m68k: kill page walker compile warning
[wrt350n-kernel.git] / fs / binfmt_elf.c
blob111771d38e6e2d457aa939ba35dafaee5dd28db3
1 /*
2 * linux/fs/binfmt_elf.c
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/stat.h>
16 #include <linux/time.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/a.out.h>
20 #include <linux/errno.h>
21 #include <linux/signal.h>
22 #include <linux/binfmts.h>
23 #include <linux/string.h>
24 #include <linux/file.h>
25 #include <linux/fcntl.h>
26 #include <linux/ptrace.h>
27 #include <linux/slab.h>
28 #include <linux/shm.h>
29 #include <linux/personality.h>
30 #include <linux/elfcore.h>
31 #include <linux/init.h>
32 #include <linux/highuid.h>
33 #include <linux/smp.h>
34 #include <linux/compiler.h>
35 #include <linux/highmem.h>
36 #include <linux/pagemap.h>
37 #include <linux/security.h>
38 #include <linux/syscalls.h>
39 #include <linux/random.h>
40 #include <linux/elf.h>
41 #include <linux/utsname.h>
42 #include <asm/uaccess.h>
43 #include <asm/param.h>
44 #include <asm/page.h>
46 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
47 static int load_elf_library(struct file *);
48 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
49 int, int, unsigned long);
52 * If we don't support core dumping, then supply a NULL so we
53 * don't even try.
55 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
56 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit);
57 #else
58 #define elf_core_dump NULL
59 #endif
61 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
62 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
63 #else
64 #define ELF_MIN_ALIGN PAGE_SIZE
65 #endif
67 #ifndef ELF_CORE_EFLAGS
68 #define ELF_CORE_EFLAGS 0
69 #endif
71 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
72 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
73 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
75 static struct linux_binfmt elf_format = {
76 .module = THIS_MODULE,
77 .load_binary = load_elf_binary,
78 .load_shlib = load_elf_library,
79 .core_dump = elf_core_dump,
80 .min_coredump = ELF_EXEC_PAGESIZE,
81 .hasvdso = 1
84 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
86 static int set_brk(unsigned long start, unsigned long end)
88 start = ELF_PAGEALIGN(start);
89 end = ELF_PAGEALIGN(end);
90 if (end > start) {
91 unsigned long addr;
92 down_write(&current->mm->mmap_sem);
93 addr = do_brk(start, end - start);
94 up_write(&current->mm->mmap_sem);
95 if (BAD_ADDR(addr))
96 return addr;
98 current->mm->start_brk = current->mm->brk = end;
99 return 0;
102 /* We need to explicitly zero any fractional pages
103 after the data section (i.e. bss). This would
104 contain the junk from the file that should not
105 be in memory
107 static int padzero(unsigned long elf_bss)
109 unsigned long nbyte;
111 nbyte = ELF_PAGEOFFSET(elf_bss);
112 if (nbyte) {
113 nbyte = ELF_MIN_ALIGN - nbyte;
114 if (clear_user((void __user *) elf_bss, nbyte))
115 return -EFAULT;
117 return 0;
120 /* Let's use some macros to make this stack manipulation a little clearer */
121 #ifdef CONFIG_STACK_GROWSUP
122 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
123 #define STACK_ROUND(sp, items) \
124 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
125 #define STACK_ALLOC(sp, len) ({ \
126 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
127 old_sp; })
128 #else
129 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
130 #define STACK_ROUND(sp, items) \
131 (((unsigned long) (sp - items)) &~ 15UL)
132 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
133 #endif
135 static int
136 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
137 int interp_aout, unsigned long load_addr,
138 unsigned long interp_load_addr)
140 unsigned long p = bprm->p;
141 int argc = bprm->argc;
142 int envc = bprm->envc;
143 elf_addr_t __user *argv;
144 elf_addr_t __user *envp;
145 elf_addr_t __user *sp;
146 elf_addr_t __user *u_platform;
147 const char *k_platform = ELF_PLATFORM;
148 int items;
149 elf_addr_t *elf_info;
150 int ei_index = 0;
151 struct task_struct *tsk = current;
152 struct vm_area_struct *vma;
155 * In some cases (e.g. Hyper-Threading), we want to avoid L1
156 * evictions by the processes running on the same package. One
157 * thing we can do is to shuffle the initial stack for them.
