2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include "xfs_trans.h"
26 #include "xfs_dmapi.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dir2_sf.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_alloc.h"
36 #include "xfs_btree.h"
37 #include "xfs_error.h"
39 #include "xfs_iomap.h"
40 #include "xfs_vnodeops.h"
41 #include <linux/mpage.h>
42 #include <linux/pagevec.h>
43 #include <linux/writeback.h>
52 struct buffer_head
*bh
, *head
;
54 *delalloc
= *unmapped
= *unwritten
= 0;
56 bh
= head
= page_buffers(page
);
58 if (buffer_uptodate(bh
) && !buffer_mapped(bh
))
60 else if (buffer_unwritten(bh
))
62 else if (buffer_delay(bh
))
64 } while ((bh
= bh
->b_this_page
) != head
);
67 #if defined(XFS_RW_TRACE)
76 bhv_vnode_t
*vp
= vn_from_inode(inode
);
77 loff_t isize
= i_size_read(inode
);
78 loff_t offset
= page_offset(page
);
79 int delalloc
= -1, unmapped
= -1, unwritten
= -1;
81 if (page_has_buffers(page
))
82 xfs_count_page_state(page
, &delalloc
, &unmapped
, &unwritten
);
88 ktrace_enter(ip
->i_rwtrace
,
89 (void *)((unsigned long)tag
),
94 (void *)((unsigned long)((ip
->i_d
.di_size
>> 32) & 0xffffffff)),
95 (void *)((unsigned long)(ip
->i_d
.di_size
& 0xffffffff)),
96 (void *)((unsigned long)((isize
>> 32) & 0xffffffff)),
97 (void *)((unsigned long)(isize
& 0xffffffff)),
98 (void *)((unsigned long)((offset
>> 32) & 0xffffffff)),
99 (void *)((unsigned long)(offset
& 0xffffffff)),
100 (void *)((unsigned long)delalloc
),
101 (void *)((unsigned long)unmapped
),
102 (void *)((unsigned long)unwritten
),
103 (void *)((unsigned long)current_pid()),
107 #define xfs_page_trace(tag, inode, page, pgoff)
111 * Schedule IO completion handling on a xfsdatad if this was
112 * the final hold on this ioend. If we are asked to wait,
113 * flush the workqueue.
120 if (atomic_dec_and_test(&ioend
->io_remaining
)) {
121 queue_work(xfsdatad_workqueue
, &ioend
->io_work
);
123 flush_workqueue(xfsdatad_workqueue
);
128 * We're now finished for good with this ioend structure.
129 * Update the page state via the associated buffer_heads,
130 * release holds on the inode and bio, and finally free
131 * up memory. Do not use the ioend after this.
137 struct buffer_head
*bh
, *next
;
139 for (bh
= ioend
->io_buffer_head
; bh
; bh
= next
) {
140 next
= bh
->b_private
;
141 bh
->b_end_io(bh
, !ioend
->io_error
);
143 if (unlikely(ioend
->io_error
)) {
144 vn_ioerror(XFS_I(ioend
->io_inode
), ioend
->io_error
,
147 vn_iowake(XFS_I(ioend
->io_inode
));
148 mempool_free(ioend
, xfs_ioend_pool
);
152 * Update on-disk file size now that data has been written to disk.
153 * The current in-memory file size is i_size. If a write is beyond
154 * eof io_new_size will be the intended file size until i_size is
155 * updated. If this write does not extend all the way to the valid
156 * file size then restrict this update to the end of the write.
162 xfs_inode_t
*ip
= XFS_I(ioend
->io_inode
);
166 ASSERT((ip
->i_d
.di_mode
& S_IFMT
) == S_IFREG
);
167 ASSERT(ioend
->io_type
!= IOMAP_READ
);
169 if (unlikely(ioend
->io_error
))
172 bsize
= ioend
->io_offset
+ ioend
->io_size
;
174 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
176 isize
= MAX(ip
->i_size
, ip
->i_iocore
.io_new_size
);
177 isize
= MIN(isize
, bsize
);
179 if (ip
->i_d
.di_size
< isize
) {
180 ip
->i_d
.di_size
= isize
;
181 ip
->i_update_core
= 1;
182 ip
->i_update_size
= 1;
183 mark_inode_dirty_sync(ioend
->io_inode
);
186 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
190 * Buffered IO write completion for delayed allocate extents.
193 xfs_end_bio_delalloc(
194 struct work_struct
*work
)
197 container_of(work
, xfs_ioend_t
, io_work
);
199 xfs_setfilesize(ioend
);
200 xfs_destroy_ioend(ioend
);
204 * Buffered IO write completion for regular, written extents.
208 struct work_struct
*work
)
211 container_of(work
, xfs_ioend_t
, io_work
);
213 xfs_setfilesize(ioend
);
214 xfs_destroy_ioend(ioend
);
218 * IO write completion for unwritten extents.
220 * Issue transactions to convert a buffer range from unwritten
221 * to written extents.
