUTO, 8, 0); // select HP stream
609 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x40, 0); // set polarity of VAGC signal
610 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x80, 0x80); // enable pulse killer
611 tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10); // enable auto offset
612 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0x0); // no frequency offset
613 tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 0); // setup MPEG2 TS interface
614 tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0); // setup MPEG2 TS interface
615 tda1004x_write_mask(state, TDA1004X_VBER_MSB, 0xe0, 0xa0); // 10^6 VBER measurement bits
616 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x10, 0); // VAGC polarity
617 tda1004x_write_byteI(state, TDA1004X_CONFADC1, 0x2e);
619 tda1004x_write_mask(state, 0x1f, 0x01, state->config->invert_oclk);
621 return 0;
624 static int tda10046_init(struct dvb_frontend* fe)
626 struct tda1004x_state* state = fe->demodulator_priv;
627 dprintk("%s\n", __FUNCTION__);
629 if (tda10046_fwupload(fe)) {
630 printk("tda1004x: firmware upload failed\n");
631 return -EIO;
634 // tda setup
635 tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
636 tda1004x_write_byteI(state, TDA1004X_AUTO, 0x87); // 100 ppm crystal, select HP stream
637 tda1004x_write_byteI(state, TDA1004X_CONFC1, 0x88); // enable pulse killer
639 switch (state->config->agc_config) {
640 case TDA10046_AGC_DEFAULT:
641 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x00); // AGC setup
642 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60); // set AGC polarities
643 break;
644 case TDA10046_AGC_IFO_AUTO_NEG:
645 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
646 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60); // set AGC polarities
647 break;
648 case TDA10046_AGC_IFO_AUTO_POS:
649 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
650 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x00); // set AGC polarities
651 break;
652 case TDA10046_AGC_TDA827X:
653 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x02); // AGC setup
654 tda1004x_write_byteI(state, TDA10046H_AGC_THR, 0x70); // AGC Threshold
655 tda1004x_write_byteI(state, TDA10046H_AGC_RENORM, 0x08); // Gain Renormalize
656 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60); // set AGC polarities
657 break;
659 if (state->config->ts_mode == 0) {
660 tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 0xc0, 0x40);
661 tda1004x_write_mask(state, 0x3a, 0x80, state->config->invert_oclk << 7);
662 } else {
663 tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 0xc0, 0x80);
664 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x10,
665 state->config->invert_oclk << 4);
667 tda1004x_write_byteI(state, TDA1004X_CONFADC2, 0x38);
668 tda1004x_write_mask (state, TDA10046H_CONF_TRISTATE1, 0x3e, 0x38); // Turn IF AGC output on
669 tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MIN, 0); // }
670 tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MAX, 0xff); // } AGC min/max values
671 tda1004x_write_byteI(state, TDA10046H_AGC_IF_MIN, 0); // }
672 tda1004x_write_byteI(state, TDA10046H_AGC_IF_MAX, 0xff); // }
673 tda1004x_write_byteI(state, TDA10046H_AGC_GAINS, 0x12); // IF gain 2, TUN gain 1
674 tda1004x_write_byteI(state, TDA10046H_CVBER_CTRL, 0x1a); // 10^6 VBER measurement bits
675 tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 7); // MPEG2 interface config
676 tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0xc0); // MPEG2 interface config
677 // tda1004x_write_mask(state, 0x50, 0x80, 0x80); // handle out of guard echoes
679 return 0;
682 static int tda1004x_set_fe(struct dvb_frontend* fe,
683 struct dvb_frontend_parameters *fe_params)
685 struct tda1004x_state* state = fe->demodulator_priv;
686 int tmp;
687 int inversion;
689 dprintk("%s\n", __FUNCTION__);
691 if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
692 // setup auto offset
693 tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10);
694 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x80, 0);
695 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0);
697 // disable agc_conf[2]
698 tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 0);
701 // set frequency
702 if (fe->ops.tuner_ops.set_params) {
703 fe->ops.tuner_ops.set_params(fe, fe_params);
704 if (fe->ops.i2c_gate_ctrl)
705 fe->ops.i2c_gate_ctrl(fe, 0);
708 // Hardcoded to use auto as much as possible on the TDA10045 as it
709 // is very unreliable if AUTO mode is _not_ used.
