1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004-2008 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/bitops.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #ifdef NETIF_F_HW_VLAN_TX
39 #include <linux/if_vlan.h>
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/zlib.h>
55 #define FW_BUF_SIZE 0x10000
57 #define DRV_MODULE_NAME "bnx2"
58 #define PFX DRV_MODULE_NAME ": "
59 #define DRV_MODULE_VERSION "1.7.2"
60 #define DRV_MODULE_RELDATE "January 21, 2008"
62 #define RUN_AT(x) (jiffies + (x))
64 /* Time in jiffies before concluding the transmitter is hung. */
65 #define TX_TIMEOUT (5*HZ)
67 static const char version
[] __devinitdata
=
68 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME
" v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
70 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
71 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708 Driver");
72 MODULE_LICENSE("GPL");
73 MODULE_VERSION(DRV_MODULE_VERSION
);
75 static int disable_msi
= 0;
77 module_param(disable_msi
, int, 0);
78 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
92 /* indexed by board_t, above */
95 } board_info
[] __devinitdata
= {
96 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
97 { "HP NC370T Multifunction Gigabit Server Adapter" },
98 { "HP NC370i Multifunction Gigabit Server Adapter" },
99 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
100 { "HP NC370F Multifunction Gigabit Server Adapter" },
101 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
102 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
103 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
104 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
107 static struct pci_device_id bnx2_pci_tbl
[] = {
108 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
109 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
110 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
111 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
112 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
113 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
114 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708
,
115 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708
},
116 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
117 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
118 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
119 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
120 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708S
,
121 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708S
},
122 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709
,
123 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709
},
124 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709S
,
125 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709S
},
129 static struct flash_spec flash_table
[] =
131 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
132 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
134 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
135 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
136 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
138 /* Expansion entry 0001 */
139 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
140 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
141 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
143 /* Saifun SA25F010 (non-buffered flash) */
144 /* strap, cfg1, & write1 need updates */
145 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
146 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
147 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
148 "Non-buffered flash (128kB)"},
149 /* Saifun SA25F020 (non-buffered flash) */
150 /* strap, cfg1, & write1 need updates */
151 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
152 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
153 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
154 "Non-buffered flash (256kB)"},
155 /* Expansion entry 0100 */
156 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
157 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
158 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
160 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
161 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
162 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
163 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*2,
164 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
165 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
166 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
167 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
168 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*4,
169 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
170 /* Saifun SA25F005 (non-buffered flash) */
171 /* strap, cfg1, & write1 need updates */
172 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
173 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
174 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
175 "Non-buffered flash (64kB)"},
177 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
178 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
179 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
181 /* Expansion entry 1001 */
182 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
183 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
184 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
186 /* Expansion entry 1010 */
187 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
188 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
189 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
191 /* ATMEL AT45DB011B (buffered flash) */
192 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
193 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
194 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
195 "Buffered flash (128kB)"},
196 /* Expansion entry 1100 */
197 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
198 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
199 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
201 /* Expansion entry 1101 */
202 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
203 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
204 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
206 /* Ateml Expansion entry 1110 */
207 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
208 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
209 BUFFERED_FLASH_BYTE_ADDR_MASK
, 0,
210 "Entry 1110 (Atmel)"},
211 /* ATMEL AT45DB021B (buffered flash) */
212 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
213 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
214 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
*2,
215 "Buffered flash (256kB)"},
218 static struct flash_spec flash_5709
= {
219 .flags
= BNX2_NV_BUFFERED
,
220 .page_bits
= BCM5709_FLASH_PAGE_BITS
,
221 .page_size
= BCM5709_FLASH_PAGE_SIZE
,
222 .addr_mask
= BCM5709_FLASH_BYTE_ADDR_MASK
,
223 .total_size
= BUFFERED_FLASH_TOTAL_SIZE
*2,
224 .name
= "5709 Buffered flash (256kB)",
227 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
229 static inline u32
bnx2_tx_avail(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
235 /* The ring uses 256 indices for 255 entries, one of them
236 * needs to be skipped.
238 diff
= bp
->tx_prod
- bnapi
->tx_cons
;
239 if (unlikely(diff
>= TX_DESC_CNT
)) {
241 if (diff
== TX_DESC_CNT
)
242 diff
= MAX_TX_DESC_CNT
;
244 return (bp
->tx_ring_size
- diff
);
248 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
252 spin_lock_bh(&bp
->indirect_lock
);
253 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
254 val
= REG_RD(bp
, BNX2_PCICFG_REG_WINDOW
);
255 spin_unlock_bh(&bp
->indirect_lock
);
260 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
262 spin_lock_bh(&bp
->indirect_lock
);
263 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
264 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
265 spin_unlock_bh(&bp
->indirect_lock
);
269 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
272 spin_lock_bh(&bp
->indirect_lock
);
273 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
276 REG_WR(bp
, BNX2_CTX_CTX_DATA
, val
);
277 REG_WR(bp
, BNX2_CTX_CTX_CTRL
,
278 offset
| BNX2_CTX_CTX_CTRL_WRITE_REQ
);
279 for (i
= 0; i
< 5; i
++) {
281 val
= REG_RD(bp
, BNX2_CTX_CTX_CTRL
);
282 if ((val
& BNX2_CTX_CTX_CTRL_WRITE_REQ
) == 0)
287 REG_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
288 REG_WR(bp
, BNX2_CTX_DATA
, val
);
290 spin_unlock_bh(&bp
->indirect_lock
);
294 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
299 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
300 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
301 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
303 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
304 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
309 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
310 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
311 BNX2_EMAC_MDIO_COMM_START_BUSY
;
312 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
314 for (i
= 0; i
< 50; i
++) {
317 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
318 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
321 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
322 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
328 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
337 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
338 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
339 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
341 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
342 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
351 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
356 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
357 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
358 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
360 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
361 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
366 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
367 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
368 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
369 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
371 for (i
= 0; i
< 50; i
++) {
374 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
375 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
381 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
386 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
387 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
388 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
390 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
391 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
400 bnx2_disable_int(struct bnx2
*bp
)
403 struct bnx2_napi
*bnapi
;
405 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
406 bnapi
= &bp
->bnx2_napi
[i
];
407 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
408 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
410 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
414 bnx2_enable_int(struct bnx2
*bp
)
417 struct bnx2_napi
*bnapi
;
419 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
420 bnapi
= &bp
->bnx2_napi
[i
];
422 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
423 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
424 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
425 bnapi
->last_status_idx
);
427 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
428 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
429 bnapi
->last_status_idx
);
431 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
435 bnx2_disable_int_sync(struct bnx2
*bp
)
439 atomic_inc(&bp
->intr_sem
);
440 bnx2_disable_int(bp
);
441 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
442 synchronize_irq(bp
->irq_tbl
[i
].vector
);
446 bnx2_napi_disable(struct bnx2
*bp
)
450 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
451 napi_disable(&bp
->bnx2_napi
[i
].napi
);
455 bnx2_napi_enable(struct bnx2
*bp
)
459 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
460 napi_enable(&bp
->bnx2_napi
[i
].napi
);
464 bnx2_netif_stop(struct bnx2
*bp
)
466 bnx2_disable_int_sync(bp
);
467 if (netif_running(bp
->dev
)) {
468 bnx2_napi_disable(bp
);
469 netif_tx_disable(bp
->dev
);
470 bp
->dev
->trans_start
= jiffies
; /* prevent tx timeout */
475 bnx2_netif_start(struct bnx2
*bp
)
477 if (atomic_dec_and_test(&bp
->intr_sem
)) {
478 if (netif_running(bp
->dev
)) {
479 netif_wake_queue(bp
->dev
);
480 bnx2_napi_enable(bp
);
487 bnx2_free_mem(struct bnx2
*bp
)
491 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
492 if (bp
->ctx_blk
[i
]) {
493 pci_free_consistent(bp
->pdev
, BCM_PAGE_SIZE
,
495 bp
->ctx_blk_mapping
[i
]);
496 bp
->ctx_blk
[i
] = NULL
;
499 if (bp
->status_blk
) {
500 pci_free_consistent(bp
->pdev
, bp
->status_stats_size
,
501 bp
->status_blk
, bp
->status_blk_mapping
);
502 bp
->status_blk
= NULL
;
503 bp
->stats_blk
= NULL
;
505 if (bp
->tx_desc_ring
) {
506 pci_free_consistent(bp
->pdev
, TXBD_RING_SIZE
,
507 bp
->tx_desc_ring
, bp
->tx_desc_mapping
);
508 bp
->tx_desc_ring
= NULL
;
510 kfree(bp
->tx_buf_ring
);
511 bp
->tx_buf_ring
= NULL
;
512 for (i
= 0; i
< bp
->rx_max_ring
; i
++) {
513 if (bp
->rx_desc_ring
[i
])
514 pci_free_consistent(bp
->pdev
, RXBD_RING_SIZE
,
516 bp
->rx_desc_mapping
[i
]);
517 bp
->rx_desc_ring
[i
] = NULL
;
519 vfree(bp
->rx_buf_ring
);
520 bp
->rx_buf_ring
= NULL
;
521 for (i
= 0; i
< bp
->rx_max_pg_ring
; i
++) {
522 if (bp
->rx_pg_desc_ring
[i
])
523 pci_free_consistent(bp
->pdev
, RXBD_RING_SIZE
,
524 bp
->rx_pg_desc_ring
[i
],
525 bp
->rx_pg_desc_mapping
[i
]);
526 bp
->rx_pg_desc_ring
[i
] = NULL
;
529 vfree(bp
->rx_pg_ring
);
530 bp
->rx_pg_ring
= NULL
;
534 bnx2_alloc_mem(struct bnx2
*bp
)
536 int i
, status_blk_size
;
538 bp
->tx_buf_ring
= kzalloc(SW_TXBD_RING_SIZE
, GFP_KERNEL
);
539 if (bp
->tx_buf_ring
== NULL
)
542 bp
->tx_desc_ring
= pci_alloc_consistent(bp
->pdev
, TXBD_RING_SIZE
,
543 &bp
->tx_desc_mapping
);
544 if (bp
->tx_desc_ring
== NULL
)
547 bp
->rx_buf_ring
= vmalloc(SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
548 if (bp
->rx_buf_ring
== NULL
)
551 memset(bp
->rx_buf_ring
, 0, SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
553 for (i
= 0; i
< bp
->rx_max_ring
; i
++) {
554 bp
->rx_desc_ring
[i
] =
555 pci_alloc_consistent(bp
->pdev
, RXBD_RING_SIZE
,
556 &bp
->rx_desc_mapping
[i
]);
557 if (bp
->rx_desc_ring
[i
] == NULL
)
562 if (bp
->rx_pg_ring_size
) {
563 bp
->rx_pg_ring
= vmalloc(SW_RXPG_RING_SIZE
*
565 if (bp
->rx_pg_ring
== NULL
)
568 memset(bp
->rx_pg_ring
, 0, SW_RXPG_RING_SIZE
*
572 for (i
= 0; i
< bp
->rx_max_pg_ring
; i
++) {
573 bp
->rx_pg_desc_ring
[i
] =
574 pci_alloc_consistent(bp
->pdev
, RXBD_RING_SIZE
,
575 &bp
->rx_pg_desc_mapping
[i
]);
576 if (bp
->rx_pg_desc_ring
[i
] == NULL
)
581 /* Combine status and statistics blocks into one allocation. */
582 status_blk_size
= L1_CACHE_ALIGN(sizeof(struct status_block
));
583 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
)
584 status_blk_size
= L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC
*
585 BNX2_SBLK_MSIX_ALIGN_SIZE
);
586 bp
->status_stats_size
= status_blk_size
+
587 sizeof(struct statistics_block
);
589 bp
->status_blk
= pci_alloc_consistent(bp
->pdev
, bp
->status_stats_size
,
590 &bp
->status_blk_mapping
);
591 if (bp
->status_blk
== NULL
)
594 memset(bp
->status_blk
, 0, bp
->status_stats_size
);
596 bp
->bnx2_napi
[0].status_blk
= bp
->status_blk
;
597 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
) {
598 for (i
= 1; i
< BNX2_MAX_MSIX_VEC
; i
++) {
599 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
601 bnapi
->status_blk_msix
= (void *)
602 ((unsigned long) bp
->status_blk
+
603 BNX2_SBLK_MSIX_ALIGN_SIZE
* i
);
604 bnapi
->int_num
= i
<< 24;
608 bp
->stats_blk
= (void *) ((unsigned long) bp
->status_blk
+
611 bp
->stats_blk_mapping
= bp
->status_blk_mapping
+ status_blk_size
;
613 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
614 bp
->ctx_pages
= 0x2000 / BCM_PAGE_SIZE
;
615 if (bp
->ctx_pages
== 0)
617 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
618 bp
->ctx_blk
[i
] = pci_alloc_consistent(bp
->pdev
,
620 &bp
->ctx_blk_mapping
[i
]);
621 if (bp
->ctx_blk
[i
] == NULL
)
633 bnx2_report_fw_link(struct bnx2
*bp
)
635 u32 fw_link_status
= 0;
637 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
643 switch (bp
->line_speed
) {
645 if (bp
->duplex
== DUPLEX_HALF
)
646 fw_link_status
= BNX2_LINK_STATUS_10HALF
;
648 fw_link_status
= BNX2_LINK_STATUS_10FULL
;
651 if (bp
->duplex
== DUPLEX_HALF
)
652 fw_link_status
= BNX2_LINK_STATUS_100HALF
;
654 fw_link_status
= BNX2_LINK_STATUS_100FULL
;
657 if (bp
->duplex
== DUPLEX_HALF
)
658 fw_link_status
= BNX2_LINK_STATUS_1000HALF
;
660 fw_link_status
= BNX2_LINK_STATUS_1000FULL
;
663 if (bp
->duplex
== DUPLEX_HALF
)
664 fw_link_status
= BNX2_LINK_STATUS_2500HALF
;
666 fw_link_status
= BNX2_LINK_STATUS_2500FULL
;
670 fw_link_status
|= BNX2_LINK_STATUS_LINK_UP
;
673 fw_link_status
|= BNX2_LINK_STATUS_AN_ENABLED
;
675 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
676 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
678 if (!(bmsr
& BMSR_ANEGCOMPLETE
) ||
679 bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)
680 fw_link_status
|= BNX2_LINK_STATUS_PARALLEL_DET
;
682 fw_link_status
|= BNX2_LINK_STATUS_AN_COMPLETE
;
686 fw_link_status
= BNX2_LINK_STATUS_LINK_DOWN
;
688 REG_WR_IND(bp
, bp
->shmem_base
+ BNX2_LINK_STATUS
, fw_link_status
);
692 bnx2_xceiver_str(struct bnx2
*bp
)
694 return ((bp
->phy_port
== PORT_FIBRE
) ? "SerDes" :
695 ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) ? "Remote Copper" :
700 bnx2_report_link(struct bnx2
*bp
)
703 netif_carrier_on(bp
->dev
);
704 printk(KERN_INFO PFX
"%s NIC %s Link is Up, ", bp
->dev
->name
,
705 bnx2_xceiver_str(bp
));
707 printk("%d Mbps ", bp
->line_speed
);
709 if (bp
->duplex
== DUPLEX_FULL
)
710 printk("full duplex");
712 printk("half duplex");
715 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
716 printk(", receive ");
717 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
718 printk("& transmit ");
721 printk(", transmit ");
723 printk("flow control ON");
728 netif_carrier_off(bp
->dev
);
729 printk(KERN_ERR PFX
"%s NIC %s Link is Down\n", bp
->dev
->name
,
730 bnx2_xceiver_str(bp
));
733 bnx2_report_fw_link(bp
);
737 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
739 u32 local_adv
, remote_adv
;
742 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
743 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
745 if (bp
->duplex
== DUPLEX_FULL
) {
746 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
751 if (bp
->duplex
!= DUPLEX_FULL
) {
755 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
756 (CHIP_NUM(bp
) == CHIP_NUM_5708
)) {
759 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
760 if (val
& BCM5708S_1000X_STAT1_TX_PAUSE
)
761 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
762 if (val
& BCM5708S_1000X_STAT1_RX_PAUSE
)
763 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
767 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
768 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
770 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
771 u32 new_local_adv
= 0;
772 u32 new_remote_adv
= 0;
774 if (local_adv
& ADVERTISE_1000XPAUSE
)
775 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
776 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
777 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
778 if (remote_adv
& ADVERTISE_1000XPAUSE
)
779 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
780 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
781 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
783 local_adv
= new_local_adv
;
784 remote_adv
= new_remote_adv
;
787 /* See Table 28B-3 of 802.3ab-1999 spec. */
788 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
789 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
790 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
791 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
793 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
794 bp
->flow_ctrl
= FLOW_CTRL_RX
;
798 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
799 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
803 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
804 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
805 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
807 bp
->flow_ctrl
= FLOW_CTRL_TX
;
813 bnx2_5709s_linkup(struct bnx2
*bp
)
819 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_GP_STATUS
);
820 bnx2_read_phy(bp
, MII_BNX2_GP_TOP_AN_STATUS1
, &val
);
821 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
823 if ((bp
->autoneg
& AUTONEG_SPEED
) == 0) {
824 bp
->line_speed
= bp
->req_line_speed
;
825 bp
->duplex
= bp
->req_duplex
;
828 speed
= val
& MII_BNX2_GP_TOP_AN_SPEED_MSK
;
830 case MII_BNX2_GP_TOP_AN_SPEED_10
:
831 bp
->line_speed
= SPEED_10
;
833 case MII_BNX2_GP_TOP_AN_SPEED_100
:
834 bp
->line_speed
= SPEED_100
;
836 case MII_BNX2_GP_TOP_AN_SPEED_1G
:
837 case MII_BNX2_GP_TOP_AN_SPEED_1GKV
:
838 bp
->line_speed
= SPEED_1000
;
840 case MII_BNX2_GP_TOP_AN_SPEED_2_5G
:
841 bp
->line_speed
= SPEED_2500
;
844 if (val
& MII_BNX2_GP_TOP_AN_FD
)
845 bp
->duplex
= DUPLEX_FULL
;
847 bp
->duplex
= DUPLEX_HALF
;
852 bnx2_5708s_linkup(struct bnx2
*bp
)
857 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
858 switch (val
& BCM5708S_1000X_STAT1_SPEED_MASK
) {
859 case BCM5708S_1000X_STAT1_SPEED_10
:
860 bp
->line_speed
= SPEED_10
;
862 case BCM5708S_1000X_STAT1_SPEED_100
:
863 bp
->line_speed
= SPEED_100
;
865 case BCM5708S_1000X_STAT1_SPEED_1G
:
866 bp
->line_speed
= SPEED_1000
;
868 case BCM5708S_1000X_STAT1_SPEED_2G5
:
869 bp
->line_speed
= SPEED_2500
;
872 if (val
& BCM5708S_1000X_STAT1_FD
)
873 bp
->duplex
= DUPLEX_FULL
;
875 bp
->duplex
= DUPLEX_HALF
;
881 bnx2_5706s_linkup(struct bnx2
*bp
)
883 u32 bmcr
, local_adv
, remote_adv
, common
;
886 bp
->line_speed
= SPEED_1000
;
888 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
889 if (bmcr
& BMCR_FULLDPLX
) {
890 bp
->duplex
= DUPLEX_FULL
;
893 bp
->duplex
= DUPLEX_HALF
;
896 if (!(bmcr
& BMCR_ANENABLE
)) {
900 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
901 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
903 common
= local_adv
& remote_adv
;
904 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
906 if (common
& ADVERTISE_1000XFULL
) {
907 bp
->duplex
= DUPLEX_FULL
;
910 bp
->duplex
= DUPLEX_HALF
;
918 bnx2_copper_linkup(struct bnx2
*bp
)
922 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
923 if (bmcr
& BMCR_ANENABLE
) {
924 u32 local_adv
, remote_adv
, common
;
926 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
927 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
929 common
= local_adv
& (remote_adv
>> 2);
930 if (common
& ADVERTISE_1000FULL
) {
931 bp
->line_speed
= SPEED_1000
;
932 bp
->duplex
= DUPLEX_FULL
;
934 else if (common
& ADVERTISE_1000HALF
) {
935 bp
->line_speed
= SPEED_1000
;
936 bp
->duplex
= DUPLEX_HALF
;
939 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
940 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
942 common
= local_adv
& remote_adv
;
943 if (common
& ADVERTISE_100FULL
) {
944 bp
->line_speed
= SPEED_100
;
945 bp
->duplex
= DUPLEX_FULL
;
947 else if (common
& ADVERTISE_100HALF
) {
948 bp
->line_speed
= SPEED_100
;
949 bp
->duplex
= DUPLEX_HALF
;
951 else if (common
& ADVERTISE_10FULL
) {
952 bp
->line_speed
= SPEED_10
;
953 bp
->duplex
= DUPLEX_FULL
;
955 else if (common
& ADVERTISE_10HALF
) {
956 bp
->line_speed
= SPEED_10
;
957 bp
->duplex
= DUPLEX_HALF
;
966 if (bmcr
& BMCR_SPEED100
) {
967 bp
->line_speed
= SPEED_100
;
970 bp
->line_speed
= SPEED_10
;
972 if (bmcr
& BMCR_FULLDPLX
) {
973 bp
->duplex
= DUPLEX_FULL
;
976 bp
->duplex
= DUPLEX_HALF
;
984 bnx2_set_mac_link(struct bnx2
*bp
)
988 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
989 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
990 (bp
->duplex
== DUPLEX_HALF
)) {
991 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
994 /* Configure the EMAC mode register. */
995 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
997 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
998 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
999 BNX2_EMAC_MODE_25G_MODE
);
1002 switch (bp
->line_speed
) {
1004 if (CHIP_NUM(bp
) != CHIP_NUM_5706
) {
1005 val
|= BNX2_EMAC_MODE_PORT_MII_10M
;
1010 val
|= BNX2_EMAC_MODE_PORT_MII
;
1013 val
|= BNX2_EMAC_MODE_25G_MODE
;
1016 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1021 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1024 /* Set the MAC to operate in the appropriate duplex mode. */
1025 if (bp
->duplex
== DUPLEX_HALF
)
1026 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
1027 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
1029 /* Enable/disable rx PAUSE. */
1030 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
1032 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
1033 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
1034 REG_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
1036 /* Enable/disable tx PAUSE. */
1037 val
= REG_RD(bp
, BNX2_EMAC_TX_MODE
);
1038 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
1040 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1041 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
1042 REG_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
1044 /* Acknowledge the interrupt. */
1045 REG_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
1051 bnx2_enable_bmsr1(struct bnx2
*bp
)
1053 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1054 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1055 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1056 MII_BNX2_BLK_ADDR_GP_STATUS
);
1060 bnx2_disable_bmsr1(struct bnx2
*bp
)
1062 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1063 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1064 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1065 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1069 bnx2_test_and_enable_2g5(struct bnx2
*bp
)
1074 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1077 if (bp
->autoneg
& AUTONEG_SPEED
)
1078 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1080 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1081 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1083 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1084 if (!(up1
& BCM5708S_UP1_2G5
)) {
1085 up1
|= BCM5708S_UP1_2G5
;
1086 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1090 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1091 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1092 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1098 bnx2_test_and_disable_2g5(struct bnx2
*bp
)
1103 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1106 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1107 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1109 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1110 if (up1
& BCM5708S_UP1_2G5
) {
1111 up1
&= ~BCM5708S_UP1_2G5
;
1112 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1116 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1117 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1118 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1124 bnx2_enable_forced_2g5(struct bnx2
*bp
)
1128 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1131 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1134 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1135 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1136 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
);
1137 val
&= ~MII_BNX2_SD_MISC1_FORCE_MSK
;
1138 val
|= MII_BNX2_SD_MISC1_FORCE
| MII_BNX2_SD_MISC1_FORCE_2_5G
;
1139 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1141 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1142 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1143 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1145 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1146 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1147 bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1150 if (bp
->autoneg
& AUTONEG_SPEED
) {
1151 bmcr
&= ~BMCR_ANENABLE
;
1152 if (bp
->req_duplex
== DUPLEX_FULL
)
1153 bmcr
|= BMCR_FULLDPLX
;
1155 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1159 bnx2_disable_forced_2g5(struct bnx2
*bp
)
1163 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1166 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1169 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1170 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1171 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
);
1172 val
&= ~MII_BNX2_SD_MISC1_FORCE
;
1173 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1175 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1176 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1177 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1179 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1180 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1181 bmcr
&= ~BCM5708S_BMCR_FORCE_2500
;
1184 if (bp
->autoneg
& AUTONEG_SPEED
)
1185 bmcr
|= BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_ANRESTART
;
1186 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1190 bnx2_5706s_force_link_dn(struct bnx2
*bp
, int start
)
1194 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_SERDES_CTL
);
1195 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
1197 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
& 0xff0f);
1199 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
| 0xc0);
1203 bnx2_set_link(struct bnx2
*bp
)
1208 if (bp
->loopback
== MAC_LOOPBACK
|| bp
->loopback
== PHY_LOOPBACK
) {
1213 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1216 link_up
= bp
->link_up
;
1218 bnx2_enable_bmsr1(bp
);
1219 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1220 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1221 bnx2_disable_bmsr1(bp
);
1223 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1224 (CHIP_NUM(bp
) == CHIP_NUM_5706
)) {
1227 if (bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
) {
1228 bnx2_5706s_force_link_dn(bp
, 0);
1229 bp
->phy_flags
&= ~BNX2_PHY_FLAG_FORCED_DOWN
;
1231 val
= REG_RD(bp
, BNX2_EMAC_STATUS
);
1232 if (val
& BNX2_EMAC_STATUS_LINK
)
1233 bmsr
|= BMSR_LSTATUS
;
1235 bmsr
&= ~BMSR_LSTATUS
;
1238 if (bmsr
& BMSR_LSTATUS
) {
1241 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1242 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
1243 bnx2_5706s_linkup(bp
);
1244 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
1245 bnx2_5708s_linkup(bp
);
1246 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1247 bnx2_5709s_linkup(bp
);
1250 bnx2_copper_linkup(bp
);
1252 bnx2_resolve_flow_ctrl(bp
);
1255 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1256 (bp
->autoneg
& AUTONEG_SPEED
))
1257 bnx2_disable_forced_2g5(bp
);
1259 if (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
) {
1262 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1263 bmcr
|= BMCR_ANENABLE
;
1264 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1266 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
1271 if (bp
->link_up
!= link_up
) {
1272 bnx2_report_link(bp
);
1275 bnx2_set_mac_link(bp
);
1281 bnx2_reset_phy(struct bnx2
*bp
)
1286 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_RESET
);
1288 #define PHY_RESET_MAX_WAIT 100
1289 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
1292 bnx2_read_phy(bp
, bp
->mii_bmcr
, ®
);
1293 if (!(reg
& BMCR_RESET
)) {
1298 if (i
== PHY_RESET_MAX_WAIT
) {
1305 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
1309 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
1310 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
1312 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1313 adv
= ADVERTISE_1000XPAUSE
;
1316 adv
= ADVERTISE_PAUSE_CAP
;
1319 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
1320 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1321 adv
= ADVERTISE_1000XPSE_ASYM
;
1324 adv
= ADVERTISE_PAUSE_ASYM
;
1327 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
1328 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1329 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
1332 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1338 static int bnx2_fw_sync(struct bnx2
*, u32
, int);
1341 bnx2_setup_remote_phy(struct bnx2
*bp
, u8 port
)
1343 u32 speed_arg
= 0, pause_adv
;
1345 pause_adv
= bnx2_phy_get_pause_adv(bp
);
1347 if (bp
->autoneg
& AUTONEG_SPEED
) {
1348 speed_arg
|= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
;
1349 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1350 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1351 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1352 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1353 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1354 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1355 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1356 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1357 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1358 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1359 if (bp
->advertising
& ADVERTISED_2500baseX_Full
)
1360 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1362 if (bp
->req_line_speed
== SPEED_2500
)
1363 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1364 else if (bp
->req_line_speed
== SPEED_1000
)
1365 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1366 else if (bp
->req_line_speed
== SPEED_100
) {
1367 if (bp
->req_duplex
== DUPLEX_FULL
)
1368 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1370 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1371 } else if (bp
->req_line_speed
== SPEED_10
) {
1372 if (bp
->req_duplex
== DUPLEX_FULL
)
1373 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1375 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1379 if (pause_adv
& (ADVERTISE_1000XPAUSE
| ADVERTISE_PAUSE_CAP
))
1380 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE
;
1381 if (pause_adv
& (ADVERTISE_1000XPSE_ASYM
| ADVERTISE_1000XPSE_ASYM
))
1382 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE
;
1384 if (port
== PORT_TP
)
1385 speed_arg
|= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE
|
1386 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED
;
1388 REG_WR_IND(bp
, bp
->shmem_base
+ BNX2_DRV_MB_ARG0
, speed_arg
);
1390 spin_unlock_bh(&bp
->phy_lock
);
1391 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_CMD_SET_LINK
, 0);
1392 spin_lock_bh(&bp
->phy_lock
);
1398 bnx2_setup_serdes_phy(struct bnx2
*bp
, u8 port
)
1403 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1404 return (bnx2_setup_remote_phy(bp
, port
));
1406 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
1408 int force_link_down
= 0;
1410 if (bp
->req_line_speed
== SPEED_2500
) {
1411 if (!bnx2_test_and_enable_2g5(bp
))
1412 force_link_down
= 1;
1413 } else if (bp
->req_line_speed
== SPEED_1000
) {
1414 if (bnx2_test_and_disable_2g5(bp
))
1415 force_link_down
= 1;
1417 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1418 adv
&= ~(ADVERTISE_1000XFULL
| ADVERTISE_1000XHALF
);
1420 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1421 new_bmcr
= bmcr
& ~BMCR_ANENABLE
;
1422 new_bmcr
|= BMCR_SPEED1000
;
1424 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1425 if (bp
->req_line_speed
== SPEED_2500
)
1426 bnx2_enable_forced_2g5(bp
);
1427 else if (bp
->req_line_speed
== SPEED_1000
) {
1428 bnx2_disable_forced_2g5(bp
);
1429 new_bmcr
&= ~0x2000;
1432 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1433 if (bp
->req_line_speed
== SPEED_2500
)
1434 new_bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1436 new_bmcr
= bmcr
& ~BCM5708S_BMCR_FORCE_2500
;
1439 if (bp
->req_duplex
== DUPLEX_FULL
) {
1440 adv
|= ADVERTISE_1000XFULL
;
1441 new_bmcr
|= BMCR_FULLDPLX
;
1444 adv
|= ADVERTISE_1000XHALF
;
1445 new_bmcr
&= ~BMCR_FULLDPLX
;
1447 if ((new_bmcr
!= bmcr
) || (force_link_down
)) {
1448 /* Force a link down visible on the other side */
1450 bnx2_write_phy(bp
, bp
->mii_adv
, adv
&
1451 ~(ADVERTISE_1000XFULL
|
1452 ADVERTISE_1000XHALF
));
1453 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
|
1454 BMCR_ANRESTART
| BMCR_ANENABLE
);
1457 netif_carrier_off(bp
->dev
);
1458 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1459 bnx2_report_link(bp
);
1461 bnx2_write_phy(bp
, bp
->mii_adv
, adv
);
1462 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1464 bnx2_resolve_flow_ctrl(bp
);
1465 bnx2_set_mac_link(bp
);
1470 bnx2_test_and_enable_2g5(bp
);
1472 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1473 new_adv
|= ADVERTISE_1000XFULL
;
1475 new_adv
|= bnx2_phy_get_pause_adv(bp
);
1477 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1478 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1480 bp
->serdes_an_pending
= 0;
1481 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
1482 /* Force a link down visible on the other side */
1484 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1485 spin_unlock_bh(&bp
->phy_lock
);
1487 spin_lock_bh(&bp
->phy_lock
);
1490 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
1491 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
|
1493 /* Speed up link-up time when the link partner
1494 * does not autonegotiate which is very common
1495 * in blade servers. Some blade servers use
1496 * IPMI for kerboard input and it's important
1497 * to minimize link disruptions. Autoneg. involves
1498 * exchanging base pages plus 3 next pages and
1499 * normally completes in about 120 msec.