224 xfs_end_bio_unwritten(
225 struct work_struct
*work
)
228 container_of(work
, xfs_ioend_t
, io_work
);
229 xfs_off_t offset
= ioend
->io_offset
;
230 size_t size
= ioend
->io_size
;
232 if (likely(!ioend
->io_error
)) {
233 xfs_bmap(XFS_I(ioend
->io_inode
), offset
, size
,
234 BMAPI_UNWRITTEN
, NULL
, NULL
);
235 xfs_setfilesize(ioend
);
237 xfs_destroy_ioend(ioend
);
241 * IO read completion for regular, written extents.
245 struct work_struct
*work
)
248 container_of(work
, xfs_ioend_t
, io_work
);
250 xfs_destroy_ioend(ioend
);
254 * Allocate and initialise an IO completion structure.
255 * We need to track unwritten extent write completion here initially.
256 * We'll need to extend this for updating the ondisk inode size later
266 ioend
= mempool_alloc(xfs_ioend_pool
, GFP_NOFS
);
269 * Set the count to 1 initially, which will prevent an I/O
270 * completion callback from happening before we have started
271 * all the I/O from calling the completion routine too early.
273 atomic_set(&ioend
->io_remaining
, 1);
275 ioend
->io_list
= NULL
;
276 ioend
->io_type
= type
;
277 ioend
->io_inode
= inode
;
278 ioend
->io_buffer_head
= NULL
;
279 ioend
->io_buffer_tail
= NULL
;
280 atomic_inc(&XFS_I(ioend
->io_inode
)->i_iocount
);
281 ioend
->io_offset
= 0;
284 if (type
== IOMAP_UNWRITTEN
)
285 INIT_WORK(&ioend
->io_work
, xfs_end_bio_unwritten
);
286 else if (type
== IOMAP_DELAY
)
287 INIT_WORK(&ioend
->io_work
, xfs_end_bio_delalloc
);
288 else if (type
== IOMAP_READ
)
289 INIT_WORK(&ioend
->io_work
, xfs_end_bio_read
);
291 INIT_WORK(&ioend
->io_work
, xfs_end_bio_written
);
304 xfs_inode_t
*ip
= XFS_I(inode
);
305 int error
, nmaps
= 1;
307 error
= xfs_bmap(ip
, offset
, count
,
308 flags
, mapp
, &nmaps
);
309 if (!error
&& (flags
& (BMAPI_WRITE
|BMAPI_ALLOCATE
)))
310 xfs_iflags_set(ip
, XFS_IMODIFIED
);
319 return offset
>= iomapp
->iomap_offset
&&
320 offset
< iomapp
->iomap_offset
+ iomapp
->iomap_bsize
;
324 * BIO completion handler for buffered IO.
331 xfs_ioend_t
*ioend
= bio
->bi_private
;
333 ASSERT(atomic_read(&bio
->bi_cnt
) >= 1);
334 ioend
->io_error
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
) ? 0 : error
;
336 /* Toss bio and pass work off to an xfsdatad thread */
337 bio
->bi_private
= NULL
;
338 bio
->bi_end_io
= NULL
;
341 xfs_finish_ioend(ioend
, 0);
345 xfs_submit_ioend_bio(
349 atomic_inc(&ioend
->io_remaining
);
351 bio
->bi_private
= ioend
;
352 bio
->bi_end_io
= xfs_end_bio
;
354 submit_bio(WRITE
, bio
);
355 ASSERT(!bio_flagged(bio
, BIO_EOPNOTSUPP
));
361 struct buffer_head
*bh
)
364 int nvecs
= bio_get_nr_vecs(bh
->b_bdev
);
367 bio
= bio_alloc(GFP_NOIO
, nvecs
);
371 ASSERT(bio
->bi_private
== NULL
);
372 bio
->bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
373 bio
->bi_bdev
= bh
->b_bdev
;
379 xfs_start_buffer_writeback(
380 struct buffer_head
*bh
)
382 ASSERT(buffer_mapped(bh
));
383 ASSERT(buffer_locked(bh
));
384 ASSERT(!buffer_delay(bh
));
385 ASSERT(!buffer_unwritten(bh
));
387 mark_buffer_async_write(bh
);
388 set_buffer_uptodate(bh
);
389 clear_buffer_dirty(bh
);
393 xfs_start_page_writeback(
395 struct writeback_control
*wbc
,
399 ASSERT(PageLocked(page
));
400 ASSERT(!PageWriteback(page
));
402 clear_page_dirty_for_io(page
);
403 set_page_writeback(page
);
405 /* If no buffers on the page are to be written, finish it here */
407 end_page_writeback(page
);
410 static inline int bio_add_buffer(struct bio
*bio
, struct buffer_head
*bh
)
412 return bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
416 * Submit all of the bios for all of the ioends we have saved up, covering the
417 * initial writepage page and also any probed pages.
419 * Because we may have multiple ioends spanning a page, we need to start
420 * writeback on all the buffers before we submit them for I/O. If we mark the
421 * buffers as we got, then we can end up with a page that only has buffers
422 * marked async write and I/O complete on can occur before we mark the other
423 * buffers async write.