710 if (state->demod_type == TDA1004X_DEMOD_TDA10045) {
711 fe_params->u.ofdm.code_rate_HP = FEC_AUTO;
712 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_AUTO;
713 fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_AUTO;
716 // Set standard params.. or put them to auto
717 if ((fe_params->u.ofdm.code_rate_HP == FEC_AUTO) ||
718 (fe_params->u.ofdm.code_rate_LP == FEC_AUTO) ||
719 (fe_params->u.ofdm.constellation == QAM_AUTO) ||
720 (fe_params->u.ofdm.hierarchy_information == HIERARCHY_AUTO)) {
721 tda1004x_write_mask(state, TDA1004X_AUTO, 1, 1); // enable auto
722 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x03, 0); // turn off constellation bits
723 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0); // turn off hierarchy bits
724 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x3f, 0); // turn off FEC bits
725 } else {
726 tda1004x_write_mask(state, TDA1004X_AUTO, 1, 0); // disable auto
728 // set HP FEC
729 tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_HP);
730 if (tmp < 0)
731 return tmp;
732 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 7, tmp);
734 // set LP FEC
735 tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_LP);
736 if (tmp < 0)
737 return tmp;
738 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x38, tmp << 3);
740 // set constellation
741 switch (fe_params->u.ofdm.constellation) {
742 case QPSK:
743 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 0);
744 break;
746 case QAM_16:
747 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 1);
748 break;
750 case QAM_64:
751 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 2);
752 break;
754 default:
755 return -EINVAL;
758 // set hierarchy
759 switch (fe_params->u.ofdm.hierarchy_information) {
760 case HIERARCHY_NONE:
761 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0 << 5);
762 break;
764 case HIERARCHY_1:
765 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 1 << 5);
766 break;
768 case HIERARCHY_2:
769 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 2 << 5);
770 break;
772 case HIERARCHY_4:
773 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 3 << 5);
774 break;
776 default:
777 return -EINVAL;
781 // set bandwidth
782 switch (state->demod_type) {
783 case TDA1004X_DEMOD_TDA10045:
784 tda10045h_set_bandwidth(state, fe_params->u.ofdm.bandwidth);
785 break;
787 case TDA1004X_DEMOD_TDA10046:
788 tda10046h_set_bandwidth(state, fe_params->u.ofdm.bandwidth);
789 break;
792 // set inversion
793 inversion = fe_params->inversion;
794 if (state->config->invert)
795 inversion = inversion ? INVERSION_OFF : INVERSION_ON;
796 switch (inversion) {
797 case INVERSION_OFF:
798 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0);
799 break;
801 case INVERSION_ON:
802 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0x20);
803 break;
805 default:
806 return -EINVAL;
809 // set guard interval
810 switch (fe_params->u.ofdm.guard_interval) {
811 case GUARD_INTERVAL_1_32:
812 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
813 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
814 break;
816 case GUARD_INTERVAL_1_16:
817 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
818 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 1 << 2);
819 break;
821 case GUARD_INTERVAL_1_8:
822 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
823 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 2 << 2);
824 break;
826 case GUARD_INTERVAL_1_4:
827 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
828 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 3 << 2);