160 p = arch_align_stack(p);
163 * If this architecture has a platform capability string, copy it
164 * to userspace. In some cases (Sparc), this info is impossible
165 * for userspace to get any other way, in others (i386) it is
166 * merely difficult.
168 u_platform = NULL;
169 if (k_platform) {
170 size_t len = strlen(k_platform) + 1;
172 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
173 if (__copy_to_user(u_platform, k_platform, len))
174 return -EFAULT;
177 /* Create the ELF interpreter info */
178 elf_info = (elf_addr_t *)current->mm->saved_auxv;
179 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
180 #define NEW_AUX_ENT(id, val) \
181 do { \
182 elf_info[ei_index++] = id; \
183 elf_info[ei_index++] = val; \
184 } while (0)
186 #ifdef ARCH_DLINFO
188 * ARCH_DLINFO must come first so PPC can do its special alignment of
189 * AUXV.
190 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
191 * ARCH_DLINFO changes
193 ARCH_DLINFO;
194 #endif
195 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
196 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
197 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
198 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
199 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
200 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
201 NEW_AUX_ENT(AT_BASE, interp_load_addr);
202 NEW_AUX_ENT(AT_FLAGS, 0);
203 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
204 NEW_AUX_ENT(AT_UID, tsk->uid);
205 NEW_AUX_ENT(AT_EUID, tsk->euid);
206 NEW_AUX_ENT(AT_GID, tsk->gid);
207 NEW_AUX_ENT(AT_EGID, tsk->egid);
208 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
209 if (k_platform) {
210 NEW_AUX_ENT(AT_PLATFORM,
211 (elf_addr_t)(unsigned long)u_platform);
213 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
214 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
216 #undef NEW_AUX_ENT
217 /* AT_NULL is zero; clear the rest too */
218 memset(&elf_info[ei_index], 0,
219 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
221 /* And advance past the AT_NULL entry. */
222 ei_index += 2;
224 sp = STACK_ADD(p, ei_index);
226 items = (argc + 1) + (envc + 1);
227 if (interp_aout) {
228 items += 3; /* a.out interpreters require argv & envp too */
229 } else {
230 items += 1; /* ELF interpreters only put argc on the stack */
232 bprm->p = STACK_ROUND(sp, items);
234 /* Point sp at the lowest address on the stack */
235 #ifdef CONFIG_STACK_GROWSUP
236 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
237 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
238 #else
239 sp = (elf_addr_t __user *)bprm->p;
240 #endif
244 * Grow the stack manually; some architectures have a limit on how
245 * far ahead a user-space access may be in order to grow the stack.
