x86: cpa self-test, WARN_ON()
[wrt350n-kernel.git] / drivers / net / e1000e / ethtool.c
blob6d9c27fd0b53b86953ecf3548d59c4825de1e626
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
36 #include "e1000.h"
38 struct e1000_stats {
39 char stat_string[ETH_GSTRING_LEN];
40 int sizeof_stat;
41 int stat_offset;
44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47 { "rx_packets", E1000_STAT(stats.gprc) },
48 { "tx_packets", E1000_STAT(stats.gptc) },
49 { "rx_bytes", E1000_STAT(stats.gorcl) },
50 { "tx_bytes", E1000_STAT(stats.gotcl) },
51 { "rx_broadcast", E1000_STAT(stats.bprc) },
52 { "tx_broadcast", E1000_STAT(stats.bptc) },
53 { "rx_multicast", E1000_STAT(stats.mprc) },
54 { "tx_multicast", E1000_STAT(stats.mptc) },
55 { "rx_errors", E1000_STAT(net_stats.rx_errors) },
56 { "tx_errors", E1000_STAT(net_stats.tx_errors) },
57 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
58 { "multicast", E1000_STAT(stats.mprc) },
59 { "collisions", E1000_STAT(stats.colc) },
60 { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
61 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
62 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
64 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65 { "rx_missed_errors", E1000_STAT(stats.mpc) },
66 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
69 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
70 { "tx_window_errors", E1000_STAT(stats.latecol) },
71 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72 { "tx_deferred_ok", E1000_STAT(stats.dc) },
73 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76 { "tx_restart_queue", E1000_STAT(restart_queue) },
77 { "rx_long_length_errors", E1000_STAT(stats.roc) },
78 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
87 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89 { "rx_header_split", E1000_STAT(rx_hdr_split) },
90 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
91 { "tx_smbus", E1000_STAT(stats.mgptc) },
92 { "rx_smbus", E1000_STAT(stats.mgprc) },
93 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
94 { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
95 { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
98 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
99 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
100 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
101 "Register test (offline)", "Eeprom test (offline)",
102 "Interrupt test (offline)", "Loopback test (offline)",
103 "Link test (on/offline)"
105 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
107 static int e1000_get_settings(struct net_device *netdev,
108 struct ethtool_cmd *ecmd)
110 struct e1000_adapter *adapter = netdev_priv(netdev);
111 struct e1000_hw *hw = &adapter->hw;
112 u32 status;
114 if (hw->media_type == e1000_media_type_copper) {
116 ecmd->supported = (SUPPORTED_10baseT_Half |
117 SUPPORTED_10baseT_Full |
118 SUPPORTED_100baseT_Half |
119 SUPPORTED_100baseT_Full |
120 SUPPORTED_1000baseT_Full |
121 SUPPORTED_Autoneg |
122 SUPPORTED_TP);
123 if (hw->phy.type == e1000_phy_ife)
124 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
125 ecmd->advertising = ADVERTISED_TP;
127 if (hw->mac.autoneg == 1) {
128 ecmd->advertising |= ADVERTISED_Autoneg;
129 /* the e1000 autoneg seems to match ethtool nicely */
130 ecmd->advertising |= hw->phy.autoneg_advertised;
133 ecmd->port = PORT_TP;
134 ecmd->phy_address = hw->phy.addr;
135 ecmd->transceiver = XCVR_INTERNAL;
137 } else {
138 ecmd->supported = (SUPPORTED_1000baseT_Full |
139 SUPPORTED_FIBRE |
140 SUPPORTED_Autoneg);
142 ecmd->advertising = (ADVERTISED_1000baseT_Full |
143 ADVERTISED_FIBRE |
144 ADVERTISED_Autoneg);
146 ecmd->port = PORT_FIBRE;
147 ecmd->transceiver = XCVR_EXTERNAL;
150 status = er32(STATUS);
151 if (status & E1000_STATUS_LU) {
152 if (status & E1000_STATUS_SPEED_1000)
153 ecmd->speed = 1000;
154 else if (status & E1000_STATUS_SPEED_100)
155 ecmd->speed = 100;
156 else
157 ecmd->speed = 10;
159 if (status & E1000_STATUS_FD)
160 ecmd->duplex = DUPLEX_FULL;
161 else
162 ecmd->duplex = DUPLEX_HALF;
163 } else {
164 ecmd->speed = -1;
165 ecmd->duplex = -1;
168 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
169 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
170 return 0;
173 static u32 e1000_get_link(struct net_device *netdev)
175 struct e1000_adapter *adapter = netdev_priv(netdev);
176 struct e1000_hw *hw = &adapter->hw;
177 u32 status;
179 status = er32(STATUS);
180 return (status & E1000_STATUS_LU);
183 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
185 struct e1000_mac_info *mac = &adapter->hw.mac;
187 mac->autoneg = 0;
189 /* Fiber NICs only allow 1000 gbps Full duplex */
190 if ((adapter->hw.media_type == e1000_media_type_fiber) &&
191 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
192 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
193 "configuration\n");
194 return -EINVAL;
197 switch (spddplx) {
198 case SPEED_10 + DUPLEX_HALF:
199 mac->forced_speed_duplex = ADVERTISE_10_HALF;
200 break;
201 case SPEED_10 + DUPLEX_FULL:
202 mac->forced_speed_duplex = ADVERTISE_10_FULL;
203 break;
204 case SPEED_100 + DUPLEX_HALF:
205 mac->forced_speed_duplex = ADVERTISE_100_HALF;
206 break;
207 case SPEED_100 + DUPLEX_FULL:
208 mac->forced_speed_duplex = ADVERTISE_100_FULL;
209 break;
210 case SPEED_1000 + DUPLEX_FULL:
211 mac->autoneg = 1;
212 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
213 break;
214 case SPEED_1000 + DUPLEX_HALF: /* not supported */
215 default:
216 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
217 "configuration\n");
218 return -EINVAL;
220 return 0;
223 static int e1000_set_settings(struct net_device *netdev,
224 struct ethtool_cmd *ecmd)
226 struct e1000_adapter *adapter = netdev_priv(netdev);
227 struct e1000_hw *hw = &adapter->hw;
229 /* When SoL/IDER sessions are active, autoneg/speed/duplex
230 * cannot be changed */
231 if (e1000_check_reset_block(hw)) {
232 ndev_err(netdev, "Cannot change link "
233 "characteristics when SoL/IDER is active.\n");
234 return -EINVAL;
237 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
238 msleep(1);
240 if (ecmd->autoneg == AUTONEG_ENABLE) {
241 hw->mac.autoneg = 1;
242 if (hw->media_type == e1000_media_type_fiber)
243 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
244 ADVERTISED_FIBRE |
245 ADVERTISED_Autoneg;
246 else
247 hw->phy.autoneg_advertised = ecmd->advertising |
248 ADVERTISED_TP |
249 ADVERTISED_Autoneg;
250 ecmd->advertising = hw->phy.autoneg_advertised;
251 } else {
252 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
253 clear_bit(__E1000_RESETTING, &adapter->state);
254 return -EINVAL;
258 /* reset the link */
260 if (netif_running(adapter->netdev)) {
261 e1000e_down(adapter);
262 e1000e_up(adapter);
263 } else {
264 e1000e_reset(adapter);
267 clear_bit(__E1000_RESETTING, &adapter->state);
268 return 0;
271 static void e1000_get_pauseparam(struct net_device *netdev,
