x86: cpa self-test, WARN_ON()
[wrt350n-kernel.git] / drivers / scsi / aacraid / commsup.c
blob81b36923e0ef487726715660035e25f176d44432
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Module Name:
25 * commsup.c
27 * Abstract: Contain all routines that are required for FSA host/adapter
28 * communication.
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/interrupt.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <asm/semaphore.h>
50 #include "aacraid.h"
52 /**
53 * fib_map_alloc - allocate the fib objects
54 * @dev: Adapter to allocate for
56 * Allocate and map the shared PCI space for the FIB blocks used to
57 * talk to the Adaptec firmware.
60 static int fib_map_alloc(struct aac_dev *dev)
62 dprintk((KERN_INFO
63 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
65 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
66 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
67 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
68 &dev->hw_fib_pa))==NULL)
69 return -ENOMEM;
70 return 0;
73 /**
74 * aac_fib_map_free - free the fib objects
75 * @dev: Adapter to free
77 * Free the PCI mappings and the memory allocated for FIB blocks
78 * on this adapter.
81 void aac_fib_map_free(struct aac_dev *dev)
83 pci_free_consistent(dev->pdev,
84 dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
85 dev->hw_fib_va, dev->hw_fib_pa);
86 dev->hw_fib_va = NULL;
87 dev->hw_fib_pa = 0;
90 /**
91 * aac_fib_setup - setup the fibs
92 * @dev: Adapter to set up
94 * Allocate the PCI space for the fibs, map it and then intialise the
95 * fib area, the unmapped fib data and also the free list
98 int aac_fib_setup(struct aac_dev * dev)
100 struct fib *fibptr;
101 struct hw_fib *hw_fib;
102 dma_addr_t hw_fib_pa;
103 int i;
105 while (((i = fib_map_alloc(dev)) == -ENOMEM)
106 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
107 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
108 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
110 if (i<0)
111 return -ENOMEM;
113 hw_fib = dev->hw_fib_va;
114 hw_fib_pa = dev->hw_fib_pa;
115 memset(hw_fib, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
117 * Initialise the fibs
119 for (i = 0, fibptr = &dev->fibs[i];
120 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
121 i++, fibptr++)
123 fibptr->dev = dev;
124 fibptr->hw_fib_va = hw_fib;
125 fibptr->data = (void *) fibptr->hw_fib_va->data;
126 fibptr->next = fibptr+1; /* Forward chain the fibs */
127 init_MUTEX_LOCKED(&fibptr->event_wait);
128 spin_lock_init(&fibptr->event_lock);
129 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
130 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
131 fibptr->hw_fib_pa = hw_fib_pa;
132 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_fib_size);
133 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
136 * Add the fib chain to the free list
138 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
140 * Enable this to debug out of queue space
142 dev->free_fib = &dev->fibs[0];
143 return 0;
147 * aac_fib_alloc - allocate a fib
148 * @dev: Adapter to allocate the fib for
150 * Allocate a fib from the adapter fib pool. If the pool is empty we
151 * return NULL.
154 struct fib *aac_fib_alloc(struct aac_dev *dev)
156 struct fib * fibptr;
157 unsigned long flags;
158 spin_lock_irqsave(&dev->fib_lock, flags);
159 fibptr = dev->free_fib;
160 if(!fibptr){
161 spin_unlock_irqrestore(&dev->fib_lock, flags);
162 return fibptr;
164 dev->free_fib = fibptr->next;
165 spin_unlock_irqrestore(&dev->fib_lock, flags);
167 * Set the proper node type code and node byte size
169 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
170 fibptr->size = sizeof(struct fib);
172 * Null out fields that depend on being zero at the start of
173 * each I/O
175 fibptr->hw_fib_va->header.XferState = 0;
176 fibptr->flags = 0;
177 fibptr->callback = NULL;
178 fibptr->callback_data = NULL;
180 return fibptr;
184 * aac_fib_free - free a fib
185 * @fibptr: fib to free up
187 * Frees up a fib and places it on the appropriate queue
190 void aac_fib_free(struct fib *fibptr)
192 unsigned long flags;
194 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
195 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
196 aac_config.fib_timeouts++;
197 if (fibptr->hw_fib_va->header.XferState != 0) {
198 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
199 (void*)fibptr,
200 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
202 fibptr->next = fibptr->dev->free_fib;
203 fibptr->dev->free_fib = fibptr;
204 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
208 * aac_fib_init - initialise a fib
209 * @fibptr: The fib to initialize
211 * Set up the generic fib fields ready for use
214 void aac_fib_init(struct fib *fibptr)
216 struct hw_fib *hw_fib = fibptr->hw_fib_va;
218 hw_fib->header.StructType = FIB_MAGIC;
219 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
220 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
221 hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
222 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
223 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
227 * fib_deallocate - deallocate a fib
228 * @fibptr: fib to deallocate
230 * Will deallocate and return to the free pool the FIB pointed to by the
231 * caller.
234 static void fib_dealloc(struct fib * fibptr)
236 struct hw_fib *hw_fib = fibptr->hw_fib_va;
237 BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
238 hw_fib->header.XferState = 0;
242 * Commuication primitives define and support the queuing method we use to
243 * support host to adapter commuication. All queue accesses happen through
244 * these routines and are the only routines which have a knowledge of the
245 * how these queues are implemented.
249 * aac_get_entry - get a queue entry
250 * @dev: Adapter
251 * @qid: Queue Number
252 * @entry: Entry return
253 * @index: Index return
254 * @nonotify: notification control
256 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
257 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
258 * returned.
261 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
263 struct aac_queue * q;
264 unsigned long idx;
267 * All of the queues wrap when they reach the end, so we check
268 * to see if they have reached the end and if they have we just
269 * set the index back to zero. This is a wrap. You could or off
270 * the high bits in all updates but this is a bit faster I think.