1501 bp
->current_interval
= SERDES_AN_TIMEOUT
;
1502 bp
->serdes_an_pending
= 1;
1503 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
1505 bnx2_resolve_flow_ctrl(bp
);
1506 bnx2_set_mac_link(bp
);
1512 #define ETHTOOL_ALL_FIBRE_SPEED \
1513 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1514 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1515 (ADVERTISED_1000baseT_Full)
1517 #define ETHTOOL_ALL_COPPER_SPEED \
1518 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1519 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1520 ADVERTISED_1000baseT_Full)
1522 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1523 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1525 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1528 bnx2_set_default_remote_link(struct bnx2
*bp
)
1532 if (bp
->phy_port
== PORT_TP
)
1533 link
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_RPHY_COPPER_LINK
);
1535 link
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_RPHY_SERDES_LINK
);
1537 if (link
& BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
) {
1538 bp
->req_line_speed
= 0;
1539 bp
->autoneg
|= AUTONEG_SPEED
;
1540 bp
->advertising
= ADVERTISED_Autoneg
;
1541 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1542 bp
->advertising
|= ADVERTISED_10baseT_Half
;
1543 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10FULL
)
1544 bp
->advertising
|= ADVERTISED_10baseT_Full
;
1545 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1546 bp
->advertising
|= ADVERTISED_100baseT_Half
;
1547 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100FULL
)
1548 bp
->advertising
|= ADVERTISED_100baseT_Full
;
1549 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1550 bp
->advertising
|= ADVERTISED_1000baseT_Full
;
1551 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1552 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1555 bp
->advertising
= 0;
1556 bp
->req_duplex
= DUPLEX_FULL
;
1557 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10
) {
1558 bp
->req_line_speed
= SPEED_10
;
1559 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1560 bp
->req_duplex
= DUPLEX_HALF
;
1562 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100
) {
1563 bp
->req_line_speed
= SPEED_100
;
1564 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1565 bp
->req_duplex
= DUPLEX_HALF
;
1567 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1568 bp
->req_line_speed
= SPEED_1000
;
1569 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1570 bp
->req_line_speed
= SPEED_2500
;
1575 bnx2_set_default_link(struct bnx2
*bp
)
1577 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1578 return bnx2_set_default_remote_link(bp
);
1580 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
1581 bp
->req_line_speed
= 0;
1582 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1585 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
1587 reg
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_PORT_HW_CFG_CONFIG
);
1588 reg
&= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK
;
1589 if (reg
== BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G
) {
1591 bp
->req_line_speed
= bp
->line_speed
= SPEED_1000
;
1592 bp
->req_duplex
= DUPLEX_FULL
;
1595 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
1599 bnx2_send_heart_beat(struct bnx2
*bp
)
1604 spin_lock(&bp
->indirect_lock
);
1605 msg
= (u32
) (++bp
->fw_drv_pulse_wr_seq
& BNX2_DRV_PULSE_SEQ_MASK
);
1606 addr
= bp
->shmem_base
+ BNX2_DRV_PULSE_MB
;
1607 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, addr
);
1608 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, msg
);
1609 spin_unlock(&bp
->indirect_lock
);
1613 bnx2_remote_phy_event(struct bnx2
*bp
)
1616 u8 link_up
= bp
->link_up
;
1619 msg
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_LINK_STATUS
);
1621 if (msg
& BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
)
1622 bnx2_send_heart_beat(bp
);
1624 msg
&= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
;
1626 if ((msg
& BNX2_LINK_STATUS_LINK_UP
) == BNX2_LINK_STATUS_LINK_DOWN
)
1632 speed
= msg
& BNX2_LINK_STATUS_SPEED_MASK
;
1633 bp
->duplex
= DUPLEX_FULL
;
1635 case BNX2_LINK_STATUS_10HALF
:
1636 bp
->duplex
= DUPLEX_HALF
;
1637 case BNX2_LINK_STATUS_10FULL
:
1638 bp
->line_speed
= SPEED_10
;
1640 case BNX2_LINK_STATUS_100HALF
:
1641 bp
->duplex
= DUPLEX_HALF
;
1642 case BNX2_LINK_STATUS_100BASE_T4
:
1643 case BNX2_LINK_STATUS_100FULL
:
1644 bp
->line_speed
= SPEED_100
;
1646 case BNX2_LINK_STATUS_1000HALF
:
1647 bp
->duplex
= DUPLEX_HALF
;
1648 case BNX2_LINK_STATUS_1000FULL
:
1649 bp
->line_speed
= SPEED_1000
;
1651 case BNX2_LINK_STATUS_2500HALF
:
1652 bp
->duplex
= DUPLEX_HALF
;
1653 case BNX2_LINK_STATUS_2500FULL
:
1654 bp
->line_speed
= SPEED_2500
;
1661 spin_lock(&bp
->phy_lock
);
1663 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1664 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1665 if (bp
->duplex
== DUPLEX_FULL
)
1666 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
1668 if (msg
& BNX2_LINK_STATUS_TX_FC_ENABLED
)
1669 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
1670 if (msg
& BNX2_LINK_STATUS_RX_FC_ENABLED
)
1671 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
1674 old_port
= bp
->phy_port
;
1675 if (msg
& BNX2_LINK_STATUS_SERDES_LINK
)
1676 bp
->phy_port
= PORT_FIBRE
;
1678 bp
->phy_port
= PORT_TP
;
1680 if (old_port
!= bp
->phy_port
)
1681 bnx2_set_default_link(bp
);
1683 spin_unlock(&bp
->phy_lock
);
1685 if (bp
->link_up
!= link_up
)
1686 bnx2_report_link(bp
);
1688 bnx2_set_mac_link(bp
);
1692 bnx2_set_remote_link(struct bnx2
*bp
)
1696 evt_code
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_FW_EVT_CODE_MB
);
1698 case BNX2_FW_EVT_CODE_LINK_EVENT
:
1699 bnx2_remote_phy_event(bp
);
1701 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT
:
1703 bnx2_send_heart_beat(bp
);
1710 bnx2_setup_copper_phy(struct bnx2
*bp
)
1715 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1717 if (bp
->autoneg
& AUTONEG_SPEED
) {
1718 u32 adv_reg
, adv1000_reg
;
1719 u32 new_adv_reg
= 0;
1720 u32 new_adv1000_reg
= 0;
1722 bnx2_read_phy(bp
, bp
->mii_adv
, &adv_reg
);
1723 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
1724 ADVERTISE_PAUSE_ASYM
);
1726 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
1727 adv1000_reg
&= PHY_ALL_1000_SPEED
;
1729 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1730 new_adv_reg
|= ADVERTISE_10HALF
;
1731 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1732 new_adv_reg
|= ADVERTISE_10FULL
;
1733 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1734 new_adv_reg
|= ADVERTISE_100HALF
;
1735 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1736 new_adv_reg
|= ADVERTISE_100FULL
;
1737 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1738 new_adv1000_reg
|= ADVERTISE_1000FULL
;
1740 new_adv_reg
|= ADVERTISE_CSMA
;
1742 new_adv_reg
|= bnx2_phy_get_pause_adv(bp
);
1744 if ((adv1000_reg
!= new_adv1000_reg
) ||
1745 (adv_reg
!= new_adv_reg
) ||
1746 ((bmcr
& BMCR_ANENABLE
) == 0)) {
1748 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv_reg
);
1749 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000_reg
);
1750 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_ANRESTART
|
1753 else if (bp
->link_up
) {
1754 /* Flow ctrl may have changed from auto to forced */
1755 /* or vice-versa. */
1757 bnx2_resolve_flow_ctrl(bp
);
1758 bnx2_set_mac_link(bp
);
1764 if (bp
->req_line_speed
== SPEED_100
) {
1765 new_bmcr
|= BMCR_SPEED100
;
1767 if (bp
->req_duplex
== DUPLEX_FULL
) {
1768 new_bmcr
|= BMCR_FULLDPLX
;
1770 if (new_bmcr
!= bmcr
) {
1773 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1774 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1776 if (bmsr
& BMSR_LSTATUS
) {
1777 /* Force link down */
1778 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1779 spin_unlock_bh(&bp
->phy_lock
);
1781 spin_lock_bh(&bp
->phy_lock
);
1783 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1784 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1787 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1789 /* Normally, the new speed is setup after the link has
1790 * gone down and up again. In some cases, link will not go
1791 * down so we need to set up the new speed here.
1793 if (bmsr
& BMSR_LSTATUS
) {
1794 bp
->line_speed
= bp
->req_line_speed
;
1795 bp
->duplex
= bp
->req_duplex
;
1796 bnx2_resolve_flow_ctrl(bp
);
1797 bnx2_set_mac_link(bp
);
1800 bnx2_resolve_flow_ctrl(bp
);
1801 bnx2_set_mac_link(bp
);
1807 bnx2_setup_phy(struct bnx2
*bp
, u8 port
)
1809 if (bp
->loopback
== MAC_LOOPBACK
)
1812 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1813 return (bnx2_setup_serdes_phy(bp
, port
));
1816 return (bnx2_setup_copper_phy(bp
));
1821 bnx2_init_5709s_phy(struct bnx2
*bp
)
1825 bp
->mii_bmcr
= MII_BMCR
+ 0x10;
1826 bp
->mii_bmsr
= MII_BMSR
+ 0x10;
1827 bp
->mii_bmsr1
= MII_BNX2_GP_TOP_AN_STATUS1
;
1828 bp
->mii_adv
= MII_ADVERTISE
+ 0x10;
1829 bp
->mii_lpa
= MII_LPA
+ 0x10;
1830 bp
->mii_up1
= MII_BNX2_OVER1G_UP1
;
1832 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_AER
);
1833 bnx2_write_phy(bp
, MII_BNX2_AER_AER
, MII_BNX2_AER_AER_AN_MMD
);
1835 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1838 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_SERDES_DIG
);
1840 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, &val
);
1841 val
&= ~MII_BNX2_SD_1000XCTL1_AUTODET
;
1842 val
|= MII_BNX2_SD_1000XCTL1_FIBER
;
1843 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, val
);
1845 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1846 bnx2_read_phy(bp
, MII_BNX2_OVER1G_UP1
, &val
);
1847 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
1848 val
|= BCM5708S_UP1_2G5
;
1850 val
&= ~BCM5708S_UP1_2G5
;
1851 bnx2_write_phy(bp
, MII_BNX2_OVER1G_UP1
, val
);
1853 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_BAM_NXTPG
);
1854 bnx2_read_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, &val
);
1855 val
|= MII_BNX2_NXTPG_CTL_T2
| MII_BNX2_NXTPG_CTL_BAM
;
1856 bnx2_write_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, val
);
1858 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_CL73_USERB0
);
1860 val
= MII_BNX2_CL73_BAM_EN
| MII_BNX2_CL73_BAM_STA_MGR_EN
|
1861 MII_BNX2_CL73_BAM_NP_AFT_BP_EN
;
1862 bnx2_write_phy(bp
, MII_BNX2_CL73_BAM_CTL1
, val
);
1864 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1870 bnx2_init_5708s_phy(struct bnx2
*bp
)
1876 bp
->mii_up1
= BCM5708S_UP1
;
1878 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG3
);
1879 bnx2_write_phy(bp
, BCM5708S_DIG_3_0
, BCM5708S_DIG_3_0_USE_IEEE
);
1880 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
1882 bnx2_read_phy(bp
, BCM5708S_1000X_CTL1
, &val
);
1883 val
|= BCM5708S_1000X_CTL1_FIBER_MODE
| BCM5708S_1000X_CTL1_AUTODET_EN
;
1884 bnx2_write_phy(bp
, BCM5708S_1000X_CTL1
, val
);
1886 bnx2_read_phy(bp
, BCM5708S_1000X_CTL2
, &val
);
1887 val
|= BCM5708S_1000X_CTL2_PLLEL_DET_EN
;
1888 bnx2_write_phy(bp
, BCM5708S_1000X_CTL2
, val
);
1890 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) {
1891 bnx2_read_phy(bp
, BCM5708S_UP1
, &val
);
1892 val
|= BCM5708S_UP1_2G5
;
1893 bnx2_write_phy(bp
, BCM5708S_UP1
, val
);
1896 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
1897 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
1898 (CHIP_ID(bp
) == CHIP_ID_5708_B1
)) {
1899 /* increase tx signal amplitude */
1900 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
1901 BCM5708S_BLK_ADDR_TX_MISC
);
1902 bnx2_read_phy(bp
, BCM5708S_TX_ACTL1
, &val
);
1903 val
&= ~BCM5708S_TX_ACTL1_DRIVER_VCM
;
1904 bnx2_write_phy(bp
, BCM5708S_TX_ACTL1
, val
);
1905 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
1908 val
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_PORT_HW_CFG_CONFIG
) &
1909 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK
;
1914 is_backplane
= REG_RD_IND(bp
, bp
->shmem_base
+
1915 BNX2_SHARED_HW_CFG_CONFIG
);
1916 if (is_backplane
& BNX2_SHARED_HW_CFG_PHY_BACKPLANE
) {
1917 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
1918 BCM5708S_BLK_ADDR_TX_MISC
);
1919 bnx2_write_phy(bp
, BCM5708S_TX_ACTL3
, val
);
1920 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
1921 BCM5708S_BLK_ADDR_DIG
);
1928 bnx2_init_5706s_phy(struct bnx2
*bp
)
1932 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
1934 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
1935 REG_WR(bp
, BNX2_MISC_GP_HW_CTL0
, 0x300);
1937 if (bp
->dev
->mtu
> 1500) {
1940 /* Set extended packet length bit */
1941 bnx2_write_phy(bp
, 0x18, 0x7);
1942 bnx2_read_phy(bp
, 0x18, &val
);
1943 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
1945 bnx2_write_phy(bp
, 0x1c, 0x6c00);
1946 bnx2_read_phy(bp
, 0x1c, &val
);
1947 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
1952 bnx2_write_phy(bp
, 0x18, 0x7);
1953 bnx2_read_phy(bp
, 0x18, &val
);
1954 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
1956 bnx2_write_phy(bp
, 0x1c, 0x6c00);
1957 bnx2_read_phy(bp
, 0x1c, &val
);
1958 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
1965 bnx2_init_copper_phy(struct bnx2
*bp
)
1971 if (bp
->phy_flags
& BNX2_PHY_FLAG_CRC_FIX
) {
1972 bnx2_write_phy(bp
, 0x18, 0x0c00);
1973 bnx2_write_phy(bp
, 0x17, 0x000a);
1974 bnx2_write_phy(bp
, 0x15, 0x310b);
1975 bnx2_write_phy(bp
, 0x17, 0x201f);
1976 bnx2_write_phy(bp
, 0x15, 0x9506);
1977 bnx2_write_phy(bp
, 0x17, 0x401f);
1978 bnx2_write_phy(bp
, 0x15, 0x14e2);
1979 bnx2_write_phy(bp
, 0x18, 0x0400);
1982 if (bp
->phy_flags
& BNX2_PHY_FLAG_DIS_EARLY_DAC
) {
1983 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
,
1984 MII_BNX2_DSP_EXPAND_REG
| 0x8);
1985 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
1987 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
);
1990 if (bp
->dev
->mtu
> 1500) {
1991 /* Set extended packet length bit */
1992 bnx2_write_phy(bp
, 0x18, 0x7);
1993 bnx2_read_phy(bp
, 0x18, &val
);
1994 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
1996 bnx2_read_phy(bp
, 0x10, &val
);
1997 bnx2_write_phy(bp
, 0x10, val
| 0x1);
2000 bnx2_write_phy(bp
, 0x18, 0x7);
2001 bnx2_read_phy(bp
, 0x18, &val
);
2002 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2004 bnx2_read_phy(bp
, 0x10, &val
);
2005 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
2008 /* ethernet@wirespeed */
2009 bnx2_write_phy(bp
, 0x18, 0x7007);
2010 bnx2_read_phy(bp
, 0x18, &val
);
2011 bnx2_write_phy(bp
, 0x18, val
| (1 << 15) | (1 << 4));
2017 bnx2_init_phy(struct bnx2
*bp
)
2022 bp
->phy_flags
&= ~BNX2_PHY_FLAG_INT_MODE_MASK
;
2023 bp
->phy_flags
|= BNX2_PHY_FLAG_INT_MODE_LINK_READY
;
2025 bp
->mii_bmcr
= MII_BMCR
;
2026 bp
->mii_bmsr
= MII_BMSR
;
2027 bp
->mii_bmsr1
= MII_BMSR
;
2028 bp
->mii_adv
= MII_ADVERTISE
;
2029 bp
->mii_lpa
= MII_LPA
;
2031 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
2033 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
2036 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
2037 bp
->phy_id
= val
<< 16;
2038 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
2039 bp
->phy_id
|= val
& 0xffff;
2041 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2042 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2043 rc
= bnx2_init_5706s_phy(bp
);
2044 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
2045 rc
= bnx2_init_5708s_phy(bp
);
2046 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
2047 rc
= bnx2_init_5709s_phy(bp
);
2050 rc
= bnx2_init_copper_phy(bp
);
2055 rc
= bnx2_setup_phy(bp
, bp
->phy_port
);
2061 bnx2_set_mac_loopback(struct bnx2
*bp
)
2065 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2066 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
2067 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
2068 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2073 static int bnx2_test_link(struct bnx2
*);
2076 bnx2_set_phy_loopback(struct bnx2
*bp
)
2081 spin_lock_bh(&bp
->phy_lock
);
2082 rc
= bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
| BMCR_FULLDPLX
|
2084 spin_unlock_bh(&bp
->phy_lock
);
2088 for (i
= 0; i
< 10; i
++) {
2089 if (bnx2_test_link(bp
) == 0)
2094 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2095 mac_mode
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
2096 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
2097 BNX2_EMAC_MODE_25G_MODE
);
2099 mac_mode
|= BNX2_EMAC_MODE_PORT_GMII
;
2100 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2106 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
, int silent
)
2112 msg_data
|= bp
->fw_wr_seq
;
2114 REG_WR_IND(bp
, bp
->shmem_base
+ BNX2_DRV_MB
, msg_data
);
2116 /* wait for an acknowledgement. */
2117 for (i
= 0; i
< (FW_ACK_TIME_OUT_MS
/ 10); i
++) {
2120 val
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_FW_MB
);
2122 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
2125 if ((msg_data
& BNX2_DRV_MSG_DATA
) == BNX2_DRV_MSG_DATA_WAIT0
)
2128 /* If we timed out, inform the firmware that this is the case. */
2129 if ((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) {
2131 printk(KERN_ERR PFX
"fw sync timeout, reset code = "
2134 msg_data
&= ~BNX2_DRV_MSG_CODE
;
2135 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
2137 REG_WR_IND(bp
, bp
->shmem_base
+ BNX2_DRV_MB
, msg_data
);
2142 if ((val
& BNX2_FW_MSG_STATUS_MASK
) != BNX2_FW_MSG_STATUS_OK
)
2149 bnx2_init_5709_context(struct bnx2
*bp
)
2154 val
= BNX2_CTX_COMMAND_ENABLED
| BNX2_CTX_COMMAND_MEM_INIT
| (1 << 12);
2155 val
|= (BCM_PAGE_BITS
- 8) << 16;
2156 REG_WR(bp
, BNX2_CTX_COMMAND
, val
);
2157 for (i
= 0; i
< 10; i
++) {
2158 val
= REG_RD(bp
, BNX2_CTX_COMMAND
);
2159 if (!(val
& BNX2_CTX_COMMAND_MEM_INIT
))
2163 if (val
& BNX2_CTX_COMMAND_MEM_INIT
)
2166 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
2169 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA0
,
2170 (bp
->ctx_blk_mapping
[i
] & 0xffffffff) |
2171 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID
);
2172 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA1
,
2173 (u64
) bp
->ctx_blk_mapping
[i
] >> 32);
2174 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
, i
|
2175 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
);
2176 for (j
= 0; j
< 10; j
++) {
2178 val
= REG_RD(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
);
2179 if (!(val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
))
2183 if (val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
) {
2192 bnx2_init_context(struct bnx2
*bp
)
2198 u32 vcid_addr
, pcid_addr
, offset
;
2203 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
2206 vcid_addr
= GET_PCID_ADDR(vcid
);
2208 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
2213 pcid_addr
= GET_PCID_ADDR(new_vcid
);
2216 vcid_addr
= GET_CID_ADDR(vcid
);
2217 pcid_addr
= vcid_addr