247 vma = find_extend_vma(current->mm, bprm->p);
248 if (!vma)
249 return -EFAULT;
251 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
252 if (__put_user(argc, sp++))
253 return -EFAULT;
254 if (interp_aout) {
255 argv = sp + 2;
256 envp = argv + argc + 1;
257 if (__put_user((elf_addr_t)(unsigned long)argv, sp++) ||
258 __put_user((elf_addr_t)(unsigned long)envp, sp++))
259 return -EFAULT;
260 } else {
261 argv = sp;
262 envp = argv + argc + 1;
265 /* Populate argv and envp */
266 p = current->mm->arg_end = current->mm->arg_start;
267 while (argc-- > 0) {
268 size_t len;
269 if (__put_user((elf_addr_t)p, argv++))
270 return -EFAULT;
271 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
272 if (!len || len > MAX_ARG_STRLEN)
273 return 0;
274 p += len;
276 if (__put_user(0, argv))
277 return -EFAULT;
278 current->mm->arg_end = current->mm->env_start = p;
279 while (envc-- > 0) {
280 size_t len;
281 if (__put_user((elf_addr_t)p, envp++))
282 return -EFAULT;
283 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
284 if (!len || len > MAX_ARG_STRLEN)
285 return 0;
286 p += len;
288 if (__put_user(0, envp))
289 return -EFAULT;
290 current->mm->env_end = p;
292 /* Put the elf_info on the stack in the right place. */
293 sp = (elf_addr_t __user *)envp + 1;
294 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
295 return -EFAULT;
296 return 0;
299 #ifndef elf_map
301 static unsigned long elf_map(struct file *filep, unsigned long addr,
302 struct elf_phdr *eppnt, int prot, int type,
303 unsigned long total_size)
305 unsigned long map_addr;
306 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
307 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
308 addr = ELF_PAGESTART(addr);
309 size = ELF_PAGEALIGN(size);
311 /* mmap() will return -EINVAL if given a zero size, but a
312 * segment with zero filesize is perfectly valid */
313 if (!size)
314 return addr;
316 down_write(&current->mm->mmap_sem);
318 * total_size is the size of the ELF (interpreter) image.
319 * The _first_ mmap needs to know the full size, otherwise
320 * randomization might put this image into an overlapping
321 * position with the ELF binary image. (since size < total_size)
322 * So we first map the 'big' image - and unmap the remainder at
323 * the end. (which unmap is needed for ELF images with holes.)
325 if (total_size) {
326 total_size = ELF_PAGEALIGN(total_size);
327 map_addr = do_mmap(filep, addr, total_size, prot, type, off);
328 if (!BAD_ADDR(map_addr))
329 do_munmap(current->mm, map_addr+size, total_size-size);
330 } else
331 map_addr = do_mmap(filep, addr, size, prot, type, off);
333 up_write(&current->mm->mmap_sem);
334 return(map_addr);
337 #endif /* !elf_map */
339 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
341 int i, first_idx = -1, last_idx = -1;
343 for (i = 0; i < nr; i++) {
344 if (cmds[i].p_type == PT_LOAD) {
345 last_idx = i;
346 if (first_idx == -1)
347 first_idx = i;
350 if (first_idx == -1)
351 return 0;
353 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
354 ELF_PAGESTART(cmds[first_idx].p_vaddr);
358 /* This is much more generalized than the library routine read function,
359 so we keep this separate. Technically the library read function
360 is only provided so that we can read a.out libraries that have
361 an ELF header */
363 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
364 struct file *interpreter, unsigned long *interp_map_addr,
365 unsigned long no_base)
367 struct elf_phdr *elf_phdata;
368 struct elf_phdr *eppnt;
369 unsigned long load_addr = 0;
370 int load_addr_set = 0;
371 unsigned long last_bss = 0, elf_bss = 0;
372 unsigned long error = ~0UL;
373 unsigned long total_size;
374 int retval, i, size;
376 /* First of all, some simple consistency checks */
377 if (interp_elf_ex->e_type != ET_EXEC &&
378 interp_elf_ex->e_type != ET_DYN)
379 goto out;
380 if (!elf_check_arch(interp_elf_ex))
381 goto out;
382 if (!interpreter->f_op || !interpreter->f_op->mmap)
383 goto out;
386 * If the size of this structure has changed, then punt, since
387 * we will be doing the wrong thing.