273 q = &dev->queues->queue[qid];
275 idx = *index = le32_to_cpu(*(q->headers.producer));
276 /* Interrupt Moderation, only interrupt for first two entries */
277 if (idx != le32_to_cpu(*(q->headers.consumer))) {
278 if (--idx == 0) {
279 if (qid == AdapNormCmdQueue)
280 idx = ADAP_NORM_CMD_ENTRIES;
281 else
282 idx = ADAP_NORM_RESP_ENTRIES;
284 if (idx != le32_to_cpu(*(q->headers.consumer)))
285 *nonotify = 1;
288 if (qid == AdapNormCmdQueue) {
289 if (*index >= ADAP_NORM_CMD_ENTRIES)
290 *index = 0; /* Wrap to front of the Producer Queue. */
291 } else {
292 if (*index >= ADAP_NORM_RESP_ENTRIES)
293 *index = 0; /* Wrap to front of the Producer Queue. */
296 /* Queue is full */
297 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
298 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
299 qid, q->numpending);
300 return 0;
301 } else {
302 *entry = q->base + *index;
303 return 1;
308 * aac_queue_get - get the next free QE
309 * @dev: Adapter
310 * @index: Returned index
311 * @priority: Priority of fib
312 * @fib: Fib to associate with the queue entry
313 * @wait: Wait if queue full
314 * @fibptr: Driver fib object to go with fib
315 * @nonotify: Don't notify the adapter
317 * Gets the next free QE off the requested priorty adapter command
318 * queue and associates the Fib with the QE. The QE represented by
319 * index is ready to insert on the queue when this routine returns
320 * success.
323 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
325 struct aac_entry * entry = NULL;
326 int map = 0;
328 if (qid == AdapNormCmdQueue) {
329 /* if no entries wait for some if caller wants to */
330 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
331 printk(KERN_ERR "GetEntries failed\n");
334 * Setup queue entry with a command, status and fib mapped
336 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
337 map = 1;
338 } else {
339 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
340 /* if no entries wait for some if caller wants to */
343 * Setup queue entry with command, status and fib mapped
345 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
346 entry->addr = hw_fib->header.SenderFibAddress;
347 /* Restore adapters pointer to the FIB */
348 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
349 map = 0;
352 * If MapFib is true than we need to map the Fib and put pointers
353 * in the queue entry.
355 if (map)
356 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
357 return 0;
361 * Define the highest level of host to adapter communication routines.
362 * These routines will support host to adapter FS commuication. These
363 * routines have no knowledge of the commuication method used. This level
364 * sends and receives FIBs. This level has no knowledge of how these FIBs
365 * get passed back and forth.
369 * aac_fib_send - send a fib to the adapter
370 * @command: Command to send
371 * @fibptr: The fib
372 * @size: Size of fib data area
373 * @priority: Priority of Fib
374 * @wait: Async/sync select
375 * @reply: True if a reply is wanted
376 * @callback: Called with reply
377 * @callback_data: Passed to callback
379 * Sends the requested FIB to the adapter and optionally will wait for a
380 * response FIB. If the caller does not wish to wait for a response than
381 * an event to wait on must be supplied. This event will be set when a
382 * response FIB is received from the adapter.
385 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
386 int priority, int wait, int reply, fib_callback callback,
387 void *callback_data)
389 struct aac_dev * dev = fibptr->dev;
390 struct hw_fib * hw_fib = fibptr->hw_fib_va;
391 unsigned long flags = 0;
392 unsigned long qflags;
394 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
395 return -EBUSY;
397 * There are 5 cases with the wait and reponse requested flags.
398 * The only invalid cases are if the caller requests to wait and
399 * does not request a response and if the caller does not want a
400 * response and the Fib is not allocated from pool. If a response
401 * is not requesed the Fib will just be deallocaed by the DPC
402 * routine when the response comes back from the adapter. No
403 * further processing will be done besides deleting the Fib. We
404 * will have a debug mode where the adapter can notify the host
405 * it had a problem and the host can log that fact.
407 fibptr->flags = 0;
408 if (wait && !reply) {
409 return -EINVAL;
410 } else if (!wait && reply) {
411 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
412 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
413 } else if (!wait && !reply) {
414 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
415 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
416 } else if (wait && reply) {
417 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
418 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
421 * Map the fib into 32bits by using the fib number
424 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
425 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
427 * Set FIB state to indicate where it came from and if we want a
428 * response from the adapter. Also load the command from the
429 * caller.
431 * Map the hw fib pointer as a 32bit value
433 hw_fib->header.Command = cpu_to_le16(command);
434 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
435 fibptr->hw_fib_va->header.Flags = 0; /* 0 the flags field - internal only*/
437 * Set the size of the Fib we want to send to the adapter
439 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
440 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
441 return -EMSGSIZE;
444 * Get a queue entry connect the FIB to it and send an notify
445 * the adapter a command is ready.
447 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
450 * Fill in the Callback and CallbackContext if we are not
451 * going to wait.
453 if (!wait) {
454 fibptr->callback = callback;
455 fibptr->callback_data = callback_data;
456 fibptr->flags = FIB_CONTEXT_FLAG;
459 fibptr->done = 0;
461 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
463 dprintk((KERN_DEBUG "Fib contents:.\n"));
464 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
465 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
466 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
467 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va));
468 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
469 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
471 if (!dev->queues)
472 return -EBUSY;
474 if(wait)
475 spin_lock_irqsave(&fibptr->event_lock, flags);
476 aac_adapter_deliver(fibptr);
479 * If the caller wanted us to wait for response wait now.
482 if (wait) {
483 spin_unlock_irqrestore(&fibptr->event_lock, flags);
484 /* Only set for first known interruptable command */
485 if (wait < 0) {
487 * *VERY* Dangerous to time out a command, the
488 * assumption is made that we have no hope of
489 * functioning because an interrupt routing or other
490 * hardware failure has occurred.
