x86: cpa self-test, WARN_ON()
[wrt350n-kernel.git] / include / asm-arm / cacheflush.h
blob759a97b56eed8a189f1669f2d3ce9eb7fffba7e3
1 /*
2 * linux/include/asm-arm/cacheflush.h
4 * Copyright (C) 1999-2002 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #ifndef _ASMARM_CACHEFLUSH_H
11 #define _ASMARM_CACHEFLUSH_H
13 #include <linux/sched.h>
14 #include <linux/mm.h>
16 #include <asm/glue.h>
17 #include <asm/shmparam.h>
19 #define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
22 * Cache Model
23 * ===========
25 #undef _CACHE
26 #undef MULTI_CACHE
28 #if defined(CONFIG_CPU_CACHE_V3)
29 # ifdef _CACHE
30 # define MULTI_CACHE 1
31 # else
32 # define _CACHE v3
33 # endif
34 #endif
36 #if defined(CONFIG_CPU_CACHE_V4)
37 # ifdef _CACHE
38 # define MULTI_CACHE 1
39 # else
40 # define _CACHE v4
41 # endif
42 #endif
44 #if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \
45 defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020)
46 # define MULTI_CACHE 1
47 #endif
49 #if defined(CONFIG_CPU_ARM926T)
50 # ifdef _CACHE
51 # define MULTI_CACHE 1
52 # else
53 # define _CACHE arm926
54 # endif
55 #endif
57 #if defined(CONFIG_CPU_ARM940T)
58 # ifdef _CACHE
59 # define MULTI_CACHE 1
60 # else
61 # define _CACHE arm940
62 # endif
63 #endif
65 #if defined(CONFIG_CPU_ARM946E)
66 # ifdef _CACHE
67 # define MULTI_CACHE 1
68 # else
69 # define _CACHE arm946
70 # endif
71 #endif
73 #if defined(CONFIG_CPU_CACHE_V4WB)
74 # ifdef _CACHE
75 # define MULTI_CACHE 1
76 # else
77 # define _CACHE v4wb
78 # endif
79 #endif
81 #if defined(CONFIG_CPU_XSCALE)
82 # ifdef _CACHE
83 # define MULTI_CACHE 1
84 # else
85 # define _CACHE xscale
86 # endif
87 #endif
89 #if defined(CONFIG_CPU_XSC3)
90 # ifdef _CACHE
91 # define MULTI_CACHE 1
92 # else
93 # define _CACHE xsc3
94 # endif
95 #endif
97 #if defined(CONFIG_CPU_FEROCEON)
98 # ifdef _CACHE
99 # define MULTI_CACHE 1
100 # else
101 # define _CACHE feroceon
102 # endif
103 #endif
105 #if defined(CONFIG_CPU_V6)
106 //# ifdef _CACHE
107 # define MULTI_CACHE 1
108 //# else
109 //# define _CACHE v6
110 //# endif
111 #endif
113 #if defined(CONFIG_CPU_V7)
114 //# ifdef _CACHE
115 # define MULTI_CACHE 1
116 //# else
117 //# define _CACHE v7
118 //# endif
119 #endif
121 #if !defined(_CACHE) && !defined(MULTI_CACHE)
122 #error Unknown cache maintainence model
123 #endif
126 * This flag is used to indicate that the page pointed to by a pte
127 * is dirty and requires cleaning before returning it to the user.
129 #define PG_dcache_dirty PG_arch_1
132 * MM Cache Management
133 * ===================
135 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
136 * implement these methods.
138 * Start addresses are inclusive and end addresses are exclusive;
139 * start addresses should be rounded down, end addresses up.
141 * See Documentation/cachetlb.txt for more information.
142 * Please note that the implementation of these, and the required
143 * effects are cache-type (VIVT/VIPT/PIPT) specific.
145 * flush_cache_kern_all()
147 * Unconditionally clean and invalidate the entire cache.
149 * flush_cache_user_mm(mm)
151 * Clean and invalidate all user space cache entries
152 * before a change of page tables.