;
2220 for (i
= 0; i
< (CTX_SIZE
/ PHY_CTX_SIZE
); i
++) {
2221 vcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2222 pcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2224 REG_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
2225 REG_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
2227 /* Zero out the context. */
2228 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4)
2229 CTX_WR(bp
, vcid_addr
, offset
, 0);
2235 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
2241 good_mbuf
= kmalloc(512 * sizeof(u16
), GFP_KERNEL
);
2242 if (good_mbuf
== NULL
) {
2243 printk(KERN_ERR PFX
"Failed to allocate memory in "
2244 "bnx2_alloc_bad_rbuf\n");
2248 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2249 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
2253 /* Allocate a bunch of mbufs and save the good ones in an array. */
2254 val
= REG_RD_IND(bp
, BNX2_RBUF_STATUS1
);
2255 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
2256 REG_WR_IND(bp
, BNX2_RBUF_COMMAND
, BNX2_RBUF_COMMAND_ALLOC_REQ
);
2258 val
= REG_RD_IND(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
2260 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
2262 /* The addresses with Bit 9 set are bad memory blocks. */
2263 if (!(val
& (1 << 9))) {
2264 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
2268 val
= REG_RD_IND(bp
, BNX2_RBUF_STATUS1
);
2271 /* Free the good ones back to the mbuf pool thus discarding
2272 * all the bad ones. */
2273 while (good_mbuf_cnt
) {
2276 val
= good_mbuf
[good_mbuf_cnt
];
2277 val
= (val
<< 9) | val
| 1;
2279 REG_WR_IND(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
2286 bnx2_set_mac_addr(struct bnx2
*bp
)
2289 u8
*mac_addr
= bp
->dev
->dev_addr
;
2291 val
= (mac_addr
[0] << 8) | mac_addr
[1];
2293 REG_WR(bp
, BNX2_EMAC_MAC_MATCH0
, val
);
2295 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
2296 (mac_addr
[4] << 8) | mac_addr
[5];
2298 REG_WR(bp
, BNX2_EMAC_MAC_MATCH1
, val
);
2302 bnx2_alloc_rx_page(struct bnx2
*bp
, u16 index
)
2305 struct sw_pg
*rx_pg
= &bp
->rx_pg_ring
[index
];
2306 struct rx_bd
*rxbd
=
2307 &bp
->rx_pg_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2308 struct page
*page
= alloc_page(GFP_ATOMIC
);
2312 mapping
= pci_map_page(bp
->pdev
, page
, 0, PAGE_SIZE
,
2313 PCI_DMA_FROMDEVICE
);
2315 pci_unmap_addr_set(rx_pg
, mapping
, mapping
);
2316 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2317 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2322 bnx2_free_rx_page(struct bnx2
*bp
, u16 index
)
2324 struct sw_pg
*rx_pg
= &bp
->rx_pg_ring
[index
];
2325 struct page
*page
= rx_pg
->page
;
2330 pci_unmap_page(bp
->pdev
, pci_unmap_addr(rx_pg
, mapping
), PAGE_SIZE
,
2331 PCI_DMA_FROMDEVICE
);
2338 bnx2_alloc_rx_skb(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, u16 index
)
2340 struct sk_buff
*skb
;
2341 struct sw_bd
*rx_buf
= &bp
->rx_buf_ring
[index
];
2343 struct rx_bd
*rxbd
= &bp
->rx_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2344 unsigned long align
;
2346 skb
= netdev_alloc_skb(bp
->dev
, bp
->rx_buf_size
);
2351 if (unlikely((align
= (unsigned long) skb
->data
& (BNX2_RX_ALIGN
- 1))))
2352 skb_reserve(skb
, BNX2_RX_ALIGN
- align
);
2354 mapping
= pci_map_single(bp
->pdev
, skb
->data
, bp
->rx_buf_use_size
,
2355 PCI_DMA_FROMDEVICE
);
2358 pci_unmap_addr_set(rx_buf
, mapping
, mapping
);
2360 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2361 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2363 bnapi
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2369 bnx2_phy_event_is_set(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, u32 event
)
2371 struct status_block
*sblk
= bnapi
->status_blk
;
2372 u32 new_link_state
, old_link_state
;
2375 new_link_state
= sblk
->status_attn_bits
& event
;
2376 old_link_state
= sblk
->status_attn_bits_ack
& event
;
2377 if (new_link_state
!= old_link_state
) {
2379 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
, event
);
2381 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
, event
);
2389 bnx2_phy_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
2391 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_LINK_STATE
)) {
2392 spin_lock(&bp
->phy_lock
);
2394 spin_unlock(&bp
->phy_lock
);
2396 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_TIMER_ABORT
))
2397 bnx2_set_remote_link(bp
);
2402 bnx2_get_hw_tx_cons(struct bnx2_napi
*bnapi
)
2406 if (bnapi
->int_num
== 0)
2407 cons
= bnapi
->status_blk
->status_tx_quick_consumer_index0
;
2409 cons
= bnapi
->status_blk_msix
->status_tx_quick_consumer_index
;
2411 if (unlikely((cons
& MAX_TX_DESC_CNT
) == MAX_TX_DESC_CNT
))
2417 bnx2_tx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2419 u16 hw_cons
, sw_cons
, sw_ring_cons
;
2422 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2423 sw_cons
= bnapi
->tx_cons
;
2425 while (sw_cons
!= hw_cons
) {
2426 struct sw_bd
*tx_buf
;
2427 struct sk_buff
*skb
;
2430 sw_ring_cons
= TX_RING_IDX(sw_cons
);
2432 tx_buf
= &bp
->tx_buf_ring
[sw_ring_cons
];
2435 /* partial BD completions possible with TSO packets */
2436 if (skb_is_gso(skb
)) {
2437 u16 last_idx
, last_ring_idx
;
2439 last_idx
= sw_cons
+
2440 skb_shinfo(skb
)->nr_frags
+ 1;
2441 last_ring_idx
= sw_ring_cons
+
2442 skb_shinfo(skb
)->nr_frags
+ 1;
2443 if (unlikely(last_ring_idx
>= MAX_TX_DESC_CNT
)) {
2446 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
2451 pci_unmap_single(bp
->pdev
, pci_unmap_addr(tx_buf
, mapping
),
2452 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2455 last
= skb_shinfo(skb
)->nr_frags
;
2457 for (i
= 0; i
< last
; i
++) {
2458 sw_cons
= NEXT_TX_BD(sw_cons
);
2460 pci_unmap_page(bp
->pdev
,
2462 &bp
->tx_buf_ring
[TX_RING_IDX(sw_cons
)],
2464 skb_shinfo(skb
)->frags
[i
].size
,
2468 sw_cons
= NEXT_TX_BD(sw_cons
);
2472 if (tx_pkt
== budget
)
2475 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2478 bnapi
->hw_tx_cons
= hw_cons
;
2479 bnapi
->tx_cons
= sw_cons
;
2480 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2481 * before checking for netif_queue_stopped(). Without the
2482 * memory barrier, there is a small possibility that bnx2_start_xmit()
2483 * will miss it and cause the queue to be stopped forever.
2487 if (unlikely(netif_queue_stopped(bp
->dev
)) &&
2488 (bnx2_tx_avail(bp
, bnapi
) > bp
->tx_wake_thresh
)) {
2489 netif_tx_lock(bp
->dev
);
2490 if ((netif_queue_stopped(bp
->dev
)) &&
2491 (bnx2_tx_avail(bp
, bnapi
) > bp
->tx_wake_thresh
))
2492 netif_wake_queue(bp
->dev
);
2493 netif_tx_unlock(bp
->dev
);
2499 bnx2_reuse_rx_skb_pages(struct bnx2
*bp
, struct bnx2_napi
*bnapi
,
2500 struct sk_buff
*skb
, int count
)
2502 struct sw_pg
*cons_rx_pg
, *prod_rx_pg
;
2503 struct rx_bd
*cons_bd
, *prod_bd
;
2506 u16 hw_prod
= bnapi
->rx_pg_prod
, prod
;
2507 u16 cons
= bnapi
->rx_pg_cons
;
2509 for (i
= 0; i
< count
; i
++) {
2510 prod
= RX_PG_RING_IDX(hw_prod
);
2512 prod_rx_pg
= &bp
->rx_pg_ring
[prod
];
2513 cons_rx_pg
= &bp
->rx_pg_ring
[cons
];
2514 cons_bd
= &bp
->rx_pg_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2515 prod_bd
= &bp
->rx_pg_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2517 if (i
== 0 && skb
) {
2519 struct skb_shared_info
*shinfo
;
2521 shinfo
= skb_shinfo(skb
);
2523 page
= shinfo
->frags
[shinfo
->nr_frags
].page
;
2524 shinfo
->frags
[shinfo
->nr_frags
].page
= NULL
;
2525 mapping
= pci_map_page(bp
->pdev
, page
, 0, PAGE_SIZE
,
2526 PCI_DMA_FROMDEVICE
);
2527 cons_rx_pg
->page
= page
;
2528 pci_unmap_addr_set(cons_rx_pg
, mapping
, mapping
);
2532 prod_rx_pg
->page
= cons_rx_pg
->page
;
2533 cons_rx_pg
->page
= NULL
;
2534 pci_unmap_addr_set(prod_rx_pg
, mapping
,
2535 pci_unmap_addr(cons_rx_pg
, mapping
));
2537 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2538 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2541 cons
= RX_PG_RING_IDX(NEXT_RX_BD(cons
));
2542 hw_prod
= NEXT_RX_BD(hw_prod
);
2544 bnapi
->rx_pg_prod
= hw_prod
;
2545 bnapi
->rx_pg_cons
= cons
;
2549 bnx2_reuse_rx_skb(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, struct sk_buff
*skb
,
2552 struct sw_bd
*cons_rx_buf
, *prod_rx_buf
;
2553 struct rx_bd
*cons_bd
, *prod_bd
;
2555 cons_rx_buf
= &bp
->rx_buf_ring
[cons
];
2556 prod_rx_buf
= &bp
->rx_buf_ring
[prod
];
2558 pci_dma_sync_single_for_device(bp
->pdev
,
2559 pci_unmap_addr(cons_rx_buf
, mapping
),
2560 bp
->rx_offset
+ RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
2562 bnapi
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2564 prod_rx_buf
->skb
= skb
;
2569 pci_unmap_addr_set(prod_rx_buf
, mapping
,
2570 pci_unmap_addr(cons_rx_buf
, mapping
));
2572 cons_bd
= &bp
->rx_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2573 prod_bd
= &bp
->rx_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2574 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2575 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2579 bnx2_rx_skb(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, struct sk_buff
*skb
,
2580 unsigned int len
, unsigned int hdr_len
, dma_addr_t dma_addr
,
2584 u16 prod
= ring_idx
& 0xffff;
2586 err
= bnx2_alloc_rx_skb(bp
, bnapi
, prod
);
2587 if (unlikely(err
)) {
2588 bnx2_reuse_rx_skb(bp
, bnapi
, skb
, (u16
) (ring_idx
>> 16), prod
);
2590 unsigned int raw_len
= len
+ 4;
2591 int pages
= PAGE_ALIGN(raw_len
- hdr_len
) >> PAGE_SHIFT
;
2593 bnx2_reuse_rx_skb_pages(bp
, bnapi
, NULL
, pages
);
2598 skb_reserve(skb
, bp
->rx_offset
);
2599 pci_unmap_single(bp
->pdev
, dma_addr
, bp
->rx_buf_use_size
,
2600 PCI_DMA_FROMDEVICE
);
2606 unsigned int i
, frag_len
, frag_size
, pages
;
2607 struct sw_pg
*rx_pg
;
2608 u16 pg_cons
= bnapi
->rx_pg_cons
;
2609 u16 pg_prod
= bnapi
->rx_pg_prod
;
2611 frag_size
= len
+ 4 - hdr_len
;
2612 pages
= PAGE_ALIGN(frag_size
) >> PAGE_SHIFT
;
2613 skb_put(skb
, hdr_len
);
2615 for (i
= 0; i
< pages
; i
++) {
2616 frag_len
= min(frag_size
, (unsigned int) PAGE_SIZE
);
2617 if (unlikely(frag_len
<= 4)) {
2618 unsigned int tail
= 4 - frag_len
;
2620 bnapi
->rx_pg_cons
= pg_cons
;
2621 bnapi
->rx_pg_prod
= pg_prod
;
2622 bnx2_reuse_rx_skb_pages(bp
, bnapi
, NULL
,
2629 &skb_shinfo(skb
)->frags
[i
- 1];
2631 skb
->data_len
-= tail
;
2632 skb
->truesize
-= tail
;
2636 rx_pg
= &bp
->rx_pg_ring
[pg_cons
];
2638 pci_unmap_page(bp
->pdev
, pci_unmap_addr(rx_pg
, mapping
),
2639 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
2644 skb_fill_page_desc(skb
, i
, rx_pg
->page
, 0, frag_len
);
2647 err
= bnx2_alloc_rx_page(bp
, RX_PG_RING_IDX(pg_prod
));
2648 if (unlikely(err
)) {
2649 bnapi
->rx_pg_cons
= pg_cons
;
2650 bnapi
->rx_pg_prod
= pg_prod
;
2651 bnx2_reuse_rx_skb_pages(bp
, bnapi
, skb
,
2656 frag_size
-= frag_len
;
2657 skb
->data_len
+= frag_len
;
2658 skb
->truesize
+= frag_len
;
2659 skb
->len
+= frag_len
;
2661 pg_prod
= NEXT_RX_BD(pg_prod
);
2662 pg_cons
= RX_PG_RING_IDX(NEXT_RX_BD(pg_cons
));
2664 bnapi
->rx_pg_prod
= pg_prod
;
2665 bnapi
->rx_pg_cons
= pg_cons
;
2671 bnx2_get_hw_rx_cons(struct bnx2_napi
*bnapi
)
2673 u16 cons
= bnapi
->status_blk
->status_rx_quick_consumer_index0
;
2675 if (unlikely((cons
& MAX_RX_DESC_CNT
) == MAX_RX_DESC_CNT
))
2681 bnx2_rx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2683 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
2684 struct l2_fhdr
*rx_hdr
;
2685 int rx_pkt
= 0, pg_ring_used
= 0;
2687 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
2688 sw_cons
= bnapi
->rx_cons
;
2689 sw_prod
= bnapi
->rx_prod
;
2691 /* Memory barrier necessary as speculative reads of the rx
2692 * buffer can be ahead of the index in the status block
2695 while (sw_cons
!= hw_cons
) {
2696 unsigned int len
, hdr_len
;
2698 struct sw_bd
*rx_buf
;
2699 struct sk_buff
*skb
;
2700 dma_addr_t dma_addr
;
2702 sw_ring_cons
= RX_RING_IDX(sw_cons
);
2703 sw_ring_prod
= RX_RING_IDX(sw_prod
);
2705 rx_buf
= &bp
->rx_buf_ring
[sw_ring_cons
];
2710 dma_addr
= pci_unmap_addr(rx_buf
, mapping
);
2712 pci_dma_sync_single_for_cpu(bp
->pdev
, dma_addr
,
2713 bp
->rx_offset
+ RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
2715 rx_hdr
= (struct l2_fhdr
*) skb
->data
;
2716 len
= rx_hdr
->l2_fhdr_pkt_len
;
2718 if ((status
= rx_hdr
->l2_fhdr_status
) &
2719 (L2_FHDR_ERRORS_BAD_CRC
|
2720 L2_FHDR_ERRORS_PHY_DECODE
|
2721 L2_FHDR_ERRORS_ALIGNMENT
|
2722 L2_FHDR_ERRORS_TOO_SHORT
|
2723 L2_FHDR_ERRORS_GIANT_FRAME
)) {
2725 bnx2_reuse_rx_skb(bp
, bnapi
, skb
, sw_ring_cons
,
2730 if (status
& L2_FHDR_STATUS_SPLIT
) {
2731 hdr_len
= rx_hdr
->l2_fhdr_ip_xsum
;
2733 } else if (len
> bp
->rx_jumbo_thresh
) {
2734 hdr_len
= bp
->rx_jumbo_thresh
;
2740 if (len
<= bp
->rx_copy_thresh
) {
2741 struct sk_buff
*new_skb
;
2743 new_skb
= netdev_alloc_skb(bp
->dev
, len
+ 2);
2744 if (new_skb
== NULL
) {
2745 bnx2_reuse_rx_skb(bp
, bnapi
, skb
, sw_ring_cons
,
2751 skb_copy_from_linear_data_offset(skb
, bp
->rx_offset
- 2,
2752 new_skb
->data
, len
+ 2);
2753 skb_reserve(new_skb
, 2);
2754 skb_put(new_skb
, len
);
2756 bnx2_reuse_rx_skb(bp
, bnapi
, skb
,
2757 sw_ring_cons
, sw_ring_prod
);
2760 } else if (unlikely(bnx2_rx_skb(bp
, bnapi
, skb
, len
, hdr_len
,
2761 dma_addr
, (sw_ring_cons
<< 16) | sw_ring_prod
)))
2764 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
2766 if ((len
> (bp
->dev
->mtu
+ ETH_HLEN
)) &&
2767 (ntohs(skb
->protocol
) != 0x8100)) {
2774 skb
->ip_summed
= CHECKSUM_NONE
;
2776 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
2777 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
2779 if (likely((status
& (L2_FHDR_ERRORS_TCP_XSUM
|
2780 L2_FHDR_ERRORS_UDP_XSUM
)) == 0))
2781 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2785 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) && bp
->vlgrp
) {
2786 vlan_hwaccel_receive_skb(skb
, bp
->vlgrp
,
2787 rx_hdr
->l2_fhdr_vlan_tag
);
2791 netif_receive_skb(skb
);
2793 bp
->dev
->last_rx
= jiffies
;
2797 sw_cons
= NEXT_RX_BD(sw_cons
);
2798 sw_prod
= NEXT_RX_BD(sw_prod
);
2800 if ((rx_pkt
== budget
))
2803 /* Refresh hw_cons to see if there is new work */
2804 if (sw_cons
== hw_cons
) {
2805 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
2809 bnapi
->rx_cons
= sw_cons
;
2810 bnapi
->rx_prod
= sw_prod
;
2813 REG_WR16(bp
, MB_RX_CID_ADDR
+ BNX2_L2CTX_HOST_PG_BDIDX
,
2816 REG_WR16(bp
, MB_RX_CID_ADDR
+ BNX2_L2CTX_HOST_BDIDX
, sw_prod
);
2818 REG_WR(bp
, MB_RX_CID_ADDR
+ BNX2_L2CTX_HOST_BSEQ
, bnapi
->rx_prod_bseq
);
2826 /* MSI ISR - The only difference between this and the INTx ISR
2827 * is that the MSI interrupt is always serviced.
2830 bnx2_msi(int irq
, void *dev_instance
)
2832 struct net_device
*dev
= dev_instance
;
2833 struct bnx2
*bp
= netdev_priv(dev
);
2834 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
2836 prefetch(bnapi
->status_blk
);
2837 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
2838 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
2839 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
2841 /* Return here if interrupt is disabled. */
2842 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
2845 netif_rx_schedule(dev
, &bnapi
->napi
);
2851 bnx2_msi_1shot(int irq
, void *dev_instance
)
2853 struct net_device
*dev
= dev_instance
;
2854 struct bnx2
*bp
= netdev_priv(dev
);
2855 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
2857 prefetch(bnapi
->status_blk
);
2859 /* Return here if interrupt is disabled. */
2860 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
2863 netif_rx_schedule(dev
, &bnapi
->napi
);
2869 bnx2_interrupt(int irq
, void *dev_instance
)
2871 struct net_device
*dev
= dev_instance
;
2872 struct bnx2
*bp
= netdev_priv(dev
);
2873 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
2874 struct status_block
*sblk
= bnapi
->status_blk
;
2876 /* When using INTx, it is possible for the interrupt to arrive
2877 * at the CPU before the status block posted prior to the
2878 * interrupt. Reading a register will flush the status block.
2879 * When using MSI, the MSI message will always complete after
2880 * the status block write.
2882 if ((sblk
->status_idx
== bnapi
->last_status_idx
) &&
2883 (REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
2884 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
2887 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
2888 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
2889 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
2891 /* Read back to deassert IRQ immediately to avoid too many
2892 * spurious interrupts.
2894 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
2896 /* Return here if interrupt is shared and is disabled. */
2897 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
2900 if (netif_rx_schedule_prep(dev
, &bnapi
->napi
)) {
2901 bnapi
->last_status_idx
= sblk
->status_idx
;
2902 __netif_rx_schedule(dev
, &bnapi
->napi
);
2909 bnx2_tx_msix(int irq
, void *dev_instance
)
2911 struct net_device
*dev
= dev_instance
;
2912 struct bnx2
*bp
= netdev_priv(dev
);
2913 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[BNX2_TX_VEC
];
2915 prefetch(bnapi
->status_blk_msix
);
2917 /* Return here if interrupt is disabled. */
2918 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
2921 netif_rx_schedule(dev
, &bnapi
->napi
);
2925 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
2926 STATUS_ATTN_BITS_TIMER_ABORT)
2929 bnx2_has_work(struct bnx2_napi
*bnapi
)
2931 struct status_block
*sblk
= bnapi
->status_blk
;
2933 if ((bnx2_get_hw_rx_cons(bnapi
) != bnapi
->rx_cons
) ||
2934 (bnx2_get_hw_tx_cons(bnapi
) != bnapi
->hw_tx_cons
))
2937 if ((sblk
->status_attn_bits
& STATUS_ATTN_EVENTS
) !=
2938 (sblk
->status_attn_bits_ack
& STATUS_ATTN_EVENTS
))
2944 static int bnx2_tx_poll(struct napi_struct
*napi
, int budget
)
2946 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
2947 struct bnx2
*bp
= bnapi
->bp
;
2949 struct status_block_msix
*sblk
= bnapi
->status_blk_msix
;
2952 work_done
+= bnx2_tx_int(bp
, bnapi
, budget
- work_done
);
2953 if (unlikely(work_done
>= budget
))
2956 bnapi
->last_status_idx
= sblk
->status_idx
;
2958 } while (bnx2_get_hw_tx_cons(bnapi
) != bnapi
->hw_tx_cons
);
2960 netif_rx_complete(bp
->dev
, napi
);
2961 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
2962 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
2963 bnapi
->last_status_idx
);
2967 static int bnx2_poll_work(struct bnx2
*bp
, struct bnx2_napi
*bnapi
,
2968 int work_done
, int budget
)
2970 struct status_block
*sblk
= bnapi
->status_blk
;
2971 u32 status_attn_bits
= sblk
->status_attn_bits
;
2972 u32 status_attn_bits_ack
= sblk
->status_attn_bits_ack
;
2974 if ((status_attn_bits
& STATUS_ATTN_EVENTS
) !=
2975 (status_attn_bits_ack
& STATUS_ATTN_EVENTS
)) {
2977 bnx2_phy_int(bp
, bnapi
);
2979 /* This is needed to take care of transient status
2980 * during link changes.