829 break;
831 case GUARD_INTERVAL_AUTO:
832 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 2);
833 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
834 break;
836 default:
837 return -EINVAL;
840 // set transmission mode
841 switch (fe_params->u.ofdm.transmission_mode) {
842 case TRANSMISSION_MODE_2K:
843 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
844 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0 << 4);
845 break;
847 case TRANSMISSION_MODE_8K:
848 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
849 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 1 << 4);
850 break;
852 case TRANSMISSION_MODE_AUTO:
853 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 4);
854 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0);
855 break;
857 default:
858 return -EINVAL;
861 // start the lock
862 switch (state->demod_type) {
863 case TDA1004X_DEMOD_TDA10045:
864 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
865 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
866 break;
868 case TDA1004X_DEMOD_TDA10046:
869 tda1004x_write_mask(state, TDA1004X_AUTO, 0x40, 0x40);
870 msleep(1);
871 tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 1);
872 break;
875 msleep(10);
877 return 0;
880 static int tda1004x_get_fe(struct dvb_frontend* fe, struct dvb_frontend_parameters *fe_params)
882 struct tda1004x_state* state = fe->demodulator_priv;
884 dprintk("%s\n", __FUNCTION__);
886 // inversion status
887 fe_params->inversion = INVERSION_OFF;
888 if (tda1004x_read_byte(state, TDA1004X_CONFC1) & 0x20)
889 fe_params->inversion = INVERSION_ON;
890 if (state->config->invert)
891 fe_params->inversion = fe_params->inversion ? INVERSION_OFF : INVERSION_ON;
893 // bandwidth
894 switch (state->demod_type) {
895 case TDA1004X_DEMOD_TDA10045:
896 switch (tda1004x_read_byte(state, TDA10045H_WREF_LSB)) {
897 case 0x14:
898 fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
899 break;
900 case 0xdb:
901 fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
902 break;
903 case 0x4f:
904 fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
905 break;
907 break;
908 case TDA1004X_DEMOD_TDA10046:
909 switch (tda1004x_read_byte(state, TDA10046H_TIME_WREF1)) {
910 case 0x5c:
911 case 0x54:
912 fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
913 break;
914 case 0x6a:
915 case 0x60:
916 fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
917 break;
918 case 0x7b:
919 case 0x70:
920 fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
921 break;
923 break;
926 // FEC
927 fe_params->u.ofdm.code_rate_HP =
928 tda1004x_decode_fec(tda1004x_read_byte(state, TDA1004X_OUT_CONF2) & 7);
929 fe_params->u.ofdm.code_rate_LP =
930 tda1004x_decode_fec((tda1004x_read_byte(state, TDA1004X_OUT_CONF2) >> 3) & 7);
932 // constellation
933 switch (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 3) {
934 case 0:
935 fe_params->u.ofdm.constellation = QPSK;
936 break;
937 case 1:
938 fe_params->u.ofdm.constellation = QAM_16;
939 break;
940 case 2:
941 fe_params->u.ofdm.constellation = QAM_64;
942 break;
945 // transmission mode
946 fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K;
947 if (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x10)
948 fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
950 // guard interval
951 switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x0c) >> 2) {
952 case 0:
953 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
954 break;
955 case 1:
956 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_16;