389 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
390 goto out;
391 if (interp_elf_ex->e_phnum < 1 ||
392 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
393 goto out;
395 /* Now read in all of the header information */
396 size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
397 if (size > ELF_MIN_ALIGN)
398 goto out;
399 elf_phdata = kmalloc(size, GFP_KERNEL);
400 if (!elf_phdata)
401 goto out;
403 retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
404 (char *)elf_phdata,size);
405 error = -EIO;
406 if (retval != size) {
407 if (retval < 0)
408 error = retval;
409 goto out_close;
412 total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
413 if (!total_size) {
414 error = -EINVAL;
415 goto out_close;
418 eppnt = elf_phdata;
419 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
420 if (eppnt->p_type == PT_LOAD) {
421 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
422 int elf_prot = 0;
423 unsigned long vaddr = 0;
424 unsigned long k, map_addr;
426 if (eppnt->p_flags & PF_R)
427 elf_prot = PROT_READ;
428 if (eppnt->p_flags & PF_W)
429 elf_prot |= PROT_WRITE;
430 if (eppnt->p_flags & PF_X)
431 elf_prot |= PROT_EXEC;
432 vaddr = eppnt->p_vaddr;
433 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
434 elf_type |= MAP_FIXED;
435 else if (no_base && interp_elf_ex->e_type == ET_DYN)
436 load_addr = -vaddr;
438 map_addr = elf_map(interpreter, load_addr + vaddr,
439 eppnt, elf_prot, elf_type, total_size);
440 total_size = 0;
441 if (!*interp_map_addr)
442 *interp_map_addr = map_addr;
443 error = map_addr;
444 if (BAD_ADDR(map_addr))
445 goto out_close;
447 if (!load_addr_set &&
448 interp_elf_ex->e_type == ET_DYN) {
449 load_addr = map_addr - ELF_PAGESTART(vaddr);
450 load_addr_set = 1;
454 * Check to see if the section's size will overflow the
455 * allowed task size. Note that p_filesz must always be
456 * <= p_memsize so it's only necessary to check p_memsz.
458 k = load_addr + eppnt->p_vaddr;
459 if (BAD_ADDR(k) ||
460 eppnt->p_filesz > eppnt->p_memsz ||
461 eppnt->p_memsz > TASK_SIZE ||
462 TASK_SIZE - eppnt->p_memsz < k) {
463 error = -ENOMEM;
464 goto out_close;
468 * Find the end of the file mapping for this phdr, and
469 * keep track of the largest address we see for this.
471 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
472 if (k > elf_bss)
473 elf_bss = k;
476 * Do the same thing for the memory mapping - between
477 * elf_bss and last_bss is the bss section.
479 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
480 if (k > last_bss)
481 last_bss = k;
486 * Now fill out the bss section. First pad the last page up
487 * to the page boundary, and then perform a mmap to make sure
488 * that there are zero-mapped pages up to and including the
489 * last bss page.
491 if (padzero(elf_bss)) {
492 error = -EFAULT;
493 goto out_close;
496 /* What we have mapped so far */
497 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
499 /* Map the last of the bss segment */
500 if (last_bss > elf_bss) {
501 down_write(&current->mm->mmap_sem);
502 error = do_brk(elf_bss, last_bss - elf_bss);
503 up_write(&current->mm->mmap_sem);
504 if (BAD_ADDR(error))
505 goto out_close;
508 error = load_addr;
510 out_close:
511 kfree(elf_phdata);
512 out:
513 return error;
516 static unsigned long load_aout_interp(struct exec *interp_ex,
517 struct file *interpreter)
519 unsigned long text_data, elf_entry = ~0UL;
520 char __user * addr;
521 loff_t offset;
523 current->mm->end_code = interp_ex->a_text;
524 text_data = interp_ex->a_text + interp_ex->a_data;
525 current->mm->end_data = text_data;
526 current->mm->brk = interp_ex->a_bss + text_data;
528 switch (N_MAGIC(*interp_ex)) {
529 case OMAGIC:
530 offset = 32;
531 addr = (char __user *)0;
532 break;
533 case ZMAGIC:
534 case QMAGIC:
535 offset = N_TXTOFF(*interp_ex);
536 addr = (char __user *)N_TXTADDR(*interp_ex);
537 break;
538 default:
539 goto out;
542 down_write(&current->mm->mmap_sem);
543 do_brk(0, text_data);
544 up_write(&current->mm->mmap_sem);
545 if (!interpreter->f_op || !interpreter->f_op->read)
546 goto out;
547 if (interpreter->f_op->read(interpreter, addr, text_data, &offset) < 0)
548 goto out;
549 flush_icache_range((unsigned long)addr,
550 (unsigned long)addr + text_data);
552 down_write(&current->mm->mmap_sem);
553 do_brk(ELF_PAGESTART(text_data + ELF_MIN_ALIGN - 1),
554 interp_ex->a_bss);
555 up_write(&current->mm->mmap_sem);
556 elf_entry = interp_ex->a_entry;
558 out:
559 return elf_entry;
563 * These are the functions used to load ELF style executables and shared
564 * libraries. There is no binary dependent code anywhere else.