425 * The end result of this is that we trip a bug in end_page_writeback() because
426 * we call it twice for the one page as the code in end_buffer_async_write()
427 * assumes that all buffers on the page are started at the same time.
429 * The fix is two passes across the ioend list - one to start writeback on the
430 * buffer_heads, and then submit them for I/O on the second pass.
436 xfs_ioend_t
*head
= ioend
;
438 struct buffer_head
*bh
;
440 sector_t lastblock
= 0;
442 /* Pass 1 - start writeback */
444 next
= ioend
->io_list
;
445 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
) {
446 xfs_start_buffer_writeback(bh
);
448 } while ((ioend
= next
) != NULL
);
450 /* Pass 2 - submit I/O */
453 next
= ioend
->io_list
;
456 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
) {
460 bio
= xfs_alloc_ioend_bio(bh
);
461 } else if (bh
->b_blocknr
!= lastblock
+ 1) {
462 xfs_submit_ioend_bio(ioend
, bio
);
466 if (bio_add_buffer(bio
, bh
) != bh
->b_size
) {
467 xfs_submit_ioend_bio(ioend
, bio
);
471 lastblock
= bh
->b_blocknr
;
474 xfs_submit_ioend_bio(ioend
, bio
);
475 xfs_finish_ioend(ioend
, 0);
476 } while ((ioend
= next
) != NULL
);
480 * Cancel submission of all buffer_heads so far in this endio.
481 * Toss the endio too. Only ever called for the initial page
482 * in a writepage request, so only ever one page.
489 struct buffer_head
*bh
, *next_bh
;
492 next
= ioend
->io_list
;
493 bh
= ioend
->io_buffer_head
;
495 next_bh
= bh
->b_private
;
496 clear_buffer_async_write(bh
);
498 } while ((bh
= next_bh
) != NULL
);
500 vn_iowake(XFS_I(ioend
->io_inode
));
501 mempool_free(ioend
, xfs_ioend_pool
);
502 } while ((ioend
= next
) != NULL
);
506 * Test to see if we've been building up a completion structure for
507 * earlier buffers -- if so, we try to append to this ioend if we
508 * can, otherwise we finish off any current ioend and start another.
509 * Return true if we've finished the given ioend.
514 struct buffer_head
*bh
,
517 xfs_ioend_t
**result
,
520 xfs_ioend_t
*ioend
= *result
;
522 if (!ioend
|| need_ioend
|| type
!= ioend
->io_type
) {
523 xfs_ioend_t
*previous
= *result
;
525 ioend
= xfs_alloc_ioend(inode
, type
);
526 ioend
->io_offset
= offset
;
527 ioend
->io_buffer_head
= bh
;
528 ioend
->io_buffer_tail
= bh
;
530 previous
->io_list
= ioend
;
533 ioend
->io_buffer_tail
->b_private
= bh
;
534 ioend
->io_buffer_tail
= bh
;
537 bh
->b_private
= NULL
;
538 ioend
->io_size
+= bh
->b_size
;
543 struct buffer_head
*bh
,
550 ASSERT(mp
->iomap_bn
!= IOMAP_DADDR_NULL
);
552 bn
= (mp
->iomap_bn
>> (block_bits
- BBSHIFT
)) +
553 ((offset
- mp
->iomap_offset
) >> block_bits
);
555 ASSERT(bn
|| (mp
->iomap_flags
& IOMAP_REALTIME
));
558 set_buffer_mapped(bh
);
563 struct buffer_head
*bh
,
568 ASSERT(!(iomapp
->iomap_flags
& IOMAP_HOLE
));
569 ASSERT(!(iomapp
->iomap_flags
& IOMAP_DELAY
));
572 xfs_map_buffer(bh
, iomapp
, offset
, block_bits
);
573 bh
->b_bdev
= iomapp
->iomap_target
->bt_bdev
;
574 set_buffer_mapped(bh
);
575 clear_buffer_delay(bh
);
576 clear_buffer_unwritten(bh
);
580 * Look for a page at index that is suitable for clustering.
585 unsigned int pg_offset
,
590 if (PageWriteback(page
))
593 if (page
->mapping
&& PageDirty(page
)) {
594 if (page_has_buffers(page
)) {
595 struct buffer_head
*bh
, *head
;
597 bh
= head
= page_buffers(page
);
599 if (!buffer_uptodate(bh
))
601 if (mapped
!= buffer_mapped(bh
))
604 if (ret
>= pg_offset
)
606 } while ((bh
= bh
->b_this_page
) != head
);
608 ret
= mapped
? 0 : PAGE_CACHE_SIZE
;
617 struct page
*startpage
,
618 struct buffer_head
*bh
,
619 struct buffer_head
*head
,
623 pgoff_t tindex
, tlast
, tloff
;
627 /* First sum forwards in this page */
629 if (!buffer_uptodate(bh
) || (mapped
!= buffer_mapped(bh
)))
632 } while ((bh
= bh
->b_this_page
) != head
);
634 /* if we reached the end of the page, sum forwards in following pages */
635 tlast
= i_size_read(inode
) >> PAGE_CACHE_SHIFT
;
636 tindex
= startpage
->index
+ 1;
638 /* Prune this back to avoid pathological behavior */
639 tloff
= min(tlast
, startpage
->index
+ 64);
641 pagevec_init(&pvec
, 0);
642 while (!done
&& tindex
<= tloff
) {
643 unsigned len
= min_t(pgoff_t
, PAGEVEC_SIZE
, tlast
- tindex
+ 1);
645 if (!pagevec_lookup(&pvec
, inode
->i_mapping
, tindex
, len
))
648 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
649 struct page
*page
= pvec
.pages
[i
];
650 size_t pg_offset
, pg_len
= 0;
652 if (tindex
== tlast
) {
654 i_size_read(inode
) & (PAGE_CACHE_SIZE
- 1);
660 pg_offset
= PAGE_CACHE_SIZE
;
662 if (page
->index
== tindex
&& !TestSetPageLocked(page
)) {
663 pg_len
= xfs_probe_page(page
, pg_offset
, mapped
);
676 pagevec_release(&pvec
);
684 * Test if a given page is suitable for writing as part of an unwritten
685 * or delayed allocate extent.