492 unsigned long count = 36000000L; /* 3 minutes */
493 while (down_trylock(&fibptr->event_wait)) {
494 int blink;
495 if (--count == 0) {
496 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
497 spin_lock_irqsave(q->lock, qflags);
498 q->numpending--;
499 spin_unlock_irqrestore(q->lock, qflags);
500 if (wait == -1) {
501 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
502 "Usually a result of a PCI interrupt routing problem;\n"
503 "update mother board BIOS or consider utilizing one of\n"
504 "the SAFE mode kernel options (acpi, apic etc)\n");
506 return -ETIMEDOUT;
508 if ((blink = aac_adapter_check_health(dev)) > 0) {
509 if (wait == -1) {
510 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
511 "Usually a result of a serious unrecoverable hardware problem\n",
512 blink);
514 return -EFAULT;
516 udelay(5);
518 } else
519 (void)down_interruptible(&fibptr->event_wait);
520 spin_lock_irqsave(&fibptr->event_lock, flags);
521 if (fibptr->done == 0) {
522 fibptr->done = 2; /* Tell interrupt we aborted */
523 spin_unlock_irqrestore(&fibptr->event_lock, flags);
524 return -EINTR;
526 spin_unlock_irqrestore(&fibptr->event_lock, flags);
527 BUG_ON(fibptr->done == 0);
529 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
530 return -ETIMEDOUT;
531 return 0;
534 * If the user does not want a response than return success otherwise
535 * return pending
537 if (reply)
538 return -EINPROGRESS;
539 else
540 return 0;
544 * aac_consumer_get - get the top of the queue
545 * @dev: Adapter
546 * @q: Queue
547 * @entry: Return entry
549 * Will return a pointer to the entry on the top of the queue requested that
550 * we are a consumer of, and return the address of the queue entry. It does
551 * not change the state of the queue.
554 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
556 u32 index;
557 int status;
558 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
559 status = 0;
560 } else {
562 * The consumer index must be wrapped if we have reached
563 * the end of the queue, else we just use the entry
564 * pointed to by the header index
566 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
567 index = 0;
568 else
569 index = le32_to_cpu(*q->headers.consumer);
570 *entry = q->base + index;
571 status = 1;
573 return(status);
577 * aac_consumer_free - free consumer entry
578 * @dev: Adapter
579 * @q: Queue
580 * @qid: Queue ident
582 * Frees up the current top of the queue we are a consumer of. If the
583 * queue was full notify the producer that the queue is no longer full.
586 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
588 int wasfull = 0;
589 u32 notify;
591 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
592 wasfull = 1;
594 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
595 *q->headers.consumer = cpu_to_le32(1);
596 else
597 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
599 if (wasfull) {
600 switch (qid) {
602 case HostNormCmdQueue:
603 notify = HostNormCmdNotFull;
604 break;
605 case HostNormRespQueue:
606 notify = HostNormRespNotFull;
607 break;
608 default:
609 BUG();
610 return;
612 aac_adapter_notify(dev, notify);
617 * aac_fib_adapter_complete - complete adapter issued fib
618 * @fibptr: fib to complete
619 * @size: size of fib
621 * Will do all necessary work to complete a FIB that was sent from
622 * the adapter.
625 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
627 struct hw_fib * hw_fib = fibptr->hw_fib_va;
628 struct aac_dev * dev = fibptr->dev;
629 struct aac_queue * q;
630 unsigned long nointr = 0;
631 unsigned long qflags;
633 if (hw_fib->header.XferState == 0) {
634 if (dev->comm_interface == AAC_COMM_MESSAGE)
635 kfree (hw_fib);
636 return 0;
639 * If we plan to do anything check the structure type first.
641 if (hw_fib->header.StructType != FIB_MAGIC) {
642 if (dev->comm_interface == AAC_COMM_MESSAGE)
643 kfree (hw_fib);
644 return -EINVAL;
647 * This block handles the case where the adapter had sent us a
648 * command and we have finished processing the command. We
649 * call completeFib when we are done processing the command
650 * and want to send a response back to the adapter. This will
651 * send the completed cdb to the adapter.
653 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
654 if (dev->comm_interface == AAC_COMM_MESSAGE) {
655 kfree (hw_fib);
656 } else {
657 u32 index;
658 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
659 if (size) {
660 size += sizeof(struct aac_fibhdr);
661 if (size > le16_to_cpu(hw_fib->header.SenderSize))
662 return -EMSGSIZE;
663 hw_fib->header.Size = cpu_to_le16(size);
665 q = &dev->queues->queue[AdapNormRespQueue];
666 spin_lock_irqsave(q->lock, qflags);
667 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
668 *(q->headers.producer) = cpu_to_le32(index + 1);
669 spin_unlock_irqrestore(q->lock, qflags);
670 if (!(nointr & (int)aac_config.irq_mod))
671 aac_adapter_notify(dev, AdapNormRespQueue);
673 } else {
674 printk(KERN_WARNING "aac_fib_adapter_complete: "
675 "Unknown xferstate detected.\n");
676 BUG();
678 return 0;
682 * aac_fib_complete - fib completion handler
683 * @fib: FIB to complete
685 * Will do all necessary work to complete a FIB.
688 int aac_fib_complete(struct fib *fibptr)
690 struct hw_fib * hw_fib = fibptr->hw_fib_va;
693 * Check for a fib which has already been completed
696 if (hw_fib->header.XferState == 0)
697 return 0;
699 * If we plan to do anything check the structure type first.
702 if (hw_fib->header.StructType != FIB_MAGIC)
703 return -EINVAL;
705 * This block completes a cdb which orginated on the host and we
706 * just need to deallocate the cdb or reinit it. At this point the
707 * command is complete that we had sent to the adapter and this
708 * cdb could be reused.