957 break;
958 case 2:
959 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_8;
960 break;
961 case 3:
962 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_4;
963 break;
966 // hierarchy
967 switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x60) >> 5) {
968 case 0:
969 fe_params->u.ofdm.hierarchy_information = HIERARCHY_NONE;
970 break;
971 case 1:
972 fe_params->u.ofdm.hierarchy_information = HIERARCHY_1;
973 break;
974 case 2:
975 fe_params->u.ofdm.hierarchy_information = HIERARCHY_2;
976 break;
977 case 3:
978 fe_params->u.ofdm.hierarchy_information = HIERARCHY_4;
979 break;
982 return 0;
985 static int tda1004x_read_status(struct dvb_frontend* fe, fe_status_t * fe_status)
987 struct tda1004x_state* state = fe->demodulator_priv;
988 int status;
989 int cber;
990 int vber;
992 dprintk("%s\n", __FUNCTION__);
994 // read status
995 status = tda1004x_read_byte(state, TDA1004X_STATUS_CD);
996 if (status == -1)
997 return -EIO;
999 // decode
1000 *fe_status = 0;
1001 if (status & 4)
1002 *fe_status |= FE_HAS_SIGNAL;
1003 if (status & 2)
1004 *fe_status |= FE_HAS_CARRIER;
1005 if (status & 8)
1006 *fe_status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
1008 // if we don't already have VITERBI (i.e. not LOCKED), see if the viterbi
1009 // is getting anything valid
1010 if (!(*fe_status & FE_HAS_VITERBI)) {
1011 // read the CBER
1012 cber = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
1013 if (cber == -1)
1014 return -EIO;
1015 status = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
1016 if (status == -1)
1017 return -EIO;
1018 cber |= (status << 8);
1019 // The address 0x20 should be read to cope with a TDA10046 bug
1020 tda1004x_read_byte(state, TDA1004X_CBER_RESET);
1022 if (cber != 65535)
1023 *fe_status |= FE_HAS_VITERBI;
1026 // if we DO have some valid VITERBI output, but don't already have SYNC
1027 // bytes (i.e. not LOCKED), see if the RS decoder is getting anything valid.
1028 if ((*fe_status & FE_HAS_VITERBI) && (!(*fe_status & FE_HAS_SYNC))) {
1029 // read the VBER
1030 vber = tda1004x_read_byte(state, TDA1004X_VBER_LSB);
1031 if (vber == -1)
1032 return -EIO;
1033 status = tda1004x_read_byte(state, TDA1004X_VBER_MID);
1034 if (status == -1)
1035 return -EIO;
1036 vber |= (status << 8);
1037 status = tda1004x_read_byte(state, TDA1004X_VBER_MSB);
1038 if (status == -1)
1039 return -EIO;
1040 vber |= (status & 0x0f) << 16;
1041 // The CVBER_LUT should be read to cope with TDA10046 hardware bug
1042 tda1004x_read_byte(state, TDA1004X_CVBER_LUT);
1044 // if RS has passed some valid TS packets, then we must be
1045 // getting some SYNC bytes
1046 if (vber < 16632)
1047 *fe_status |= FE_HAS_SYNC;
1050 // success
1051 dprintk("%s: fe_status=0x%x\n", __FUNCTION__, *fe_status);
1052 return 0;
1055 static int tda1004x_read_signal_strength(struct dvb_frontend* fe, u16 * signal)
1057 struct tda1004x_state* state = fe->demodulator_priv;
1058 int tmp;
1059 int reg = 0;
1061 dprintk("%s\n", __FUNCTION__);
1063 // determine the register to use
1064 switch (state->demod_type) {
1065 case TDA1004X_DEMOD_TDA10045:
1066 reg = TDA10045H_S_AGC;
1067 break;
1069 case TDA1004X_DEMOD_TDA10046:
1070 reg = TDA10046H_AGC_IF_LEVEL;
1071 break;
1074 // read it
1075 tmp = tda1004x_read_byte(state, reg);
1076 if (tmp < 0)
1077 return -EIO;
1079 *signal = (tmp << 8) | tmp;
1080 dprintk("%s: signal=0x%x\n", __FUNCTION__, *signal);
1081 return 0;
1084 static int tda1004x_read_snr(struct dvb_frontend* fe, u16 * snr)
1086 struct tda1004x_state* state = fe->demodulator_priv;