692 if (PageWriteback(page
))
695 if (page
->mapping
&& page_has_buffers(page
)) {
696 struct buffer_head
*bh
, *head
;
699 bh
= head
= page_buffers(page
);
701 if (buffer_unwritten(bh
))
702 acceptable
= (type
== IOMAP_UNWRITTEN
);
703 else if (buffer_delay(bh
))
704 acceptable
= (type
== IOMAP_DELAY
);
705 else if (buffer_dirty(bh
) && buffer_mapped(bh
))
706 acceptable
= (type
== IOMAP_NEW
);
709 } while ((bh
= bh
->b_this_page
) != head
);
719 * Allocate & map buffers for page given the extent map. Write it out.
720 * except for the original page of a writepage, this is called on
721 * delalloc/unwritten pages only, for the original page it is possible
722 * that the page has no mapping at all.
730 xfs_ioend_t
**ioendp
,
731 struct writeback_control
*wbc
,
735 struct buffer_head
*bh
, *head
;
736 xfs_off_t end_offset
;
737 unsigned long p_offset
;
739 int bbits
= inode
->i_blkbits
;
741 int count
= 0, done
= 0, uptodate
= 1;
742 xfs_off_t offset
= page_offset(page
);
744 if (page
->index
!= tindex
)
746 if (TestSetPageLocked(page
))
748 if (PageWriteback(page
))
749 goto fail_unlock_page
;
750 if (page
->mapping
!= inode
->i_mapping
)
751 goto fail_unlock_page
;
752 if (!xfs_is_delayed_page(page
, (*ioendp
)->io_type
))
753 goto fail_unlock_page
;
756 * page_dirty is initially a count of buffers on the page before
757 * EOF and is decremented as we move each into a cleanable state.
761 * End offset is the highest offset that this page should represent.
762 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
763 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
764 * hence give us the correct page_dirty count. On any other page,
765 * it will be zero and in that case we need page_dirty to be the
766 * count of buffers on the page.
768 end_offset
= min_t(unsigned long long,
769 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
,
772 len
= 1 << inode
->i_blkbits
;
773 p_offset
= min_t(unsigned long, end_offset
& (PAGE_CACHE_SIZE
- 1),
775 p_offset
= p_offset
? roundup(p_offset
, len
) : PAGE_CACHE_SIZE
;
776 page_dirty
= p_offset
/ len
;
778 bh
= head
= page_buffers(page
);
780 if (offset
>= end_offset
)
782 if (!buffer_uptodate(bh
))
784 if (!(PageUptodate(page
) || buffer_uptodate(bh
))) {
789 if (buffer_unwritten(bh
) || buffer_delay(bh
)) {
790 if (buffer_unwritten(bh
))
791 type
= IOMAP_UNWRITTEN
;
795 if (!xfs_iomap_valid(mp
, offset
)) {
800 ASSERT(!(mp
->iomap_flags
& IOMAP_HOLE
));
801 ASSERT(!(mp
->iomap_flags
& IOMAP_DELAY
));
803 xfs_map_at_offset(bh
, offset
, bbits
, mp
);
805 xfs_add_to_ioend(inode
, bh
, offset
,
808 set_buffer_dirty(bh
);
810 mark_buffer_dirty(bh
);
816 if (buffer_mapped(bh
) && all_bh
&& startio
) {
818 xfs_add_to_ioend(inode
, bh
, offset
,
826 } while (offset
+= len
, (bh
= bh
->b_this_page
) != head
);
828 if (uptodate
&& bh
== head
)
829 SetPageUptodate(page
);
833 struct backing_dev_info
*bdi
;
835 bdi
= inode
->i_mapping
->backing_dev_info
;
837 if (bdi_write_congested(bdi
)) {
838 wbc
->encountered_congestion
= 1;
840 } else if (wbc
->nr_to_write
<= 0) {
844 xfs_start_page_writeback(page
, wbc
, !page_dirty
, count
);
855 * Convert & write out a cluster of pages in the same extent as defined
856 * by mp and following the start page.