272 struct ethtool_pauseparam *pause)
274 struct e1000_adapter *adapter = netdev_priv(netdev);
275 struct e1000_hw *hw = &adapter->hw;
277 pause->autoneg =
278 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
280 if (hw->mac.fc == e1000_fc_rx_pause) {
281 pause->rx_pause = 1;
282 } else if (hw->mac.fc == e1000_fc_tx_pause) {
283 pause->tx_pause = 1;
284 } else if (hw->mac.fc == e1000_fc_full) {
285 pause->rx_pause = 1;
286 pause->tx_pause = 1;
290 static int e1000_set_pauseparam(struct net_device *netdev,
291 struct ethtool_pauseparam *pause)
293 struct e1000_adapter *adapter = netdev_priv(netdev);
294 struct e1000_hw *hw = &adapter->hw;
295 int retval = 0;
297 adapter->fc_autoneg = pause->autoneg;
299 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
300 msleep(1);
302 if (pause->rx_pause && pause->tx_pause)
303 hw->mac.fc = e1000_fc_full;
304 else if (pause->rx_pause && !pause->tx_pause)
305 hw->mac.fc = e1000_fc_rx_pause;
306 else if (!pause->rx_pause && pause->tx_pause)
307 hw->mac.fc = e1000_fc_tx_pause;
308 else if (!pause->rx_pause && !pause->tx_pause)
309 hw->mac.fc = e1000_fc_none;
311 hw->mac.original_fc = hw->mac.fc;
313 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
314 hw->mac.fc = e1000_fc_default;
315 if (netif_running(adapter->netdev)) {
316 e1000e_down(adapter);
317 e1000e_up(adapter);
318 } else {
319 e1000e_reset(adapter);
321 } else {
322 retval = ((hw->media_type == e1000_media_type_fiber) ?
323 hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
326 clear_bit(__E1000_RESETTING, &adapter->state);
327 return retval;
330 static u32 e1000_get_rx_csum(struct net_device *netdev)
332 struct e1000_adapter *adapter = netdev_priv(netdev);
333 return (adapter->flags & FLAG_RX_CSUM_ENABLED);
336 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
338 struct e1000_adapter *adapter = netdev_priv(netdev);
340 if (data)
341 adapter->flags |= FLAG_RX_CSUM_ENABLED;
342 else
343 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
345 if (netif_running(netdev))
346 e1000e_reinit_locked(adapter);
347 else
348 e1000e_reset(adapter);
349 return 0;
352 static u32 e1000_get_tx_csum(struct net_device *netdev)
354 return ((netdev->features & NETIF_F_HW_CSUM) != 0);
357 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
359 if (data)
360 netdev->features |= NETIF_F_HW_CSUM;
361 else
362 netdev->features &= ~NETIF_F_HW_CSUM;
364 return 0;
367 static int e1000_set_tso(struct net_device *netdev, u32 data)
369 struct e1000_adapter *adapter = netdev_priv(netdev);
371 if (data) {
372 netdev->features |= NETIF_F_TSO;
373 netdev->features |= NETIF_F_TSO6;
374 } else {
375 netdev->features &= ~NETIF_F_TSO;
376 netdev->features &= ~NETIF_F_TSO6;
379 ndev_info(netdev, "TSO is %s\n",
380 data ? "Enabled" : "Disabled");
381 adapter->flags |= FLAG_TSO_FORCE;
382 return 0;
385 static u32 e1000_get_msglevel(struct net_device *netdev)
387 struct e1000_adapter *adapter = netdev_priv(netdev);
388 return adapter->msg_enable;
391 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
393 struct e1000_adapter *adapter = netdev_priv(netdev);
394 adapter->msg_enable = data;
397 static int e1000_get_regs_len(struct net_device *netdev)
399 #define E1000_REGS_LEN 32 /* overestimate */
400 return E1000_REGS_LEN * sizeof(u32);
403 static void e1000_get_regs(struct net_device *netdev,
404 struct ethtool_regs *regs, void *p)
406 struct e1000_adapter *adapter = netdev_priv(netdev);
407 struct e1000_hw *hw = &adapter->hw;
408 u32 *regs_buff = p;
409 u16 phy_data;
410 u8 revision_id;
412 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
414 pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
416 regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
418 regs_buff[0] = er32(CTRL);
419 regs_buff[1] = er32(STATUS);
421 regs_buff[2] = er32(RCTL);
422 regs_buff[3] = er32(RDLEN);
423 regs_buff[4] = er32(RDH);
424 regs_buff[5] = er32(RDT);
425 regs_buff[6] = er32(RDTR);
427 regs_buff[7] = er32(TCTL);
428 regs_buff[8] = er32(TDLEN);
429 regs_buff[9] = er32(TDH);
430 regs_buff[10] = er32(TDT);
431 regs_buff[11] = er32(TIDV);
433 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
434 if (hw->phy.type == e1000_phy_m88) {
435 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
436 regs_buff[13] = (u32)phy_data; /* cable length */
437 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
438 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
439 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
440 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
441 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
442 regs_buff[18] = regs_buff[13]; /* cable polarity */
443 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
444 regs_buff[20] = regs_buff[17]; /* polarity correction */
445 /* phy receive errors */
446 regs_buff[22] = adapter->phy_stats.receive_errors;
447 regs_buff[23] = regs_buff[13]; /* mdix mode */
449 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
450 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
451 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
452 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
455 static int e1000_get_eeprom_len(struct net_device *netdev)
457 struct e1000_adapter *adapter = netdev_priv(netdev);
458 return adapter->hw.nvm.word_size * 2;
461 static int e1000_get_eeprom(struct net_device *netdev,
462 struct ethtool_eeprom *eeprom, u8 *bytes)
464 struct e1000_adapter *adapter = netdev_priv(netdev);
465 struct e1000_hw *hw = &adapter->hw;
466 u16 *eeprom_buff;
467 int first_word;
468 int last_word;
469 int ret_val = 0;
470 u16 i;
472 if (eeprom->len == 0)
473 return -EINVAL;
475 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
477 first_word = eeprom->offset >> 1;
478 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
480 eeprom_buff = kmalloc(sizeof(u16) *
481 (last_word - first_word + 1), GFP_KERNEL);
482 if (!eeprom_buff)
483 return -ENOMEM;
485 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
486 ret_val = e1000_read_nvm(hw, first_word,
487 last_word - first_word + 1,
488 eeprom_buff);
489 } else {
490 for (i = 0; i < last_word - first_word + 1; i++) {
491 ret_val = e1000_read_nvm(hw, first_word + i, 1,
492 &eeprom_buff[i]);
493 if (ret_val)
494 break;
498 /* Device's eeprom is always little-endian, word addressable */
499 for (i = 0; i < last_word - first_word + 1; i++)
500 le16_to_cpus(&eeprom_buff[i]);
502 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
503 kfree(eeprom_buff);
505 return ret_val;
508 static int e1000_set_eeprom(struct net_device *netdev,
509 struct ethtool_eeprom *eeprom, u8 *bytes)
511 struct e1000_adapter *adapter = netdev_priv(netdev);
512 struct e1000_hw *hw = &adapter->hw;
513 u16 *eeprom_buff;
514 void *ptr;
515 int max_len;
516 int first_word;
517 int last_word;
518 int ret_val = 0;
519 u16 i;
521 if (eeprom->len == 0)
522 return -EOPNOTSUPP;
524 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
525 return -EFAULT;