154 * flush_cache_user_range(start, end, flags)
156 * Clean and invalidate a range of cache entries in the
157 * specified address space before a change of page tables.
158 * - start - user start address (inclusive, page aligned)
159 * - end - user end address (exclusive, page aligned)
160 * - flags - vma->vm_flags field
162 * coherent_kern_range(start, end)
164 * Ensure coherency between the Icache and the Dcache in the
165 * region described by start, end. If you have non-snooping
166 * Harvard caches, you need to implement this function.
167 * - start - virtual start address
168 * - end - virtual end address
170 * DMA Cache Coherency
171 * ===================
173 * dma_inv_range(start, end)
175 * Invalidate (discard) the specified virtual address range.
176 * May not write back any entries. If 'start' or 'end'
177 * are not cache line aligned, those lines must be written
178 * back.
179 * - start - virtual start address
180 * - end - virtual end address
182 * dma_clean_range(start, end)
184 * Clean (write back) the specified virtual address range.
185 * - start - virtual start address
186 * - end - virtual end address
188 * dma_flush_range(start, end)
190 * Clean and invalidate the specified virtual address range.
191 * - start - virtual start address
192 * - end - virtual end address
195 struct cpu_cache_fns {
196 void (*flush_kern_all)(void);
197 void (*flush_user_all)(void);
198 void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
200 void (*coherent_kern_range)(unsigned long, unsigned long);
201 void (*coherent_user_range)(unsigned long, unsigned long);
202 void (*flush_kern_dcache_page)(void *);
204 void (*dma_inv_range)(const void *, const void *);
205 void (*dma_clean_range)(const void *, const void *);
206 void (*dma_flush_range)(const void *, const void *);
209 struct outer_cache_fns {
210 void (*inv_range)(unsigned long, unsigned long);
211 void (*clean_range)(unsigned long, unsigned long);
212 void (*flush_range)(unsigned long, unsigned long);
216 * Select the calling method
218 #ifdef MULTI_CACHE
220 extern struct cpu_cache_fns cpu_cache;
222 #define __cpuc_flush_kern_all cpu_cache.flush_kern_all
223 #define __cpuc_flush_user_all cpu_cache.flush_user_all
224 #define __cpuc_flush_user_range cpu_cache.flush_user_range
225 #define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range
226 #define __cpuc_coherent_user_range cpu_cache.coherent_user_range
227 #define __cpuc_flush_dcache_page cpu_cache.flush_kern_dcache_page
230 * These are private to the dma-mapping API. Do not use directly.
231 * Their sole purpose is to ensure that data held in the cache
232 * is visible to DMA, or data written by DMA to system memory is
233 * visible to the CPU.
235 #define dmac_inv_range cpu_cache.dma_inv_range
236 #define dmac_clean_range cpu_cache.dma_clean_range
237 #define dmac_flush_range cpu_cache.dma_flush_range
239 #else
241 #define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all)
242 #define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all)
243 #define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range)
244 #define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range)
245 #define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range)
246 #define __cpuc_flush_dcache_page __glue(_CACHE,_flush_kern_dcache_page)
248 extern void __cpuc_flush_kern_all(void);
249 extern void __cpuc_flush_user_all(void);
250 extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
251 extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
252 extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
253 extern void __cpuc_flush_dcache_page(void *);
256 * These are private to the dma-mapping API. Do not use directly.
257 * Their sole purpose is to ensure that data held in the cache
258 * is visible to DMA, or data written by DMA to system memory is
259 * visible to the CPU.