2982 REG_WR(bp
, BNX2_HC_COMMAND
,
2983 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
2984 REG_RD(bp
, BNX2_HC_COMMAND
);
2987 if (bnx2_get_hw_tx_cons(bnapi
) != bnapi
->hw_tx_cons
)
2988 bnx2_tx_int(bp
, bnapi
, 0);
2990 if (bnx2_get_hw_rx_cons(bnapi
) != bnapi
->rx_cons
)
2991 work_done
+= bnx2_rx_int(bp
, bnapi
, budget
- work_done
);
2996 static int bnx2_poll(struct napi_struct
*napi
, int budget
)
2998 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
2999 struct bnx2
*bp
= bnapi
->bp
;
3001 struct status_block
*sblk
= bnapi
->status_blk
;
3004 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3006 if (unlikely(work_done
>= budget
))
3009 /* bnapi->last_status_idx is used below to tell the hw how
3010 * much work has been processed, so we must read it before
3011 * checking for more work.
3013 bnapi
->last_status_idx
= sblk
->status_idx
;
3015 if (likely(!bnx2_has_work(bnapi
))) {
3016 netif_rx_complete(bp
->dev
, napi
);
3017 if (likely(bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)) {
3018 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3019 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3020 bnapi
->last_status_idx
);
3023 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3024 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3025 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
3026 bnapi
->last_status_idx
);
3028 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3029 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3030 bnapi
->last_status_idx
);
3038 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3039 * from set_multicast.
3042 bnx2_set_rx_mode(struct net_device
*dev
)
3044 struct bnx2
*bp
= netdev_priv(dev
);
3045 u32 rx_mode
, sort_mode
;
3048 spin_lock_bh(&bp
->phy_lock
);
3050 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
3051 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
3052 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
3054 if (!bp
->vlgrp
&& !(bp
->flags
& BNX2_FLAG_ASF_ENABLE
))
3055 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3057 if (!(bp
->flags
& BNX2_FLAG_ASF_ENABLE
))
3058 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3060 if (dev
->flags
& IFF_PROMISC
) {
3061 /* Promiscuous mode. */
3062 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3063 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3064 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3066 else if (dev
->flags
& IFF_ALLMULTI
) {
3067 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3068 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3071 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
3074 /* Accept one or more multicast(s). */
3075 struct dev_mc_list
*mclist
;
3076 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
3081 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
3083 for (i
= 0, mclist
= dev
->mc_list
; mclist
&& i
< dev
->mc_count
;
3084 i
++, mclist
= mclist
->next
) {
3086 crc
= ether_crc_le(ETH_ALEN
, mclist
->dmi_addr
);
3088 regidx
= (bit
& 0xe0) >> 5;
3090 mc_filter
[regidx
] |= (1 << bit
);
3093 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3094 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3098 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
3101 if (rx_mode
!= bp
->rx_mode
) {
3102 bp
->rx_mode
= rx_mode
;
3103 REG_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
3106 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3107 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
3108 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
3110 spin_unlock_bh(&bp
->phy_lock
);
3114 load_rv2p_fw(struct bnx2
*bp
, __le32
*rv2p_code
, u32 rv2p_code_len
,
3121 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
3122 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, le32_to_cpu(*rv2p_code
));
3124 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, le32_to_cpu(*rv2p_code
));
3127 if (rv2p_proc
== RV2P_PROC1
) {
3128 val
= (i
/ 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
3129 REG_WR(bp
, BNX2_RV2P_PROC1_ADDR_CMD
, val
);
3132 val
= (i
/ 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
3133 REG_WR(bp
, BNX2_RV2P_PROC2_ADDR_CMD
, val
);
3137 /* Reset the processor, un-stall is done later. */
3138 if (rv2p_proc
== RV2P_PROC1
) {
3139 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
3142 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
3147 load_cpu_fw(struct bnx2
*bp
, struct cpu_reg
*cpu_reg
, struct fw_info
*fw
)
3154 val
= REG_RD_IND(bp
, cpu_reg
->mode
);
3155 val
|= cpu_reg
->mode_value_halt
;
3156 REG_WR_IND(bp
, cpu_reg
->mode
, val
);
3157 REG_WR_IND(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3159 /* Load the Text area. */
3160 offset
= cpu_reg
->spad_base
+ (fw
->text_addr
- cpu_reg
->mips_view_base
);
3164 rc
= zlib_inflate_blob(fw
->text
, FW_BUF_SIZE
, fw
->gz_text
,
3169 for (j
= 0; j
< (fw
->text_len
/ 4); j
++, offset
+= 4) {
3170 REG_WR_IND(bp
, offset
, le32_to_cpu(fw
->text
[j
]));
3174 /* Load the Data area. */
3175 offset
= cpu_reg
->spad_base
+ (fw
->data_addr
- cpu_reg
->mips_view_base
);
3179 for (j
= 0; j
< (fw
->data_len
/ 4); j
++, offset
+= 4) {
3180 REG_WR_IND(bp
, offset
, fw
->data
[j
]);
3184 /* Load the SBSS area. */
3185 offset
= cpu_reg
->spad_base
+ (fw
->sbss_addr
- cpu_reg
->mips_view_base
);
3189 for (j
= 0; j
< (fw
->sbss_len
/ 4); j
++, offset
+= 4) {
3190 REG_WR_IND(bp
, offset
, 0);
3194 /* Load the BSS area. */
3195 offset
= cpu_reg
->spad_base
+ (fw
->bss_addr
- cpu_reg
->mips_view_base
);
3199 for (j
= 0; j
< (fw
->bss_len
/4); j
++, offset
+= 4) {
3200 REG_WR_IND(bp
, offset
, 0);
3204 /* Load the Read-Only area. */
3205 offset
= cpu_reg
->spad_base
+
3206 (fw
->rodata_addr
- cpu_reg
->mips_view_base
);
3210 for (j
= 0; j
< (fw
->rodata_len
/ 4); j
++, offset
+= 4) {
3211 REG_WR_IND(bp
, offset
, fw
->rodata
[j
]);
3215 /* Clear the pre-fetch instruction. */
3216 REG_WR_IND(bp
, cpu_reg
->inst
, 0);
3217 REG_WR_IND(bp
, cpu_reg
->pc
, fw
->start_addr
);
3219 /* Start the CPU. */
3220 val
= REG_RD_IND(bp
, cpu_reg
->mode
);
3221 val
&= ~cpu_reg
->mode_value_halt
;
3222 REG_WR_IND(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3223 REG_WR_IND(bp
, cpu_reg
->mode
, val
);
3229 bnx2_init_cpus(struct bnx2
*bp
)
3231 struct cpu_reg cpu_reg
;
3236 /* Initialize the RV2P processor. */
3237 text
= vmalloc(FW_BUF_SIZE
);
3240 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3241 rv2p
= bnx2_xi_rv2p_proc1
;
3242 rv2p_len
= sizeof(bnx2_xi_rv2p_proc1
);
3244 rv2p
= bnx2_rv2p_proc1
;
3245 rv2p_len
= sizeof(bnx2_rv2p_proc1
);
3247 rc
= zlib_inflate_blob(text
, FW_BUF_SIZE
, rv2p
, rv2p_len
);
3251 load_rv2p_fw(bp
, text
, rc
/* == len */, RV2P_PROC1
);
3253 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3254 rv2p
= bnx2_xi_rv2p_proc2
;
3255 rv2p_len
= sizeof(bnx2_xi_rv2p_proc2
);
3257 rv2p
= bnx2_rv2p_proc2
;
3258 rv2p_len
= sizeof(bnx2_rv2p_proc2
);
3260 rc
= zlib_inflate_blob(text
, FW_BUF_SIZE
, rv2p
, rv2p_len
);
3264 load_rv2p_fw(bp
, text
, rc
/* == len */, RV2P_PROC2
);
3266 /* Initialize the RX Processor. */
3267 cpu_reg
.mode
= BNX2_RXP_CPU_MODE
;
3268 cpu_reg
.mode_value_halt
= BNX2_RXP_CPU_MODE_SOFT_HALT
;
3269 cpu_reg
.mode_value_sstep
= BNX2_RXP_CPU_MODE_STEP_ENA
;
3270 cpu_reg
.state
= BNX2_RXP_CPU_STATE
;
3271 cpu_reg
.state_value_clear
= 0xffffff;
3272 cpu_reg
.gpr0
= BNX2_RXP_CPU_REG_FILE
;
3273 cpu_reg
.evmask
= BNX2_RXP_CPU_EVENT_MASK
;
3274 cpu_reg
.pc
= BNX2_RXP_CPU_PROGRAM_COUNTER
;
3275 cpu_reg
.inst
= BNX2_RXP_CPU_INSTRUCTION
;
3276 cpu_reg
.bp
= BNX2_RXP_CPU_HW_BREAKPOINT
;
3277 cpu_reg
.spad_base
= BNX2_RXP_SCRATCH
;
3278 cpu_reg
.mips_view_base
= 0x8000000;
3280 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3281 fw
= &bnx2_rxp_fw_09
;
3283 fw
= &bnx2_rxp_fw_06
;
3286 rc
= load_cpu_fw(bp
, &cpu_reg
, fw
);
3290 /* Initialize the TX Processor. */
3291 cpu_reg
.mode
= BNX2_TXP_CPU_MODE
;
3292 cpu_reg
.mode_value_halt
= BNX2_TXP_CPU_MODE_SOFT_HALT
;
3293 cpu_reg
.mode_value_sstep
= BNX2_TXP_CPU_MODE_STEP_ENA
;
3294 cpu_reg
.state
= BNX2_TXP_CPU_STATE
;
3295 cpu_reg
.state_value_clear
= 0xffffff;
3296 cpu_reg
.gpr0
= BNX2_TXP_CPU_REG_FILE
;
3297 cpu_reg
.evmask
= BNX2_TXP_CPU_EVENT_MASK
;
3298 cpu_reg
.pc
= BNX2_TXP_CPU_PROGRAM_COUNTER
;
3299 cpu_reg
.inst
= BNX2_TXP_CPU_INSTRUCTION
;
3300 cpu_reg
.bp
= BNX2_TXP_CPU_HW_BREAKPOINT
;
3301 cpu_reg
.spad_base
= BNX2_TXP_SCRATCH
;
3302 cpu_reg
.mips_view_base
= 0x8000000;
3304 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3305 fw
= &bnx2_txp_fw_09
;
3307 fw
= &bnx2_txp_fw_06
;
3310 rc
= load_cpu_fw(bp
, &cpu_reg
, fw
);
3314 /* Initialize the TX Patch-up Processor. */
3315 cpu_reg
.mode
= BNX2_TPAT_CPU_MODE
;
3316 cpu_reg
.mode_value_halt
= BNX2_TPAT_CPU_MODE_SOFT_HALT
;
3317 cpu_reg
.mode_value_sstep
= BNX2_TPAT_CPU_MODE_STEP_ENA
;
3318 cpu_reg
.state
= BNX2_TPAT_CPU_STATE
;
3319 cpu_reg
.state_value_clear
= 0xffffff;
3320 cpu_reg
.gpr0
= BNX2_TPAT_CPU_REG_FILE
;
3321 cpu_reg
.evmask
= BNX2_TPAT_CPU_EVENT_MASK
;
3322 cpu_reg
.pc
= BNX2_TPAT_CPU_PROGRAM_COUNTER
;
3323 cpu_reg
.inst
= BNX2_TPAT_CPU_INSTRUCTION
;
3324 cpu_reg
.bp
= BNX2_TPAT_CPU_HW_BREAKPOINT
;
3325 cpu_reg
.spad_base
= BNX2_TPAT_SCRATCH
;
3326 cpu_reg
.mips_view_base
= 0x8000000;
3328 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3329 fw
= &bnx2_tpat_fw_09
;
3331 fw
= &bnx2_tpat_fw_06
;
3334 rc
= load_cpu_fw(bp
, &cpu_reg
, fw
);
3338 /* Initialize the Completion Processor. */
3339 cpu_reg
.mode
= BNX2_COM_CPU_MODE
;
3340 cpu_reg
.mode_value_halt
= BNX2_COM_CPU_MODE_SOFT_HALT
;
3341 cpu_reg
.mode_value_sstep
= BNX2_COM_CPU_MODE_STEP_ENA
;
3342 cpu_reg
.state
= BNX2_COM_CPU_STATE
;
3343 cpu_reg
.state_value_clear
= 0xffffff;
3344 cpu_reg
.gpr0
= BNX2_COM_CPU_REG_FILE
;
3345 cpu_reg
.evmask
= BNX2_COM_CPU_EVENT_MASK
;
3346 cpu_reg
.pc
= BNX2_COM_CPU_PROGRAM_COUNTER
;
3347 cpu_reg
.inst
= BNX2_COM_CPU_INSTRUCTION
;
3348 cpu_reg
.bp
= BNX2_COM_CPU_HW_BREAKPOINT
;
3349 cpu_reg
.spad_base
= BNX2_COM_SCRATCH
;
3350 cpu_reg
.mips_view_base
= 0x8000000;
3352 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3353 fw
= &bnx2_com_fw_09
;
3355 fw
= &bnx2_com_fw_06
;
3358 rc
= load_cpu_fw(bp
, &cpu_reg
, fw
);
3362 /* Initialize the Command Processor. */
3363 cpu_reg
.mode
= BNX2_CP_CPU_MODE
;
3364 cpu_reg
.mode_value_halt
= BNX2_CP_CPU_MODE_SOFT_HALT
;
3365 cpu_reg
.mode_value_sstep
= BNX2_CP_CPU_MODE_STEP_ENA
;
3366 cpu_reg
.state
= BNX2_CP_CPU_STATE
;
3367 cpu_reg
.state_value_clear
= 0xffffff;
3368 cpu_reg
.gpr0
= BNX2_CP_CPU_REG_FILE
;
3369 cpu_reg
.evmask
= BNX2_CP_CPU_EVENT_MASK
;
3370 cpu_reg
.pc
= BNX2_CP_CPU_PROGRAM_COUNTER
;
3371 cpu_reg
.inst
= BNX2_CP_CPU_INSTRUCTION
;
3372 cpu_reg
.bp
= BNX2_CP_CPU_HW_BREAKPOINT
;
3373 cpu_reg
.spad_base
= BNX2_CP_SCRATCH
;
3374 cpu_reg
.mips_view_base
= 0x8000000;
3376 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3377 fw
= &bnx2_cp_fw_09
;
3379 fw
= &bnx2_cp_fw_06
;
3382 rc
= load_cpu_fw(bp
, &cpu_reg
, fw
);
3390 bnx2_set_power_state(struct bnx2
*bp
, pci_power_t state
)
3394 pci_read_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
3400 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3401 (pmcsr
& ~PCI_PM_CTRL_STATE_MASK
) |
3402 PCI_PM_CTRL_PME_STATUS
);
3404 if (pmcsr
& PCI_PM_CTRL_STATE_MASK
)
3405 /* delay required during transition out of D3hot */
3408 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3409 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
3410 val
&= ~BNX2_EMAC_MODE_MPKT
;
3411 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3413 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3414 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3415 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3426 autoneg
= bp
->autoneg
;
3427 advertising
= bp
->advertising
;
3429 if (bp
->phy_port
== PORT_TP
) {
3430 bp
->autoneg
= AUTONEG_SPEED
;
3431 bp
->advertising
= ADVERTISED_10baseT_Half
|
3432 ADVERTISED_10baseT_Full
|
3433 ADVERTISED_100baseT_Half
|
3434 ADVERTISED_100baseT_Full
|
3438 spin_lock_bh(&bp
->phy_lock
);
3439 bnx2_setup_phy(bp
, bp
->phy_port
);
3440 spin_unlock_bh(&bp
->phy_lock
);
3442 bp
->autoneg
= autoneg
;
3443 bp
->advertising
= advertising
;
3445 bnx2_set_mac_addr(bp
);
3447 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3449 /* Enable port mode. */
3450 val
&= ~BNX2_EMAC_MODE_PORT
;
3451 val
|= BNX2_EMAC_MODE_MPKT_RCVD
|
3452 BNX2_EMAC_MODE_ACPI_RCVD
|
3453 BNX2_EMAC_MODE_MPKT
;
3454 if (bp
->phy_port
== PORT_TP
)
3455 val
|= BNX2_EMAC_MODE_PORT_MII
;
3457 val
|= BNX2_EMAC_MODE_PORT_GMII
;
3458 if (bp
->line_speed
== SPEED_2500
)
3459 val
|= BNX2_EMAC_MODE_25G_MODE
;
3462 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3464 /* receive all multicast */
3465 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3466 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3469 REG_WR(bp
, BNX2_EMAC_RX_MODE
,
3470 BNX2_EMAC_RX_MODE_SORT_MODE
);
3472 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
|
3473 BNX2_RPM_SORT_USER0_MC_EN
;
3474 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3475 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
3476 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
|
3477 BNX2_RPM_SORT_USER0_ENA
);
3479 /* Need to enable EMAC and RPM for WOL. */
3480 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
3481 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
3482 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
3483 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
3485 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3486 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3487 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3489 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
3492 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
3495 if (!(bp
->flags
& BNX2_FLAG_NO_WOL
))
3496 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT3
| wol_msg
, 0);
3498 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3499 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
3500 (CHIP_ID(bp
) == CHIP_ID_5706_A1
)) {
3509 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
3511 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3514 /* No more memory access after this point until
3515 * device is brought back to D0.
3527 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
3532 /* Request access to the flash interface. */
3533 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
3534 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3535 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
3536 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
3542 if (j
>= NVRAM_TIMEOUT_COUNT
)
3549 bnx2_release_nvram_lock(struct bnx2
*bp
)
3554 /* Relinquish nvram interface. */
3555 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
3557 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3558 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
3559 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
3565 if (j
>= NVRAM_TIMEOUT_COUNT
)
3573 bnx2_enable_nvram_write(struct bnx2
*bp
)
3577 val
= REG_RD(bp
, BNX2_MISC_CFG
);
3578 REG_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
3580 if (bp
->flash_info
->flags
& BNX2_NV_WREN
) {
3583 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3584 REG_WR(bp
, BNX2_NVM_COMMAND
,
3585 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
3587 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3590 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
3591 if (val
& BNX2_NVM_COMMAND_DONE
)
3595 if (j
>= NVRAM_TIMEOUT_COUNT
)
3602 bnx2_disable_nvram_write(struct bnx2
*bp
)
3606 val
= REG_RD(bp
, BNX2_MISC_CFG
);
3607 REG_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
3612 bnx2_enable_nvram_access(struct bnx2
*bp
)
3616 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
3617 /* Enable both bits, even on read. */
3618 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
3619 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
3623 bnx2_disable_nvram_access(struct bnx2
*bp
)
3627 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
3628 /* Disable both bits, even after read. */
3629 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
3630 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
3631 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
3635 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
3640 if (bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)
3641 /* Buffered flash, no erase needed */
3644 /* Build an erase command */
3645 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
3646 BNX2_NVM_COMMAND_DOIT
;
3648 /* Need to clear DONE bit separately. */
3649 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3651 /* Address of the NVRAM to read from. */
3652 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
3654 /* Issue an erase command. */
3655 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
3657 /* Wait for completion. */
3658 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3663 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
3664 if (val
& BNX2_NVM_COMMAND_DONE
)
3668 if (j
>= NVRAM_TIMEOUT_COUNT
)
3675 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
3680 /* Build the command word. */
3681 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
3683 /* Calculate an offset of a buffered flash, not needed for 5709. */
3684 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
3685 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
3686 bp
->flash_info
->page_bits
) +
3687 (offset
% bp
->flash_info
->page_size
);
3690 /* Need to clear DONE bit separately. */
3691 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3693 /* Address of the NVRAM to read from. */
3694 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
3696 /* Issue a read command. */
3697 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
3699 /* Wait for completion. */
3700 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3705 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
3706 if (val
& BNX2_NVM_COMMAND_DONE
) {
3707 __be32 v
= cpu_to_be32(REG_RD(bp
, BNX2_NVM_READ
));
3708 memcpy(ret_val
, &v
, 4);
3712 if (j
>= NVRAM_TIMEOUT_COUNT
)
3720 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
3726 /* Build the command word. */
3727 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
3729 /* Calculate an offset of a buffered flash, not needed for 5709. */
3730 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
3731 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
3732 bp
->flash_info
->page_bits
) +
3733 (offset
% bp
->flash_info
->page_size
);
3736 /* Need to clear DONE bit separately. */
3737 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3739 memcpy(&val32
, val
, 4);
3741 /* Write the data. */
3742 REG_WR(bp
, BNX2_NVM_WRITE
, be32_to_cpu(val32
));
3744 /* Address of the NVRAM to write to. */
3745 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
3747 /* Issue the write command. */
3748 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
3750 /* Wait for completion. */
3751 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3754 if (REG_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
3757 if (j
>= NVRAM_TIMEOUT_COUNT
)
3764 bnx2_init_nvram(struct bnx2
*bp
)
3767 int j
, entry_count
, rc
= 0;
3768 struct flash_spec
*flash
;
3770 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3771 bp
->flash_info
= &flash_5709
;
3772 goto get_flash_size
;
3775 /* Determine the selected interface. */
3776 val
= REG_RD(bp
, BNX2_NVM_CFG1
);
3778 entry_count
= ARRAY_SIZE(flash_table
);
3780 if (val
& 0x40000000) {
3782 /* Flash interface has been reconfigured */
3783 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
3785 if ((val
& FLASH_BACKUP_STRAP_MASK
) ==
3786 (flash
->config1
& FLASH_BACKUP_STRAP_MASK
)) {
3787 bp
->flash_info
= flash
;
3794 /* Not yet been reconfigured */
3796 if (val
& (1 << 23))
3797 mask
= FLASH_BACKUP_STRAP_MASK
;
3799 mask
= FLASH_STRAP_MASK
;
3801 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
3804 if ((val
& mask
) == (flash
->strapping
& mask
)) {
3805 bp
->flash_info
= flash
;
3807 /* Request access to the flash interface. */
3808 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
3811 /* Enable access to flash interface */
3812 bnx2_enable_nvram_access(bp
);
3814 /* Reconfigure the flash interface */
3815 REG_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
3816 REG_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
3817 REG_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
3818 REG_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
3820 /* Disable access to flash interface */
3821 bnx2_disable_nvram_access(bp
);
3822 bnx2_release_nvram_lock(bp
);
3827 } /* if (val & 0x40000000) */
3829 if (j
== entry_count
) {
3830 bp
->flash_info
= NULL
;
3831 printk(KERN_ALERT PFX
"Unknown flash/EEPROM type.\n");
3836 val
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_SHARED_HW_CFG_CONFIG2
);
3837 val
&= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK
;
3839 bp
->flash_size
= val
;
3841 bp
->flash_size
= bp
->flash_info
->total_size
;
3847 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
3851 u32 cmd_flags
, offset32
, len32
, extra
;
3856 /* Request access to the flash interface. */
3857 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
3860 /* Enable access to flash interface */
3861 bnx2_enable_nvram_access(bp
);
3874 pre_len
= 4 - (offset
& 3);
3876 if (pre_len
>= len32
) {
3878 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
3879 BNX2_NVM_COMMAND_LAST
;
3882 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
3885 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
3890 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
3897 extra
= 4 - (len32
& 3);
3898 len32
= (len32
+ 4) & ~3;
3905 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
3907 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
3908 BNX2_NVM_COMMAND_LAST
;
3910 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
3912 memcpy(ret_buf
, buf
, 4 - extra
);
3914 else if (len32
> 0) {
3917 /* Read the first word. */
3921 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
3923 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
3925 /* Advance to the next dword. */
3930 while (len32
> 4 && rc
== 0) {
3931 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
3933 /* Advance to the next dword. */
3942 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
3943 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
3945 memcpy(ret_buf
, buf
, 4 - extra
);
3948 /* Disable access to flash interface */
3949 bnx2_disable_nvram_access(bp
);
3951 bnx2_release_nvram_lock(bp
);
3957 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
3960 u32 written
, offset32
, len32
;
3961 u8
*buf
, start
[4], end
[4], *align_buf
= NULL
, *flash_buffer
= NULL
;
3963 int align_start
, align_end
;
3968 align_start
= align_end
= 0;
3970 if ((align_start
= (offset32
& 3))) {
3972 len32
+= align_start
;
3975 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
3980 align_end
= 4 - (len32
& 3);
3982 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4, end
, 4)))
3986 if (align_start
|| align_end
) {
3987 align_buf
= kmalloc(len32
, GFP_KERNEL
);
3988 if (align_buf
== NULL
)
3991 memcpy(align_buf
, start
, 4);
3994 memcpy(align_buf
+ len32
- 4, end
, 4);
3996 memcpy(align_buf
+ align_start
, data_buf
, buf_size
);
4000 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4001 flash_buffer
= kmalloc(264, GFP_KERNEL
);
4002 if (flash_buffer
== NULL
) {
4004 goto nvram_write_end
;
4009 while ((written
< len32
) && (rc
== 0)) {
4010 u32 page_start
, page_end
, data_start
, data_end
;
4011 u32 addr
, cmd_flags
;
4014 /* Find the page_start addr */
4015 page_start
= offset32
+ written
;
4016 page_start
-= (page_start
% bp
->flash_info
->page_size
);
4017 /* Find the page_end addr */
4018 page_end
= page_start
+ bp
->flash_info
->page_size
;
4019 /* Find the data_start addr */
4020 data_start
= (written
== 0) ? offset32
: page_start
;
4021 /* Find the data_end addr */
4022 data_end
= (page_end
> offset32
+ len32
) ?