710 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
711 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
713 fib_dealloc(fibptr);
715 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
718 * This handles the case when the host has aborted the I/O
719 * to the adapter because the adapter is not responding
721 fib_dealloc(fibptr);
722 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
723 fib_dealloc(fibptr);
724 } else {
725 BUG();
727 return 0;
731 * aac_printf - handle printf from firmware
732 * @dev: Adapter
733 * @val: Message info
735 * Print a message passed to us by the controller firmware on the
736 * Adaptec board
739 void aac_printf(struct aac_dev *dev, u32 val)
741 char *cp = dev->printfbuf;
742 if (dev->printf_enabled)
744 int length = val & 0xffff;
745 int level = (val >> 16) & 0xffff;
748 * The size of the printfbuf is set in port.c
749 * There is no variable or define for it
751 if (length > 255)
752 length = 255;
753 if (cp[length] != 0)
754 cp[length] = 0;
755 if (level == LOG_AAC_HIGH_ERROR)
756 printk(KERN_WARNING "%s:%s", dev->name, cp);
757 else
758 printk(KERN_INFO "%s:%s", dev->name, cp);
760 memset(cp, 0, 256);
765 * aac_handle_aif - Handle a message from the firmware
766 * @dev: Which adapter this fib is from
767 * @fibptr: Pointer to fibptr from adapter
769 * This routine handles a driver notify fib from the adapter and
770 * dispatches it to the appropriate routine for handling.
773 #define AIF_SNIFF_TIMEOUT (30*HZ)
774 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
776 struct hw_fib * hw_fib = fibptr->hw_fib_va;
777 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
778 u32 channel, id, lun, container;
779 struct scsi_device *device;
780 enum {
781 NOTHING,
782 DELETE,
783 ADD,
784 CHANGE
785 } device_config_needed = NOTHING;
787 /* Sniff for container changes */
789 if (!dev || !dev->fsa_dev)
790 return;
791 container = channel = id = lun = (u32)-1;
794 * We have set this up to try and minimize the number of
795 * re-configures that take place. As a result of this when
796 * certain AIF's come in we will set a flag waiting for another
797 * type of AIF before setting the re-config flag.
799 switch (le32_to_cpu(aifcmd->command)) {
800 case AifCmdDriverNotify:
801 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
803 * Morph or Expand complete
805 case AifDenMorphComplete:
806 case AifDenVolumeExtendComplete:
807 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
808 if (container >= dev->maximum_num_containers)
809 break;
812 * Find the scsi_device associated with the SCSI
813 * address. Make sure we have the right array, and if
814 * so set the flag to initiate a new re-config once we
815 * see an AifEnConfigChange AIF come through.
818 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
819 device = scsi_device_lookup(dev->scsi_host_ptr,
820 CONTAINER_TO_CHANNEL(container),
821 CONTAINER_TO_ID(container),
822 CONTAINER_TO_LUN(container));
823 if (device) {
824 dev->fsa_dev[container].config_needed = CHANGE;
825 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
826 dev->fsa_dev[container].config_waiting_stamp = jiffies;
827 scsi_device_put(device);
833 * If we are waiting on something and this happens to be
834 * that thing then set the re-configure flag.
836 if (container != (u32)-1) {
837 if (container >= dev->maximum_num_containers)
838 break;
839 if ((dev->fsa_dev[container].config_waiting_on ==
840 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
841 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
842 dev->fsa_dev[container].config_waiting_on = 0;
843 } else for (container = 0;
844 container < dev->maximum_num_containers; ++container) {
845 if ((dev->fsa_dev[container].config_waiting_on ==
846 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
847 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
848 dev->fsa_dev[container].config_waiting_on = 0;
850 break;
852 case AifCmdEventNotify:
853 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
854 case AifEnBatteryEvent:
855 dev->cache_protected =
856 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
857 break;
859 * Add an Array.
861 case AifEnAddContainer:
862 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
863 if (container >= dev->maximum_num_containers)
864 break;
865 dev->fsa_dev[container].config_needed = ADD;
866 dev->fsa_dev[container].config_waiting_on =
867 AifEnConfigChange;
868 dev->fsa_dev[container].config_waiting_stamp = jiffies;
869 break;
872 * Delete an Array.
874 case AifEnDeleteContainer:
875 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
876 if (container >= dev->maximum_num_containers)
877 break;
878 dev->fsa_dev[container].config_needed = DELETE;
879 dev->fsa_dev[container].config_waiting_on =
880 AifEnConfigChange;
881 dev->fsa_dev[container].config_waiting_stamp = jiffies;
882 break;
885 * Container change detected. If we currently are not
886 * waiting on something else, setup to wait on a Config Change.
888 case AifEnContainerChange:
889 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
890 if (container >= dev->maximum_num_containers)
891 break;
892 if (dev->fsa_dev[container].config_waiting_on &&
893 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
894 break;
895 dev->fsa_dev[container].config_needed = CHANGE;
896 dev->fsa_dev[container].config_waiting_on =
897 AifEnConfigChange;
898 dev->fsa_dev[container].config_waiting_stamp = jiffies;
899 break;
901 case AifEnConfigChange:
902 break;
904 case AifEnAddJBOD:
905 case AifEnDeleteJBOD:
906 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
907 if ((container >> 28))
908 break;
909 channel = (container >> 24) & 0xF;
910 if (channel >= dev->maximum_num_channels)
911 break;
912 id = container & 0xFFFF;
913 if (id >= dev->maximum_num_physicals)
914 break;
915 lun = (container >> 16) & 0xFF;
916 channel = aac_phys_to_logical(channel);
917 device_config_needed =
918 (((__le32 *)aifcmd->data)[0] ==
919 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
920 break;
922 case AifEnEnclosureManagement:
924 * If in JBOD mode, automatic exposure of new
925 * physical target to be suppressed until configured.
927 if (dev->jbod)
928 break;
929 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
930 case EM_DRIVE_INSERTION:
931 case EM_DRIVE_REMOVAL:
932 container = le32_to_cpu(
933 ((__le32 *)aifcmd->data)[2]);
934 if ((container >> 28))
935 break;
936 channel = (container >> 24) & 0xF;
937 if (channel >= dev->maximum_num_channels)
938 break;
939 id = container & 0xFFFF;
940 lun = (container >> 16) & 0xFF;
941 if (id >= dev->maximum_num_physicals) {
942 /* legacy dev_t ? */
943 if ((0x2000 <= id) || lun || channel ||
944 ((channel = (id >> 7) & 0x3F) >=
945 dev->maximum_num_channels))
946 break;
947 lun = (id >> 4) & 7;
948 id &= 0xF;
950 channel = aac_phys_to_logical(channel);
951 device_config_needed =
952 (((__le32 *)aifcmd->data)[3]
953 == cpu_to_le32(EM_DRIVE_INSERTION)) ?