863 xfs_ioend_t
**ioendp
,
864 struct writeback_control
*wbc
,
872 pagevec_init(&pvec
, 0);
873 while (!done
&& tindex
<= tlast
) {
874 unsigned len
= min_t(pgoff_t
, PAGEVEC_SIZE
, tlast
- tindex
+ 1);
876 if (!pagevec_lookup(&pvec
, inode
->i_mapping
, tindex
, len
))
879 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
880 done
= xfs_convert_page(inode
, pvec
.pages
[i
], tindex
++,
881 iomapp
, ioendp
, wbc
, startio
, all_bh
);
886 pagevec_release(&pvec
);
892 * Calling this without startio set means we are being asked to make a dirty
893 * page ready for freeing it's buffers. When called with startio set then
894 * we are coming from writepage.
896 * When called with startio set it is important that we write the WHOLE
898 * The bh->b_state's cannot know if any of the blocks or which block for
899 * that matter are dirty due to mmap writes, and therefore bh uptodate is
900 * only valid if the page itself isn't completely uptodate. Some layers
901 * may clear the page dirty flag prior to calling write page, under the
902 * assumption the entire page will be written out; by not writing out the
903 * whole page the page can be reused before all valid dirty data is
904 * written out. Note: in the case of a page that has been dirty'd by
905 * mapwrite and but partially setup by block_prepare_write the
906 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
907 * valid state, thus the whole page must be written out thing.
911 xfs_page_state_convert(
914 struct writeback_control
*wbc
,
916 int unmapped
) /* also implies page uptodate */
918 struct buffer_head
*bh
, *head
;
920 xfs_ioend_t
*ioend
= NULL
, *iohead
= NULL
;
922 unsigned long p_offset
= 0;
924 __uint64_t end_offset
;
925 pgoff_t end_index
, last_index
, tlast
;
927 int flags
, err
, iomap_valid
= 0, uptodate
= 1;
928 int page_dirty
, count
= 0;
930 int all_bh
= unmapped
;
933 if (wbc
->sync_mode
== WB_SYNC_NONE
&& wbc
->nonblocking
)
934 trylock
|= BMAPI_TRYLOCK
;
937 /* Is this page beyond the end of the file? */
938 offset
= i_size_read(inode
);
939 end_index
= offset
>> PAGE_CACHE_SHIFT
;
940 last_index
= (offset
- 1) >> PAGE_CACHE_SHIFT
;
941 if (page
->index
>= end_index
) {
942 if ((page
->index
>= end_index
+ 1) ||
943 !(i_size_read(inode
) & (PAGE_CACHE_SIZE
- 1))) {
951 * page_dirty is initially a count of buffers on the page before
952 * EOF and is decremented as we move each into a cleanable state.
956 * End offset is the highest offset that this page should represent.
957 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
958 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
959 * hence give us the correct page_dirty count. On any other page,
960 * it will be zero and in that case we need page_dirty to be the
961 * count of buffers on the page.
963 end_offset
= min_t(unsigned long long,
964 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
, offset
);
965 len
= 1 << inode
->i_blkbits
;
966 p_offset
= min_t(unsigned long, end_offset
& (PAGE_CACHE_SIZE
- 1),
968 p_offset
= p_offset
? roundup(p_offset
, len
) : PAGE_CACHE_SIZE
;
969 page_dirty
= p_offset
/ len
;
971 bh
= head
= page_buffers(page
);
972 offset
= page_offset(page
);
976 /* TODO: cleanup count and page_dirty */
979 if (offset
>= end_offset
)
981 if (!buffer_uptodate(bh
))
983 if (!(PageUptodate(page
) || buffer_uptodate(bh
)) && !startio
) {
985 * the iomap is actually still valid, but the ioend
986 * isn't. shouldn't happen too often.
993 iomap_valid
= xfs_iomap_valid(&iomap
, offset
);
996 * First case, map an unwritten extent and prepare for
997 * extent state conversion transaction on completion.
999 * Second case, allocate space for a delalloc buffer.
1000 * We can return EAGAIN here in the release page case.
1002 * Third case, an unmapped buffer was found, and we are
1003 * in a path where we need to write the whole page out.
1005 if (buffer_unwritten(bh
) || buffer_delay(bh
) ||
1006 ((buffer_uptodate(bh
) || PageUptodate(page
)) &&
1007 !buffer_mapped(bh
) && (unmapped
|| startio
))) {
1011 * Make sure we don't use a read-only iomap
1013 if (flags
== BMAPI_READ
)
1016 if (buffer_unwritten(bh
)) {
1017 type
= IOMAP_UNWRITTEN
;
1018 flags
= BMAPI_WRITE
| BMAPI_IGNSTATE
;
1019 } else if (buffer_delay(bh
)) {
1021 flags
= BMAPI_ALLOCATE
| trylock
;
1024 flags
= BMAPI_WRITE
| BMAPI_MMAP
;
1029 * if we didn't have a valid mapping then we
1030 * need to ensure that we put the new mapping
1031 * in a new ioend structure. This needs to be
1032 * done to ensure that the ioends correctly
1033 * reflect the block mappings at io completion
1034 * for unwritten extent conversion.