527 max_len = hw->nvm.word_size * 2;
529 first_word = eeprom->offset >> 1;
530 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
531 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
532 if (!eeprom_buff)
533 return -ENOMEM;
535 ptr = (void *)eeprom_buff;
537 if (eeprom->offset & 1) {
538 /* need read/modify/write of first changed EEPROM word */
539 /* only the second byte of the word is being modified */
540 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
541 ptr++;
543 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
544 /* need read/modify/write of last changed EEPROM word */
545 /* only the first byte of the word is being modified */
546 ret_val = e1000_read_nvm(hw, last_word, 1,
547 &eeprom_buff[last_word - first_word]);
549 /* Device's eeprom is always little-endian, word addressable */
550 for (i = 0; i < last_word - first_word + 1; i++)
551 le16_to_cpus(&eeprom_buff[i]);
553 memcpy(ptr, bytes, eeprom->len);
555 for (i = 0; i < last_word - first_word + 1; i++)
556 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
558 ret_val = e1000_write_nvm(hw, first_word,
559 last_word - first_word + 1, eeprom_buff);
561 /* Update the checksum over the first part of the EEPROM if needed
562 * and flush shadow RAM for 82573 controllers */
563 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) ||
564 (hw->mac.type == e1000_82573)))
565 e1000e_update_nvm_checksum(hw);
567 kfree(eeprom_buff);
568 return ret_val;
571 static void e1000_get_drvinfo(struct net_device *netdev,
572 struct ethtool_drvinfo *drvinfo)
574 struct e1000_adapter *adapter = netdev_priv(netdev);
575 char firmware_version[32];
576 u16 eeprom_data;
578 strncpy(drvinfo->driver, e1000e_driver_name, 32);
579 strncpy(drvinfo->version, e1000e_driver_version, 32);
581 /* EEPROM image version # is reported as firmware version # for
582 * PCI-E controllers */
583 e1000_read_nvm(&adapter->hw, 5, 1, &eeprom_data);
584 sprintf(firmware_version, "%d.%d-%d",
585 (eeprom_data & 0xF000) >> 12,
586 (eeprom_data & 0x0FF0) >> 4,
587 eeprom_data & 0x000F);
589 strncpy(drvinfo->fw_version, firmware_version, 32);
590 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
591 drvinfo->regdump_len = e1000_get_regs_len(netdev);
592 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
595 static void e1000_get_ringparam(struct net_device *netdev,
596 struct ethtool_ringparam *ring)
598 struct e1000_adapter *adapter = netdev_priv(netdev);
599 struct e1000_ring *tx_ring = adapter->tx_ring;
600 struct e1000_ring *rx_ring = adapter->rx_ring;
602 ring->rx_max_pending = E1000_MAX_RXD;
603 ring->tx_max_pending = E1000_MAX_TXD;
604 ring->rx_mini_max_pending = 0;
605 ring->rx_jumbo_max_pending = 0;
606 ring->rx_pending = rx_ring->count;
607 ring->tx_pending = tx_ring->count;
608 ring->rx_mini_pending = 0;
609 ring->rx_jumbo_pending = 0;
612 static int e1000_set_ringparam(struct net_device *netdev,
613 struct ethtool_ringparam *ring)
615 struct e1000_adapter *adapter = netdev_priv(netdev);
616 struct e1000_ring *tx_ring, *tx_old;
617 struct e1000_ring *rx_ring, *rx_old;
618 int err;
620 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
621 return -EINVAL;
623 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
624 msleep(1);
626 if (netif_running(adapter->netdev))
627 e1000e_down(adapter);
629 tx_old = adapter->tx_ring;
630 rx_old = adapter->rx_ring;
632 err = -ENOMEM;
633 tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
634 if (!tx_ring)
635 goto err_alloc_tx;
637 rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
638 if (!rx_ring)
639 goto err_alloc_rx;
641 adapter->tx_ring = tx_ring;
642 adapter->rx_ring = rx_ring;
644 rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
645 rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
646 rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
648 tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
649 tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
650 tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
652 if (netif_running(adapter->netdev)) {
653 /* Try to get new resources before deleting old */
654 err = e1000e_setup_rx_resources(adapter);
655 if (err)
656 goto err_setup_rx;
657 err = e1000e_setup_tx_resources(adapter);
658 if (err)
659 goto err_setup_tx;
661 /* save the new, restore the old in order to free it,
662 * then restore the new back again */
663 adapter->rx_ring = rx_old;
664 adapter->tx_ring = tx_old;
665 e1000e_free_rx_resources(adapter);
666 e1000e_free_tx_resources(adapter);
667 kfree(tx_old);
668 kfree(rx_old);
669 adapter->rx_ring = rx_ring;
670 adapter->tx_ring = tx_ring;
671 err = e1000e_up(adapter);
672 if (err)
673 goto err_setup;
676 clear_bit(__E1000_RESETTING, &adapter->state);
677 return 0;
678 err_setup_tx:
679 e1000e_free_rx_resources(adapter);
680 err_setup_rx:
681 adapter->rx_ring = rx_old;
682 adapter->tx_ring = tx_old;
683 kfree(rx_ring);
684 err_alloc_rx:
685 kfree(tx_ring);
686 err_alloc_tx:
687 e1000e_up(adapter);
688 err_setup:
689 clear_bit(__E1000_RESETTING, &adapter->state);
690 return err;
693 bool reg_pattern_test_array(struct e1000_adapter *adapter, u64 *data,
694 int reg, int offset, u32 mask, u32 write)
696 int i;
697 u32 read;
698 static const u32 test[] =
699 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
700 for (i = 0; i < ARRAY_SIZE(test); i++) {
701 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
702 (test[i] & write));
703 read = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
704 if (read != (test[i] & write & mask)) {
705 ndev_err(adapter->netdev, "pattern test reg %04X "
706 "failed: got 0x%08X expected 0x%08X\n",
707 reg + offset,
708 read, (test[i] & write & mask));
709 *data = reg;
710 return true;
713 return false;
716 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
717 int reg, u32 mask, u32 write)
719 u32 read;
720 __ew32(&adapter->hw, reg, write & mask);
721 read = __er32(&adapter->hw, reg);
722 if ((write & mask) != (read & mask)) {
723 ndev_err(adapter->netdev, "set/check reg %04X test failed: "
724 "got 0x%08X expected 0x%08X\n", reg, (read & mask),
725 (write & mask));
726 *data = reg;
727 return true;
729 return false;
732 #define REG_PATTERN_TEST(R, M, W) \
733 do { \
734 if (reg_pattern_test_array(adapter, data, R, 0, M, W)) \
735 return 1; \
736 } while (0)
738 #define REG_PATTERN_TEST_ARRAY(R, offset, M, W) \
739 do { \
740 if (reg_pattern_test_array(adapter, data, R, offset, M, W)) \
741 return 1; \
742 } while (0)
744 #define REG_SET_AND_CHECK(R, M, W) \
745 do { \
746 if (reg_set_and_check(adapter, data, R, M, W)) \
747 return 1; \
748 } while (0)
750 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
752 struct e1000_hw *hw = &adapter->hw;
753 struct e1000_mac_info *mac = &adapter->hw.mac;
754 struct net_device *netdev = adapter->netdev;
755 u32 value;
756 u32 before;
757 u32 after;
758 u32 i;
759 u32 toggle;
761 /* The status register is Read Only, so a write should fail.