4023 (offset32
+ len32
) : page_end
;
4025 /* Request access to the flash interface. */
4026 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4027 goto nvram_write_end
;
4029 /* Enable access to flash interface */
4030 bnx2_enable_nvram_access(bp
);
4032 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4033 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4036 /* Read the whole page into the buffer
4037 * (non-buffer flash only) */
4038 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
4039 if (j
== (bp
->flash_info
->page_size
- 4)) {
4040 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4042 rc
= bnx2_nvram_read_dword(bp
,
4048 goto nvram_write_end
;
4054 /* Enable writes to flash interface (unlock write-protect) */
4055 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
4056 goto nvram_write_end
;
4058 /* Loop to write back the buffer data from page_start to
4061 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4062 /* Erase the page */
4063 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
4064 goto nvram_write_end
;
4066 /* Re-enable the write again for the actual write */
4067 bnx2_enable_nvram_write(bp
);
4069 for (addr
= page_start
; addr
< data_start
;
4070 addr
+= 4, i
+= 4) {
4072 rc
= bnx2_nvram_write_dword(bp
, addr
,
4073 &flash_buffer
[i
], cmd_flags
);
4076 goto nvram_write_end
;
4082 /* Loop to write the new data from data_start to data_end */
4083 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
+= 4) {
4084 if ((addr
== page_end
- 4) ||
4085 ((bp
->flash_info
->flags
& BNX2_NV_BUFFERED
) &&
4086 (addr
== data_end
- 4))) {
4088 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4090 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
4094 goto nvram_write_end
;
4100 /* Loop to write back the buffer data from data_end
4102 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4103 for (addr
= data_end
; addr
< page_end
;
4104 addr
+= 4, i
+= 4) {
4106 if (addr
== page_end
-4) {
4107 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4109 rc
= bnx2_nvram_write_dword(bp
, addr
,
4110 &flash_buffer
[i
], cmd_flags
);
4113 goto nvram_write_end
;
4119 /* Disable writes to flash interface (lock write-protect) */
4120 bnx2_disable_nvram_write(bp
);
4122 /* Disable access to flash interface */
4123 bnx2_disable_nvram_access(bp
);
4124 bnx2_release_nvram_lock(bp
);
4126 /* Increment written */
4127 written
+= data_end
- data_start
;
4131 kfree(flash_buffer
);
4137 bnx2_init_remote_phy(struct bnx2
*bp
)
4141 bp
->phy_flags
&= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4142 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
))
4145 val
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_FW_CAP_MB
);
4146 if ((val
& BNX2_FW_CAP_SIGNATURE_MASK
) != BNX2_FW_CAP_SIGNATURE
)
4149 if (val
& BNX2_FW_CAP_REMOTE_PHY_CAPABLE
) {
4150 bp
->phy_flags
|= BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4152 val
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_LINK_STATUS
);
4153 if (val
& BNX2_LINK_STATUS_SERDES_LINK
)
4154 bp
->phy_port
= PORT_FIBRE
;
4156 bp
->phy_port
= PORT_TP
;
4158 if (netif_running(bp
->dev
)) {
4161 if (val
& BNX2_LINK_STATUS_LINK_UP
) {
4163 netif_carrier_on(bp
->dev
);
4166 netif_carrier_off(bp
->dev
);
4168 sig
= BNX2_DRV_ACK_CAP_SIGNATURE
|
4169 BNX2_FW_CAP_REMOTE_PHY_CAPABLE
;
4170 REG_WR_IND(bp
, bp
->shmem_base
+ BNX2_DRV_ACK_CAP_MB
,
4177 bnx2_setup_msix_tbl(struct bnx2
*bp
)
4179 REG_WR(bp
, BNX2_PCI_GRC_WINDOW_ADDR
, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN
);
4181 REG_WR(bp
, BNX2_PCI_GRC_WINDOW2_ADDR
, BNX2_MSIX_TABLE_ADDR
);
4182 REG_WR(bp
, BNX2_PCI_GRC_WINDOW3_ADDR
, BNX2_MSIX_PBA_ADDR
);
4186 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
4192 /* Wait for the current PCI transaction to complete before
4193 * issuing a reset. */
4194 REG_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
4195 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
4196 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
4197 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
4198 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
4199 val
= REG_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
4202 /* Wait for the firmware to tell us it is ok to issue a reset. */
4203 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
, 1);
4205 /* Deposit a driver reset signature so the firmware knows that
4206 * this is a soft reset. */
4207 REG_WR_IND(bp
, bp
->shmem_base
+ BNX2_DRV_RESET_SIGNATURE
,
4208 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
4210 /* Do a dummy read to force the chip to complete all current transaction
4211 * before we issue a reset. */
4212 val
= REG_RD(bp
, BNX2_MISC_ID
);
4214 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4215 REG_WR(bp
, BNX2_MISC_COMMAND
, BNX2_MISC_COMMAND_SW_RESET
);
4216 REG_RD(bp
, BNX2_MISC_COMMAND
);
4219 val
= BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4220 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4222 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, val
);
4225 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4226 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4227 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4230 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4232 /* Reading back any register after chip reset will hang the
4233 * bus on 5706 A0 and A1. The msleep below provides plenty
4234 * of margin for write posting.
4236 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
4237 (CHIP_ID(bp
) == CHIP_ID_5706_A1
))
4240 /* Reset takes approximate 30 usec */
4241 for (i
= 0; i
< 10; i
++) {
4242 val
= REG_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
4243 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4244 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0)
4249 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4250 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
4251 printk(KERN_ERR PFX
"Chip reset did not complete\n");
4256 /* Make sure byte swapping is properly configured. */
4257 val
= REG_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
4258 if (val
!= 0x01020304) {
4259 printk(KERN_ERR PFX
"Chip not in correct endian mode\n");
4263 /* Wait for the firmware to finish its initialization. */
4264 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
, 0);
4268 spin_lock_bh(&bp
->phy_lock
);
4269 old_port
= bp
->phy_port
;
4270 bnx2_init_remote_phy(bp
);
4271 if ((bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) &&
4272 old_port
!= bp
->phy_port
)
4273 bnx2_set_default_remote_link(bp
);
4274 spin_unlock_bh(&bp
->phy_lock
);
4276 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4277 /* Adjust the voltage regular to two steps lower. The default
4278 * of this register is 0x0000000e. */
4279 REG_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
4281 /* Remove bad rbuf memory from the free pool. */
4282 rc
= bnx2_alloc_bad_rbuf(bp
);
4285 if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
4286 bnx2_setup_msix_tbl(bp
);
4292 bnx2_init_chip(struct bnx2
*bp
)
4297 /* Make sure the interrupt is not active. */
4298 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
4300 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
4301 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
4303 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
4305 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
4306 DMA_READ_CHANS
<< 12 |
4307 DMA_WRITE_CHANS
<< 16;
4309 val
|= (0x2 << 20) | (1 << 11);
4311 if ((bp
->flags
& BNX2_FLAG_PCIX
) && (bp
->bus_speed_mhz
== 133))
4314 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) &&
4315 (CHIP_ID(bp
) != CHIP_ID_5706_A0
) && !(bp
->flags
& BNX2_FLAG_PCIX
))
4316 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
4318 REG_WR(bp
, BNX2_DMA_CONFIG
, val
);
4320 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4321 val
= REG_RD(bp
, BNX2_TDMA_CONFIG
);
4322 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
4323 REG_WR(bp
, BNX2_TDMA_CONFIG
, val
);
4326 if (bp
->flags
& BNX2_FLAG_PCIX
) {
4329 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4331 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4332 val16
& ~PCI_X_CMD_ERO
);
4335 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4336 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
4337 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
4338 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
4340 /* Initialize context mapping and zero out the quick contexts. The
4341 * context block must have already been enabled. */
4342 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4343 rc
= bnx2_init_5709_context(bp
);
4347 bnx2_init_context(bp
);
4349 if ((rc
= bnx2_init_cpus(bp
)) != 0)
4352 bnx2_init_nvram(bp
);
4354 bnx2_set_mac_addr(bp
);
4356 val
= REG_RD(bp
, BNX2_MQ_CONFIG
);
4357 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
4358 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
4359 if (CHIP_ID(bp
) == CHIP_ID_5709_A0
|| CHIP_ID(bp
) == CHIP_ID_5709_A1
)
4360 val
|= BNX2_MQ_CONFIG_HALT_DIS
;
4362 REG_WR(bp
, BNX2_MQ_CONFIG
, val
);
4364 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
4365 REG_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
4366 REG_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
4368 val
= (BCM_PAGE_BITS
- 8) << 24;
4369 REG_WR(bp
, BNX2_RV2P_CONFIG
, val
);
4371 /* Configure page size. */
4372 val
= REG_RD(bp
, BNX2_TBDR_CONFIG
);
4373 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
4374 val
|= (BCM_PAGE_BITS
- 8) << 24 | 0x40;
4375 REG_WR(bp
, BNX2_TBDR_CONFIG
, val
);
4377 val
= bp
->mac_addr
[0] +
4378 (bp
->mac_addr
[1] << 8) +
4379 (bp
->mac_addr
[2] << 16) +
4381 (bp
->mac_addr
[4] << 8) +
4382 (bp
->mac_addr
[5] << 16);
4383 REG_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
4385 /* Program the MTU. Also include 4 bytes for CRC32. */
4386 val
= bp
->dev
->mtu
+ ETH_HLEN
+ 4;
4387 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ 4))
4388 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
4389 REG_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
4391 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
4392 bp
->bnx2_napi
[i
].last_status_idx
= 0;
4394 bp
->rx_mode
= BNX2_EMAC_RX_MODE_SORT_MODE
;
4396 /* Set up how to generate a link change interrupt. */
4397 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
4399 REG_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
4400 (u64
) bp
->status_blk_mapping
& 0xffffffff);
4401 REG_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
4403 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
4404 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
4405 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
4406 (u64
) bp
->stats_blk_mapping
>> 32);
4408 REG_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
4409 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
4411 REG_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
4412 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
4414 REG_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
4415 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
4417 REG_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4419 REG_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4421 REG_WR(bp
, BNX2_HC_COM_TICKS
,
4422 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
4424 REG_WR(bp
, BNX2_HC_CMD_TICKS
,
4425 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
4427 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
4428 REG_WR(bp
, BNX2_HC_STATS_TICKS
, 0);
4430 REG_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
);
4431 REG_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
4433 if (CHIP_ID(bp
) == CHIP_ID_5706_A1
)
4434 val
= BNX2_HC_CONFIG_COLLECT_STATS
;
4436 val
= BNX2_HC_CONFIG_RX_TMR_MODE
| BNX2_HC_CONFIG_TX_TMR_MODE
|
4437 BNX2_HC_CONFIG_COLLECT_STATS
;
4440 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4441 REG_WR(bp
, BNX2_HC_MSIX_BIT_VECTOR
,
4442 BNX2_HC_MSIX_BIT_VECTOR_VAL
);
4444 REG_WR(bp
, BNX2_HC_SB_CONFIG_1
,
4445 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE
|
4446 BNX2_HC_SB_CONFIG_1_ONE_SHOT
);
4448 REG_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP_1
,
4449 (bp
->tx_quick_cons_trip_int
<< 16) |
4450 bp
->tx_quick_cons_trip
);
4452 REG_WR(bp
, BNX2_HC_TX_TICKS_1
,
4453 (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4455 val
|= BNX2_HC_CONFIG_SB_ADDR_INC_128B
;
4458 if (bp
->flags
& BNX2_FLAG_ONE_SHOT_MSI
)
4459 val
|= BNX2_HC_CONFIG_ONE_SHOT
;
4461 REG_WR(bp
, BNX2_HC_CONFIG
, val
);
4463 /* Clear internal stats counters. */
4464 REG_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
4466 REG_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_EVENTS
);
4468 /* Initialize the receive filter. */
4469 bnx2_set_rx_mode(bp
->dev
);
4471 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4472 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4473 val
|= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
4474 REG_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
4476 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
,
4479 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, BNX2_MISC_ENABLE_DEFAULT
);
4480 REG_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
4484 bp
->hc_cmd
= REG_RD(bp
, BNX2_HC_COMMAND
);
4490 bnx2_clear_ring_states(struct bnx2
*bp
)
4492 struct bnx2_napi
*bnapi
;
4495 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
4496 bnapi
= &bp
->bnx2_napi
[i
];
4499 bnapi
->hw_tx_cons
= 0;
4500 bnapi
->rx_prod_bseq
= 0;
4503 bnapi
->rx_pg_prod
= 0;
4504 bnapi
->rx_pg_cons
= 0;
4509 bnx2_init_tx_context(struct bnx2
*bp
, u32 cid
)
4511 u32 val
, offset0
, offset1
, offset2
, offset3
;
4513 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4514 offset0
= BNX2_L2CTX_TYPE_XI
;
4515 offset1
= BNX2_L2CTX_CMD_TYPE_XI
;
4516 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI_XI
;
4517 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO_XI
;
4519 offset0
= BNX2_L2CTX_TYPE
;
4520 offset1
= BNX2_L2CTX_CMD_TYPE
;
4521 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI
;
4522 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO
;
4524 val
= BNX2_L2CTX_TYPE_TYPE_L2
| BNX2_L2CTX_TYPE_SIZE_L2
;
4525 CTX_WR(bp
, GET_CID_ADDR(cid
), offset0
, val
);
4527 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
| (8 << 16);
4528 CTX_WR(bp
, GET_CID_ADDR(cid
), offset1
, val
);
4530 val
= (u64
) bp
->tx_desc_mapping
>> 32;
4531 CTX_WR(bp
, GET_CID_ADDR(cid
), offset2
, val
);
4533 val
= (u64
) bp
->tx_desc_mapping
& 0xffffffff;
4534 CTX_WR(bp
, GET_CID_ADDR(cid
), offset3
, val
);
4538 bnx2_init_tx_ring(struct bnx2
*bp
)
4542 struct bnx2_napi
*bnapi
;
4545 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4547 bp
->tx_vec
= BNX2_TX_VEC
;
4548 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, BNX2_TX_INT_NUM
|
4551 bnapi
= &bp
->bnx2_napi
[bp
->tx_vec
];
4553 bp
->tx_wake_thresh
= bp
->tx_ring_size
/ 2;
4555 txbd
= &bp
->tx_desc_ring
[MAX_TX_DESC_CNT
];
4557 txbd
->tx_bd_haddr_hi
= (u64
) bp
->tx_desc_mapping
>> 32;
4558 txbd
->tx_bd_haddr_lo
= (u64
) bp
->tx_desc_mapping
& 0xffffffff;
4561 bp
->tx_prod_bseq
= 0;
4563 bp
->tx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BIDX
;
4564 bp
->tx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BSEQ
;
4566 bnx2_init_tx_context(bp
, cid
);
4570 bnx2_init_rxbd_rings(struct rx_bd
*rx_ring
[], dma_addr_t dma
[], u32 buf_size
,
4576 for (i
= 0; i
< num_rings
; i
++) {
4579 rxbd
= &rx_ring
[i
][0];
4580 for (j
= 0; j
< MAX_RX_DESC_CNT
; j
++, rxbd
++) {
4581 rxbd
->rx_bd_len
= buf_size
;
4582 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
4584 if (i
== (num_rings
- 1))
4588 rxbd
->rx_bd_haddr_hi
= (u64
) dma
[j
] >> 32;
4589 rxbd
->rx_bd_haddr_lo
= (u64
) dma
[j
] & 0xffffffff;
4594 bnx2_init_rx_ring(struct bnx2
*bp
)
4597 u16 prod
, ring_prod
;
4598 u32 val
, rx_cid_addr
= GET_CID_ADDR(RX_CID
);
4599 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
4601 bnx2_init_rxbd_rings(bp
->rx_desc_ring
, bp
->rx_desc_mapping
,
4602 bp
->rx_buf_use_size
, bp
->rx_max_ring
);
4604 CTX_WR(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, 0);
4605 if (bp
->rx_pg_ring_size
) {
4606 bnx2_init_rxbd_rings(bp
->rx_pg_desc_ring
,
4607 bp
->rx_pg_desc_mapping
,
4608 PAGE_SIZE
, bp
->rx_max_pg_ring
);
4609 val
= (bp
->rx_buf_use_size
<< 16) | PAGE_SIZE
;
4610 CTX_WR(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, val
);
4611 CTX_WR(bp
, rx_cid_addr
, BNX2_L2CTX_RBDC_KEY
,
4612 BNX2_L2CTX_RBDC_JUMBO_KEY
);
4614 val
= (u64
) bp
->rx_pg_desc_mapping
[0] >> 32;
4615 CTX_WR(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_HI
, val
);
4617 val
= (u64
) bp
->rx_pg_desc_mapping
[0] & 0xffffffff;
4618 CTX_WR(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_LO
, val
);
4620 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
4621 REG_WR(bp
, BNX2_MQ_MAP_L2_3
, BNX2_MQ_MAP_L2_3_DEFAULT
);
4624 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
4625 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
4627 CTX_WR(bp
, rx_cid_addr
, BNX2_L2CTX_CTX_TYPE
, val
);
4629 val
= (u64
) bp
->rx_desc_mapping
[0] >> 32;
4630 CTX_WR(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_HI
, val
);
4632 val
= (u64
) bp
->rx_desc_mapping
[0] & 0xffffffff;
4633 CTX_WR(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_LO
, val
);
4635 ring_prod
= prod
= bnapi
->rx_pg_prod
;
4636 for (i
= 0; i
< bp
->rx_pg_ring_size
; i
++) {
4637 if (bnx2_alloc_rx_page(bp
, ring_prod
) < 0)
4639 prod
= NEXT_RX_BD(prod
);
4640 ring_prod
= RX_PG_RING_IDX(prod
);
4642 bnapi
->rx_pg_prod
= prod
;
4644 ring_prod
= prod
= bnapi
->rx_prod
;
4645 for (i
= 0; i
< bp
->rx_ring_size
; i
++) {
4646 if (bnx2_alloc_rx_skb(bp
, bnapi
, ring_prod
) < 0) {
4649 prod
= NEXT_RX_BD(prod
);
4650 ring_prod
= RX_RING_IDX(prod
);
4652 bnapi
->rx_prod
= prod
;
4654 REG_WR16(bp
, MB_RX_CID_ADDR
+ BNX2_L2CTX_HOST_PG_BDIDX
,
4656 REG_WR16(bp
, MB_RX_CID_ADDR
+ BNX2_L2CTX_HOST_BDIDX
, prod
);
4658 REG_WR(bp
, MB_RX_CID_ADDR
+ BNX2_L2CTX_HOST_BSEQ
, bnapi
->rx_prod_bseq
);
4661 static u32
bnx2_find_max_ring(u32 ring_size
, u32 max_size
)
4663 u32 max
, num_rings
= 1;
4665 while (ring_size
> MAX_RX_DESC_CNT
) {
4666 ring_size
-= MAX_RX_DESC_CNT
;
4669 /* round to next power of 2 */
4671 while ((max
& num_rings
) == 0)
4674 if (num_rings
!= max
)
4681 bnx2_set_rx_ring_size(struct bnx2
*bp
, u32 size
)
4683 u32 rx_size
, rx_space
, jumbo_size
;
4685 /* 8 for CRC and VLAN */
4686 rx_size
= bp
->dev
->mtu
+ ETH_HLEN
+ bp
->rx_offset
+ 8;
4688 rx_space
= SKB_DATA_ALIGN(rx_size
+ BNX2_RX_ALIGN
) + NET_SKB_PAD
+
4689 sizeof(struct skb_shared_info
);
4691 bp
->rx_copy_thresh
= RX_COPY_THRESH
;
4692 bp
->rx_pg_ring_size
= 0;
4693 bp
->rx_max_pg_ring
= 0;
4694 bp
->rx_max_pg_ring_idx
= 0;
4695 if ((rx_space
> PAGE_SIZE
) && !(bp
->flags
& BNX2_FLAG_JUMBO_BROKEN
)) {
4696 int pages
= PAGE_ALIGN(bp
->dev
->mtu
- 40) >> PAGE_SHIFT
;
4698 jumbo_size
= size
* pages
;
4699 if (jumbo_size
> MAX_TOTAL_RX_PG_DESC_CNT
)
4700 jumbo_size
= MAX_TOTAL_RX_PG_DESC_CNT
;
4702 bp
->rx_pg_ring_size
= jumbo_size
;
4703 bp
->rx_max_pg_ring
= bnx2_find_max_ring(jumbo_size
,
4705 bp
->rx_max_pg_ring_idx
= (bp
->rx_max_pg_ring
* RX_DESC_CNT
) - 1;
4706 rx_size
= RX_COPY_THRESH
+ bp
->rx_offset
;
4707 bp
->rx_copy_thresh
= 0;
4710 bp
->rx_buf_use_size
= rx_size
;
4712 bp
->rx_buf_size
= bp
->rx_buf_use_size
+ BNX2_RX_ALIGN
;
4713 bp
->rx_jumbo_thresh
= rx_size
- bp
->rx_offset
;
4714 bp
->rx_ring_size
= size
;
4715 bp
->rx_max_ring
= bnx2_find_max_ring(size
, MAX_RX_RINGS
);
4716 bp
->rx_max_ring_idx
= (bp
->rx_max_ring
* RX_DESC_CNT
) - 1;
4720 bnx2_free_tx_skbs(struct bnx2
*bp
)
4724 if (bp
->tx_buf_ring
== NULL
)
4727 for (i
= 0; i
< TX_DESC_CNT
; ) {
4728 struct sw_bd
*tx_buf
= &bp
->tx_buf_ring
[i
];
4729 struct sk_buff
*skb
= tx_buf
->skb
;
4737 pci_unmap_single(bp
->pdev
, pci_unmap_addr(tx_buf
, mapping
),
4738 skb_headlen(skb
), PCI_DMA_TODEVICE
);
4742 last
= skb_shinfo(skb
)->nr_frags
;
4743 for (j
= 0; j
< last
; j
++) {
4744 tx_buf
= &bp
->tx_buf_ring
[i
+ j
+ 1];
4745 pci_unmap_page(bp
->pdev
,
4746 pci_unmap_addr(tx_buf
, mapping
),
4747 skb_shinfo(skb
)->frags
[j
].size
,
4757 bnx2_free_rx_skbs(struct bnx2
*bp
)
4761 if (bp
->rx_buf_ring
== NULL
)
4764 for (i
= 0; i
< bp
->rx_max_ring_idx
; i
++) {
4765 struct sw_bd
*rx_buf
= &bp
->rx_buf_ring
[i
];
4766 struct sk_buff
*skb
= rx_buf
->skb
;
4771 pci_unmap_single(bp
->pdev
, pci_unmap_addr(rx_buf
, mapping
),
4772 bp
->rx_buf_use_size
, PCI_DMA_FROMDEVICE
);
4778 for (i
= 0; i
< bp
->rx_max_pg_ring_idx
; i
++)
4779 bnx2_free_rx_page(bp
, i
);
4783 bnx2_free_skbs(struct bnx2
*bp
)
4785 bnx2_free_tx_skbs(bp
);
4786 bnx2_free_rx_skbs(bp
);
4790 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
4794 rc
= bnx2_reset_chip(bp
, reset_code
);
4799 if ((rc
= bnx2_init_chip(bp
)) != 0)
4802 bnx2_clear_ring_states(bp
);
4803 bnx2_init_tx_ring(bp
);
4804 bnx2_init_rx_ring(bp
);
4809 bnx2_init_nic(struct bnx2
*bp
)
4813 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