567 #define INTERPRETER_NONE 0
568 #define INTERPRETER_AOUT 1
569 #define INTERPRETER_ELF 2
571 #ifndef STACK_RND_MASK
572 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
573 #endif
575 static unsigned long randomize_stack_top(unsigned long stack_top)
577 unsigned int random_variable = 0;
579 if ((current->flags & PF_RANDOMIZE) &&
580 !(current->personality & ADDR_NO_RANDOMIZE)) {
581 random_variable = get_random_int() & STACK_RND_MASK;
582 random_variable <<= PAGE_SHIFT;
584 #ifdef CONFIG_STACK_GROWSUP
585 return PAGE_ALIGN(stack_top) + random_variable;
586 #else
587 return PAGE_ALIGN(stack_top) - random_variable;
588 #endif
591 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
593 struct file *interpreter = NULL; /* to shut gcc up */
594 unsigned long load_addr = 0, load_bias = 0;
595 int load_addr_set = 0;
596 char * elf_interpreter = NULL;
597 unsigned int interpreter_type = INTERPRETER_NONE;
598 unsigned long error;
599 struct elf_phdr *elf_ppnt, *elf_phdata;
600 unsigned long elf_bss, elf_brk;
601 int elf_exec_fileno;
602 int retval, i;
603 unsigned int size;
604 unsigned long elf_entry;
605 unsigned long interp_load_addr = 0;
606 unsigned long start_code, end_code, start_data, end_data;
607 unsigned long reloc_func_desc = 0;
608 char passed_fileno[6];
609 struct files_struct *files;
610 int executable_stack = EXSTACK_DEFAULT;
611 unsigned long def_flags = 0;
612 struct {
613 struct elfhdr elf_ex;
614 struct elfhdr interp_elf_ex;
615 struct exec interp_ex;
616 } *loc;
618 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
619 if (!loc) {
620 retval = -ENOMEM;
621 goto out_ret;
624 /* Get the exec-header */
625 loc->elf_ex = *((struct elfhdr *)bprm->buf);
627 retval = -ENOEXEC;
628 /* First of all, some simple consistency checks */
629 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
630 goto out;
632 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
633 goto out;
634 if (!elf_check_arch(&loc->elf_ex))
635 goto out;
636 if (!bprm->file->f_op||!bprm->file->f_op->mmap)
637 goto out;
639 /* Now read in all of the header information */
640 if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
641 goto out;
642 if (loc->elf_ex.e_phnum < 1 ||
643 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
644 goto out;
645 size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
646 retval = -ENOMEM;
647 elf_phdata = kmalloc(size, GFP_KERNEL);
648 if (!elf_phdata)
649 goto out;
651 retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
652 (char *)elf_phdata, size);
653 if (retval != size) {
654 if (retval >= 0)
655 retval = -EIO;
656 goto out_free_ph;
659 files = current->files; /* Refcounted so ok */
660 retval = unshare_files();
661 if (retval < 0)
662 goto out_free_ph;
663 if (files == current->files) {
664 put_files_struct(files);
665 files = NULL;
668 /* exec will make our files private anyway, but for the a.out
669 loader stuff we need to do it earlier */
670 retval = get_unused_fd();
671 if (retval < 0)
672 goto out_free_fh;
673 get_file(bprm->file);
674 fd_install(elf_exec_fileno = retval, bprm->file);
676 elf_ppnt = elf_phdata;
677 elf_bss = 0;
678 elf_brk = 0;
680 start_code = ~0UL;
681 end_code = 0;
682 start_data = 0;
683 end_data = 0;
685 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