762 * Some bits that get toggled are ignored.
764 switch (mac->type) {
765 /* there are several bits on newer hardware that are r/w */
766 case e1000_82571:
767 case e1000_82572:
768 case e1000_80003es2lan:
769 toggle = 0x7FFFF3FF;
770 break;
771 case e1000_82573:
772 case e1000_ich8lan:
773 case e1000_ich9lan:
774 toggle = 0x7FFFF033;
775 break;
776 default:
777 toggle = 0xFFFFF833;
778 break;
781 before = er32(STATUS);
782 value = (er32(STATUS) & toggle);
783 ew32(STATUS, toggle);
784 after = er32(STATUS) & toggle;
785 if (value != after) {
786 ndev_err(netdev, "failed STATUS register test got: "
787 "0x%08X expected: 0x%08X\n", after, value);
788 *data = 1;
789 return 1;
791 /* restore previous status */
792 ew32(STATUS, before);
794 if ((mac->type != e1000_ich8lan) &&
795 (mac->type != e1000_ich9lan)) {
796 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
797 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
798 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
799 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
802 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
803 REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
804 REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
805 REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
806 REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
807 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
808 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
809 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
810 REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
811 REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
813 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
815 before = (((mac->type == e1000_ich8lan) ||
816 (mac->type == e1000_ich9lan)) ? 0x06C3B33E : 0x06DFB3FE);
817 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
818 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
820 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
821 REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
822 if ((mac->type != e1000_ich8lan) &&
823 (mac->type != e1000_ich9lan))
824 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
825 REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
826 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
827 for (i = 0; i < mac->rar_entry_count; i++)
828 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
829 0x8003FFFF, 0xFFFFFFFF);
831 for (i = 0; i < mac->mta_reg_count; i++)
832 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
834 *data = 0;
835 return 0;
838 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
840 u16 temp;
841 u16 checksum = 0;
842 u16 i;
844 *data = 0;
845 /* Read and add up the contents of the EEPROM */
846 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
847 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
848 *data = 1;
849 break;
851 checksum += temp;
854 /* If Checksum is not Correct return error else test passed */
855 if ((checksum != (u16) NVM_SUM) && !(*data))
856 *data = 2;
858 return *data;
861 static irqreturn_t e1000_test_intr(int irq, void *data)
863 struct net_device *netdev = (struct net_device *) data;
864 struct e1000_adapter *adapter = netdev_priv(netdev);
865 struct e1000_hw *hw = &adapter->hw;
867 adapter->test_icr |= er32(ICR);
869 return IRQ_HANDLED;
872 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
874 struct net_device *netdev = adapter->netdev;
875 struct e1000_hw *hw = &adapter->hw;
876 u32 mask;
877 u32 shared_int = 1;
878 u32 irq = adapter->pdev->irq;
879 int i;
881 *data = 0;
883 /* NOTE: we don't test MSI interrupts here, yet */
884 /* Hook up test interrupt handler just for this test */
885 if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
886 netdev)) {
887 shared_int = 0;
888 } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
889 netdev->name, netdev)) {
890 *data = 1;
891 return -1;
893 ndev_info(netdev, "testing %s interrupt\n",
894 (shared_int ? "shared" : "unshared"));
896 /* Disable all the interrupts */
897 ew32(IMC, 0xFFFFFFFF);
898 msleep(10);
900 /* Test each interrupt */
901 for (i = 0; i < 10; i++) {
903 if (((adapter->hw.mac.type == e1000_ich8lan) ||
904 (adapter->hw.mac.type == e1000_ich9lan)) && i == 8)
905 continue;
907 /* Interrupt to test */
908 mask = 1 << i;
910 if (!shared_int) {
911 /* Disable the interrupt to be reported in
912 * the cause register and then force the same
913 * interrupt and see if one gets posted. If
914 * an interrupt was posted to the bus, the
915 * test failed.
917 adapter->test_icr = 0;
918 ew32(IMC, mask);
919 ew32(ICS, mask);
920 msleep(10);
922 if (adapter->test_icr & mask) {
923 *data = 3;
924 break;
928 /* Enable the interrupt to be reported in
929 * the cause register and then force the same
930 * interrupt and see if one gets posted. If
931 * an interrupt was not posted to the bus, the
932 * test failed.
934 adapter->test_icr = 0;
935 ew32(IMS, mask);
936 ew32(ICS, mask);
937 msleep(10);
939 if (!(adapter->test_icr & mask)) {
940 *data = 4;
941 break;
944 if (!shared_int) {
945 /* Disable the other interrupts to be reported in
946 * the cause register and then force the other
947 * interrupts and see if any get posted. If
948 * an interrupt was posted to the bus, the
949 * test failed.
