x86: cpa self-test, WARN_ON()
[wrt350n-kernel.git] / net / can / af_can.c
blob5158e886630f3c2ba732a4c7df8f5d34abd8607c
1 /*
2 * af_can.c - Protocol family CAN core module
3 * (used by different CAN protocol modules)
5 * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of Volkswagen nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * Alternatively, provided that this notice is retained in full, this
21 * software may be distributed under the terms of the GNU General
22 * Public License ("GPL") version 2, in which case the provisions of the
23 * GPL apply INSTEAD OF those given above.
25 * The provided data structures and external interfaces from this code
26 * are not restricted to be used by modules with a GPL compatible license.
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
41 * Send feedback to <socketcan-users@lists.berlios.de>
45 #include <linux/module.h>
46 #include <linux/init.h>
47 #include <linux/kmod.h>
48 #include <linux/slab.h>
49 #include <linux/list.h>
50 #include <linux/spinlock.h>
51 #include <linux/rcupdate.h>
52 #include <linux/uaccess.h>
53 #include <linux/net.h>
54 #include <linux/netdevice.h>
55 #include <linux/socket.h>
56 #include <linux/if_ether.h>
57 #include <linux/if_arp.h>
58 #include <linux/skbuff.h>
59 #include <linux/can.h>
60 #include <linux/can/core.h>
61 #include <net/net_namespace.h>
62 #include <net/sock.h>
64 #include "af_can.h"
66 static __initdata const char banner[] = KERN_INFO
67 "can: controller area network core (" CAN_VERSION_STRING ")\n";
69 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
70 MODULE_LICENSE("Dual BSD/GPL");
71 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
72 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
74 MODULE_ALIAS_NETPROTO(PF_CAN);
76 static int stats_timer __read_mostly = 1;
77 module_param(stats_timer, int, S_IRUGO);
78 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
80 HLIST_HEAD(can_rx_dev_list);
81 static struct dev_rcv_lists can_rx_alldev_list;
82 static DEFINE_SPINLOCK(can_rcvlists_lock);
84 static struct kmem_cache *rcv_cache __read_mostly;
86 /* table of registered CAN protocols */
87 static struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
88 static DEFINE_SPINLOCK(proto_tab_lock);
90 struct timer_list can_stattimer; /* timer for statistics update */
91 struct s_stats can_stats; /* packet statistics */
92 struct s_pstats can_pstats; /* receive list statistics */
95 * af_can socket functions
98 static int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
100 struct sock *sk = sock->sk;
102 switch (cmd) {
104 case SIOCGSTAMP:
105 return sock_get_timestamp(sk, (struct timeval __user *)arg);
107 default:
108 return -ENOIOCTLCMD;
112 static void can_sock_destruct(struct sock *sk)
114 skb_queue_purge(&sk->sk_receive_queue);
117 static int can_create(struct net *net, struct socket *sock, int protocol)
119 struct sock *sk;
120 struct can_proto *cp;
121 char module_name[sizeof("can-proto-000")];
122 int err = 0;
124 sock->state = SS_UNCONNECTED;
126 if (protocol < 0 || protocol >= CAN_NPROTO)
127 return -EINVAL;
129 if (net != &init_net)
130 return -EAFNOSUPPORT;
132 /* try to load protocol module, when CONFIG_KMOD is defined */
133 if (!proto_tab[protocol]) {
134 sprintf(module_name, "can-proto-%d", protocol);
135 err = request_module(module_name);
138 * In case of error we only print a message but don't
139 * return the error code immediately. Below we will
140 * return -EPROTONOSUPPORT
142 if (err == -ENOSYS) {
143 if (printk_ratelimit())
144 printk(KERN_INFO "can: request_module(%s)"
145 " not implemented.\n", module_name);
146 } else if (err) {
147 if (printk_ratelimit())
148 printk(KERN_ERR "can: request_module(%s)"
149 " failed.\n", module_name);
153 spin_lock(&proto_tab_lock);
154 cp = proto_tab[protocol];
155 if (cp && !try_module_get(cp->prot->owner))
156 cp = NULL;
157 spin_unlock(&proto_tab_lock);
159 /* check for available protocol and correct usage */
161 if (!cp)
162 return -EPROTONOSUPPORT;
164 if (cp->type != sock->type) {
165 err = -EPROTONOSUPPORT;
166 goto errout;
169 if (cp->capability >= 0 && !capable(cp->capability)) {
170 err = -EPERM;
171 goto errout;
174 sock->ops = cp->ops;
176 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot);
177 if (!sk) {
178 err = -ENOMEM;
179 goto errout;
182 sock_init_data(sock, sk);
183 sk->sk_destruct = can_sock_destruct;
185 if (sk->sk_prot->init)
186 err = sk->sk_prot->init(sk);
188 if (err) {
189 /* release sk on errors */
190 sock_orphan(sk);
191 sock_put(sk);
194 errout:
195 module_put(cp->prot->owner);
196 return err;
200 * af_can tx path
204 * can_send - transmit a CAN frame (optional with local loopback)
205 * @skb: pointer to socket buffer with CAN frame in data section
206 * @loop: loopback for listeners on local CAN sockets (recommended default!)