954 ADD : DELETE;
955 break;
957 break;
961 * If we are waiting on something and this happens to be
962 * that thing then set the re-configure flag.
964 if (container != (u32)-1) {
965 if (container >= dev->maximum_num_containers)
966 break;
967 if ((dev->fsa_dev[container].config_waiting_on ==
968 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
969 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
970 dev->fsa_dev[container].config_waiting_on = 0;
971 } else for (container = 0;
972 container < dev->maximum_num_containers; ++container) {
973 if ((dev->fsa_dev[container].config_waiting_on ==
974 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
975 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
976 dev->fsa_dev[container].config_waiting_on = 0;
978 break;
980 case AifCmdJobProgress:
982 * These are job progress AIF's. When a Clear is being
983 * done on a container it is initially created then hidden from
984 * the OS. When the clear completes we don't get a config
985 * change so we monitor the job status complete on a clear then
986 * wait for a container change.
989 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
990 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
991 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
992 for (container = 0;
993 container < dev->maximum_num_containers;
994 ++container) {
996 * Stomp on all config sequencing for all
997 * containers?
999 dev->fsa_dev[container].config_waiting_on =
1000 AifEnContainerChange;
1001 dev->fsa_dev[container].config_needed = ADD;
1002 dev->fsa_dev[container].config_waiting_stamp =
1003 jiffies;
1006 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1007 ((__le32 *)aifcmd->data)[6] == 0 &&
1008 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1009 for (container = 0;
1010 container < dev->maximum_num_containers;
1011 ++container) {
1013 * Stomp on all config sequencing for all
1014 * containers?
1016 dev->fsa_dev[container].config_waiting_on =
1017 AifEnContainerChange;
1018 dev->fsa_dev[container].config_needed = DELETE;
1019 dev->fsa_dev[container].config_waiting_stamp =
1020 jiffies;
1023 break;
1026 if (device_config_needed == NOTHING)
1027 for (container = 0; container < dev->maximum_num_containers;
1028 ++container) {
1029 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1030 (dev->fsa_dev[container].config_needed != NOTHING) &&
1031 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1032 device_config_needed =
1033 dev->fsa_dev[container].config_needed;
1034 dev->fsa_dev[container].config_needed = NOTHING;
1035 channel = CONTAINER_TO_CHANNEL(container);
1036 id = CONTAINER_TO_ID(container);
1037 lun = CONTAINER_TO_LUN(container);
1038 break;
1041 if (device_config_needed == NOTHING)
1042 return;
1045 * If we decided that a re-configuration needs to be done,
1046 * schedule it here on the way out the door, please close the door
1047 * behind you.
1051 * Find the scsi_device associated with the SCSI address,
1052 * and mark it as changed, invalidating the cache. This deals
1053 * with changes to existing device IDs.
1056 if (!dev || !dev->scsi_host_ptr)
1057 return;
1059 * force reload of disk info via aac_probe_container
1061 if ((channel == CONTAINER_CHANNEL) &&
1062 (device_config_needed != NOTHING)) {
1063 if (dev->fsa_dev[container].valid == 1)
1064 dev->fsa_dev[container].valid = 2;
1065 aac_probe_container(dev, container);
1067 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1068 if (device) {
1069 switch (device_config_needed) {
1070 case DELETE:
1071 if (scsi_device_online(device)) {
1072 scsi_device_set_state(device, SDEV_OFFLINE);
1073 sdev_printk(KERN_INFO, device,
1074 "Device offlined - %s\n",
1075 (channel == CONTAINER_CHANNEL) ?
1076 "array deleted" :
1077 "enclosure services event");
1079 break;
1080 case ADD:
1081 if (!scsi_device_online(device)) {
1082 sdev_printk(KERN_INFO, device,
1083 "Device online - %s\n",
1084 (channel == CONTAINER_CHANNEL) ?
1085 "array created" :
1086 "enclosure services event");
1087 scsi_device_set_state(device, SDEV_RUNNING);
1089 /* FALLTHRU */
1090 case CHANGE:
1091 if ((channel == CONTAINER_CHANNEL)
1092 && (!dev->fsa_dev[container].valid)) {
1093 if (!scsi_device_online(device))
1094 break;
1095 scsi_device_set_state(device, SDEV_OFFLINE);
1096 sdev_printk(KERN_INFO, device,
1097 "Device offlined - %s\n",
1098 "array failed");
1099 break;
1101 scsi_rescan_device(&device->sdev_gendev);
1103 default:
1104 break;
1106 scsi_device_put(device);
1107 device_config_needed = NOTHING;
1109 if (device_config_needed == ADD)
1110 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1113 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1115 int index, quirks;
1116 int retval;
1117 struct Scsi_Host *host;
1118 struct scsi_device *dev;
1119 struct scsi_cmnd *command;
1120 struct scsi_cmnd *command_list;
1121 int jafo = 0;
1124 * Assumptions:
1125 * - host is locked, unless called by the aacraid thread.
1126 * (a matter of convenience, due to legacy issues surrounding
1127 * eh_host_adapter_reset).
1128 * - in_reset is asserted, so no new i/o is getting to the
1129 * card.
1130 * - The card is dead, or will be very shortly ;-/ so no new
1131 * commands are completing in the interrupt service.
1133 host = aac->scsi_host_ptr;
1134 scsi_block_requests(host);
1135 aac_adapter_disable_int(aac);
1136 if (aac->thread->pid != current->pid) {
1137 spin_unlock_irq(host->host_lock);
1138 kthread_stop(aac->thread);
1139 jafo = 1;
1143 * If a positive health, means in a known DEAD PANIC
1144 * state and the adapter could be reset to `try again'.