1037 if (type
== IOMAP_NEW
) {
1038 size
= xfs_probe_cluster(inode
,
1044 err
= xfs_map_blocks(inode
, offset
, size
,
1048 iomap_valid
= xfs_iomap_valid(&iomap
, offset
);
1051 xfs_map_at_offset(bh
, offset
,
1052 inode
->i_blkbits
, &iomap
);
1054 xfs_add_to_ioend(inode
, bh
, offset
,
1058 set_buffer_dirty(bh
);
1060 mark_buffer_dirty(bh
);
1065 } else if (buffer_uptodate(bh
) && startio
) {
1067 * we got here because the buffer is already mapped.
1068 * That means it must already have extents allocated
1069 * underneath it. Map the extent by reading it.
1071 if (!iomap_valid
|| flags
!= BMAPI_READ
) {
1073 size
= xfs_probe_cluster(inode
, page
, bh
,
1075 err
= xfs_map_blocks(inode
, offset
, size
,
1079 iomap_valid
= xfs_iomap_valid(&iomap
, offset
);
1083 * We set the type to IOMAP_NEW in case we are doing a
1084 * small write at EOF that is extending the file but
1085 * without needing an allocation. We need to update the
1086 * file size on I/O completion in this case so it is
1087 * the same case as having just allocated a new extent
1088 * that we are writing into for the first time.
1091 if (!test_and_set_bit(BH_Lock
, &bh
->b_state
)) {
1092 ASSERT(buffer_mapped(bh
));
1095 xfs_add_to_ioend(inode
, bh
, offset
, type
,
1096 &ioend
, !iomap_valid
);
1102 } else if ((buffer_uptodate(bh
) || PageUptodate(page
)) &&
1103 (unmapped
|| startio
)) {
1110 } while (offset
+= len
, ((bh
= bh
->b_this_page
) != head
));
1112 if (uptodate
&& bh
== head
)
1113 SetPageUptodate(page
);
1116 xfs_start_page_writeback(page
, wbc
, 1, count
);
1118 if (ioend
&& iomap_valid
) {
1119 offset
= (iomap
.iomap_offset
+ iomap
.iomap_bsize
- 1) >>
1121 tlast
= min_t(pgoff_t
, offset
, last_index
);
1122 xfs_cluster_write(inode
, page
->index
+ 1, &iomap
, &ioend
,
1123 wbc
, startio
, all_bh
, tlast
);
1127 xfs_submit_ioend(iohead
);
1133 xfs_cancel_ioend(iohead
);
1136 * If it's delalloc and we have nowhere to put it,
1137 * throw it away, unless the lower layers told
1140 if (err
!= -EAGAIN
) {
1142 block_invalidatepage(page
, 0);
1143 ClearPageUptodate(page
);
1149 * writepage: Called from one of two places:
1151 * 1. we are flushing a delalloc buffer head.
1153 * 2. we are writing out a dirty page. Typically the page dirty
1154 * state is cleared before we get here. In this case is it
1155 * conceivable we have no buffer heads.
1157 * For delalloc space on the page we need to allocate space and
1158 * flush it. For unmapped buffer heads on the page we should
1159 * allocate space if the page is uptodate. For any other dirty
1160 * buffer heads on the page we should flush them.
1162 * If we detect that a transaction would be required to flush
1163 * the page, we have to check the process flags first, if we
1164 * are already in a transaction or disk I/O during allocations
1165 * is off, we need to fail the writepage and redirty the page.
1171 struct writeback_control
*wbc
)
1175 int delalloc
, unmapped
, unwritten
;
1176 struct inode
*inode
= page
->mapping
->host
;
1178 xfs_page_trace(XFS_WRITEPAGE_ENTER
, inode
, page
, 0);
1181 * We need a transaction if:
1182 * 1. There are delalloc buffers on the page
1183 * 2. The page is uptodate and we have unmapped buffers
1184 * 3. The page is uptodate and we have no buffers
1185 * 4. There are unwritten buffers on the page
1188 if (!page_has_buffers(page
)) {
1192 xfs_count_page_state(page
, &delalloc
, &unmapped
, &unwritten
);
1193 if (!PageUptodate(page
))
1195 need_trans
= delalloc
+ unmapped
+ unwritten
;
1199 * If we need a transaction and the process flags say
1200 * we are already in a transaction, or no IO is allowed
1201 * then mark the page dirty again and leave the page
1204 if (current_test_flags(PF_FSTRANS
) && need_trans
)
1208 * Delay hooking up buffer heads until we have
1209 * made our go/no-go decision.
1211 if (!page_has_buffers(page
))
1212 create_empty_buffers(page
, 1 << inode
->i_blkbits
, 0);
1215 * Convert delayed allocate, unwritten or unmapped space
1216 * to real space and flush out to disk.