951 adapter->test_icr = 0;
952 ew32(IMC, ~mask & 0x00007FFF);
953 ew32(ICS, ~mask & 0x00007FFF);
954 msleep(10);
956 if (adapter->test_icr) {
957 *data = 5;
958 break;
963 /* Disable all the interrupts */
964 ew32(IMC, 0xFFFFFFFF);
965 msleep(10);
967 /* Unhook test interrupt handler */
968 free_irq(irq, netdev);
970 return *data;
973 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
975 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
976 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
977 struct pci_dev *pdev = adapter->pdev;
978 int i;
980 if (tx_ring->desc && tx_ring->buffer_info) {
981 for (i = 0; i < tx_ring->count; i++) {
982 if (tx_ring->buffer_info[i].dma)
983 pci_unmap_single(pdev,
984 tx_ring->buffer_info[i].dma,
985 tx_ring->buffer_info[i].length,
986 PCI_DMA_TODEVICE);
987 if (tx_ring->buffer_info[i].skb)
988 dev_kfree_skb(tx_ring->buffer_info[i].skb);
992 if (rx_ring->desc && rx_ring->buffer_info) {
993 for (i = 0; i < rx_ring->count; i++) {
994 if (rx_ring->buffer_info[i].dma)
995 pci_unmap_single(pdev,
996 rx_ring->buffer_info[i].dma,
997 2048, PCI_DMA_FROMDEVICE);
998 if (rx_ring->buffer_info[i].skb)
999 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1003 if (tx_ring->desc) {
1004 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1005 tx_ring->dma);
1006 tx_ring->desc = NULL;
1008 if (rx_ring->desc) {
1009 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1010 rx_ring->dma);
1011 rx_ring->desc = NULL;
1014 kfree(tx_ring->buffer_info);
1015 tx_ring->buffer_info = NULL;
1016 kfree(rx_ring->buffer_info);
1017 rx_ring->buffer_info = NULL;
1020 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1022 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1023 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1024 struct pci_dev *pdev = adapter->pdev;
1025 struct e1000_hw *hw = &adapter->hw;
1026 u32 rctl;
1027 int size;
1028 int i;
1029 int ret_val;
1031 /* Setup Tx descriptor ring and Tx buffers */
1033 if (!tx_ring->count)
1034 tx_ring->count = E1000_DEFAULT_TXD;
1036 size = tx_ring->count * sizeof(struct e1000_buffer);
1037 tx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
1038 if (!tx_ring->buffer_info) {
1039 ret_val = 1;
1040 goto err_nomem;
1042 memset(tx_ring->buffer_info, 0, size);
1044 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1045 tx_ring->size = ALIGN(tx_ring->size, 4096);
1046 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1047 &tx_ring->dma, GFP_KERNEL);
1048 if (!tx_ring->desc) {
1049 ret_val = 2;
1050 goto err_nomem;
1052 memset(tx_ring->desc, 0, tx_ring->size);
1053 tx_ring->next_to_use = 0;
1054 tx_ring->next_to_clean = 0;
1056 ew32(TDBAL,
1057 ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1058 ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1059 ew32(TDLEN,
1060 tx_ring->count * sizeof(struct e1000_tx_desc));
1061 ew32(TDH, 0);
1062 ew32(TDT, 0);
1063 ew32(TCTL,
1064 E1000_TCTL_PSP | E1000_TCTL_EN |
1065 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1066 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1068 for (i = 0; i < tx_ring->count; i++) {
1069 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1070 struct sk_buff *skb;
1071 unsigned int skb_size = 1024;
1073 skb = alloc_skb(skb_size, GFP_KERNEL);
1074 if (!skb) {
1075 ret_val = 3;
1076 goto err_nomem;
1078 skb_put(skb, skb_size);
1079 tx_ring->buffer_info[i].skb = skb;
1080 tx_ring->buffer_info[i].length = skb->len;
1081 tx_ring->buffer_info[i].dma =
1082 pci_map_single(pdev, skb->data, skb->len,
1083 PCI_DMA_TODEVICE);
1084 if (pci_dma_mapping_error(tx_ring->buffer_info[i].dma)) {
1085 ret_val = 4;
1086 goto err_nomem;
1088 tx_desc->buffer_addr = cpu_to_le64(
1089 tx_ring->buffer_info[i].dma);
1090 tx_desc->lower.data = cpu_to_le32(skb->len);
1091 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1092 E1000_TXD_CMD_IFCS |
1093 E1000_TXD_CMD_RPS);
1094 tx_desc->upper.data = 0;
1097 /* Setup Rx descriptor ring and Rx buffers */
1099 if (!rx_ring->count)
1100 rx_ring->count = E1000_DEFAULT_RXD;
1102 size = rx_ring->count * sizeof(struct e1000_buffer);
1103 rx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
1104 if (!rx_ring->buffer_info) {
1105 ret_val = 5;
1106 goto err_nomem;
1108 memset(rx_ring->buffer_info, 0, size);
1110 rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1111 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1112 &rx_ring->dma, GFP_KERNEL);
1113 if (!rx_ring->desc) {
1114 ret_val = 6;
1115 goto err_nomem;
1117 memset(rx_ring->desc, 0, rx_ring->size);
1118 rx_ring->next_to_use = 0;
1119 rx_ring->next_to_clean = 0;
1121 rctl = er32(RCTL);
1122 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1123 ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1124 ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1125 ew32(RDLEN, rx_ring->size);
1126 ew32(RDH, 0);
1127 ew32(RDT, 0);
1128 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1129 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1130 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1131 ew32(RCTL, rctl);
1133 for (i = 0; i < rx_ring->count; i++) {
1134 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1135 struct sk_buff *skb;
1137 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1138 if (!skb) {
1139 ret_val = 7;
1140 goto err_nomem;
1142 skb_reserve(skb, NET_IP_ALIGN);
1143 rx_ring->buffer_info[i].skb = skb;
1144 rx_ring->buffer_info[i].dma =
1145 pci_map_single(pdev, skb->data, 2048,
1146 PCI_DMA_FROMDEVICE);
1147 if (pci_dma_mapping_error(rx_ring->buffer_info[i].dma)) {
1148 ret_val = 8;
1149 goto err_nomem;
1151 rx_desc->buffer_addr =
1152 cpu_to_le64(rx_ring->buffer_info[i].dma);
1153 memset(skb->data, 0x00, skb->len);
1156 return 0;
1158 err_nomem:
1159 e1000_free_desc_rings(adapter);
1160 return ret_val;
1163 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1165 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1166 e1e_wphy(&adapter->hw, 29, 0x001F);
1167 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1168 e1e_wphy(&adapter->hw, 29, 0x001A);