1146 retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1148 if (retval)
1149 goto out;
1152 * Loop through the fibs, close the synchronous FIBS
1154 for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1155 struct fib *fib = &aac->fibs[index];
1156 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1157 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1158 unsigned long flagv;
1159 spin_lock_irqsave(&fib->event_lock, flagv);
1160 up(&fib->event_wait);
1161 spin_unlock_irqrestore(&fib->event_lock, flagv);
1162 schedule();
1163 retval = 0;
1166 /* Give some extra time for ioctls to complete. */
1167 if (retval == 0)
1168 ssleep(2);
1169 index = aac->cardtype;
1172 * Re-initialize the adapter, first free resources, then carefully
1173 * apply the initialization sequence to come back again. Only risk
1174 * is a change in Firmware dropping cache, it is assumed the caller
1175 * will ensure that i/o is queisced and the card is flushed in that
1176 * case.
1178 aac_fib_map_free(aac);
1179 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1180 aac->comm_addr = NULL;
1181 aac->comm_phys = 0;
1182 kfree(aac->queues);
1183 aac->queues = NULL;
1184 free_irq(aac->pdev->irq, aac);
1185 kfree(aac->fsa_dev);
1186 aac->fsa_dev = NULL;
1187 quirks = aac_get_driver_ident(index)->quirks;
1188 if (quirks & AAC_QUIRK_31BIT) {
1189 if (((retval = pci_set_dma_mask(aac->pdev, DMA_31BIT_MASK))) ||
1190 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_31BIT_MASK))))
1191 goto out;
1192 } else {
1193 if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) ||
1194 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK))))
1195 goto out;
1197 if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1198 goto out;
1199 if (quirks & AAC_QUIRK_31BIT)
1200 if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK)))
1201 goto out;
1202 if (jafo) {
1203 aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1204 if (IS_ERR(aac->thread)) {
1205 retval = PTR_ERR(aac->thread);
1206 goto out;
1209 (void)aac_get_adapter_info(aac);
1210 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1211 host->sg_tablesize = 34;
1212 host->max_sectors = (host->sg_tablesize * 8) + 112;
1214 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1215 host->sg_tablesize = 17;
1216 host->max_sectors = (host->sg_tablesize * 8) + 112;
1218 aac_get_config_status(aac, 1);
1219 aac_get_containers(aac);
1221 * This is where the assumption that the Adapter is quiesced
1222 * is important.
1224 command_list = NULL;
1225 __shost_for_each_device(dev, host) {
1226 unsigned long flags;
1227 spin_lock_irqsave(&dev->list_lock, flags);
1228 list_for_each_entry(command, &dev->cmd_list, list)
1229 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1230 command->SCp.buffer = (struct scatterlist *)command_list;
1231 command_list = command;
1233 spin_unlock_irqrestore(&dev->list_lock, flags);
1235 while ((command = command_list)) {
1236 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1237 command->SCp.buffer = NULL;
1238 command->result = DID_OK << 16
1239 | COMMAND_COMPLETE << 8
1240 | SAM_STAT_TASK_SET_FULL;
1241 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1242 command->scsi_done(command);
1244 retval = 0;
1246 out:
1247 aac->in_reset = 0;
1248 scsi_unblock_requests(host);
1249 if (jafo) {
1250 spin_lock_irq(host->host_lock);
1252 return retval;
1255 int aac_reset_adapter(struct aac_dev * aac, int forced)
1257 unsigned long flagv = 0;
1258 int retval;
1259 struct Scsi_Host * host;
1261 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1262 return -EBUSY;
1264 if (aac->in_reset) {
1265 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1266 return -EBUSY;
1268 aac->in_reset = 1;
1269 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1272 * Wait for all commands to complete to this specific
1273 * target (block maximum 60 seconds). Although not necessary,
1274 * it does make us a good storage citizen.
1276 host = aac->scsi_host_ptr;
1277 scsi_block_requests(host);
1278 if (forced < 2) for (retval = 60; retval; --retval) {
1279 struct scsi_device * dev;
1280 struct scsi_cmnd * command;
1281 int active = 0;
1283 __shost_for_each_device(dev, host) {
1284 spin_lock_irqsave(&dev->list_lock, flagv);
1285 list_for_each_entry(command, &dev->cmd_list, list) {
1286 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1287 active++;
1288 break;
1291 spin_unlock_irqrestore(&dev->list_lock, flagv);
1292 if (active)
1293 break;
1297 * We can exit If all the commands are complete
1299 if (active == 0)
1300 break;
1301 ssleep(1);
1304 /* Quiesce build, flush cache, write through mode */
1305 if (forced < 2)
1306 aac_send_shutdown(aac);
1307 spin_lock_irqsave(host->host_lock, flagv);
1308 retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1309 spin_unlock_irqrestore(host->host_lock, flagv);
1311 if ((forced < 2) && (retval == -ENODEV)) {
1312 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1313 struct fib * fibctx = aac_fib_alloc(aac);
1314 if (fibctx) {
1315 struct aac_pause *cmd;
1316 int status;
1318 aac_fib_init(fibctx);
1320 cmd = (struct aac_pause *) fib_data(fibctx);
1322 cmd->command = cpu_to_le32(VM_ContainerConfig);
1323 cmd->type = cpu_to_le32(CT_PAUSE_IO);
1324 cmd->timeout = cpu_to_le32(1);
1325 cmd->min = cpu_to_le32(1);
1326 cmd->noRescan = cpu_to_le32(1);
1327 cmd->count = cpu_to_le32(0);
1329 status = aac_fib_send(ContainerCommand,
1330 fibctx,
1331 sizeof(struct aac_pause),
1332 FsaNormal,
1333 -2 /* Timeout silently */, 1,
1334 NULL, NULL);
1336 if (status >= 0)
1337 aac_fib_complete(fibctx);
1338 aac_fib_free(fibctx);
1342 return retval;
1345 int aac_check_health(struct aac_dev * aac)
1347 int BlinkLED;
1348 unsigned long time_now, flagv = 0;
1349 struct list_head * entry;
1350 struct Scsi_Host * host;
1352 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1353 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1354 return 0;
1356 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1357 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1358 return 0; /* OK */
1361 aac->in_reset = 1;
1363 /* Fake up an AIF:
1364 * aac_aifcmd.command = AifCmdEventNotify = 1
1365 * aac_aifcmd.seqnum = 0xFFFFFFFF
1366 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1367 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1368 * aac.aifcmd.data[2] = AifHighPriority = 3
1369 * aac.aifcmd.data[3] = BlinkLED
1372 time_now = jiffies/HZ;
1373 entry = aac->fib_list.next;
1376 * For each Context that is on the
1377 * fibctxList, make a copy of the
1378 * fib, and then set the event to wake up the
1379 * thread that is waiting for it.