208 * Return:
209 * 0 on success
210 * -ENETDOWN when the selected interface is down
211 * -ENOBUFS on full driver queue (see net_xmit_errno())
212 * -ENOMEM when local loopback failed at calling skb_clone()
213 * -EPERM when trying to send on a non-CAN interface
215 int can_send(struct sk_buff *skb, int loop)
217 int err;
219 if (skb->dev->type != ARPHRD_CAN) {
220 kfree_skb(skb);
221 return -EPERM;
224 if (!(skb->dev->flags & IFF_UP)) {
225 kfree_skb(skb);
226 return -ENETDOWN;
229 skb->protocol = htons(ETH_P_CAN);
230 skb_reset_network_header(skb);
231 skb_reset_transport_header(skb);
233 if (loop) {
234 /* local loopback of sent CAN frames */
236 /* indication for the CAN driver: do loopback */
237 skb->pkt_type = PACKET_LOOPBACK;
240 * The reference to the originating sock may be required
241 * by the receiving socket to check whether the frame is
242 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
243 * Therefore we have to ensure that skb->sk remains the
244 * reference to the originating sock by restoring skb->sk
245 * after each skb_clone() or skb_orphan() usage.
248 if (!(skb->dev->flags & IFF_ECHO)) {
250 * If the interface is not capable to do loopback
251 * itself, we do it here.
253 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
255 if (!newskb) {
256 kfree_skb(skb);
257 return -ENOMEM;
260 newskb->sk = skb->sk;
261 newskb->ip_summed = CHECKSUM_UNNECESSARY;
262 newskb->pkt_type = PACKET_BROADCAST;
263 netif_rx(newskb);
265 } else {
266 /* indication for the CAN driver: no loopback required */
267 skb->pkt_type = PACKET_HOST;
270 /* send to netdevice */
271 err = dev_queue_xmit(skb);
272 if (err > 0)
273 err = net_xmit_errno(err);
275 /* update statistics */
276 can_stats.tx_frames++;
277 can_stats.tx_frames_delta++;
279 return err;
281 EXPORT_SYMBOL(can_send);
284 * af_can rx path
287 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
289 struct dev_rcv_lists *d = NULL;
290 struct hlist_node *n;
293 * find receive list for this device
295 * The hlist_for_each_entry*() macros curse through the list
296 * using the pointer variable n and set d to the containing
297 * struct in each list iteration. Therefore, after list
298 * iteration, d is unmodified when the list is empty, and it
299 * points to last list element, when the list is non-empty
300 * but no match in the loop body is found. I.e. d is *not*
301 * NULL when no match is found. We can, however, use the
302 * cursor variable n to decide if a match was found.
305 hlist_for_each_entry_rcu(d, n, &can_rx_dev_list, list) {
306 if (d->dev == dev)
307 break;
310 return n ? d : NULL;
313 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
314 struct dev_rcv_lists *d)
316 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
318 /* filter error frames */
319 if (*mask & CAN_ERR_FLAG) {
320 /* clear CAN_ERR_FLAG in list entry */
321 *mask &= CAN_ERR_MASK;
322 return &d->rx[RX_ERR];
325 /* ensure valid values in can_mask */
326 if (*mask & CAN_EFF_FLAG)
327 *mask &= (CAN_EFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG);
328 else
329 *mask &= (CAN_SFF_MASK | CAN_RTR_FLAG);
331 /* reduce condition testing at receive time */
332 *can_id &= *mask;
334 /* inverse can_id/can_mask filter */
335 if (inv)
336 return &d->rx[RX_INV];
338 /* mask == 0 => no condition testing at receive time */
339 if (!(*mask))
340 return &d->rx[RX_ALL];
342 /* use extra filterset for the subscription of exactly *ONE* can_id */
343 if (*can_id & CAN_EFF_FLAG) {
344 if (*mask == (CAN_EFF_MASK | CAN_EFF_FLAG)) {
345 /* RFC: a use-case for hash-tables in the future? */
346 return &d->rx[RX_EFF];
348 } else {
349 if (*mask == CAN_SFF_MASK)
350 return &d->rx_sff[*can_id];
353 /* default: filter via can_id/can_mask */
354 return &d->rx[RX_FIL];
358 * can_rx_register - subscribe CAN frames from a specific interface
359 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
360 * @can_id: CAN identifier (see description)
361 * @mask: CAN mask (see description)
362 * @func: callback function on filter match
363 * @data: returned parameter for callback function
364 * @ident: string for calling module indentification
366 * Description:
367 * Invokes the callback function with the received sk_buff and the given
368 * parameter 'data' on a matching receive filter. A filter matches, when
370 * <received_can_id> & mask == can_id & mask
372 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
373 * filter for error frames (CAN_ERR_FLAG bit set in mask).