261 #define dmac_inv_range __glue(_CACHE,_dma_inv_range)
262 #define dmac_clean_range __glue(_CACHE,_dma_clean_range)
263 #define dmac_flush_range __glue(_CACHE,_dma_flush_range)
265 extern void dmac_inv_range(const void *, const void *);
266 extern void dmac_clean_range(const void *, const void *);
267 extern void dmac_flush_range(const void *, const void *);
269 #endif
271 #ifdef CONFIG_OUTER_CACHE
273 extern struct outer_cache_fns outer_cache;
275 static inline void outer_inv_range(unsigned long start, unsigned long end)
277 if (outer_cache.inv_range)
278 outer_cache.inv_range(start, end);
280 static inline void outer_clean_range(unsigned long start, unsigned long end)
282 if (outer_cache.clean_range)
283 outer_cache.clean_range(start, end);
285 static inline void outer_flush_range(unsigned long start, unsigned long end)
287 if (outer_cache.flush_range)
288 outer_cache.flush_range(start, end);
291 #else
293 static inline void outer_inv_range(unsigned long start, unsigned long end)
295 static inline void outer_clean_range(unsigned long start, unsigned long end)
297 static inline void outer_flush_range(unsigned long start, unsigned long end)
300 #endif
303 * flush_cache_vmap() is used when creating mappings (eg, via vmap,
304 * vmalloc, ioremap etc) in kernel space for pages. Since the
305 * direct-mappings of these pages may contain cached data, we need
306 * to do a full cache flush to ensure that writebacks don't corrupt
307 * data placed into these pages via the new mappings.
309 #define flush_cache_vmap(start, end) flush_cache_all()
310 #define flush_cache_vunmap(start, end) flush_cache_all()
313 * Copy user data from/to a page which is mapped into a different
314 * processes address space. Really, we want to allow our "user
315 * space" model to handle this.
317 #define copy_to_user_page(vma, page, vaddr, dst, src, len) \
318 do { \
319 memcpy(dst, src, len); \
320 flush_ptrace_access(vma, page, vaddr, dst, len, 1);\
321 } while (0)
323 #define copy_from_user_page(vma, page, vaddr, dst, src, len) \
324 do { \
325 memcpy(dst, src, len); \
326 } while (0)
329 * Convert calls to our calling convention.
331 #define flush_cache_all() __cpuc_flush_kern_all()
332 #ifndef CONFIG_CPU_CACHE_VIPT
333 static inline void flush_cache_mm(struct mm_struct *mm)
335 if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask))
336 __cpuc_flush_user_all();
339 static inline void
340 flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
342 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask))
343 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
344 vma->vm_flags);
347 static inline void
348 flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
350 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
351 unsigned long addr = user_addr & PAGE_MASK;
352 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
356 static inline void
357 flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
358 unsigned long uaddr, void *kaddr,
359 unsigned long len, int write)
361 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
362 unsigned long addr = (unsigned long)kaddr;
363 __cpuc_coherent_kern_range(addr, addr + len);
366 #else
367 extern void flush_cache_mm(struct mm_struct *mm);
368 extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
369 extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
370 extern void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
371 unsigned long uaddr, void *kaddr,
372 unsigned long len, int write);
373 #endif
375 #define flush_cache_dup_mm(mm) flush_cache_mm(mm)
378 * flush_cache_user_range is used when we want to ensure that the
379 * Harvard caches are synchronised for the user space address range.
380 * This is used for the ARM private sys_cacheflush system call.
382 #define flush_cache_user_range(vma,start,end) \
383 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
386 * Perform necessary cache operations to ensure that data previously
387 * stored within this range of addresses can be executed by the CPU.
389 #define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e)
392 * Perform necessary cache operations to ensure that the TLB will
393 * see data written in the specified area.
395 #define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size)
398 * flush_dcache_page is used when the kernel has written to the page
399 * cache page at virtual address page->virtual.
401 * If this page isn't mapped (ie, page_mapping == NULL), or it might
402 * have userspace mappings, then we _must_ always clean + invalidate
403 * the dcache entries associated with the kernel mapping.
405 * Otherwise we can defer the operation, and clean the cache when we are
406 * about to change to user space. This is the same method as used on SPARC64.
407 * See update_mmu_cache for the user space part.