1169 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1172 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1174 struct e1000_hw *hw = &adapter->hw;
1175 u32 ctrl_reg = 0;
1176 u32 stat_reg = 0;
1178 adapter->hw.mac.autoneg = 0;
1180 if (adapter->hw.phy.type == e1000_phy_m88) {
1181 /* Auto-MDI/MDIX Off */
1182 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1183 /* reset to update Auto-MDI/MDIX */
1184 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1185 /* autoneg off */
1186 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1187 } else if (adapter->hw.phy.type == e1000_phy_gg82563)
1188 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1190 ctrl_reg = er32(CTRL);
1192 if (adapter->hw.phy.type == e1000_phy_ife) {
1193 /* force 100, set loopback */
1194 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1196 /* Now set up the MAC to the same speed/duplex as the PHY. */
1197 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1198 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1199 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1200 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1201 E1000_CTRL_FD); /* Force Duplex to FULL */
1202 } else {
1203 /* force 1000, set loopback */
1204 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1206 /* Now set up the MAC to the same speed/duplex as the PHY. */
1207 ctrl_reg = er32(CTRL);
1208 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1209 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1210 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1211 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1212 E1000_CTRL_FD); /* Force Duplex to FULL */
1215 if (adapter->hw.media_type == e1000_media_type_copper &&
1216 adapter->hw.phy.type == e1000_phy_m88) {
1217 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1218 } else {
1219 /* Set the ILOS bit on the fiber Nic if half duplex link is
1220 * detected. */
1221 stat_reg = er32(STATUS);
1222 if ((stat_reg & E1000_STATUS_FD) == 0)
1223 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1226 ew32(CTRL, ctrl_reg);
1228 /* Disable the receiver on the PHY so when a cable is plugged in, the
1229 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1231 if (adapter->hw.phy.type == e1000_phy_m88)
1232 e1000_phy_disable_receiver(adapter);
1234 udelay(500);
1236 return 0;
1239 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1241 struct e1000_hw *hw = &adapter->hw;
1242 u32 ctrl = er32(CTRL);
1243 int link = 0;
1245 /* special requirements for 82571/82572 fiber adapters */
1247 /* jump through hoops to make sure link is up because serdes
1248 * link is hardwired up */
1249 ctrl |= E1000_CTRL_SLU;
1250 ew32(CTRL, ctrl);
1252 /* disable autoneg */
1253 ctrl = er32(TXCW);
1254 ctrl &= ~(1 << 31);
1255 ew32(TXCW, ctrl);
1257 link = (er32(STATUS) & E1000_STATUS_LU);
1259 if (!link) {
1260 /* set invert loss of signal */
1261 ctrl = er32(CTRL);
1262 ctrl |= E1000_CTRL_ILOS;
1263 ew32(CTRL, ctrl);
1266 /* special write to serdes control register to enable SerDes analog
1267 * loopback */
1268 #define E1000_SERDES_LB_ON 0x410
1269 ew32(SCTL, E1000_SERDES_LB_ON);
1270 msleep(10);
1272 return 0;
1275 /* only call this for fiber/serdes connections to es2lan */
1276 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1278 struct e1000_hw *hw = &adapter->hw;
1279 u32 ctrlext = er32(CTRL_EXT);
1280 u32 ctrl = er32(CTRL);
1282 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1283 on mac_type 80003es2lan) */
1284 adapter->tx_fifo_head = ctrlext;
1286 /* clear the serdes mode bits, putting the device into mac loopback */
1287 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1288 ew32(CTRL_EXT, ctrlext);
1290 /* force speed to 1000/FD, link up */
1291 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1292 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1293 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1294 ew32(CTRL, ctrl);
1296 /* set mac loopback */
1297 ctrl = er32(RCTL);
1298 ctrl |= E1000_RCTL_LBM_MAC;
1299 ew32(RCTL, ctrl);
1301 /* set testing mode parameters (no need to reset later) */
1302 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1303 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1304 ew32(KMRNCTRLSTA,
1305 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1307 return 0;
1310 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1312 struct e1000_hw *hw = &adapter->hw;
1313 u32 rctl;
1315 if (hw->media_type == e1000_media_type_fiber ||
1316 hw->media_type == e1000_media_type_internal_serdes) {
1317 switch (hw->mac.type) {
1318 case e1000_80003es2lan:
1319 return e1000_set_es2lan_mac_loopback(adapter);
1320 break;
1321 case e1000_82571:
1322 case e1000_82572:
1323 return e1000_set_82571_fiber_loopback(adapter);
1324 break;
1325 default:
1326 rctl = er32(RCTL);
1327 rctl |= E1000_RCTL_LBM_TCVR;
1328 ew32(RCTL, rctl);
1329 return 0;
1331 } else if (hw->media_type == e1000_media_type_copper) {
1332 return e1000_integrated_phy_loopback(adapter);
1335 return 7;
1338 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1340 struct e1000_hw *hw = &adapter->hw;
1341 u32 rctl;
1342 u16 phy_reg;
1344 rctl = er32(RCTL);
1345 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1346 ew32(RCTL, rctl);
1348 switch (hw->mac.type) {
1349 case e1000_80003es2lan:
1350 if (hw->media_type == e1000_media_type_fiber ||
1351 hw->media_type == e1000_media_type_internal_serdes) {
1352 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1353 ew32(CTRL_EXT,
1354 adapter->tx_fifo_head);
1355 adapter->tx_fifo_head = 0;
1357 /* fall through */
1358 case e1000_82571:
1359 case e1000_82572:
1360 if (hw->media_type == e1000_media_type_fiber ||
1361 hw->media_type == e1000_media_type_internal_serdes) {
1362 #define E1000_SERDES_LB_OFF 0x400
1363 ew32(SCTL, E1000_SERDES_LB_OFF);
1364 msleep(10);
1365 break;
1367 /* Fall Through */
1368 default:
1369 hw->mac.autoneg = 1;
1370 if (hw->phy.type == e1000_phy_gg82563)
1371 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1372 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1373 if (phy_reg & MII_CR_LOOPBACK) {