686 if (elf_ppnt->p_type == PT_INTERP) {
687 /* This is the program interpreter used for
688 * shared libraries - for now assume that this
689 * is an a.out format binary
691 retval = -ENOEXEC;
692 if (elf_ppnt->p_filesz > PATH_MAX ||
693 elf_ppnt->p_filesz < 2)
694 goto out_free_file;
696 retval = -ENOMEM;
697 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
698 GFP_KERNEL);
699 if (!elf_interpreter)
700 goto out_free_file;
702 retval = kernel_read(bprm->file, elf_ppnt->p_offset,
703 elf_interpreter,
704 elf_ppnt->p_filesz);
705 if (retval != elf_ppnt->p_filesz) {
706 if (retval >= 0)
707 retval = -EIO;
708 goto out_free_interp;
710 /* make sure path is NULL terminated */
711 retval = -ENOEXEC;
712 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
713 goto out_free_interp;
716 * The early SET_PERSONALITY here is so that the lookup
717 * for the interpreter happens in the namespace of the
718 * to-be-execed image. SET_PERSONALITY can select an
719 * alternate root.
721 * However, SET_PERSONALITY is NOT allowed to switch
722 * this task into the new images's memory mapping
723 * policy - that is, TASK_SIZE must still evaluate to
724 * that which is appropriate to the execing application.
725 * This is because exit_mmap() needs to have TASK_SIZE
726 * evaluate to the size of the old image.
728 * So if (say) a 64-bit application is execing a 32-bit
729 * application it is the architecture's responsibility
730 * to defer changing the value of TASK_SIZE until the
731 * switch really is going to happen - do this in
732 * flush_thread(). - akpm
734 SET_PERSONALITY(loc->elf_ex, 0);
736 interpreter = open_exec(elf_interpreter);
737 retval = PTR_ERR(interpreter);
738 if (IS_ERR(interpreter))
739 goto out_free_interp;
742 * If the binary is not readable then enforce
743 * mm->dumpable = 0 regardless of the interpreter's
744 * permissions.
746 if (file_permission(interpreter, MAY_READ) < 0)
747 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
749 retval = kernel_read(interpreter, 0, bprm->buf,
750 BINPRM_BUF_SIZE);
751 if (retval != BINPRM_BUF_SIZE) {
752 if (retval >= 0)
753 retval = -EIO;
754 goto out_free_dentry;
757 /* Get the exec headers */
758 loc->interp_ex = *((struct exec *)bprm->buf);
759 loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
760 break;
762 elf_ppnt++;
765 elf_ppnt = elf_phdata;
766 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
767 if (elf_ppnt->p_type == PT_GNU_STACK) {
768 if (elf_ppnt->p_flags & PF_X)
769 executable_stack = EXSTACK_ENABLE_X;
770 else
771 executable_stack = EXSTACK_DISABLE_X;
772 break;
775 /* Some simple consistency checks for the interpreter */
776 if (elf_interpreter) {
777 static int warn;
778 interpreter_type = INTERPRETER_ELF | INTERPRETER_AOUT;
780 /* Now figure out which format our binary is */
781 if ((N_MAGIC(loc->interp_ex) != OMAGIC) &&
782 (N_MAGIC(loc->interp_ex) != ZMAGIC) &&
783 (N_MAGIC(loc->interp_ex) != QMAGIC))
784 interpreter_type = INTERPRETER_ELF;
786 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
787 interpreter_type &= ~INTERPRETER_ELF;
789 if (interpreter_type == INTERPRETER_AOUT && warn < 10) {
790 printk(KERN_WARNING "a.out ELF interpreter %s is "
791 "deprecated and will not be supported "