1087 int tmp;
1089 dprintk("%s\n", __FUNCTION__);
1091 // read it
1092 tmp = tda1004x_read_byte(state, TDA1004X_SNR);
1093 if (tmp < 0)
1094 return -EIO;
1095 tmp = 255 - tmp;
1097 *snr = ((tmp << 8) | tmp);
1098 dprintk("%s: snr=0x%x\n", __FUNCTION__, *snr);
1099 return 0;
1102 static int tda1004x_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
1104 struct tda1004x_state* state = fe->demodulator_priv;
1105 int tmp;
1106 int tmp2;
1107 int counter;
1109 dprintk("%s\n", __FUNCTION__);
1111 // read the UCBLOCKS and reset
1112 counter = 0;
1113 tmp = tda1004x_read_byte(state, TDA1004X_UNCOR);
1114 if (tmp < 0)
1115 return -EIO;
1116 tmp &= 0x7f;
1117 while (counter++ < 5) {
1118 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1119 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1120 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1122 tmp2 = tda1004x_read_byte(state, TDA1004X_UNCOR);
1123 if (tmp2 < 0)
1124 return -EIO;
1125 tmp2 &= 0x7f;
1126 if ((tmp2 < tmp) || (tmp2 == 0))
1127 break;
1130 if (tmp != 0x7f)
1131 *ucblocks = tmp;
1132 else
1133 *ucblocks = 0xffffffff;
1135 dprintk("%s: ucblocks=0x%x\n", __FUNCTION__, *ucblocks);
1136 return 0;
1139 static int tda1004x_read_ber(struct dvb_frontend* fe, u32* ber)
1141 struct tda1004x_state* state = fe->demodulator_priv;
1142 int tmp;
1144 dprintk("%s\n", __FUNCTION__);
1146 // read it in
1147 tmp = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
1148 if (tmp < 0)
1149 return -EIO;
1150 *ber = tmp << 1;
1151 tmp = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
1152 if (tmp < 0)
1153 return -EIO;
1154 *ber |= (tmp << 9);
1155 // The address 0x20 should be read to cope with a TDA10046 bug
1156 tda1004x_read_byte(state, TDA1004X_CBER_RESET);
1158 dprintk("%s: ber=0x%x\n", __FUNCTION__, *ber);
1159 return 0;
1162 static int tda1004x_sleep(struct dvb_frontend* fe)
1164 struct tda1004x_state* state = fe->demodulator_priv;
1165 int gpio_conf;
1167 switch (state->demod_type) {
1168 case TDA1004X_DEMOD_TDA10045:
1169 tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0x10);
1170 break;
1172 case TDA1004X_DEMOD_TDA10046:
1173 /* set outputs to tristate */
1174 tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE1, 0xff);
1175 /* invert GPIO 1 and 3 if desired*/
1176 gpio_conf = state->config->gpio_config;
1177 if (gpio_conf >= TDA10046_GP00_I)
1178 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x0f,
1179 (gpio_conf & 0x0f) ^ 0x0a);
1181 tda1004x_write_mask(state, TDA1004X_CONFADC2, 0xc0, 0xc0);
1182 tda1004x_write_mask(state, TDA1004X_CONFC4, 1, 1);
1183 break;
1186 return 0;
1189 static int tda1004x_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
1191 struct tda1004x_state* state = fe->demodulator_priv;
1193 if (enable) {
1194 return tda1004x_enable_tuner_i2c(state);
1195 } else {
1196 return tda1004x_disable_tuner_i2c(state);
1200 static int tda1004x_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
1202 fesettings->min_delay_ms = 800;
1203 /* Drift compensation makes no sense for DVB-T */
1204 fesettings->step_size = 0;
1205 fesettings->max_drift = 0;
1206 return 0;
1209 static void tda1004x_release(struct dvb_frontend* fe)
1211 struct tda1004x_state *state = fe->demodulator_priv;
1212 kfree(state);
1215 static struct dvb_frontend_ops tda10045_ops = {
1216 .info = {
1217 .name = "Philips TDA10045H DVB-T",
1218 .type = FE_OFDM,
1219 .frequency_min = 51000000,
1220 .frequency_max = 858000000,
1221 .frequency_stepsize = 166667,
1222 .caps =