375 * Return:
376 * 0 on success
377 * -ENOMEM on missing cache mem to create subscription entry
378 * -ENODEV unknown device
380 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
381 void (*func)(struct sk_buff *, void *), void *data,
382 char *ident)
384 struct receiver *r;
385 struct hlist_head *rl;
386 struct dev_rcv_lists *d;
387 int err = 0;
389 /* insert new receiver (dev,canid,mask) -> (func,data) */
391 r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
392 if (!r)
393 return -ENOMEM;
395 spin_lock(&can_rcvlists_lock);
397 d = find_dev_rcv_lists(dev);
398 if (d) {
399 rl = find_rcv_list(&can_id, &mask, d);
401 r->can_id = can_id;
402 r->mask = mask;
403 r->matches = 0;
404 r->func = func;
405 r->data = data;
406 r->ident = ident;
408 hlist_add_head_rcu(&r->list, rl);
409 d->entries++;
411 can_pstats.rcv_entries++;
412 if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
413 can_pstats.rcv_entries_max = can_pstats.rcv_entries;
414 } else {
415 kmem_cache_free(rcv_cache, r);
416 err = -ENODEV;
419 spin_unlock(&can_rcvlists_lock);
421 return err;
423 EXPORT_SYMBOL(can_rx_register);
426 * can_rx_delete_device - rcu callback for dev_rcv_lists structure removal
428 static void can_rx_delete_device(struct rcu_head *rp)
430 struct dev_rcv_lists *d = container_of(rp, struct dev_rcv_lists, rcu);
432 kfree(d);
436 * can_rx_delete_receiver - rcu callback for single receiver entry removal
438 static void can_rx_delete_receiver(struct rcu_head *rp)
440 struct receiver *r = container_of(rp, struct receiver, rcu);
442 kmem_cache_free(rcv_cache, r);
446 * can_rx_unregister - unsubscribe CAN frames from a specific interface
447 * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list)
448 * @can_id: CAN identifier
449 * @mask: CAN mask
450 * @func: callback function on filter match
451 * @data: returned parameter for callback function
453 * Description:
454 * Removes subscription entry depending on given (subscription) values.
456 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
457 void (*func)(struct sk_buff *, void *), void *data)
459 struct receiver *r = NULL;
460 struct hlist_head *rl;
461 struct hlist_node *next;
462 struct dev_rcv_lists *d;
464 spin_lock(&can_rcvlists_lock);
466 d = find_dev_rcv_lists(dev);
467 if (!d) {
468 printk(KERN_ERR "BUG: receive list not found for "
469 "dev %s, id %03X, mask %03X\n",
470 DNAME(dev), can_id, mask);
471 goto out;
474 rl = find_rcv_list(&can_id, &mask, d);
477 * Search the receiver list for the item to delete. This should
478 * exist, since no receiver may be unregistered that hasn't
479 * been registered before.
482 hlist_for_each_entry_rcu(r, next, rl, list) {
483 if (r->can_id == can_id && r->mask == mask
484 && r->func == func && r->data == data)
485 break;
489 * Check for bugs in CAN protocol implementations:
490 * If no matching list item was found, the list cursor variable next
491 * will be NULL, while r will point to the last item of the list.