1218 error
= xfs_page_state_convert(inode
, page
, wbc
, 1, unmapped
);
1219 if (error
== -EAGAIN
)
1221 if (unlikely(error
< 0))
1227 redirty_page_for_writepage(wbc
, page
);
1237 struct address_space
*mapping
,
1238 struct writeback_control
*wbc
)
1240 xfs_iflags_clear(XFS_I(mapping
->host
), XFS_ITRUNCATED
);
1241 return generic_writepages(mapping
, wbc
);
1245 * Called to move a page into cleanable state - and from there
1246 * to be released. Possibly the page is already clean. We always
1247 * have buffer heads in this call.
1249 * Returns 0 if the page is ok to release, 1 otherwise.
1251 * Possible scenarios are:
1253 * 1. We are being called to release a page which has been written
1254 * to via regular I/O. buffer heads will be dirty and possibly
1255 * delalloc. If no delalloc buffer heads in this case then we
1256 * can just return zero.
1258 * 2. We are called to release a page which has been written via
1259 * mmap, all we need to do is ensure there is no delalloc
1260 * state in the buffer heads, if not we can let the caller
1261 * free them and we should come back later via writepage.
1268 struct inode
*inode
= page
->mapping
->host
;
1269 int dirty
, delalloc
, unmapped
, unwritten
;
1270 struct writeback_control wbc
= {
1271 .sync_mode
= WB_SYNC_ALL
,
1275 xfs_page_trace(XFS_RELEASEPAGE_ENTER
, inode
, page
, 0);
1277 if (!page_has_buffers(page
))
1280 xfs_count_page_state(page
, &delalloc
, &unmapped
, &unwritten
);
1281 if (!delalloc
&& !unwritten
)
1284 if (!(gfp_mask
& __GFP_FS
))
1287 /* If we are already inside a transaction or the thread cannot
1288 * do I/O, we cannot release this page.
1290 if (current_test_flags(PF_FSTRANS
))
1294 * Convert delalloc space to real space, do not flush the
1295 * data out to disk, that will be done by the caller.
1296 * Never need to allocate space here - we will always
1297 * come back to writepage in that case.
1299 dirty
= xfs_page_state_convert(inode
, page
, &wbc
, 0, 0);
1300 if (dirty
== 0 && !unwritten
)
1305 return try_to_free_buffers(page
);
1310 struct inode
*inode
,
1312 struct buffer_head
*bh_result
,
1315 bmapi_flags_t flags
)
1323 offset
= (xfs_off_t
)iblock
<< inode
->i_blkbits
;
1324 ASSERT(bh_result
->b_size
>= (1 << inode
->i_blkbits
));
1325 size
= bh_result
->b_size
;
1326 error
= xfs_bmap(XFS_I(inode
), offset
, size
,
1327 create
? flags
: BMAPI_READ
, &iomap
, &niomap
);
1333 if (iomap
.iomap_bn
!= IOMAP_DADDR_NULL
) {
1335 * For unwritten extents do not report a disk address on
1336 * the read case (treat as if we're reading into a hole).
1338 if (create
|| !(iomap
.iomap_flags
& IOMAP_UNWRITTEN
)) {
1339 xfs_map_buffer(bh_result
, &iomap
, offset
,
1342 if (create
&& (iomap
.iomap_flags
& IOMAP_UNWRITTEN
)) {
1344 bh_result
->b_private
= inode
;
1345 set_buffer_unwritten(bh_result
);
1350 * If this is a realtime file, data may be on a different device.
1351 * to that pointed to from the buffer_head b_bdev currently.
1353 bh_result
->b_bdev
= iomap
.iomap_target
->bt_bdev
;
1356 * If we previously allocated a block out beyond eof and we are now
1357 * coming back to use it then we will need to flag it as new even if it
1358 * has a disk address.
1360 * With sub-block writes into unwritten extents we also need to mark
1361 * the buffer as new so that the unwritten parts of the buffer gets
1365 ((!buffer_mapped(bh_result
) && !buffer_uptodate(bh_result
)) ||
1366 (offset
>= i_size_read(inode
)) ||
1367 (iomap
.iomap_flags
& (IOMAP_NEW
|IOMAP_UNWRITTEN
))))
1368 set_buffer_new(bh_result
);
1370 if (iomap
.iomap_flags
& IOMAP_DELAY
) {
1373 set_buffer_uptodate(bh_result
);
1374 set_buffer_mapped(bh_result
);
1375 set_buffer_delay(bh_result
);
1379 if (direct
|| size
> (1 << inode
->i_blkbits
)) {
1380 ASSERT(iomap
.iomap_bsize
- iomap
.iomap_delta
> 0);
1381 offset
= min_t(xfs_off_t
,
1382 iomap
.iomap_bsize
- iomap
.iomap_delta
, size
);
1383 bh_result
->b_size
= (ssize_t
)min_t(xfs_off_t
, LONG_MAX
, offset
);
1391 struct inode
*inode
,
1393 struct buffer_head
*bh_result
,
1396 return __xfs_get_blocks(inode
, iblock
,
1397 bh_result
, create
, 0, BMAPI_WRITE
);
1401 xfs_get_blocks_direct(
1402 struct inode
*inode
,
1404 struct buffer_head
*bh_result
,
1407 return __xfs_get_blocks(inode
, iblock
,
1408 bh_result
, create
, 1, BMAPI_WRITE
|BMAPI_DIRECT
);
1418 xfs_ioend_t
*ioend
= iocb
->private;
1421 * Non-NULL private data means we need to issue a transaction to
1422 * convert a range from unwritten to written extents. This needs
1423 * to happen from process context but aio+dio I/O completion
1424 * happens from irq context so we need to defer it to a workqueue.