4816 spin_lock_bh(&bp
->phy_lock
);
4819 spin_unlock_bh(&bp
->phy_lock
);
4824 bnx2_test_registers(struct bnx2
*bp
)
4828 static const struct {
4831 #define BNX2_FL_NOT_5709 1
4835 { 0x006c, 0, 0x00000000, 0x0000003f },
4836 { 0x0090, 0, 0xffffffff, 0x00000000 },
4837 { 0x0094, 0, 0x00000000, 0x00000000 },
4839 { 0x0404, BNX2_FL_NOT_5709
, 0x00003f00, 0x00000000 },
4840 { 0x0418, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
4841 { 0x041c, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
4842 { 0x0420, BNX2_FL_NOT_5709
, 0x00000000, 0x80ffffff },
4843 { 0x0424, BNX2_FL_NOT_5709
, 0x00000000, 0x00000000 },
4844 { 0x0428, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
4845 { 0x0450, BNX2_FL_NOT_5709
, 0x00000000, 0x0000ffff },
4846 { 0x0454, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
4847 { 0x0458, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
4849 { 0x0808, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
4850 { 0x0854, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
4851 { 0x0868, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
4852 { 0x086c, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
4853 { 0x0870, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
4854 { 0x0874, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
4856 { 0x0c00, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
4857 { 0x0c04, BNX2_FL_NOT_5709
, 0x00000000, 0x03ff0001 },
4858 { 0x0c08, BNX2_FL_NOT_5709
, 0x0f0ff073, 0x00000000 },
4860 { 0x1000, 0, 0x00000000, 0x00000001 },
4861 { 0x1004, 0, 0x00000000, 0x000f0001 },
4863 { 0x1408, 0, 0x01c00800, 0x00000000 },
4864 { 0x149c, 0, 0x8000ffff, 0x00000000 },
4865 { 0x14a8, 0, 0x00000000, 0x000001ff },
4866 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
4867 { 0x14b0, 0, 0x00000002, 0x00000001 },
4868 { 0x14b8, 0, 0x00000000, 0x00000000 },
4869 { 0x14c0, 0, 0x00000000, 0x00000009 },
4870 { 0x14c4, 0, 0x00003fff, 0x00000000 },
4871 { 0x14cc, 0, 0x00000000, 0x00000001 },
4872 { 0x14d0, 0, 0xffffffff, 0x00000000 },
4874 { 0x1800, 0, 0x00000000, 0x00000001 },
4875 { 0x1804, 0, 0x00000000, 0x00000003 },
4877 { 0x2800, 0, 0x00000000, 0x00000001 },
4878 { 0x2804, 0, 0x00000000, 0x00003f01 },
4879 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
4880 { 0x2810, 0, 0xffff0000, 0x00000000 },
4881 { 0x2814, 0, 0xffff0000, 0x00000000 },
4882 { 0x2818, 0, 0xffff0000, 0x00000000 },
4883 { 0x281c, 0, 0xffff0000, 0x00000000 },
4884 { 0x2834, 0, 0xffffffff, 0x00000000 },
4885 { 0x2840, 0, 0x00000000, 0xffffffff },
4886 { 0x2844, 0, 0x00000000, 0xffffffff },
4887 { 0x2848, 0, 0xffffffff, 0x00000000 },
4888 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
4890 { 0x2c00, 0, 0x00000000, 0x00000011 },
4891 { 0x2c04, 0, 0x00000000, 0x00030007 },
4893 { 0x3c00, 0, 0x00000000, 0x00000001 },
4894 { 0x3c04, 0, 0x00000000, 0x00070000 },
4895 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
4896 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
4897 { 0x3c10, 0, 0xffffffff, 0x00000000 },
4898 { 0x3c14, 0, 0x00000000, 0xffffffff },
4899 { 0x3c18, 0, 0x00000000, 0xffffffff },
4900 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
4901 { 0x3c20, 0, 0xffffff00, 0x00000000 },
4903 { 0x5004, 0, 0x00000000, 0x0000007f },
4904 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
4906 { 0x5c00, 0, 0x00000000, 0x00000001 },
4907 { 0x5c04, 0, 0x00000000, 0x0003000f },
4908 { 0x5c08, 0, 0x00000003, 0x00000000 },
4909 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
4910 { 0x5c10, 0, 0x00000000, 0xffffffff },
4911 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
4912 { 0x5c84, 0, 0x00000000, 0x0000f333 },
4913 { 0x5c88, 0, 0x00000000, 0x00077373 },
4914 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
4916 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
4917 { 0x680c, 0, 0xffffffff, 0x00000000 },
4918 { 0x6810, 0, 0xffffffff, 0x00000000 },
4919 { 0x6814, 0, 0xffffffff, 0x00000000 },
4920 { 0x6818, 0, 0xffffffff, 0x00000000 },
4921 { 0x681c, 0, 0xffffffff, 0x00000000 },
4922 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
4923 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
4924 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
4925 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
4926 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
4927 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
4928 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
4929 { 0x683c, 0, 0x0000ffff, 0x00000000 },
4930 { 0x6840, 0, 0x00000ff0, 0x00000000 },
4931 { 0x6844, 0, 0x00ffff00, 0x00000000 },
4932 { 0x684c, 0, 0xffffffff, 0x00000000 },
4933 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
4934 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
4935 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
4936 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
4937 { 0x6908, 0, 0x00000000, 0x0001ff0f },
4938 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
4940 { 0xffff, 0, 0x00000000, 0x00000000 },
4945 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
4948 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
4949 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
4950 u16 flags
= reg_tbl
[i
].flags
;
4952 if (is_5709
&& (flags
& BNX2_FL_NOT_5709
))
4955 offset
= (u32
) reg_tbl
[i
].offset
;
4956 rw_mask
= reg_tbl
[i
].rw_mask
;
4957 ro_mask
= reg_tbl
[i
].ro_mask
;
4959 save_val
= readl(bp
->regview
+ offset
);
4961 writel(0, bp
->regview
+ offset
);
4963 val
= readl(bp
->regview
+ offset
);
4964 if ((val
& rw_mask
) != 0) {
4968 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
4972 writel(0xffffffff, bp
->regview
+ offset
);
4974 val
= readl(bp
->regview
+ offset
);
4975 if ((val
& rw_mask
) != rw_mask
) {
4979 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
4983 writel(save_val
, bp
->regview
+ offset
);
4987 writel(save_val
, bp
->regview
+ offset
);
4995 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
4997 static const u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
4998 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5001 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
5004 for (offset
= 0; offset
< size
; offset
+= 4) {
5006 REG_WR_IND(bp
, start
+ offset
, test_pattern
[i
]);
5008 if (REG_RD_IND(bp
, start
+ offset
) !=
5018 bnx2_test_memory(struct bnx2
*bp
)
5022 static struct mem_entry
{
5025 } mem_tbl_5706
[] = {
5026 { 0x60000, 0x4000 },
5027 { 0xa0000, 0x3000 },
5028 { 0xe0000, 0x4000 },
5029 { 0x120000, 0x4000 },
5030 { 0x1a0000, 0x4000 },
5031 { 0x160000, 0x4000 },
5035 { 0x60000, 0x4000 },
5036 { 0xa0000, 0x3000 },
5037 { 0xe0000, 0x4000 },
5038 { 0x120000, 0x4000 },
5039 { 0x1a0000, 0x4000 },
5042 struct mem_entry
*mem_tbl
;
5044 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5045 mem_tbl
= mem_tbl_5709
;
5047 mem_tbl
= mem_tbl_5706
;
5049 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
5050 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
5051 mem_tbl
[i
].len
)) != 0) {
5059 #define BNX2_MAC_LOOPBACK 0
5060 #define BNX2_PHY_LOOPBACK 1
5063 bnx2_run_loopback(struct bnx2
*bp
, int loopback_mode
)
5065 unsigned int pkt_size
, num_pkts
, i
;
5066 struct sk_buff
*skb
, *rx_skb
;
5067 unsigned char *packet
;
5068 u16 rx_start_idx
, rx_idx
;
5071 struct sw_bd
*rx_buf
;
5072 struct l2_fhdr
*rx_hdr
;
5074 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0], *tx_napi
;
5077 if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
5078 tx_napi
= &bp
->bnx2_napi
[BNX2_TX_VEC
];
5080 if (loopback_mode
== BNX2_MAC_LOOPBACK
) {
5081 bp
->loopback
= MAC_LOOPBACK
;
5082 bnx2_set_mac_loopback(bp
);
5084 else if (loopback_mode
== BNX2_PHY_LOOPBACK
) {
5085 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5088 bp
->loopback
= PHY_LOOPBACK
;
5089 bnx2_set_phy_loopback(bp
);
5094 pkt_size
= min(bp
->dev
->mtu
+ ETH_HLEN
, bp
->rx_jumbo_thresh
- 4);
5095 skb
= netdev_alloc_skb(bp
->dev
, pkt_size
);
5098 packet
= skb_put(skb
, pkt_size
);
5099 memcpy(packet
, bp
->dev
->dev_addr
, 6);
5100 memset(packet
+ 6, 0x0, 8);
5101 for (i
= 14; i
< pkt_size
; i
++)
5102 packet
[i
] = (unsigned char) (i
& 0xff);
5104 map
= pci_map_single(bp
->pdev
, skb
->data
, pkt_size
,
5107 REG_WR(bp
, BNX2_HC_COMMAND
,
5108 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5110 REG_RD(bp
, BNX2_HC_COMMAND
);
5113 rx_start_idx
= bnx2_get_hw_rx_cons(bnapi
);
5117 txbd
= &bp
->tx_desc_ring
[TX_RING_IDX(bp
->tx_prod
)];
5119 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
5120 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
5121 txbd
->tx_bd_mss_nbytes
= pkt_size
;
5122 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
5125 bp
->tx_prod
= NEXT_TX_BD(bp
->tx_prod
);
5126 bp
->tx_prod_bseq
+= pkt_size
;
5128 REG_WR16(bp
, bp
->tx_bidx_addr
, bp
->tx_prod
);
5129 REG_WR(bp
, bp
->tx_bseq_addr
, bp
->tx_prod_bseq
);
5133 REG_WR(bp
, BNX2_HC_COMMAND
,
5134 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5136 REG_RD(bp
, BNX2_HC_COMMAND
);
5140 pci_unmap_single(bp
->pdev
, map
, pkt_size
, PCI_DMA_TODEVICE
);
5143 if (bnx2_get_hw_tx_cons(tx_napi
) != bp
->tx_prod
)
5144 goto loopback_test_done
;
5146 rx_idx
= bnx2_get_hw_rx_cons(bnapi
);
5147 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
5148 goto loopback_test_done
;
5151 rx_buf
= &bp
->rx_buf_ring
[rx_start_idx
];
5152 rx_skb
= rx_buf
->skb
;
5154 rx_hdr
= (struct l2_fhdr
*) rx_skb
->data
;
5155 skb_reserve(rx_skb
, bp
->rx_offset
);
5157 pci_dma_sync_single_for_cpu(bp
->pdev
,
5158 pci_unmap_addr(rx_buf
, mapping
),
5159 bp
->rx_buf_size
, PCI_DMA_FROMDEVICE
);
5161 if (rx_hdr
->l2_fhdr_status
&
5162 (L2_FHDR_ERRORS_BAD_CRC
|
5163 L2_FHDR_ERRORS_PHY_DECODE
|
5164 L2_FHDR_ERRORS_ALIGNMENT
|
5165 L2_FHDR_ERRORS_TOO_SHORT
|
5166 L2_FHDR_ERRORS_GIANT_FRAME
)) {
5168 goto loopback_test_done
;
5171 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
5172 goto loopback_test_done
;
5175 for (i
= 14; i
< pkt_size
; i
++) {
5176 if (*(rx_skb
->data
+ i
) != (unsigned char) (i
& 0xff)) {
5177 goto loopback_test_done
;
5188 #define BNX2_MAC_LOOPBACK_FAILED 1
5189 #define BNX2_PHY_LOOPBACK_FAILED 2
5190 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5191 BNX2_PHY_LOOPBACK_FAILED)
5194 bnx2_test_loopback(struct bnx2
*bp
)
5198 if (!netif_running(bp
->dev
))
5199 return BNX2_LOOPBACK_FAILED
;
5201 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
5202 spin_lock_bh(&bp
->phy_lock
);
5204 spin_unlock_bh(&bp
->phy_lock
);
5205 if (bnx2_run_loopback(bp
, BNX2_MAC_LOOPBACK
))
5206 rc
|= BNX2_MAC_LOOPBACK_FAILED
;
5207 if (bnx2_run_loopback(bp
, BNX2_PHY_LOOPBACK
))
5208 rc
|= BNX2_PHY_LOOPBACK_FAILED
;
5212 #define NVRAM_SIZE 0x200
5213 #define CRC32_RESIDUAL 0xdebb20e3
5216 bnx2_test_nvram(struct bnx2
*bp
)
5218 __be32 buf
[NVRAM_SIZE
/ 4];
5219 u8
*data
= (u8
*) buf
;
5223 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
5224 goto test_nvram_done
;
5226 magic
= be32_to_cpu(buf
[0]);
5227 if (magic
!= 0x669955aa) {
5229 goto test_nvram_done
;
5232 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
5233 goto test_nvram_done
;
5235 csum
= ether_crc_le(0x100, data
);
5236 if (csum
!= CRC32_RESIDUAL
) {
5238 goto test_nvram_done
;
5241 csum
= ether_crc_le(0x100, data
+ 0x100);
5242 if (csum
!= CRC32_RESIDUAL
) {
5251 bnx2_test_link(struct bnx2
*bp
)
5255 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
5260 spin_lock_bh(&bp
->phy_lock
);
5261 bnx2_enable_bmsr1(bp
);
5262 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5263 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5264 bnx2_disable_bmsr1(bp
);
5265 spin_unlock_bh(&bp
->phy_lock
);
5267 if (bmsr
& BMSR_LSTATUS
) {
5274 bnx2_test_intr(struct bnx2
*bp
)
5279 if (!netif_running(bp
->dev
))
5282 status_idx
= REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
5284 /* This register is not touched during run-time. */
5285 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
5286 REG_RD(bp
, BNX2_HC_COMMAND
);
5288 for (i
= 0; i
< 10; i
++) {
5289 if ((REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
5295 msleep_interruptible(10);
5304 bnx2_5706_serdes_has_link(struct bnx2
*bp
)
5306 u32 mode_ctl
, an_dbg
, exp
;
5308 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_MODE_CTL
);
5309 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &mode_ctl
);
5311 if (!(mode_ctl
& MISC_SHDW_MODE_CTL_SIG_DET
))
5314 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5315 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5316 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5318 if (an_dbg
& MISC_SHDW_AN_DBG_NOSYNC
)
5321 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_REG1
);
5322 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5323 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5325 if (exp
& MII_EXPAND_REG1_RUDI_C
) /* receiving CONFIG */
5332 bnx2_5706_serdes_timer(struct bnx2
*bp
)
5336 spin_lock(&bp
->phy_lock
);
5337 if (bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
) {
5338 bnx2_5706s_force_link_dn(bp
, 0);
5339 bp
->phy_flags
&= ~BNX2_PHY_FLAG_FORCED_DOWN
;
5340 spin_unlock(&bp
->phy_lock
);
5344 if (bp
->serdes_an_pending
) {
5345 bp
->serdes_an_pending
--;
5347 } else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
5350 bp
->current_interval
= bp
->timer_interval
;
5352 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5354 if (bmcr
& BMCR_ANENABLE
) {
5355 if (bnx2_5706_serdes_has_link(bp
)) {
5356 bmcr
&= ~BMCR_ANENABLE
;
5357 bmcr
|= BMCR_SPEED1000
| BMCR_FULLDPLX
;
5358 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5359 bp
->phy_flags
|= BNX2_PHY_FLAG_PARALLEL_DETECT
;
5363 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
5364 (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)) {
5368 bnx2_write_phy(bp
, 0x17, 0x0f01);
5369 bnx2_read_phy(bp
, 0x15, &phy2
);
5373 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5374 bmcr
|= BMCR_ANENABLE
;
5375 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5377 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
5380 bp
->current_interval
= bp
->timer_interval
;
5382 if (bp
->link_up
&& (bp
->autoneg
& AUTONEG_SPEED
) && check_link
) {
5385 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5386 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
5387 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
5389 if (val
& MISC_SHDW_AN_DBG_NOSYNC
) {
5390 bnx2_5706s_force_link_dn(bp
, 1);
5391 bp
->phy_flags
|= BNX2_PHY_FLAG_FORCED_DOWN
;
5394 spin_unlock(&bp
->phy_lock
);
5398 bnx2_5708_serdes_timer(struct bnx2
*bp
)
5400 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5403 if ((bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) == 0) {
5404 bp
->serdes_an_pending
= 0;
5408 spin_lock(&bp
->phy_lock
);
5409 if (bp
->serdes_an_pending
)
5410 bp
->serdes_an_pending
--;
5411 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
5414 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5415 if (bmcr
& BMCR_ANENABLE
) {
5416 bnx2_enable_forced_2g5(bp
);
5417 bp
->current_interval
= SERDES_FORCED_TIMEOUT
;
5419 bnx2_disable_forced_2g5(bp
);
5420 bp
->serdes_an_pending
= 2;
5421 bp
->current_interval
= bp
->timer_interval
;
5425 bp
->current_interval
= bp
->timer_interval
;
5427 spin_unlock(&bp
->phy_lock
);
5431 bnx2_timer(unsigned long data
)
5433 struct bnx2
*bp
= (struct bnx2
*) data
;
5435 if (!netif_running(bp
->dev
))
5438 if (atomic_read(&bp
->intr_sem
) != 0)
5439 goto bnx2_restart_timer
;
5441 bnx2_send_heart_beat(bp
);
5443 bp
->stats_blk
->stat_FwRxDrop
= REG_RD_IND(bp
, BNX2_FW_RX_DROP_COUNT
);
5445 /* workaround occasional corrupted counters */
5446 if (CHIP_NUM(bp
) == CHIP_NUM_5708
&& bp
->stats_ticks
)
5447 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
|
5448 BNX2_HC_COMMAND_STATS_NOW
);
5450 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
5451 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
5452 bnx2_5706_serdes_timer(bp
);
5454 bnx2_5708_serdes_timer(bp
);
5458 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
5462 bnx2_request_irq(struct bnx2
*bp
)
5464 struct net_device
*dev
= bp
->dev
;
5465 unsigned long flags
;
5466 struct bnx2_irq
*irq
;
5469 if (bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)
5472 flags
= IRQF_SHARED
;
5474 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
5475 irq
= &bp
->irq_tbl
[i
];
5476 rc
= request_irq(irq
->vector
, irq
->handler
, flags
, irq
->name
,
5486 bnx2_free_irq(struct bnx2
*bp
)
5488 struct net_device
*dev
= bp
->dev
;
5489 struct bnx2_irq
*irq
;
5492 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
5493 irq
= &bp
->irq_tbl
[i
];
5495 free_irq(irq
->vector
, dev
);
5498 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
5499 pci_disable_msi(bp
->pdev
);
5500 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
5501 pci_disable_msix(bp
->pdev
);
5503 bp
->flags
&= ~(BNX2_FLAG_USING_MSI_OR_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
);
5507 bnx2_enable_msix(struct bnx2
*bp
)
5510 struct msix_entry msix_ent
[BNX2_MAX_MSIX_VEC
];
5512 bnx2_setup_msix_tbl(bp
);
5513 REG_WR(bp
, BNX2_PCI_MSIX_CONTROL
, BNX2_MAX_MSIX_HW_VEC
- 1);
5514 REG_WR(bp
, BNX2_PCI_MSIX_TBL_OFF_BIR
, BNX2_PCI_GRC_WINDOW2_BASE
);
5515 REG_WR(bp
, BNX2_PCI_MSIX_PBA_OFF_BIT
, BNX2_PCI_GRC_WINDOW3_BASE
);
5517 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
5518 msix_ent
[i
].entry
= i
;
5519 msix_ent
[i
].vector
= 0;
5522 rc
= pci_enable_msix(bp
->pdev
, msix_ent
, BNX2_MAX_MSIX_VEC
);
5526 bp
->irq_tbl
[BNX2_BASE_VEC
].handler
= bnx2_msi_1shot
;
5527 bp
->irq_tbl
[BNX2_TX_VEC
].handler
= bnx2_tx_msix
;
5529 strcpy(bp
->irq_tbl
[BNX2_BASE_VEC
].name
, bp
->dev
->name
);
5530 strcat(bp
->irq_tbl
[BNX2_BASE_VEC
].name
, "-base");
5531 strcpy(bp
->irq_tbl
[BNX2_TX_VEC
].name
, bp
->dev
->name
);
5532 strcat(bp
->irq_tbl
[BNX2_TX_VEC
].name
, "-tx");
5534 bp
->irq_nvecs
= BNX2_MAX_MSIX_VEC
;
5535 bp
->flags
|= BNX2_FLAG_USING_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
;
5536 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
5537 bp
->irq_tbl
[i
].vector
= msix_ent
[i
].vector
;
5541 bnx2_setup_int_mode(struct bnx2
*bp
, int dis_msi
)
5543 bp
->irq_tbl
[0].handler
= bnx2_interrupt
;
5544 strcpy(bp
->irq_tbl
[0].name
, bp
->dev
->name
);
5546 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
5548 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !dis_msi
)
5549 bnx2_enable_msix(bp
);
5551 if ((bp
->flags
& BNX2_FLAG_MSI_CAP
) && !dis_msi
&&
5552 !(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
5553 if (pci_enable_msi(bp
->pdev
) == 0) {
5554 bp
->flags
|= BNX2_FLAG_USING_MSI
;
5555 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5556 bp
->flags
|= BNX2_FLAG_ONE_SHOT_MSI
;
5557 bp
->irq_tbl
[0].handler
= bnx2_msi_1shot
;
5559 bp
->irq_tbl
[0].handler
= bnx2_msi
;
5561 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
5566 /* Called with rtnl_lock */
5568 bnx2_open(struct net_device
*dev
)
5570 struct bnx2
*bp
= netdev_priv(dev
);
5573 netif_carrier_off(dev
);
5575 bnx2_set_power_state(bp
, PCI_D0
);
5576 bnx2_disable_int(bp
);
5578 rc
= bnx2_alloc_mem(bp
);
5582 bnx2_setup_int_mode(bp
, disable_msi
);
5583 bnx2_napi_enable(bp
);
5584 rc
= bnx2_request_irq(bp
);
5587 bnx2_napi_disable(bp
);
5592 rc
= bnx2_init_nic(bp
);
5595 bnx2_napi_disable(bp
);
5602 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
5604 atomic_set(&bp
->intr_sem
, 0);
5606 bnx2_enable_int(bp
);
5608 if (bp
->flags
& BNX2_FLAG_USING_MSI
) {
5609 /* Test MSI to make sure it is working
5610 * If MSI test fails, go back to INTx mode
5612 if (bnx2_test_intr(bp
) != 0) {
5613 printk(KERN_WARNING PFX
"%s: No interrupt was generated"
5614 " using MSI, switching to INTx mode. Please"
5615 " report this failure to the PCI maintainer"
5616 " and include system chipset information.\n",
5619 bnx2_disable_int(bp
);
5622 bnx2_setup_int_mode(bp
, 1);
5624 rc
= bnx2_init_nic(bp
);
5627 rc
= bnx2_request_irq(bp
);
5630 bnx2_napi_disable(bp
);
5633 del_timer_sync(&bp
->timer
);
5636 bnx2_enable_int(bp
);
5639 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
5640 printk(KERN_INFO PFX
"%s: using MSI\n", dev
->name
);
5641 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
5642 printk(KERN_INFO PFX
"%s: using MSIX\n", dev
->name
);
5644 netif_start_queue(dev
);
5650 bnx2_reset_task(struct work_struct
*work
)
5652 struct bnx2
*bp
= container_of(work
, struct bnx2
, reset_task
);
5654 if (!netif_running(bp
->dev
))
5657 bp
->in_reset_task
= 1;
5658 bnx2_netif_stop(bp
);
5662 atomic_set(&bp
->intr_sem
, 1);
5663 bnx2_netif_start(bp
);
5664 bp
->in_reset_task
= 0;
5668 bnx2_tx_timeout(struct net_device
*dev
)
5670 struct bnx2
*bp
= netdev_priv(dev
);
5672 /* This allows the netif to be shutdown gracefully before resetting */
5673 schedule_work(&bp
->reset_task
);
5677 /* Called with rtnl_lock */
5679 bnx2_vlan_rx_register(struct net_device
*dev
, struct vlan_group
*vlgrp
)
5681 struct bnx2
*bp
= netdev_priv(dev
);
5683 bnx2_netif_stop(bp
);
5686 bnx2_set_rx_mode(dev
);
5688 bnx2_netif_start(bp
);
5692 /* Called with netif_tx_lock.
5693 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
5694 * netif_wake_queue().