1381 while (entry != &aac->fib_list) {
1383 * Extract the fibctx
1385 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1386 struct hw_fib * hw_fib;
1387 struct fib * fib;
1389 * Check if the queue is getting
1390 * backlogged
1392 if (fibctx->count > 20) {
1394 * It's *not* jiffies folks,
1395 * but jiffies / HZ, so do not
1396 * panic ...
1398 u32 time_last = fibctx->jiffies;
1400 * Has it been > 2 minutes
1401 * since the last read off
1402 * the queue?
1404 if ((time_now - time_last) > aif_timeout) {
1405 entry = entry->next;
1406 aac_close_fib_context(aac, fibctx);
1407 continue;
1411 * Warning: no sleep allowed while
1412 * holding spinlock
1414 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1415 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1416 if (fib && hw_fib) {
1417 struct aac_aifcmd * aif;
1419 fib->hw_fib_va = hw_fib;
1420 fib->dev = aac;
1421 aac_fib_init(fib);
1422 fib->type = FSAFS_NTC_FIB_CONTEXT;
1423 fib->size = sizeof (struct fib);
1424 fib->data = hw_fib->data;
1425 aif = (struct aac_aifcmd *)hw_fib->data;
1426 aif->command = cpu_to_le32(AifCmdEventNotify);
1427 aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1428 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1429 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1430 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1431 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1434 * Put the FIB onto the
1435 * fibctx's fibs
1437 list_add_tail(&fib->fiblink, &fibctx->fib_list);
1438 fibctx->count++;
1440 * Set the event to wake up the
1441 * thread that will waiting.
1443 up(&fibctx->wait_sem);
1444 } else {
1445 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1446 kfree(fib);
1447 kfree(hw_fib);
1449 entry = entry->next;
1452 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1454 if (BlinkLED < 0) {
1455 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1456 goto out;
1459 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1461 if (!aac_check_reset || ((aac_check_reset != 1) &&
1462 (aac->supplement_adapter_info.SupportedOptions2 &
1463 AAC_OPTION_IGNORE_RESET)))
1464 goto out;
1465 host = aac->scsi_host_ptr;
1466 if (aac->thread->pid != current->pid)
1467 spin_lock_irqsave(host->host_lock, flagv);
1468 BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1469 if (aac->thread->pid != current->pid)
1470 spin_unlock_irqrestore(host->host_lock, flagv);
1471 return BlinkLED;
1473 out:
1474 aac->in_reset = 0;
1475 return BlinkLED;
1480 * aac_command_thread - command processing thread
1481 * @dev: Adapter to monitor
1483 * Waits on the commandready event in it's queue. When the event gets set
1484 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1485 * until the queue is empty. When the queue is empty it will wait for
1486 * more FIBs.
1489 int aac_command_thread(void *data)
1491 struct aac_dev *dev = data;
1492 struct hw_fib *hw_fib, *hw_newfib;
1493 struct fib *fib, *newfib;
1494 struct aac_fib_context *fibctx;
1495 unsigned long flags;
1496 DECLARE_WAITQUEUE(wait, current);
1497 unsigned long next_jiffies = jiffies + HZ;
1498 unsigned long next_check_jiffies = next_jiffies;
1499 long difference = HZ;
1502 * We can only have one thread per adapter for AIF's.
1504 if (dev->aif_thread)
1505 return -EINVAL;
1508 * Let the DPC know it has a place to send the AIF's to.
1510 dev->aif_thread = 1;
1511 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1512 set_current_state(TASK_INTERRUPTIBLE);
1513 dprintk ((KERN_INFO "aac_command_thread start\n"));
1514 while (1) {
1515 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1516 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1517 struct list_head *entry;
1518 struct aac_aifcmd * aifcmd;
1520 set_current_state(TASK_RUNNING);
1522 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1523 list_del(entry);
1525 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1526 fib = list_entry(entry, struct fib, fiblink);
1528 * We will process the FIB here or pass it to a
1529 * worker thread that is TBD. We Really can't
1530 * do anything at this point since we don't have
1531 * anything defined for this thread to do.
1533 hw_fib = fib->hw_fib_va;
1534 memset(fib, 0, sizeof(struct fib));
1535 fib->type = FSAFS_NTC_FIB_CONTEXT;
1536 fib->size = sizeof(struct fib);
1537 fib->hw_fib_va = hw_fib;
1538 fib->data = hw_fib->data;
1539 fib->dev = dev;
1541 * We only handle AifRequest fibs from the adapter.
1543 aifcmd = (struct aac_aifcmd *) hw_fib->data;
1544 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1545 /* Handle Driver Notify Events */
1546 aac_handle_aif(dev, fib);
1547 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1548 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1549 } else {
1550 /* The u32 here is important and intended. We are using
1551 32bit wrapping time to fit the adapter field */
1553 u32 time_now, time_last;
1554 unsigned long flagv;
1555 unsigned num;
1556 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1557 struct fib ** fib_pool, ** fib_p;
1559 /* Sniff events */
1560 if ((aifcmd->command ==
1561 cpu_to_le32(AifCmdEventNotify)) ||
1562 (aifcmd->command ==
1563 cpu_to_le32(AifCmdJobProgress))) {
1564 aac_handle_aif(dev, fib);
1567 time_now = jiffies/HZ;
1570 * Warning: no sleep allowed while
1571 * holding spinlock. We take the estimate
1572 * and pre-allocate a set of fibs outside the
1573 * lock.