494 if (!next) {
495 printk(KERN_ERR "BUG: receive list entry not found for "
496 "dev %s, id %03X, mask %03X\n",
497 DNAME(dev), can_id, mask);
498 r = NULL;
499 d = NULL;
500 goto out;
503 hlist_del_rcu(&r->list);
504 d->entries--;
506 if (can_pstats.rcv_entries > 0)
507 can_pstats.rcv_entries--;
509 /* remove device structure requested by NETDEV_UNREGISTER */
510 if (d->remove_on_zero_entries && !d->entries)
511 hlist_del_rcu(&d->list);
512 else
513 d = NULL;
515 out:
516 spin_unlock(&can_rcvlists_lock);
518 /* schedule the receiver item for deletion */
519 if (r)
520 call_rcu(&r->rcu, can_rx_delete_receiver);
522 /* schedule the device structure for deletion */
523 if (d)
524 call_rcu(&d->rcu, can_rx_delete_device);
526 EXPORT_SYMBOL(can_rx_unregister);
528 static inline void deliver(struct sk_buff *skb, struct receiver *r)
530 struct sk_buff *clone = skb_clone(skb, GFP_ATOMIC);
532 if (clone) {
533 clone->sk = skb->sk;
534 r->func(clone, r->data);
535 r->matches++;
539 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
541 struct receiver *r;
542 struct hlist_node *n;
543 int matches = 0;
544 struct can_frame *cf = (struct can_frame *)skb->data;
545 canid_t can_id = cf->can_id;
547 if (d->entries == 0)
548 return 0;
550 if (can_id & CAN_ERR_FLAG) {
551 /* check for error frame entries only */
552 hlist_for_each_entry_rcu(r, n, &d->rx[RX_ERR], list) {
553 if (can_id & r->mask) {
554 deliver(skb, r);
555 matches++;
558 return matches;
561 /* check for unfiltered entries */
562 hlist_for_each_entry_rcu(r, n, &d->rx[RX_ALL], list) {
563 deliver(skb, r);
564 matches++;
567 /* check for can_id/mask entries */
568 hlist_for_each_entry_rcu(r, n, &d->rx[RX_FIL], list) {
569 if ((can_id & r->mask) == r->can_id) {
570 deliver(skb, r);
571 matches++;
575 /* check for inverted can_id/mask entries */
576 hlist_for_each_entry_rcu(r, n, &d->rx[RX_INV], list) {
577 if ((can_id & r->mask) != r->can_id) {
578 deliver(skb, r);
579 matches++;
583 /* check CAN_ID specific entries */
584 if (can_id & CAN_EFF_FLAG) {
585 hlist_for_each_entry_rcu(r, n, &d->rx[RX_EFF], list) {
586 if (r->can_id == can_id) {
587 deliver(skb, r);
588 matches++;
591 } else {
592 can_id &= CAN_SFF_MASK;
593 hlist_for_each_entry_rcu(r, n, &d->rx_sff[can_id], list) {
594 deliver(skb, r);
595 matches++;
599 return matches;
602 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
603 struct packet_type *pt, struct net_device *orig_dev)
605 struct dev_rcv_lists *d;
606 int matches;
608 if (dev->type != ARPHRD_CAN || dev->nd_net != &init_net) {
609 kfree_skb(skb);
610 return 0;
613 /* update statistics */
614 can_stats.rx_frames++;
615 can_stats.rx_frames_delta++;
617 rcu_read_lock();
619 /* deliver the packet to sockets listening on all devices */
620 matches = can_rcv_filter(&can_rx_alldev_list, skb);
622 /* find receive list for this device */
623 d = find_dev_rcv_lists(dev);
624 if (d)
625 matches += can_rcv_filter(d, skb);
627 rcu_read_unlock();
629 /* free the skbuff allocated by the netdevice driver */
630 kfree_skb(skb);
632 if (matches > 0) {
633 can_stats.matches++;
634 can_stats.matches_delta++;
637 return 0;
641 * af_can protocol functions
645 * can_proto_register - register CAN transport protocol
646 * @cp: pointer to CAN protocol structure
648 * Return:
649 * 0 on success
650 * -EINVAL invalid (out of range) protocol number
651 * -EBUSY protocol already in use
652 * -ENOBUF if proto_register() fails
654 int can_proto_register(struct can_proto *cp)
656 int proto = cp->protocol;
657 int err = 0;
659 if (proto < 0 || proto >= CAN_NPROTO) {
660 printk(KERN_ERR "can: protocol number %d out of range\n",
661 proto);
662 return -EINVAL;
665 spin_lock(&proto_tab_lock);
666 if (proto_tab[proto]) {
667 printk(KERN_ERR "can: protocol %d already registered\n",
668 proto);
669 err = -EBUSY;
670 goto errout;
673 err = proto_register(cp->prot, 0);
674 if (err < 0)
675 goto errout;
677 proto_tab[proto] = cp;
679 /* use generic ioctl function if the module doesn't bring its own */
680 if (!cp->ops->ioctl)
681 cp->ops->ioctl = can_ioctl;
683 errout:
684 spin_unlock(&proto_tab_lock);
686 return err;
688 EXPORT_SYMBOL(can_proto_register);
691 * can_proto_unregister - unregister CAN transport protocol
692 * @cp: pointer to CAN protocol structure
694 void can_proto_unregister(struct can_proto *cp)
696 int proto = cp->protocol;
698 spin_lock(&proto_tab_lock);
699 if (!proto_tab[proto]) {
700 printk(KERN_ERR "BUG: can: protocol %d is not registered\n",
701 proto);
703 proto_unregister(cp->prot);
704 proto_tab[proto] = NULL;
705 spin_unlock(&proto_tab_lock);
707 EXPORT_SYMBOL(can_proto_unregister);
710 * af_can notifier to create/remove CAN netdevice specific structs
712 static int can_notifier(struct notifier_block *nb, unsigned long msg,
713 void *data)
715 struct net_device *dev = (struct net_device *)data;
716 struct dev_rcv_lists *d;
718 if (dev->nd_net != &init_net)
719 return NOTIFY_DONE;
721 if (dev->type != ARPHRD_CAN)
722 return NOTIFY_DONE;
724 switch (msg) {
726 case NETDEV_REGISTER:
729 * create new dev_rcv_lists for this device
731 * N.B. zeroing the struct is the correct initialization
732 * for the embedded hlist_head structs.