792 "after Linux 2.6.25\n", elf_interpreter);
793 warn++;
796 retval = -ELIBBAD;
797 if (!interpreter_type)
798 goto out_free_dentry;
800 /* Make sure only one type was selected */
801 if ((interpreter_type & INTERPRETER_ELF) &&
802 interpreter_type != INTERPRETER_ELF) {
803 // FIXME - ratelimit this before re-enabling
804 // printk(KERN_WARNING "ELF: Ambiguous type, using ELF\n");
805 interpreter_type = INTERPRETER_ELF;
807 /* Verify the interpreter has a valid arch */
808 if ((interpreter_type == INTERPRETER_ELF) &&
809 !elf_check_arch(&loc->interp_elf_ex))
810 goto out_free_dentry;
811 } else {
812 /* Executables without an interpreter also need a personality */
813 SET_PERSONALITY(loc->elf_ex, 0);
816 /* OK, we are done with that, now set up the arg stuff,
817 and then start this sucker up */
818 if ((!bprm->sh_bang) && (interpreter_type == INTERPRETER_AOUT)) {
819 char *passed_p = passed_fileno;
820 sprintf(passed_fileno, "%d", elf_exec_fileno);
822 if (elf_interpreter) {
823 retval = copy_strings_kernel(1, &passed_p, bprm);
824 if (retval)
825 goto out_free_dentry;
826 bprm->argc++;
830 /* Flush all traces of the currently running executable */
831 retval = flush_old_exec(bprm);
832 if (retval)
833 goto out_free_dentry;
835 /* Discard our unneeded old files struct */
836 if (files) {
837 put_files_struct(files);
838 files = NULL;
841 /* OK, This is the point of no return */
842 current->flags &= ~PF_FORKNOEXEC;
843 current->mm->def_flags = def_flags;
845 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
846 may depend on the personality. */
847 SET_PERSONALITY(loc->elf_ex, 0);
848 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
849 current->personality |= READ_IMPLIES_EXEC;
851 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
852 current->flags |= PF_RANDOMIZE;
853 arch_pick_mmap_layout(current->mm);
855 /* Do this so that we can load the interpreter, if need be. We will
856 change some of these later */
857 current->mm->free_area_cache = current->mm->mmap_base;
858 current->mm->cached_hole_size = 0;
859 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
860 executable_stack);
861 if (retval < 0) {
862 send_sig(SIGKILL, current, 0);
863 goto out_free_dentry;
866 current->mm->start_stack = bprm->p;
868 /* Now we do a little grungy work by mmaping the ELF image into
869 the correct location in memory. */
870 for(i = 0, elf_ppnt = elf_phdata;
871 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
872 int elf_prot = 0, elf_flags;
873 unsigned long k, vaddr;
875 if (elf_ppnt->p_type != PT_LOAD)
876 continue;
878 if (unlikely (elf_brk > elf_bss)) {
879 unsigned long nbyte;
881 /* There was a PT_LOAD segment with p_memsz > p_filesz
882 before this one. Map anonymous pages, if needed,
883 and clear the area. */
884 retval = set_brk (elf_bss + load_bias,
885 elf_brk + load_bias);
886 if (retval) {
887 send_sig(SIGKILL, current, 0);
888 goto out_free_dentry;
890 nbyte = ELF_PAGEOFFSET(elf_bss);
891 if (nbyte) {
892 nbyte = ELF_MIN_ALIGN - nbyte;
893 if (nbyte > elf_brk - elf_bss)
894 nbyte = elf_brk - elf_bss;
895 if (clear_user((void __user *)elf_bss +
896 load_bias, nbyte)) {
898 * This bss-zeroing can fail if the ELF
899 * file specifies odd protections. So
900 * we don't check the return value