5697 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
5699 struct bnx2
*bp
= netdev_priv(dev
);
5702 struct sw_bd
*tx_buf
;
5703 u32 len
, vlan_tag_flags
, last_frag
, mss
;
5704 u16 prod
, ring_prod
;
5706 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[bp
->tx_vec
];
5708 if (unlikely(bnx2_tx_avail(bp
, bnapi
) <
5709 (skb_shinfo(skb
)->nr_frags
+ 1))) {
5710 netif_stop_queue(dev
);
5711 printk(KERN_ERR PFX
"%s: BUG! Tx ring full when queue awake!\n",
5714 return NETDEV_TX_BUSY
;
5716 len
= skb_headlen(skb
);
5718 ring_prod
= TX_RING_IDX(prod
);
5721 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
5722 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
5725 if (bp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
5727 (TX_BD_FLAGS_VLAN_TAG
| (vlan_tx_tag_get(skb
) << 16));
5729 if ((mss
= skb_shinfo(skb
)->gso_size
)) {
5730 u32 tcp_opt_len
, ip_tcp_len
;
5733 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
5735 tcp_opt_len
= tcp_optlen(skb
);
5737 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
) {
5738 u32 tcp_off
= skb_transport_offset(skb
) -
5739 sizeof(struct ipv6hdr
) - ETH_HLEN
;
5741 vlan_tag_flags
|= ((tcp_opt_len
>> 2) << 8) |
5742 TX_BD_FLAGS_SW_FLAGS
;
5743 if (likely(tcp_off
== 0))
5744 vlan_tag_flags
&= ~TX_BD_FLAGS_TCP6_OFF0_MSK
;
5747 vlan_tag_flags
|= ((tcp_off
& 0x3) <<
5748 TX_BD_FLAGS_TCP6_OFF0_SHL
) |
5749 ((tcp_off
& 0x10) <<
5750 TX_BD_FLAGS_TCP6_OFF4_SHL
);
5751 mss
|= (tcp_off
& 0xc) << TX_BD_TCP6_OFF2_SHL
;
5754 if (skb_header_cloned(skb
) &&
5755 pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
)) {
5757 return NETDEV_TX_OK
;
5760 ip_tcp_len
= ip_hdrlen(skb
) + sizeof(struct tcphdr
);
5764 iph
->tot_len
= htons(mss
+ ip_tcp_len
+ tcp_opt_len
);
5765 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
5769 if (tcp_opt_len
|| (iph
->ihl
> 5)) {
5770 vlan_tag_flags
|= ((iph
->ihl
- 5) +
5771 (tcp_opt_len
>> 2)) << 8;
5777 mapping
= pci_map_single(bp
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
5779 tx_buf
= &bp
->tx_buf_ring
[ring_prod
];
5781 pci_unmap_addr_set(tx_buf
, mapping
, mapping
);
5783 txbd
= &bp
->tx_desc_ring
[ring_prod
];
5785 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
5786 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
5787 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
5788 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
5790 last_frag
= skb_shinfo(skb
)->nr_frags
;
5792 for (i
= 0; i
< last_frag
; i
++) {
5793 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
5795 prod
= NEXT_TX_BD(prod
);
5796 ring_prod
= TX_RING_IDX(prod
);
5797 txbd
= &bp
->tx_desc_ring
[ring_prod
];
5800 mapping
= pci_map_page(bp
->pdev
, frag
->page
, frag
->page_offset
,
5801 len
, PCI_DMA_TODEVICE
);
5802 pci_unmap_addr_set(&bp
->tx_buf_ring
[ring_prod
],
5805 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
5806 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
5807 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
5808 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
5811 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
5813 prod
= NEXT_TX_BD(prod
);
5814 bp
->tx_prod_bseq
+= skb
->len
;
5816 REG_WR16(bp
, bp
->tx_bidx_addr
, prod
);
5817 REG_WR(bp
, bp
->tx_bseq_addr
, bp
->tx_prod_bseq
);
5822 dev
->trans_start
= jiffies
;
5824 if (unlikely(bnx2_tx_avail(bp
, bnapi
) <= MAX_SKB_FRAGS
)) {
5825 netif_stop_queue(dev
);
5826 if (bnx2_tx_avail(bp
, bnapi
) > bp
->tx_wake_thresh
)
5827 netif_wake_queue(dev
);
5830 return NETDEV_TX_OK
;
5833 /* Called with rtnl_lock */
5835 bnx2_close(struct net_device
*dev
)
5837 struct bnx2
*bp
= netdev_priv(dev
);
5840 /* Calling flush_scheduled_work() may deadlock because
5841 * linkwatch_event() may be on the workqueue and it will try to get
5842 * the rtnl_lock which we are holding.
5844 while (bp
->in_reset_task
)
5847 bnx2_disable_int_sync(bp
);
5848 bnx2_napi_disable(bp
);
5849 del_timer_sync(&bp
->timer
);
5850 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
5851 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
5853 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
5855 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
5856 bnx2_reset_chip(bp
, reset_code
);
5861 netif_carrier_off(bp
->dev
);
5862 bnx2_set_power_state(bp
, PCI_D3hot
);
5866 #define GET_NET_STATS64(ctr) \
5867 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
5868 (unsigned long) (ctr##_lo)
5870 #define GET_NET_STATS32(ctr) \
5873 #if (BITS_PER_LONG == 64)
5874 #define GET_NET_STATS GET_NET_STATS64
5876 #define GET_NET_STATS GET_NET_STATS32
5879 static struct net_device_stats
*
5880 bnx2_get_stats(struct net_device
*dev
)
5882 struct bnx2
*bp
= netdev_priv(dev
);
5883 struct statistics_block
*stats_blk
= bp
->stats_blk
;
5884 struct net_device_stats
*net_stats
= &bp
->net_stats
;
5886 if (bp
->stats_blk
== NULL
) {
5889 net_stats
->rx_packets
=
5890 GET_NET_STATS(stats_blk
->stat_IfHCInUcastPkts
) +
5891 GET_NET_STATS(stats_blk
->stat_IfHCInMulticastPkts
) +
5892 GET_NET_STATS(stats_blk
->stat_IfHCInBroadcastPkts
);
5894 net_stats
->tx_packets
=
5895 GET_NET_STATS(stats_blk
->stat_IfHCOutUcastPkts
) +
5896 GET_NET_STATS(stats_blk
->stat_IfHCOutMulticastPkts
) +
5897 GET_NET_STATS(stats_blk
->stat_IfHCOutBroadcastPkts
);
5899 net_stats
->rx_bytes
=
5900 GET_NET_STATS(stats_blk
->stat_IfHCInOctets
);
5902 net_stats
->tx_bytes
=
5903 GET_NET_STATS(stats_blk
->stat_IfHCOutOctets
);
5905 net_stats
->multicast
=
5906 GET_NET_STATS(stats_blk
->stat_IfHCOutMulticastPkts
);
5908 net_stats
->collisions
=
5909 (unsigned long) stats_blk
->stat_EtherStatsCollisions
;
5911 net_stats
->rx_length_errors
=
5912 (unsigned long) (stats_blk
->stat_EtherStatsUndersizePkts
+
5913 stats_blk
->stat_EtherStatsOverrsizePkts
);
5915 net_stats
->rx_over_errors
=
5916 (unsigned long) stats_blk
->stat_IfInMBUFDiscards
;
5918 net_stats
->rx_frame_errors
=
5919 (unsigned long) stats_blk
->stat_Dot3StatsAlignmentErrors
;
5921 net_stats
->rx_crc_errors
=
5922 (unsigned long) stats_blk
->stat_Dot3StatsFCSErrors
;
5924 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
5925 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
5926 net_stats
->rx_crc_errors
;
5928 net_stats
->tx_aborted_errors
=
5929 (unsigned long) (stats_blk
->stat_Dot3StatsExcessiveCollisions
+
5930 stats_blk
->stat_Dot3StatsLateCollisions
);
5932 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) ||
5933 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
5934 net_stats
->tx_carrier_errors
= 0;
5936 net_stats
->tx_carrier_errors
=
5938 stats_blk
->stat_Dot3StatsCarrierSenseErrors
;
5941 net_stats
->tx_errors
=
5943 stats_blk
->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
5945 net_stats
->tx_aborted_errors
+
5946 net_stats
->tx_carrier_errors
;
5948 net_stats
->rx_missed_errors
=
5949 (unsigned long) (stats_blk
->stat_IfInMBUFDiscards
+
5950 stats_blk
->stat_FwRxDrop
);
5955 /* All ethtool functions called with rtnl_lock */
5958 bnx2_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
5960 struct bnx2
*bp
= netdev_priv(dev
);
5961 int support_serdes
= 0, support_copper
= 0;
5963 cmd
->supported
= SUPPORTED_Autoneg
;
5964 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
5967 } else if (bp
->phy_port
== PORT_FIBRE
)
5972 if (support_serdes
) {
5973 cmd
->supported
|= SUPPORTED_1000baseT_Full
|
5975 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
5976 cmd
->supported
|= SUPPORTED_2500baseX_Full
;
5979 if (support_copper
) {
5980 cmd
->supported
|= SUPPORTED_10baseT_Half
|
5981 SUPPORTED_10baseT_Full
|
5982 SUPPORTED_100baseT_Half
|
5983 SUPPORTED_100baseT_Full
|
5984 SUPPORTED_1000baseT_Full
|
5989 spin_lock_bh(&bp
->phy_lock
);
5990 cmd
->port
= bp
->phy_port
;
5991 cmd
->advertising
= bp
->advertising
;
5993 if (bp
->autoneg
& AUTONEG_SPEED
) {
5994 cmd
->autoneg
= AUTONEG_ENABLE
;
5997 cmd
->autoneg
= AUTONEG_DISABLE
;
6000 if (netif_carrier_ok(dev
)) {
6001 cmd
->speed
= bp
->line_speed
;
6002 cmd
->duplex
= bp
->duplex
;
6008 spin_unlock_bh(&bp
->phy_lock
);
6010 cmd
->transceiver
= XCVR_INTERNAL
;
6011 cmd
->phy_address
= bp
->phy_addr
;
6017 bnx2_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6019 struct bnx2
*bp
= netdev_priv(dev
);
6020 u8 autoneg
= bp
->autoneg
;
6021 u8 req_duplex
= bp
->req_duplex
;
6022 u16 req_line_speed
= bp
->req_line_speed
;
6023 u32 advertising
= bp
->advertising
;
6026 spin_lock_bh(&bp
->phy_lock
);
6028 if (cmd
->port
!= PORT_TP
&& cmd
->port
!= PORT_FIBRE
)
6029 goto err_out_unlock
;
6031 if (cmd
->port
!= bp
->phy_port
&&
6032 !(bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
))
6033 goto err_out_unlock
;
6035 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
6036 autoneg
|= AUTONEG_SPEED
;
6038 cmd
->advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
6040 /* allow advertising 1 speed */
6041 if ((cmd
->advertising
== ADVERTISED_10baseT_Half
) ||
6042 (cmd
->advertising
== ADVERTISED_10baseT_Full
) ||
6043 (cmd
->advertising
== ADVERTISED_100baseT_Half
) ||
6044 (cmd
->advertising
== ADVERTISED_100baseT_Full
)) {
6046 if (cmd
->port
== PORT_FIBRE
)
6047 goto err_out_unlock
;
6049 advertising
= cmd
->advertising
;
6051 } else if (cmd
->advertising
== ADVERTISED_2500baseX_Full
) {
6052 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) ||
6053 (cmd
->port
== PORT_TP
))
6054 goto err_out_unlock
;
6055 } else if (cmd
->advertising
== ADVERTISED_1000baseT_Full
)
6056 advertising
= cmd
->advertising
;
6057 else if (cmd
->advertising
== ADVERTISED_1000baseT_Half
)
6058 goto err_out_unlock
;
6060 if (cmd
->port
== PORT_FIBRE
)
6061 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
6063 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
6065 advertising
|= ADVERTISED_Autoneg
;
6068 if (cmd
->port
== PORT_FIBRE
) {
6069 if ((cmd
->speed
!= SPEED_1000
&&
6070 cmd
->speed
!= SPEED_2500
) ||
6071 (cmd
->duplex
!= DUPLEX_FULL
))
6072 goto err_out_unlock
;
6074 if (cmd
->speed
== SPEED_2500
&&
6075 !(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
6076 goto err_out_unlock
;
6078 else if (cmd
->speed
== SPEED_1000
|| cmd
->speed
== SPEED_2500
)
6079 goto err_out_unlock
;
6081 autoneg
&= ~AUTONEG_SPEED
;
6082 req_line_speed
= cmd
->speed
;
6083 req_duplex
= cmd
->duplex
;
6087 bp
->autoneg
= autoneg
;
6088 bp
->advertising
= advertising
;
6089 bp
->req_line_speed
= req_line_speed
;
6090 bp
->req_duplex
= req_duplex
;
6092 err
= bnx2_setup_phy(bp
, cmd
->port
);
6095 spin_unlock_bh(&bp
->phy_lock
);
6101 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
6103 struct bnx2
*bp
= netdev_priv(dev
);
6105 strcpy(info
->driver
, DRV_MODULE_NAME
);
6106 strcpy(info
->version
, DRV_MODULE_VERSION
);
6107 strcpy(info
->bus_info
, pci_name(bp
->pdev
));
6108 strcpy(info
->fw_version
, bp
->fw_version
);
6111 #define BNX2_REGDUMP_LEN (32 * 1024)
6114 bnx2_get_regs_len(struct net_device
*dev
)
6116 return BNX2_REGDUMP_LEN
;
6120 bnx2_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *_p
)
6122 u32
*p
= _p
, i
, offset
;
6124 struct bnx2
*bp
= netdev_priv(dev
);
6125 u32 reg_boundaries
[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6126 0x0800, 0x0880, 0x0c00, 0x0c10,
6127 0x0c30, 0x0d08, 0x1000, 0x101c,
6128 0x1040, 0x1048, 0x1080, 0x10a4,
6129 0x1400, 0x1490, 0x1498, 0x14f0,
6130 0x1500, 0x155c, 0x1580, 0x15dc,
6131 0x1600, 0x1658, 0x1680, 0x16d8,
6132 0x1800, 0x1820, 0x1840, 0x1854,
6133 0x1880, 0x1894, 0x1900, 0x1984,
6134 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6135 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6136 0x2000, 0x2030, 0x23c0, 0x2400,
6137 0x2800, 0x2820, 0x2830, 0x2850,
6138 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6139 0x3c00, 0x3c94, 0x4000, 0x4010,
6140 0x4080, 0x4090, 0x43c0, 0x4458,
6141 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6142 0x4fc0, 0x5010, 0x53c0, 0x5444,
6143 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6144 0x5fc0, 0x6000, 0x6400, 0x6428,
6145 0x6800, 0x6848, 0x684c, 0x6860,
6146 0x6888, 0x6910, 0x8000 };
6150 memset(p
, 0, BNX2_REGDUMP_LEN
);
6152 if (!netif_running(bp
->dev
))
6156 offset
= reg_boundaries
[0];
6158 while (offset
< BNX2_REGDUMP_LEN
) {
6159 *p
++ = REG_RD(bp
, offset
);
6161 if (offset
== reg_boundaries
[i
+ 1]) {
6162 offset
= reg_boundaries
[i
+ 2];
6163 p
= (u32
*) (orig_p
+ offset
);
6170 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6172 struct bnx2
*bp
= netdev_priv(dev
);
6174 if (bp
->flags
& BNX2_FLAG_NO_WOL
) {
6179 wol
->supported
= WAKE_MAGIC
;
6181 wol
->wolopts
= WAKE_MAGIC
;
6185 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
6189 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6191 struct bnx2
*bp
= netdev_priv(dev
);
6193 if (wol
->wolopts
& ~WAKE_MAGIC
)
6196 if (wol
->wolopts
& WAKE_MAGIC
) {
6197 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
6209 bnx2_nway_reset(struct net_device
*dev
)
6211 struct bnx2
*bp
= netdev_priv(dev
);
6214 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
6218 spin_lock_bh(&bp
->phy_lock
);
6220 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6223 rc
= bnx2_setup_remote_phy(bp
, bp
->phy_port
);
6224 spin_unlock_bh(&bp
->phy_lock
);
6228 /* Force a link down visible on the other side */
6229 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6230 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
6231 spin_unlock_bh(&bp
->phy_lock
);
6235 spin_lock_bh(&bp
->phy_lock
);
6237 bp
->current_interval
= SERDES_AN_TIMEOUT
;
6238 bp
->serdes_an_pending
= 1;
6239 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6242 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6243 bmcr
&= ~BMCR_LOOPBACK
;
6244 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
6246 spin_unlock_bh(&bp
->phy_lock
);
6252 bnx2_get_eeprom_len(struct net_device
*dev
)
6254 struct bnx2
*bp
= netdev_priv(dev
);
6256 if (bp
->flash_info
== NULL
)
6259 return (int) bp
->flash_size
;
6263 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
6266 struct bnx2
*bp
= netdev_priv(dev
);
6269 /* parameters already validated in ethtool_get_eeprom */
6271 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
6277 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
6280 struct bnx2
*bp
= netdev_priv(dev
);
6283 /* parameters already validated in ethtool_set_eeprom */
6285 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
6291 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
6293 struct bnx2
*bp
= netdev_priv(dev
);
6295 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
6297 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
6298 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
6299 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
6300 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
6302 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
6303 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
6304 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
6305 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
6307 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
6313 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
6315 struct bnx2
*bp
= netdev_priv(dev
);
6317 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
6318 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
6320 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
6321 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
6323 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
6324 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
6326 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
6327 if (bp
->rx_quick_cons_trip_int
> 0xff)
6328 bp
->rx_quick_cons_trip_int
= 0xff;
6330 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
6331 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
6333 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
6334 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
6336 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
6337 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
6339 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
6340 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
6343 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
6344 if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
6345 if (bp
->stats_ticks
!= 0 && bp
->stats_ticks
!= USEC_PER_SEC
)
6346 bp
->stats_ticks
= USEC_PER_SEC
;
6348 if (bp
->stats_ticks
> BNX2_HC_STATS_TICKS_HC_STAT_TICKS
)
6349 bp
->stats_ticks
= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
6350 bp
->stats_ticks
&= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
6352 if (netif_running(bp
->dev
)) {
6353 bnx2_netif_stop(bp
);
6355 bnx2_netif_start(bp
);
6362 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
6364 struct bnx2
*bp
= netdev_priv(dev
);
6366 ering
->rx_max_pending
= MAX_TOTAL_RX_DESC_CNT
;
6367 ering
->rx_mini_max_pending
= 0;
6368 ering
->rx_jumbo_max_pending
= MAX_TOTAL_RX_PG_DESC_CNT
;
6370 ering
->rx_pending
= bp
->rx_ring_size
;
6371 ering
->rx_mini_pending
= 0;
6372 ering
->rx_jumbo_pending
= bp
->rx_pg_ring_size
;
6374 ering
->tx_max_pending
= MAX_TX_DESC_CNT
;
6375 ering
->tx_pending
= bp
->tx_ring_size
;
6379 bnx2_change_ring_size(struct bnx2
*bp
, u32 rx
, u32 tx
)
6381 if (netif_running(bp
->dev
)) {
6382 bnx2_netif_stop(bp
);
6383 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
6388 bnx2_set_rx_ring_size(bp
, rx
);
6389 bp
->tx_ring_size
= tx
;
6391 if (netif_running(bp
->dev
)) {
6394 rc
= bnx2_alloc_mem(bp
);
6398 bnx2_netif_start(bp
);
6404 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
6406 struct bnx2
*bp
= netdev_priv(dev
);
6409 if ((ering
->rx_pending
> MAX_TOTAL_RX_DESC_CNT
) ||
6410 (ering
->tx_pending
> MAX_TX_DESC_CNT
) ||
6411 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
6415 rc
= bnx2_change_ring_size(bp
, ering
->rx_pending
, ering
->tx_pending
);
6420 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
6422 struct bnx2
*bp
= netdev_priv(dev
);
6424 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
6425 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
6426 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
6430 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
6432 struct bnx2
*bp
= netdev_priv(dev
);
6434 bp
->req_flow_ctrl
= 0;
6435 if (epause
->rx_pause
)
6436 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
6437 if (epause
->tx_pause
)
6438 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
6440 if (epause
->autoneg
) {
6441 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
6444 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
6447 spin_lock_bh(&bp
->phy_lock
);
6449 bnx2_setup_phy(bp
, bp
->phy_port
);
6451 spin_unlock_bh(&bp
->phy_lock
);
6457 bnx2_get_rx_csum(struct net_device
*dev
)
6459 struct bnx2
*bp
= netdev_priv(dev
);
6465 bnx2_set_rx_csum(struct net_device
*dev
, u32 data
)
6467 struct bnx2
*bp
= netdev_priv(dev
);
6474 bnx2_set_tso(struct net_device
*dev
, u32 data
)
6476 struct bnx2
*bp
= netdev_priv(dev
);
6479 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
6480 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
6481 dev
->features
|= NETIF_F_TSO6
;
6483 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
|
6488 #define BNX2_NUM_STATS 46
6491 char string
[ETH_GSTRING_LEN
];
6492 } bnx2_stats_str_arr
[BNX2_NUM_STATS
] = {
6494 { "rx_error_bytes" },
6496 { "tx_error_bytes" },
6497 { "rx_ucast_packets" },
6498 { "rx_mcast_packets" },
6499 { "rx_bcast_packets" },
6500 { "tx_ucast_packets" },
6501 { "tx_mcast_packets" },
6502 { "tx_bcast_packets" },
6503 { "tx_mac_errors" },
6504 { "tx_carrier_errors" },
6505 { "rx_crc_errors" },
6506 { "rx_align_errors" },
6507 { "tx_single_collisions" },
6508 { "tx_multi_collisions" },
6510 { "tx_excess_collisions" },
6511 { "tx_late_collisions" },
6512 { "tx_total_collisions" },
6515 { "rx_undersize_packets" },
6516 { "rx_oversize_packets" },
6517 { "rx_64_byte_packets" },
6518 { "rx_65_to_127_byte_packets" },
6519 { "rx_128_to_255_byte_packets" },
6520 { "rx_256_to_511_byte_packets" },
6521 { "rx_512_to_1023_byte_packets" },
6522 { "rx_1024_to_1522_byte_packets" },
6523 { "rx_1523_to_9022_byte_packets" },
6524 { "tx_64_byte_packets" },
6525 { "tx_65_to_127_byte_packets" },
6526 { "tx_128_to_255_byte_packets" },
6527 { "tx_256_to_511_byte_packets" },
6528 { "tx_512_to_1023_byte_packets" },
6529 { "tx_1024_to_1522_byte_packets" },
6530 { "tx_1523_to_9022_byte_packets" },
6531 { "rx_xon_frames" },
6532 { "rx_xoff_frames" },
6533 { "tx_xon_frames" },
6534 { "tx_xoff_frames" },
6535 { "rx_mac_ctrl_frames" },
6536 { "rx_filtered_packets" },
6538 { "rx_fw_discards" },
6541 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
6543 static const unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
6544 STATS_OFFSET32(stat_IfHCInOctets_hi
),
6545 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
6546 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
6547 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
6548 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
6549 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
6550 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
6551 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
6552 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
6553 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
6554 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
6555 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
6556 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
6557 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
6558 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
6559 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
6560 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
6561 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
6562 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
6563 STATS_OFFSET32(stat_EtherStatsCollisions
),
6564 STATS_OFFSET32(stat_EtherStatsFragments
),
6565 STATS_OFFSET32(stat_EtherStatsJabbers
),
6566 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
6567 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
6568 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
6569 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
6570 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
6571 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
6572 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
6573 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
6574 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
6575 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
6576 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
6577 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
6578 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
6579 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
6580 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
6581 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
6582 STATS_OFFSET32(stat_XonPauseFramesReceived
),
6583 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
6584 STATS_OFFSET32(stat_OutXonSent
),
6585 STATS_OFFSET32(stat_OutXoffSent
),
6586 STATS_OFFSET32(stat_MacControlFramesReceived
),
6587 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
6588 STATS_OFFSET32(stat_IfInMBUFDiscards
),
6589 STATS_OFFSET32(stat_FwRxDrop
),
6592 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
6593 * skipped because of errata.