1374 phy_reg &= ~MII_CR_LOOPBACK;
1375 e1e_wphy(hw, PHY_CONTROL, phy_reg);
1376 e1000e_commit_phy(hw);
1378 break;
1382 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1383 unsigned int frame_size)
1385 memset(skb->data, 0xFF, frame_size);
1386 frame_size &= ~1;
1387 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1388 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1389 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1392 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1393 unsigned int frame_size)
1395 frame_size &= ~1;
1396 if (*(skb->data + 3) == 0xFF)
1397 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1398 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1399 return 0;
1400 return 13;
1403 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1405 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1406 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1407 struct pci_dev *pdev = adapter->pdev;
1408 struct e1000_hw *hw = &adapter->hw;
1409 int i, j, k, l;
1410 int lc;
1411 int good_cnt;
1412 int ret_val = 0;
1413 unsigned long time;
1415 ew32(RDT, rx_ring->count - 1);
1417 /* Calculate the loop count based on the largest descriptor ring
1418 * The idea is to wrap the largest ring a number of times using 64
1419 * send/receive pairs during each loop
1422 if (rx_ring->count <= tx_ring->count)
1423 lc = ((tx_ring->count / 64) * 2) + 1;
1424 else
1425 lc = ((rx_ring->count / 64) * 2) + 1;
1427 k = 0;
1428 l = 0;
1429 for (j = 0; j <= lc; j++) { /* loop count loop */
1430 for (i = 0; i < 64; i++) { /* send the packets */
1431 e1000_create_lbtest_frame(
1432 tx_ring->buffer_info[i].skb, 1024);
1433 pci_dma_sync_single_for_device(pdev,
1434 tx_ring->buffer_info[k].dma,
1435 tx_ring->buffer_info[k].length,
1436 PCI_DMA_TODEVICE);
1437 k++;
1438 if (k == tx_ring->count)
1439 k = 0;
1441 ew32(TDT, k);
1442 msleep(200);
1443 time = jiffies; /* set the start time for the receive */
1444 good_cnt = 0;
1445 do { /* receive the sent packets */
1446 pci_dma_sync_single_for_cpu(pdev,
1447 rx_ring->buffer_info[l].dma, 2048,
1448 PCI_DMA_FROMDEVICE);
1450 ret_val = e1000_check_lbtest_frame(
1451 rx_ring->buffer_info[l].skb, 1024);
1452 if (!ret_val)
1453 good_cnt++;
1454 l++;
1455 if (l == rx_ring->count)
1456 l = 0;
1457 /* time + 20 msecs (200 msecs on 2.4) is more than
1458 * enough time to complete the receives, if it's
1459 * exceeded, break and error off
1461 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1462 if (good_cnt != 64) {
1463 ret_val = 13; /* ret_val is the same as mis-compare */
1464 break;
1466 if (jiffies >= (time + 2)) {
1467 ret_val = 14; /* error code for time out error */
1468 break;
1470 } /* end loop count loop */
1471 return ret_val;
1474 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1476 /* PHY loopback cannot be performed if SoL/IDER
1477 * sessions are active */
1478 if (e1000_check_reset_block(&adapter->hw)) {
1479 ndev_err(adapter->netdev, "Cannot do PHY loopback test "
1480 "when SoL/IDER is active.\n");
1481 *data = 0;
1482 goto out;
1485 *data = e1000_setup_desc_rings(adapter);
1486 if (*data)
1487 goto out;
1489 *data = e1000_setup_loopback_test(adapter);
1490 if (*data)
1491 goto err_loopback;
1493 *data = e1000_run_loopback_test(adapter);
1494 e1000_loopback_cleanup(adapter);
1496 err_loopback:
1497 e1000_free_desc_rings(adapter);
1498 out:
1499 return *data;
1502 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1504 struct e1000_hw *hw = &adapter->hw;
1506 *data = 0;
1507 if (hw->media_type == e1000_media_type_internal_serdes) {
1508 int i = 0;
1509 hw->mac.serdes_has_link = 0;
1511 /* On some blade server designs, link establishment
1512 * could take as long as 2-3 minutes */
1513 do {
1514 hw->mac.ops.check_for_link(hw);
1515 if (hw->mac.serdes_has_link)
1516 return *data;
1517 msleep(20);
1518 } while (i++ < 3750);
1520 *data = 1;
1521 } else {
1522 hw->mac.ops.check_for_link(hw);
1523 if (hw->mac.autoneg)
1524 msleep(4000);
1526 if (!(er32(STATUS) &
1527 E1000_STATUS_LU))
1528 *data = 1;
1530 return *data;
1533 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1535 switch (sset) {
1536 case ETH_SS_TEST:
1537 return E1000_TEST_LEN;
1538 case ETH_SS_STATS:
1539 return E1000_STATS_LEN;
1540 default:
1541 return -EOPNOTSUPP;
1545 static void e1000_diag_test(struct net_device *netdev,
1546 struct ethtool_test *eth_test, u64 *data)
1548 struct e1000_adapter *adapter = netdev_priv(netdev);
1549 u16 autoneg_advertised;
1550 u8 forced_speed_duplex;
1551 u8 autoneg;
1552 bool if_running = netif_running(netdev);
1554 set_bit(__E1000_TESTING, &adapter->state);
1555 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1556 /* Offline tests */
1558 /* save speed, duplex, autoneg settings */
1559 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1560 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1561 autoneg = adapter->hw.mac.autoneg;
1563 ndev_info(netdev, "offline testing starting\n");
1565 /* Link test performed before hardware reset so autoneg doesn't
1566 * interfere with test result */
1567 if (e1000_link_test(adapter, &data[4]))
1568 eth_test->flags |= ETH_TEST_FL_FAILED;
1570 if (if_running)
1571 /* indicate we're in test mode */
1572 dev_close(netdev);
1573 else
1574 e1000e_reset(adapter);
1576 if (e1000_reg_test(adapter, &data[0]))
1577 eth_test->flags |= ETH_TEST_FL_FAILED;
1579 e1000e_reset(adapter);
1580 if (e1000_eeprom_test(adapter, &data[1]))
1581 eth_test->flags |= ETH_TEST_FL_FAILED;
1583 e1000e_reset(adapter);
1584 if (e1000_intr_test(adapter, &data[2]))
1585 eth_test->flags |= ETH_TEST_FL_FAILED;
1587 e1000e_reset(adapter);
1588 /* make sure the phy is powered up */
1589 e1000e_power_up_phy(adapter);
1590 if (e1000_loopback_test(adapter, &data[3]))
1591 eth_test->flags |= ETH_TEST_FL_FAILED;
1593 /* restore speed, duplex, autoneg settings */
1594 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1595 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1596 adapter->hw.mac.autoneg = autoneg;
1598 /* force this routine to wait until autoneg complete/timeout */