409 extern void flush_dcache_page(struct page *);
411 extern void __flush_dcache_page(struct address_space *mapping, struct page *page);
413 #define ARCH_HAS_FLUSH_ANON_PAGE
414 static inline void flush_anon_page(struct vm_area_struct *vma,
415 struct page *page, unsigned long vmaddr)
417 extern void __flush_anon_page(struct vm_area_struct *vma,
418 struct page *, unsigned long);
419 if (PageAnon(page))
420 __flush_anon_page(vma, page, vmaddr);
423 #define flush_dcache_mmap_lock(mapping) \
424 write_lock_irq(&(mapping)->tree_lock)
425 #define flush_dcache_mmap_unlock(mapping) \
426 write_unlock_irq(&(mapping)->tree_lock)
428 #define flush_icache_user_range(vma,page,addr,len) \
429 flush_dcache_page(page)
432 * We don't appear to need to do anything here. In fact, if we did, we'd
433 * duplicate cache flushing elsewhere performed by flush_dcache_page().
435 #define flush_icache_page(vma,page) do { } while (0)
437 static inline void flush_ioremap_region(unsigned long phys, void __iomem *virt,
438 unsigned offset, size_t size)
440 const void *start = (void __force *)virt + offset;
441 dmac_inv_range(start, start + size);
444 #define __cacheid_present(val) (val != read_cpuid(CPUID_ID))
445 #define __cacheid_type_v7(val) ((val & (7 << 29)) == (4 << 29))
447 #define __cacheid_vivt_prev7(val) ((val & (15 << 25)) != (14 << 25))
448 #define __cacheid_vipt_prev7(val) ((val & (15 << 25)) == (14 << 25))
449 #define __cacheid_vipt_nonaliasing_prev7(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25))
450 #define __cacheid_vipt_aliasing_prev7(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25 | 1 << 23))
452 #define __cacheid_vivt(val) (__cacheid_type_v7(val) ? 0 : __cacheid_vivt_prev7(val))
453 #define __cacheid_vipt(val) (__cacheid_type_v7(val) ? 1 : __cacheid_vipt_prev7(val))
454 #define __cacheid_vipt_nonaliasing(val) (__cacheid_type_v7(val) ? 1 : __cacheid_vipt_nonaliasing_prev7(val))
455 #define __cacheid_vipt_aliasing(val) (__cacheid_type_v7(val) ? 0 : __cacheid_vipt_aliasing_prev7(val))
456 #define __cacheid_vivt_asid_tagged_instr(val) (__cacheid_type_v7(val) ? ((val & (3 << 14)) == (1 << 14)) : 0)
458 #if defined(CONFIG_CPU_CACHE_VIVT) && !defined(CONFIG_CPU_CACHE_VIPT)
460 #define cache_is_vivt() 1
461 #define cache_is_vipt() 0
462 #define cache_is_vipt_nonaliasing() 0
463 #define cache_is_vipt_aliasing() 0
464 #define icache_is_vivt_asid_tagged() 0
466 #elif defined(CONFIG_CPU_CACHE_VIPT)
468 #define cache_is_vivt() 0
469 #define cache_is_vipt() 1
470 #define cache_is_vipt_nonaliasing() \
471 ({ \
472 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
473 __cacheid_vipt_nonaliasing(__val); \
476 #define cache_is_vipt_aliasing() \
477 ({ \
478 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
479 __cacheid_vipt_aliasing(__val); \
482 #define icache_is_vivt_asid_tagged() \
483 ({ \
484 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
485 __cacheid_vivt_asid_tagged_instr(__val); \
488 #else
490 #define cache_is_vivt() \
491 ({ \
492 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
493 (!__cacheid_present(__val)) || __cacheid_vivt(__val); \
496 #define cache_is_vipt() \
497 ({ \
498 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
499 __cacheid_present(__val) && __cacheid_vipt(__val); \
502 #define cache_is_vipt_nonaliasing() \
503 ({ \
504 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
505 __cacheid_present(__val) && \
506 __cacheid_vipt_nonaliasing(__val); \
509 #define cache_is_vipt_aliasing() \
510 ({ \
511 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
512 __cacheid_present(__val) && \
513 __cacheid_vipt_aliasing(__val); \
516 #define icache_is_vivt_asid_tagged() \
517 ({ \
518 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
519 __cacheid_present(__val) && \
520 __cacheid_vivt_asid_tagged_instr(__val); \
523 #endif
525 #endif