1425 * This is not necessary for synchronous direct I/O, but we do
1426 * it anyway to keep the code uniform and simpler.
1428 * Well, if only it were that simple. Because synchronous direct I/O
1429 * requires extent conversion to occur *before* we return to userspace,
1430 * we have to wait for extent conversion to complete. Look at the
1431 * iocb that has been passed to us to determine if this is AIO or
1432 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1433 * workqueue and wait for it to complete.
1435 * The core direct I/O code might be changed to always call the
1436 * completion handler in the future, in which case all this can
1439 ioend
->io_offset
= offset
;
1440 ioend
->io_size
= size
;
1441 if (ioend
->io_type
== IOMAP_READ
) {
1442 xfs_finish_ioend(ioend
, 0);
1443 } else if (private && size
> 0) {
1444 xfs_finish_ioend(ioend
, is_sync_kiocb(iocb
));
1447 * A direct I/O write ioend starts it's life in unwritten
1448 * state in case they map an unwritten extent. This write
1449 * didn't map an unwritten extent so switch it's completion
1452 INIT_WORK(&ioend
->io_work
, xfs_end_bio_written
);
1453 xfs_finish_ioend(ioend
, 0);
1457 * blockdev_direct_IO can return an error even after the I/O
1458 * completion handler was called. Thus we need to protect
1459 * against double-freeing.
1461 iocb
->private = NULL
;
1468 const struct iovec
*iov
,
1470 unsigned long nr_segs
)
1472 struct file
*file
= iocb
->ki_filp
;
1473 struct inode
*inode
= file
->f_mapping
->host
;
1479 error
= xfs_bmap(XFS_I(inode
), offset
, 0,
1480 BMAPI_DEVICE
, &iomap
, &maps
);
1485 iocb
->private = xfs_alloc_ioend(inode
, IOMAP_UNWRITTEN
);
1486 ret
= blockdev_direct_IO_own_locking(rw
, iocb
, inode
,
1487 iomap
.iomap_target
->bt_bdev
,
1488 iov
, offset
, nr_segs
,
1489 xfs_get_blocks_direct
,
1492 iocb
->private = xfs_alloc_ioend(inode
, IOMAP_READ
);
1493 ret
= blockdev_direct_IO_no_locking(rw
, iocb
, inode
,
1494 iomap
.iomap_target
->bt_bdev
,
1495 iov
, offset
, nr_segs
,
1496 xfs_get_blocks_direct
,
1500 if (unlikely(ret
!= -EIOCBQUEUED
&& iocb
->private))
1501 xfs_destroy_ioend(iocb
->private);
1508 struct address_space
*mapping
,
1512 struct page
**pagep
,
1516 return block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
1522 struct address_space
*mapping
,
1525 struct inode
*inode
= (struct inode
*)mapping
->host
;
1526 struct xfs_inode
*ip
= XFS_I(inode
);
1528 vn_trace_entry(XFS_I(inode
), __FUNCTION__
,
1529 (inst_t
*)__return_address
);
1530 xfs_rwlock(ip
, VRWLOCK_READ
);
1531 xfs_flush_pages(ip
, (xfs_off_t
)0, -1, 0, FI_REMAPF
);
1532 xfs_rwunlock(ip
, VRWLOCK_READ
);
1533 return generic_block_bmap(mapping
, block
, xfs_get_blocks
);
1538 struct file
*unused
,
1541 return mpage_readpage(page
, xfs_get_blocks
);
1546 struct file
*unused
,
1547 struct address_space
*mapping
,
1548 struct list_head
*pages
,
1551 return mpage_readpages(mapping
, pages
, nr_pages
, xfs_get_blocks
);
1555 xfs_vm_invalidatepage(
1557 unsigned long offset
)
1559 xfs_page_trace(XFS_INVALIDPAGE_ENTER
,
1560 page
->mapping
->host
, page
, offset
);
1561 block_invalidatepage(page
, offset
);
1564 const struct address_space_operations xfs_address_space_operations
= {
1565 .readpage
= xfs_vm_readpage
,
1566 .readpages
= xfs_vm_readpages
,
1567 .writepage
= xfs_vm_writepage
,
1568 .writepages
= xfs_vm_writepages
,
1569 .sync_page
= block_sync_page
,
1570 .releasepage
= xfs_vm_releasepage
,
1571 .invalidatepage
= xfs_vm_invalidatepage
,
1572 .write_begin
= xfs_vm_write_begin
,
1573 .write_end
= generic_write_end
,
1574 .bmap
= xfs_vm_bmap
,
1575 .direct_IO
= xfs_vm_direct_IO
,
1576 .migratepage
= buffer_migrate_page
,