6595 static u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
6596 8,0,8,8,8,8,8,8,8,8,
6597 4,0,4,4,4,4,4,4,4,4,
6598 4,4,4,4,4,4,4,4,4,4,
6599 4,4,4,4,4,4,4,4,4,4,
6603 static u8 bnx2_5708_stats_len_arr
[BNX2_NUM_STATS
] = {
6604 8,0,8,8,8,8,8,8,8,8,
6605 4,4,4,4,4,4,4,4,4,4,
6606 4,4,4,4,4,4,4,4,4,4,
6607 4,4,4,4,4,4,4,4,4,4,
6611 #define BNX2_NUM_TESTS 6
6614 char string
[ETH_GSTRING_LEN
];
6615 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
6616 { "register_test (offline)" },
6617 { "memory_test (offline)" },
6618 { "loopback_test (offline)" },
6619 { "nvram_test (online)" },
6620 { "interrupt_test (online)" },
6621 { "link_test (online)" },
6625 bnx2_get_sset_count(struct net_device
*dev
, int sset
)
6629 return BNX2_NUM_TESTS
;
6631 return BNX2_NUM_STATS
;
6638 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
6640 struct bnx2
*bp
= netdev_priv(dev
);
6642 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
6643 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
6646 bnx2_netif_stop(bp
);
6647 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
6650 if (bnx2_test_registers(bp
) != 0) {
6652 etest
->flags
|= ETH_TEST_FL_FAILED
;
6654 if (bnx2_test_memory(bp
) != 0) {
6656 etest
->flags
|= ETH_TEST_FL_FAILED
;
6658 if ((buf
[2] = bnx2_test_loopback(bp
)) != 0)
6659 etest
->flags
|= ETH_TEST_FL_FAILED
;
6661 if (!netif_running(bp
->dev
)) {
6662 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
6666 bnx2_netif_start(bp
);
6669 /* wait for link up */
6670 for (i
= 0; i
< 7; i
++) {
6673 msleep_interruptible(1000);
6677 if (bnx2_test_nvram(bp
) != 0) {
6679 etest
->flags
|= ETH_TEST_FL_FAILED
;
6681 if (bnx2_test_intr(bp
) != 0) {
6683 etest
->flags
|= ETH_TEST_FL_FAILED
;
6686 if (bnx2_test_link(bp
) != 0) {
6688 etest
->flags
|= ETH_TEST_FL_FAILED
;
6694 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
6696 switch (stringset
) {
6698 memcpy(buf
, bnx2_stats_str_arr
,
6699 sizeof(bnx2_stats_str_arr
));
6702 memcpy(buf
, bnx2_tests_str_arr
,
6703 sizeof(bnx2_tests_str_arr
));
6709 bnx2_get_ethtool_stats(struct net_device
*dev
,
6710 struct ethtool_stats
*stats
, u64
*buf
)
6712 struct bnx2
*bp
= netdev_priv(dev
);
6714 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
6715 u8
*stats_len_arr
= NULL
;
6717 if (hw_stats
== NULL
) {
6718 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
6722 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
6723 (CHIP_ID(bp
) == CHIP_ID_5706_A1
) ||
6724 (CHIP_ID(bp
) == CHIP_ID_5706_A2
) ||
6725 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
6726 stats_len_arr
= bnx2_5706_stats_len_arr
;
6728 stats_len_arr
= bnx2_5708_stats_len_arr
;
6730 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
6731 if (stats_len_arr
[i
] == 0) {
6732 /* skip this counter */
6736 if (stats_len_arr
[i
] == 4) {
6737 /* 4-byte counter */
6739 *(hw_stats
+ bnx2_stats_offset_arr
[i
]);
6742 /* 8-byte counter */
6743 buf
[i
] = (((u64
) *(hw_stats
+
6744 bnx2_stats_offset_arr
[i
])) << 32) +
6745 *(hw_stats
+ bnx2_stats_offset_arr
[i
] + 1);
6750 bnx2_phys_id(struct net_device
*dev
, u32 data
)
6752 struct bnx2
*bp
= netdev_priv(dev
);
6759 save
= REG_RD(bp
, BNX2_MISC_CFG
);
6760 REG_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
6762 for (i
= 0; i
< (data
* 2); i
++) {
6764 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
6767 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
6768 BNX2_EMAC_LED_1000MB_OVERRIDE
|
6769 BNX2_EMAC_LED_100MB_OVERRIDE
|
6770 BNX2_EMAC_LED_10MB_OVERRIDE
|
6771 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
6772 BNX2_EMAC_LED_TRAFFIC
);
6774 msleep_interruptible(500);
6775 if (signal_pending(current
))
6778 REG_WR(bp
, BNX2_EMAC_LED
, 0);
6779 REG_WR(bp
, BNX2_MISC_CFG
, save
);
6784 bnx2_set_tx_csum(struct net_device
*dev
, u32 data
)
6786 struct bnx2
*bp
= netdev_priv(dev
);
6788 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
6789 return (ethtool_op_set_tx_ipv6_csum(dev
, data
));
6791 return (ethtool_op_set_tx_csum(dev
, data
));
6794 static const struct ethtool_ops bnx2_ethtool_ops
= {
6795 .get_settings
= bnx2_get_settings
,
6796 .set_settings
= bnx2_set_settings
,
6797 .get_drvinfo
= bnx2_get_drvinfo
,
6798 .get_regs_len
= bnx2_get_regs_len
,
6799 .get_regs
= bnx2_get_regs
,
6800 .get_wol
= bnx2_get_wol
,
6801 .set_wol
= bnx2_set_wol
,
6802 .nway_reset
= bnx2_nway_reset
,
6803 .get_link
= ethtool_op_get_link
,
6804 .get_eeprom_len
= bnx2_get_eeprom_len
,
6805 .get_eeprom
= bnx2_get_eeprom
,
6806 .set_eeprom
= bnx2_set_eeprom
,
6807 .get_coalesce
= bnx2_get_coalesce
,
6808 .set_coalesce
= bnx2_set_coalesce
,
6809 .get_ringparam
= bnx2_get_ringparam
,
6810 .set_ringparam
= bnx2_set_ringparam
,
6811 .get_pauseparam
= bnx2_get_pauseparam
,
6812 .set_pauseparam
= bnx2_set_pauseparam
,
6813 .get_rx_csum
= bnx2_get_rx_csum
,
6814 .set_rx_csum
= bnx2_set_rx_csum
,
6815 .set_tx_csum
= bnx2_set_tx_csum
,
6816 .set_sg
= ethtool_op_set_sg
,
6817 .set_tso
= bnx2_set_tso
,
6818 .self_test
= bnx2_self_test
,
6819 .get_strings
= bnx2_get_strings
,
6820 .phys_id
= bnx2_phys_id
,
6821 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
6822 .get_sset_count
= bnx2_get_sset_count
,
6825 /* Called with rtnl_lock */
6827 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
6829 struct mii_ioctl_data
*data
= if_mii(ifr
);
6830 struct bnx2
*bp
= netdev_priv(dev
);
6835 data
->phy_id
= bp
->phy_addr
;
6841 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
6844 if (!netif_running(dev
))
6847 spin_lock_bh(&bp
->phy_lock
);
6848 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
6849 spin_unlock_bh(&bp
->phy_lock
);
6851 data
->val_out
= mii_regval
;
6857 if (!capable(CAP_NET_ADMIN
))
6860 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
6863 if (!netif_running(dev
))
6866 spin_lock_bh(&bp
->phy_lock
);
6867 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
6868 spin_unlock_bh(&bp
->phy_lock
);
6879 /* Called with rtnl_lock */
6881 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
6883 struct sockaddr
*addr
= p
;
6884 struct bnx2
*bp
= netdev_priv(dev
);
6886 if (!is_valid_ether_addr(addr
->sa_data
))
6889 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
6890 if (netif_running(dev
))
6891 bnx2_set_mac_addr(bp
);
6896 /* Called with rtnl_lock */
6898 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
6900 struct bnx2
*bp
= netdev_priv(dev
);
6902 if (((new_mtu
+ ETH_HLEN
) > MAX_ETHERNET_JUMBO_PACKET_SIZE
) ||
6903 ((new_mtu
+ ETH_HLEN
) < MIN_ETHERNET_PACKET_SIZE
))
6907 return (bnx2_change_ring_size(bp
, bp
->rx_ring_size
, bp
->tx_ring_size
));
6910 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
6912 poll_bnx2(struct net_device
*dev
)
6914 struct bnx2
*bp
= netdev_priv(dev
);
6916 disable_irq(bp
->pdev
->irq
);
6917 bnx2_interrupt(bp
->pdev
->irq
, dev
);
6918 enable_irq(bp
->pdev
->irq
);
6922 static void __devinit
6923 bnx2_get_5709_media(struct bnx2
*bp
)
6925 u32 val
= REG_RD(bp
, BNX2_MISC_DUAL_MEDIA_CTRL
);
6926 u32 bond_id
= val
& BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID
;
6929 if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C
)
6931 else if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S
) {
6932 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
6936 if (val
& BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE
)
6937 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL
) >> 21;
6939 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP
) >> 8;
6941 if (PCI_FUNC(bp
->pdev
->devfn
) == 0) {
6946 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
6954 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
6960 static void __devinit
6961 bnx2_get_pci_speed(struct bnx2
*bp
)
6965 reg
= REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
6966 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
6969 bp
->flags
|= BNX2_FLAG_PCIX
;
6971 clkreg
= REG_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
6973 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
6975 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
6976 bp
->bus_speed_mhz
= 133;
6979 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
6980 bp
->bus_speed_mhz
= 100;
6983 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
6984 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
6985 bp
->bus_speed_mhz
= 66;
6988 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
6989 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
6990 bp
->bus_speed_mhz
= 50;
6993 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
6994 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
6995 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
6996 bp
->bus_speed_mhz
= 33;
7001 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
7002 bp
->bus_speed_mhz
= 66;
7004 bp
->bus_speed_mhz
= 33;
7007 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
7008 bp
->flags
|= BNX2_FLAG_PCI_32BIT
;
7012 static int __devinit
7013 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
7016 unsigned long mem_len
;
7019 u64 dma_mask
, persist_dma_mask
;
7021 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7022 bp
= netdev_priv(dev
);
7027 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7028 rc
= pci_enable_device(pdev
);
7030 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting.\n");
7034 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
7036 "Cannot find PCI device base address, aborting.\n");
7038 goto err_out_disable
;
7041 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
7043 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting.\n");
7044 goto err_out_disable
;
7047 pci_set_master(pdev
);
7049 bp
->pm_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
7050 if (bp
->pm_cap
== 0) {
7052 "Cannot find power management capability, aborting.\n");
7054 goto err_out_release
;
7060 spin_lock_init(&bp
->phy_lock
);
7061 spin_lock_init(&bp
->indirect_lock
);
7062 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
);
7064 dev
->base_addr
= dev
->mem_start
= pci_resource_start(pdev
, 0);
7065 mem_len
= MB_GET_CID_ADDR(TX_TSS_CID
+ 1);
7066 dev
->mem_end
= dev
->mem_start
+ mem_len
;
7067 dev
->irq
= pdev
->irq
;
7069 bp
->regview
= ioremap_nocache(dev
->base_addr
, mem_len
);
7072 dev_err(&pdev
->dev
, "Cannot map register space, aborting.\n");
7074 goto err_out_release
;
7077 /* Configure byte swap and enable write to the reg_window registers.
7078 * Rely on CPU to do target byte swapping on big endian systems
7079 * The chip's target access swapping will not swap all accesses
7081 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
,
7082 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
7083 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
7085 bnx2_set_power_state(bp
, PCI_D0
);
7087 bp
->chip_id
= REG_RD(bp
, BNX2_MISC_ID
);
7089 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
7090 if (pci_find_capability(pdev
, PCI_CAP_ID_EXP
) == 0) {
7092 "Cannot find PCIE capability, aborting.\n");
7096 bp
->flags
|= BNX2_FLAG_PCIE
;
7097 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
7098 bp
->flags
|= BNX2_FLAG_JUMBO_BROKEN
;
7100 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
7101 if (bp
->pcix_cap
== 0) {
7103 "Cannot find PCIX capability, aborting.\n");
7109 if (CHIP_NUM(bp
) == CHIP_NUM_5709
&& CHIP_REV(bp
) != CHIP_REV_Ax
) {
7110 if (pci_find_capability(pdev
, PCI_CAP_ID_MSIX
))
7111 bp
->flags
|= BNX2_FLAG_MSIX_CAP
;
7114 if (CHIP_ID(bp
) != CHIP_ID_5706_A0
&& CHIP_ID(bp
) != CHIP_ID_5706_A1
) {
7115 if (pci_find_capability(pdev
, PCI_CAP_ID_MSI
))
7116 bp
->flags
|= BNX2_FLAG_MSI_CAP
;
7119 /* 5708 cannot support DMA addresses > 40-bit. */
7120 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
7121 persist_dma_mask
= dma_mask
= DMA_40BIT_MASK
;
7123 persist_dma_mask
= dma_mask
= DMA_64BIT_MASK
;
7125 /* Configure DMA attributes. */
7126 if (pci_set_dma_mask(pdev
, dma_mask
) == 0) {
7127 dev
->features
|= NETIF_F_HIGHDMA
;
7128 rc
= pci_set_consistent_dma_mask(pdev
, persist_dma_mask
);
7131 "pci_set_consistent_dma_mask failed, aborting.\n");
7134 } else if ((rc
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) != 0) {
7135 dev_err(&pdev
->dev
, "System does not support DMA, aborting.\n");
7139 if (!(bp
->flags
& BNX2_FLAG_PCIE
))
7140 bnx2_get_pci_speed(bp
);
7142 /* 5706A0 may falsely detect SERR and PERR. */
7143 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
7144 reg
= REG_RD(bp
, PCI_COMMAND
);
7145 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
7146 REG_WR(bp
, PCI_COMMAND
, reg
);
7148 else if ((CHIP_ID(bp
) == CHIP_ID_5706_A1
) &&
7149 !(bp
->flags
& BNX2_FLAG_PCIX
)) {
7152 "5706 A1 can only be used in a PCIX bus, aborting.\n");
7156 bnx2_init_nvram(bp
);
7158 reg
= REG_RD_IND(bp
, BNX2_SHM_HDR_SIGNATURE
);
7160 if ((reg
& BNX2_SHM_HDR_SIGNATURE_SIG_MASK
) ==
7161 BNX2_SHM_HDR_SIGNATURE_SIG
) {
7162 u32 off
= PCI_FUNC(pdev
->devfn
) << 2;
7164 bp
->shmem_base
= REG_RD_IND(bp
, BNX2_SHM_HDR_ADDR_0
+ off
);
7166 bp
->shmem_base
= HOST_VIEW_SHMEM_BASE
;
7168 /* Get the permanent MAC address. First we need to make sure the
7169 * firmware is actually running.
7171 reg
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_DEV_INFO_SIGNATURE
);
7173 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
7174 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
7175 dev_err(&pdev
->dev
, "Firmware not running, aborting.\n");
7180 reg
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_DEV_INFO_BC_REV
);
7181 for (i
= 0, j
= 0; i
< 3; i
++) {
7184 num
= (u8
) (reg
>> (24 - (i
* 8)));
7185 for (k
= 100, skip0
= 1; k
>= 1; num
%= k
, k
/= 10) {
7186 if (num
>= k
|| !skip0
|| k
== 1) {
7187 bp
->fw_version
[j
++] = (num
/ k
) + '0';
7192 bp
->fw_version
[j
++] = '.';
7194 reg
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_PORT_FEATURE
);
7195 if (reg
& BNX2_PORT_FEATURE_WOL_ENABLED
)
7198 if (reg
& BNX2_PORT_FEATURE_ASF_ENABLED
) {
7199 bp
->flags
|= BNX2_FLAG_ASF_ENABLE
;
7201 for (i
= 0; i
< 30; i
++) {
7202 reg
= REG_RD_IND(bp
, bp
->shmem_base
+
7203 BNX2_BC_STATE_CONDITION
);
7204 if (reg
& BNX2_CONDITION_MFW_RUN_MASK
)
7209 reg
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_BC_STATE_CONDITION
);
7210 reg
&= BNX2_CONDITION_MFW_RUN_MASK
;
7211 if (reg
!= BNX2_CONDITION_MFW_RUN_UNKNOWN
&&
7212 reg
!= BNX2_CONDITION_MFW_RUN_NONE
) {
7214 u32 addr
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_MFW_VER_PTR
);
7216 bp
->fw_version
[j
++] = ' ';
7217 for (i
= 0; i
< 3; i
++) {
7218 reg
= REG_RD_IND(bp
, addr
+ i
* 4);
7220 memcpy(&bp
->fw_version
[j
], ®
, 4);
7225 reg
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_PORT_HW_CFG_MAC_UPPER
);
7226 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
7227 bp
->mac_addr
[1] = (u8
) reg
;
7229 reg
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_PORT_HW_CFG_MAC_LOWER
);
7230 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
7231 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
7232 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
7233 bp
->mac_addr
[5] = (u8
) reg
;
7235 bp
->rx_offset
= sizeof(struct l2_fhdr
) + 2;
7237 bp
->tx_ring_size
= MAX_TX_DESC_CNT
;
7238 bnx2_set_rx_ring_size(bp
, 255);
7242 bp
->tx_quick_cons_trip_int
= 20;
7243 bp
->tx_quick_cons_trip
= 20;
7244 bp
->tx_ticks_int
= 80;
7247 bp
->rx_quick_cons_trip_int
= 6;
7248 bp
->rx_quick_cons_trip
= 6;
7249 bp
->rx_ticks_int
= 18;
7252 bp
->stats_ticks
= USEC_PER_SEC
& BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7254 bp
->timer_interval
= HZ
;
7255 bp
->current_interval
= HZ
;
7259 /* Disable WOL support if we are running on a SERDES chip. */
7260 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7261 bnx2_get_5709_media(bp
);
7262 else if (CHIP_BOND_ID(bp
) & CHIP_BOND_ID_SERDES_BIT
)
7263 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7265 bp
->phy_port
= PORT_TP
;
7266 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
7267 bp
->phy_port
= PORT_FIBRE
;
7268 reg
= REG_RD_IND(bp
, bp
->shmem_base
+
7269 BNX2_SHARED_HW_CFG_CONFIG
);
7270 if (!(reg
& BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX
)) {
7271 bp
->flags
|= BNX2_FLAG_NO_WOL
;
7274 if (CHIP_NUM(bp
) != CHIP_NUM_5706
) {
7276 if (reg
& BNX2_SHARED_HW_CFG_PHY_2_5G
)
7277 bp
->phy_flags
|= BNX2_PHY_FLAG_2_5G_CAPABLE
;
7279 bnx2_init_remote_phy(bp
);
7281 } else if (CHIP_NUM(bp
) == CHIP_NUM_5706
||
7282 CHIP_NUM(bp
) == CHIP_NUM_5708
)
7283 bp
->phy_flags
|= BNX2_PHY_FLAG_CRC_FIX
;
7284 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
&&
7285 (CHIP_REV(bp
) == CHIP_REV_Ax
||
7286 CHIP_REV(bp
) == CHIP_REV_Bx
))
7287 bp
->phy_flags
|= BNX2_PHY_FLAG_DIS_EARLY_DAC
;
7289 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
7290 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
7291 (CHIP_ID(bp
) == CHIP_ID_5708_B1
)) {
7292 bp
->flags
|= BNX2_FLAG_NO_WOL
;
7296 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
7297 bp
->tx_quick_cons_trip_int
=
7298 bp
->tx_quick_cons_trip
;
7299 bp
->tx_ticks_int
= bp
->tx_ticks
;
7300 bp
->rx_quick_cons_trip_int
=
7301 bp
->rx_quick_cons_trip
;
7302 bp
->rx_ticks_int
= bp
->rx_ticks
;
7303 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
7304 bp
->com_ticks_int
= bp
->com_ticks
;
7305 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
7308 /* Disable MSI on 5706 if AMD 8132 bridge is found.
7310 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
7311 * with byte enables disabled on the unused 32-bit word. This is legal
7312 * but causes problems on the AMD 8132 which will eventually stop
7313 * responding after a while.
7315 * AMD believes this incompatibility is unique to the 5706, and
7316 * prefers to locally disable MSI rather than globally disabling it.
7318 if (CHIP_NUM(bp
) == CHIP_NUM_5706
&& disable_msi
== 0) {
7319 struct pci_dev
*amd_8132
= NULL
;
7321 while ((amd_8132
= pci_get_device(PCI_VENDOR_ID_AMD
,
7322 PCI_DEVICE_ID_AMD_8132_BRIDGE
,
7325 if (amd_8132
->revision
>= 0x10 &&
7326 amd_8132
->revision
<= 0x13) {
7328 pci_dev_put(amd_8132
);
7334 bnx2_set_default_link(bp
);
7335 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
7337 init_timer(&bp
->timer
);
7338 bp
->timer
.expires
= RUN_AT(bp
->timer_interval
);
7339 bp
->timer
.data
= (unsigned long) bp
;
7340 bp
->timer
.function
= bnx2_timer
;
7346 iounmap(bp
->regview
);
7351 pci_release_regions(pdev
);
7354 pci_disable_device(pdev
);
7355 pci_set_drvdata(pdev
, NULL
);
7361 static char * __devinit
7362 bnx2_bus_string(struct bnx2
*bp
, char *str
)
7366 if (bp
->flags
& BNX2_FLAG_PCIE
) {
7367 s
+= sprintf(s
, "PCI Express");
7369 s
+= sprintf(s
, "PCI");
7370 if (bp
->flags
& BNX2_FLAG_PCIX
)
7371 s
+= sprintf(s
, "-X");
7372 if (bp
->flags
& BNX2_FLAG_PCI_32BIT
)
7373 s
+= sprintf(s
, " 32-bit");
7375 s
+= sprintf(s
, " 64-bit");
7376 s
+= sprintf(s
, " %dMHz", bp
->bus_speed_mhz
);
7381 static void __devinit
7382 bnx2_init_napi(struct bnx2
*bp
)
7385 struct bnx2_napi
*bnapi
;
7387 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
7388 bnapi
= &bp
->bnx2_napi
[i
];
7391 netif_napi_add(bp
->dev
, &bp
->bnx2_napi
[0].napi
, bnx2_poll
, 64);
7392 netif_napi_add(bp
->dev
, &bp
->bnx2_napi
[BNX2_TX_VEC
].napi
, bnx2_tx_poll
,
7396 static int __devinit
7397 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
7399 static int version_printed
= 0;
7400 struct net_device
*dev
= NULL
;
7404 DECLARE_MAC_BUF(mac
);
7406 if (version_printed
++ == 0)
7407 printk(KERN_INFO
"%s", version
);
7409 /* dev zeroed in init_etherdev */
7410 dev
= alloc_etherdev(sizeof(*bp
));
7415 rc
= bnx2_init_board(pdev
, dev
);
7421 dev
->open
= bnx2_open
;
7422 dev
->hard_start_xmit
= bnx2_start_xmit
;
7423 dev
->stop
= bnx2_close
;
7424 dev
->get_stats
= bnx2_get_stats
;
7425 dev
->set_multicast_list
= bnx2_set_rx_mode
;
7426 dev
->do_ioctl
= bnx2_ioctl
;
7427 dev
->set_mac_address
= bnx2_change_mac_addr
;
7428 dev
->change_mtu
= bnx2_change_mtu
;
7429 dev
->tx_timeout
= bnx2_tx_timeout
;
7430 dev
->watchdog_timeo
= TX_TIMEOUT
;
7432 dev
->vlan_rx_register
= bnx2_vlan_rx_register
;
7434 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
7436 bp
= netdev_priv(dev
);
7439 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7440 dev
->poll_controller
= poll_bnx2
;
7443 pci_set_drvdata(pdev
, dev
);
7445 memcpy(dev
->dev_addr
, bp
->mac_addr
, 6);
7446 memcpy(dev
->perm_addr
, bp
->mac_addr
, 6);
7447 bp
->name
= board_info
[ent
->driver_data
].name
;
7449 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
;
7450 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7451 dev
->features
|= NETIF_F_IPV6_CSUM
;
7454 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
7456 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
7457 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7458 dev
->features
|= NETIF_F_TSO6
;
7460 if ((rc
= register_netdev(dev
))) {
7461 dev_err(&pdev
->dev
, "Cannot register net device\n");
7463 iounmap(bp
->regview
);
7464 pci_release_regions(pdev
);
7465 pci_disable_device(pdev
);
7466 pci_set_drvdata(pdev
, NULL
);
7471 printk(KERN_INFO
"%s: %s (%c%d) %s found at mem %lx, "
7472 "IRQ %d, node addr %s\n",
7475 ((CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
7476 ((CHIP_ID(bp
) & 0x0ff0) >> 4),
7477 bnx2_bus_string(bp
, str
),
7479 bp
->pdev
->irq
, print_mac(mac
, dev
->dev_addr
));
7484 static void __devexit
7485 bnx2_remove_one(struct pci_dev
*pdev
)
7487 struct net_device
*dev
= pci_get_drvdata(pdev
);
7488 struct bnx2
*bp
= netdev_priv(dev
);
7490 flush_scheduled_work();
7492 unregister_netdev(dev
);
7495 iounmap(bp
->regview
);
7498 pci_release_regions(pdev
);
7499 pci_disable_device(pdev
);
7500 pci_set_drvdata(pdev
, NULL
);
7504 bnx2_suspend(struct pci_dev
*pdev
, pm_message_t state
)
7506 struct net_device
*dev
= pci_get_drvdata(pdev
);
7507 struct bnx2
*bp
= netdev_priv(dev
);
7510 /* PCI register 4 needs to be saved whether netif_running() or not.
7511 * MSI address and data need to be saved if using MSI and
7514 pci_save_state(pdev
);
7515 if (!netif_running(dev
))
7518 flush_scheduled_work();
7519 bnx2_netif_stop(bp
);
7520 netif_device_detach(dev
);
7521 del_timer_sync(&bp
->timer
);
7522 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
7523 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
7525 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
7527 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
7528 bnx2_reset_chip(bp
, reset_code
);
7530 bnx2_set_power_state(bp
, pci_choose_state(pdev
, state
));
7535 bnx2_resume(struct pci_dev
*pdev
)
7537 struct net_device
*dev
= pci_get_drvdata(pdev
);
7538 struct bnx2
*bp
= netdev_priv(dev
);
7540 pci_restore_state(pdev
);
7541 if (!netif_running(dev
))
7544 bnx2_set_power_state(bp
, PCI_D0
);
7545 netif_device_attach(dev
);
7547 bnx2_netif_start(bp
);
7551 static struct pci_driver bnx2_pci_driver
= {
7552 .name
= DRV_MODULE_NAME
,
7553 .id_table
= bnx2_pci_tbl
,
7554 .probe
= bnx2_init_one
,
7555 .remove
= __devexit_p(bnx2_remove_one
),
7556 .suspend
= bnx2_suspend
,
7557 .resume
= bnx2_resume
,
7560 static int __init
bnx2_init(void)
7562 return pci_register_driver(&bnx2_pci_driver
);
7565 static void __exit
bnx2_cleanup(void)
7567 pci_unregister_driver(&bnx2_pci_driver
);
7570 module_init(bnx2_init
);
7571 module_exit(bnx2_cleanup
);