733 * Another list type, e.g. list_head, would require
734 * explicit initialization.
737 d = kzalloc(sizeof(*d), GFP_KERNEL);
738 if (!d) {
739 printk(KERN_ERR
740 "can: allocation of receive list failed\n");
741 return NOTIFY_DONE;
743 d->dev = dev;
745 spin_lock(&can_rcvlists_lock);
746 hlist_add_head_rcu(&d->list, &can_rx_dev_list);
747 spin_unlock(&can_rcvlists_lock);
749 break;
751 case NETDEV_UNREGISTER:
752 spin_lock(&can_rcvlists_lock);
754 d = find_dev_rcv_lists(dev);
755 if (d) {
756 if (d->entries) {
757 d->remove_on_zero_entries = 1;
758 d = NULL;
759 } else
760 hlist_del_rcu(&d->list);
761 } else
762 printk(KERN_ERR "can: notifier: receive list not "
763 "found for dev %s\n", dev->name);
765 spin_unlock(&can_rcvlists_lock);
767 if (d)
768 call_rcu(&d->rcu, can_rx_delete_device);
770 break;
773 return NOTIFY_DONE;
777 * af_can module init/exit functions
780 static struct packet_type can_packet __read_mostly = {
781 .type = __constant_htons(ETH_P_CAN),
782 .dev = NULL,
783 .func = can_rcv,
786 static struct net_proto_family can_family_ops __read_mostly = {
787 .family = PF_CAN,
788 .create = can_create,
789 .owner = THIS_MODULE,
792 /* notifier block for netdevice event */
793 static struct notifier_block can_netdev_notifier __read_mostly = {
794 .notifier_call = can_notifier,
797 static __init int can_init(void)
799 printk(banner);
801 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
802 0, 0, NULL);
803 if (!rcv_cache)
804 return -ENOMEM;
807 * Insert can_rx_alldev_list for reception on all devices.
808 * This struct is zero initialized which is correct for the
809 * embedded hlist heads, the dev pointer, and the entries counter.
812 spin_lock(&can_rcvlists_lock);
813 hlist_add_head_rcu(&can_rx_alldev_list.list, &can_rx_dev_list);
814 spin_unlock(&can_rcvlists_lock);
816 if (stats_timer) {
817 /* the statistics are updated every second (timer triggered) */
818 setup_timer(&can_stattimer, can_stat_update, 0);
819 mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
820 } else
821 can_stattimer.function = NULL;
823 can_init_proc();
825 /* protocol register */
826 sock_register(&can_family_ops);
827 register_netdevice_notifier(&can_netdev_notifier);
828 dev_add_pack(&can_packet);
830 return 0;
833 static __exit void can_exit(void)
835 struct dev_rcv_lists *d;
836 struct hlist_node *n, *next;
838 if (stats_timer)
839 del_timer(&can_stattimer);
841 can_remove_proc();
843 /* protocol unregister */
844 dev_remove_pack(&can_packet);
845 unregister_netdevice_notifier(&can_netdev_notifier);
846 sock_unregister(PF_CAN);
848 /* remove can_rx_dev_list */
849 spin_lock(&can_rcvlists_lock);
850 hlist_del(&can_rx_alldev_list.list);
851 hlist_for_each_entry_safe(d, n, next, &can_rx_dev_list, list) {
852 hlist_del(&d->list);
853 kfree(d);
855 spin_unlock(&can_rcvlists_lock);
857 kmem_cache_destroy(rcv_cache);
860 module_init(can_init);
861 module_exit(can_exit);