1223 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1224 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1225 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1226 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
1229 .release = tda1004x_release,
1231 .init = tda10045_init,
1232 .sleep = tda1004x_sleep,
1233 .write = tda1004x_write,
1234 .i2c_gate_ctrl = tda1004x_i2c_gate_ctrl,
1236 .set_frontend = tda1004x_set_fe,
1237 .get_frontend = tda1004x_get_fe,
1238 .get_tune_settings = tda1004x_get_tune_settings,
1240 .read_status = tda1004x_read_status,
1241 .read_ber = tda1004x_read_ber,
1242 .read_signal_strength = tda1004x_read_signal_strength,
1243 .read_snr = tda1004x_read_snr,
1244 .read_ucblocks = tda1004x_read_ucblocks,
1247 struct dvb_frontend* tda10045_attach(const struct tda1004x_config* config,
1248 struct i2c_adapter* i2c)
1250 struct tda1004x_state *state;
1252 /* allocate memory for the internal state */
1253 state = kmalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
1254 if (!state)
1255 return NULL;
1257 /* setup the state */
1258 state->config = config;
1259 state->i2c = i2c;
1260 state->demod_type = TDA1004X_DEMOD_TDA10045;
1262 /* check if the demod is there */
1263 if (tda1004x_read_byte(state, TDA1004X_CHIPID) != 0x25) {
1264 kfree(state);
1265 return NULL;
1268 /* create dvb_frontend */
1269 memcpy(&state->frontend.ops, &tda10045_ops, sizeof(struct dvb_frontend_ops));
1270 state->frontend.demodulator_priv = state;
1271 return &state->frontend;
1274 static struct dvb_frontend_ops tda10046_ops = {
1275 .info = {
1276 .name = "Philips TDA10046H DVB-T",
1277 .type = FE_OFDM,
1278 .frequency_min = 51000000,
1279 .frequency_max = 858000000,
1280 .frequency_stepsize = 166667,
1281 .caps =
1282 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1283 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1284 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1285 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
1288 .release = tda1004x_release,
1290 .init = tda10046_init,
1291 .sleep = tda1004x_sleep,
1292 .write = tda1004x_write,
1293 .i2c_gate_ctrl = tda1004x_i2c_gate_ctrl,
1295 .set_frontend = tda1004x_set_fe,
1296 .get_frontend = tda1004x_get_fe,
1297 .get_tune_settings = tda1004x_get_tune_settings,
1299 .read_status = tda1004x_read_status,
1300 .read_ber = tda1004x_read_ber,
1301 .read_signal_strength = tda1004x_read_signal_strength,
1302 .read_snr = tda1004x_read_snr,
1303 .read_ucblocks = tda1004x_read_ucblocks,
1306 struct dvb_frontend* tda10046_attach(const struct tda1004x_config* config,
1307 struct i2c_adapter* i2c)
1309 struct tda1004x_state *state;
1311 /* allocate memory for the internal state */
1312 state = kmalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
1313 if (!state)
1314 return NULL;
1316 /* setup the state */
1317 state->config = config;
1318 state->i2c = i2c;
1319 state->demod_type = TDA1004X_DEMOD_TDA10046;
1321 /* check if the demod is there */
1322 if (tda1004x_read_byte(state, TDA1004X_CHIPID) != 0x46) {
1323 kfree(state);
1324 return NULL;
1327 /* create dvb_frontend */
1328 memcpy(&state->frontend.ops, &tda10046_ops, sizeof(struct dvb_frontend_ops));
1329 state->frontend.demodulator_priv = state;
1330 return &state->frontend;
1333 module_param(debug, int, 0644);
1334 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
1336 MODULE_DESCRIPTION("Philips TDA10045H & TDA10046H DVB-T Demodulator");
1337 MODULE_AUTHOR("Andrew de Quincey & Robert Schlabbach");
1338 MODULE_LICENSE("GPL");
1340 EXPORT_SYMBOL(tda10045_attach);
1341 EXPORT_SYMBOL(tda10046_attach);