1599 adapter->hw.phy.wait_for_link = 1;
1600 e1000e_reset(adapter);
1601 adapter->hw.phy.wait_for_link = 0;
1603 clear_bit(__E1000_TESTING, &adapter->state);
1604 if (if_running)
1605 dev_open(netdev);
1606 } else {
1607 ndev_info(netdev, "online testing starting\n");
1608 /* Online tests */
1609 if (e1000_link_test(adapter, &data[4]))
1610 eth_test->flags |= ETH_TEST_FL_FAILED;
1612 /* Online tests aren't run; pass by default */
1613 data[0] = 0;
1614 data[1] = 0;
1615 data[2] = 0;
1616 data[3] = 0;
1618 clear_bit(__E1000_TESTING, &adapter->state);
1620 msleep_interruptible(4 * 1000);
1623 static void e1000_get_wol(struct net_device *netdev,
1624 struct ethtool_wolinfo *wol)
1626 struct e1000_adapter *adapter = netdev_priv(netdev);
1628 wol->supported = 0;
1629 wol->wolopts = 0;
1631 if (!(adapter->flags & FLAG_HAS_WOL))
1632 return;
1634 wol->supported = WAKE_UCAST | WAKE_MCAST |
1635 WAKE_BCAST | WAKE_MAGIC;
1637 /* apply any specific unsupported masks here */
1638 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1639 wol->supported &= ~WAKE_UCAST;
1641 if (adapter->wol & E1000_WUFC_EX)
1642 ndev_err(netdev, "Interface does not support "
1643 "directed (unicast) frame wake-up packets\n");
1646 if (adapter->wol & E1000_WUFC_EX)
1647 wol->wolopts |= WAKE_UCAST;
1648 if (adapter->wol & E1000_WUFC_MC)
1649 wol->wolopts |= WAKE_MCAST;
1650 if (adapter->wol & E1000_WUFC_BC)
1651 wol->wolopts |= WAKE_BCAST;
1652 if (adapter->wol & E1000_WUFC_MAG)
1653 wol->wolopts |= WAKE_MAGIC;
1656 static int e1000_set_wol(struct net_device *netdev,
1657 struct ethtool_wolinfo *wol)
1659 struct e1000_adapter *adapter = netdev_priv(netdev);
1661 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1662 return -EOPNOTSUPP;
1664 if (!(adapter->flags & FLAG_HAS_WOL))
1665 return wol->wolopts ? -EOPNOTSUPP : 0;
1667 /* these settings will always override what we currently have */
1668 adapter->wol = 0;
1670 if (wol->wolopts & WAKE_UCAST)
1671 adapter->wol |= E1000_WUFC_EX;
1672 if (wol->wolopts & WAKE_MCAST)
1673 adapter->wol |= E1000_WUFC_MC;
1674 if (wol->wolopts & WAKE_BCAST)
1675 adapter->wol |= E1000_WUFC_BC;
1676 if (wol->wolopts & WAKE_MAGIC)
1677 adapter->wol |= E1000_WUFC_MAG;
1679 return 0;
1682 /* toggle LED 4 times per second = 2 "blinks" per second */
1683 #define E1000_ID_INTERVAL (HZ/4)
1685 /* bit defines for adapter->led_status */
1686 #define E1000_LED_ON 0
1688 static void e1000_led_blink_callback(unsigned long data)
1690 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1692 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1693 adapter->hw.mac.ops.led_off(&adapter->hw);
1694 else
1695 adapter->hw.mac.ops.led_on(&adapter->hw);
1697 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1700 static int e1000_phys_id(struct net_device *netdev, u32 data)
1702 struct e1000_adapter *adapter = netdev_priv(netdev);
1704 if (!data)
1705 data = INT_MAX;
1707 if (adapter->hw.phy.type == e1000_phy_ife) {
1708 if (!adapter->blink_timer.function) {
1709 init_timer(&adapter->blink_timer);
1710 adapter->blink_timer.function =
1711 e1000_led_blink_callback;
1712 adapter->blink_timer.data = (unsigned long) adapter;
1714 mod_timer(&adapter->blink_timer, jiffies);
1715 msleep_interruptible(data * 1000);
1716 del_timer_sync(&adapter->blink_timer);
1717 e1e_wphy(&adapter->hw,
1718 IFE_PHY_SPECIAL_CONTROL_LED, 0);
1719 } else {
1720 e1000e_blink_led(&adapter->hw);
1721 msleep_interruptible(data * 1000);
1724 adapter->hw.mac.ops.led_off(&adapter->hw);
1725 clear_bit(E1000_LED_ON, &adapter->led_status);
1726 adapter->hw.mac.ops.cleanup_led(&adapter->hw);
1728 return 0;
1731 static int e1000_nway_reset(struct net_device *netdev)
1733 struct e1000_adapter *adapter = netdev_priv(netdev);
1734 if (netif_running(netdev))
1735 e1000e_reinit_locked(adapter);
1736 return 0;
1739 static void e1000_get_ethtool_stats(struct net_device *netdev,
1740 struct ethtool_stats *stats,
1741 u64 *data)
1743 struct e1000_adapter *adapter = netdev_priv(netdev);
1744 int i;
1746 e1000e_update_stats(adapter);
1747 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1748 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1749 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1750 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1754 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1755 u8 *data)
1757 u8 *p = data;
1758 int i;
1760 switch (stringset) {
1761 case ETH_SS_TEST:
1762 memcpy(data, *e1000_gstrings_test,
1763 sizeof(e1000_gstrings_test));
1764 break;
1765 case ETH_SS_STATS:
1766 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1767 memcpy(p, e1000_gstrings_stats[i].stat_string,
1768 ETH_GSTRING_LEN);
1769 p += ETH_GSTRING_LEN;
1771 break;
1775 static const struct ethtool_ops e1000_ethtool_ops = {
1776 .get_settings = e1000_get_settings,
1777 .set_settings = e1000_set_settings,
1778 .get_drvinfo = e1000_get_drvinfo,
1779 .get_regs_len = e1000_get_regs_len,
1780 .get_regs = e1000_get_regs,
1781 .get_wol = e1000_get_wol,
1782 .set_wol = e1000_set_wol,
1783 .get_msglevel = e1000_get_msglevel,
1784 .set_msglevel = e1000_set_msglevel,
1785 .nway_reset = e1000_nway_reset,
1786 .get_link = e1000_get_link,
1787 .get_eeprom_len = e1000_get_eeprom_len,
1788 .get_eeprom = e1000_get_eeprom,
1789 .set_eeprom = e1000_set_eeprom,
1790 .get_ringparam = e1000_get_ringparam,
1791 .set_ringparam = e1000_set_ringparam,
1792 .get_pauseparam = e1000_get_pauseparam,
1793 .set_pauseparam = e1000_set_pauseparam,
1794 .get_rx_csum = e1000_get_rx_csum,
1795 .set_rx_csum = e1000_set_rx_csum,
1796 .get_tx_csum = e1000_get_tx_csum,
1797 .set_tx_csum = e1000_set_tx_csum,
1798 .get_sg = ethtool_op_get_sg,
1799 .set_sg = ethtool_op_set_sg,
1800 .get_tso = ethtool_op_get_tso,
1801 .set_tso = e1000_set_tso,
1802 .self_test = e1000_diag_test,
1803 .get_strings = e1000_get_strings,
1804 .phys_id = e1000_phys_id,
1805 .get_ethtool_stats = e1000_get_ethtool_stats,
1806 .get_sset_count = e1000e_get_sset_count,
1809 void e1000e_set_ethtool_ops(struct net_device *netdev)
1811 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);