1575 num = le32_to_cpu(dev->init->AdapterFibsSize)
1576 / sizeof(struct hw_fib); /* some extra */
1577 spin_lock_irqsave(&dev->fib_lock, flagv);
1578 entry = dev->fib_list.next;
1579 while (entry != &dev->fib_list) {
1580 entry = entry->next;
1581 ++num;
1583 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1584 hw_fib_pool = NULL;
1585 fib_pool = NULL;
1586 if (num
1587 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1588 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1589 hw_fib_p = hw_fib_pool;
1590 fib_p = fib_pool;
1591 while (hw_fib_p < &hw_fib_pool[num]) {
1592 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1593 --hw_fib_p;
1594 break;
1596 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1597 kfree(*(--hw_fib_p));
1598 break;
1601 if ((num = hw_fib_p - hw_fib_pool) == 0) {
1602 kfree(fib_pool);
1603 fib_pool = NULL;
1604 kfree(hw_fib_pool);
1605 hw_fib_pool = NULL;
1607 } else {
1608 kfree(hw_fib_pool);
1609 hw_fib_pool = NULL;
1611 spin_lock_irqsave(&dev->fib_lock, flagv);
1612 entry = dev->fib_list.next;
1614 * For each Context that is on the
1615 * fibctxList, make a copy of the
1616 * fib, and then set the event to wake up the
1617 * thread that is waiting for it.
1619 hw_fib_p = hw_fib_pool;
1620 fib_p = fib_pool;
1621 while (entry != &dev->fib_list) {
1623 * Extract the fibctx
1625 fibctx = list_entry(entry, struct aac_fib_context, next);
1627 * Check if the queue is getting
1628 * backlogged
1630 if (fibctx->count > 20)
1633 * It's *not* jiffies folks,
1634 * but jiffies / HZ so do not
1635 * panic ...
1637 time_last = fibctx->jiffies;
1639 * Has it been > 2 minutes
1640 * since the last read off
1641 * the queue?
1643 if ((time_now - time_last) > aif_timeout) {
1644 entry = entry->next;
1645 aac_close_fib_context(dev, fibctx);
1646 continue;
1650 * Warning: no sleep allowed while
1651 * holding spinlock
1653 if (hw_fib_p < &hw_fib_pool[num]) {
1654 hw_newfib = *hw_fib_p;
1655 *(hw_fib_p++) = NULL;
1656 newfib = *fib_p;
1657 *(fib_p++) = NULL;
1659 * Make the copy of the FIB
1661 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1662 memcpy(newfib, fib, sizeof(struct fib));
1663 newfib->hw_fib_va = hw_newfib;
1665 * Put the FIB onto the
1666 * fibctx's fibs
1668 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1669 fibctx->count++;
1671 * Set the event to wake up the
1672 * thread that is waiting.
1674 up(&fibctx->wait_sem);
1675 } else {
1676 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1678 entry = entry->next;
1681 * Set the status of this FIB
1683 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1684 aac_fib_adapter_complete(fib, sizeof(u32));
1685 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1686 /* Free up the remaining resources */
1687 hw_fib_p = hw_fib_pool;
1688 fib_p = fib_pool;
1689 while (hw_fib_p < &hw_fib_pool[num]) {
1690 kfree(*hw_fib_p);
1691 kfree(*fib_p);
1692 ++fib_p;
1693 ++hw_fib_p;
1695 kfree(hw_fib_pool);
1696 kfree(fib_pool);
1698 kfree(fib);
1699 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1702 * There are no more AIF's
1704 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1707 * Background activity
1709 if ((time_before(next_check_jiffies,next_jiffies))
1710 && ((difference = next_check_jiffies - jiffies) <= 0)) {
1711 next_check_jiffies = next_jiffies;
1712 if (aac_check_health(dev) == 0) {
1713 difference = ((long)(unsigned)check_interval)
1714 * HZ;
1715 next_check_jiffies = jiffies + difference;
1716 } else if (!dev->queues)
1717 break;
1719 if (!time_before(next_check_jiffies,next_jiffies)
1720 && ((difference = next_jiffies - jiffies) <= 0)) {
1721 struct timeval now;
1722 int ret;
1724 /* Don't even try to talk to adapter if its sick */
1725 ret = aac_check_health(dev);
1726 if (!ret && !dev->queues)
1727 break;
1728 next_check_jiffies = jiffies
1729 + ((long)(unsigned)check_interval)
1730 * HZ;
1731 do_gettimeofday(&now);
1733 /* Synchronize our watches */
1734 if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1735 && (now.tv_usec > (1000000 / HZ)))
1736 difference = (((1000000 - now.tv_usec) * HZ)
1737 + 500000) / 1000000;
1738 else if (ret == 0) {
1739 struct fib *fibptr;
1741 if ((fibptr = aac_fib_alloc(dev))) {
1742 __le32 *info;
1744 aac_fib_init(fibptr);
1746 info = (__le32 *) fib_data(fibptr);
1747 if (now.tv_usec > 500000)
1748 ++now.tv_sec;
1750 *info = cpu_to_le32(now.tv_sec);
1752 (void)aac_fib_send(SendHostTime,
1753 fibptr,
1754 sizeof(*info),
1755 FsaNormal,
1756 1, 1,
1757 NULL,
1758 NULL);
1759 aac_fib_complete(fibptr);
1760 aac_fib_free(fibptr);
1762 difference = (long)(unsigned)update_interval*HZ;
1763 } else {
1764 /* retry shortly */
1765 difference = 10 * HZ;
1767 next_jiffies = jiffies + difference;
1768 if (time_before(next_check_jiffies,next_jiffies))
1769 difference = next_check_jiffies - jiffies;
1771 if (difference <= 0)
1772 difference = 1;
1773 set_current_state(TASK_INTERRUPTIBLE);
1774 schedule_timeout(difference);
1776 if (kthread_should_stop())
1777 break;
1779 if (dev->queues)
1780 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1781 dev->aif_thread = 0;
1782 return 0;