906 if (elf_ppnt->p_flags & PF_R)
907 elf_prot |= PROT_READ;
908 if (elf_ppnt->p_flags & PF_W)
909 elf_prot |= PROT_WRITE;
910 if (elf_ppnt->p_flags & PF_X)
911 elf_prot |= PROT_EXEC;
913 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
915 vaddr = elf_ppnt->p_vaddr;
916 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
917 elf_flags |= MAP_FIXED;
918 } else if (loc->elf_ex.e_type == ET_DYN) {
919 /* Try and get dynamic programs out of the way of the
920 * default mmap base, as well as whatever program they
921 * might try to exec. This is because the brk will
922 * follow the loader, and is not movable. */
923 #ifdef CONFIG_X86
924 load_bias = 0;
925 #else
926 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
927 #endif
930 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
931 elf_prot, elf_flags, 0);
932 if (BAD_ADDR(error)) {
933 send_sig(SIGKILL, current, 0);
934 retval = IS_ERR((void *)error) ?
935 PTR_ERR((void*)error) : -EINVAL;
936 goto out_free_dentry;
939 if (!load_addr_set) {
940 load_addr_set = 1;
941 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
942 if (loc->elf_ex.e_type == ET_DYN) {
943 load_bias += error -
944 ELF_PAGESTART(load_bias + vaddr);
945 load_addr += load_bias;
946 reloc_func_desc = load_bias;
949 k = elf_ppnt->p_vaddr;
950 if (k < start_code)
951 start_code = k;
952 if (start_data < k)
953 start_data = k;
956 * Check to see if the section's size will overflow the
957 * allowed task size. Note that p_filesz must always be
958 * <= p_memsz so it is only necessary to check p_memsz.
960 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
961 elf_ppnt->p_memsz > TASK_SIZE ||
962 TASK_SIZE - elf_ppnt->p_memsz < k) {
963 /* set_brk can never work. Avoid overflows. */
964 send_sig(SIGKILL, current, 0);
965 retval = -EINVAL;
966 goto out_free_dentry;
969 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
971 if (k > elf_bss)
972 elf_bss = k;
973 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
974 end_code = k;
975 if (end_data < k)
976 end_data = k;
977 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
978 if (k > elf_brk)
979 elf_brk = k;
982 loc->elf_ex.e_entry += load_bias;
983 elf_bss += load_bias;
984 elf_brk += load_bias;
985 start_code += load_bias;
986 end_code += load_bias;
987 start_data += load_bias;
988 end_data += load_bias;
990 /* Calling set_brk effectively mmaps the pages that we need
991 * for the bss and break sections. We must do this before
992 * mapping in the interpreter, to make sure it doesn't wind
993 * up getting placed where the bss needs to go.
995 retval = set_brk(elf_bss, elf_brk);
996 if (retval) {
997 send_sig(SIGKILL, current, 0);
998 goto out_free_dentry;
1000 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1001 send_sig(SIGSEGV, current, 0);
1002 retval = -EFAULT; /* Nobody gets to see this, but.. */
1003 goto out_free_dentry;
1006 if (elf_interpreter) {
1007 if (interpreter_type == INTERPRETER_AOUT) {
1008 elf_entry = load_aout_interp(&loc->interp_ex,
1009 interpreter);
1010 } else {
1011 unsigned long uninitialized_var(interp_map_addr);
1013 elf_entry = load_elf_interp(&loc->interp_elf_ex,
1014 interpreter,
1015 &interp_map_addr,
1016 load_bias);
1017 if (!IS_ERR((void *)elf_entry)) {
1019 * load_elf_interp() returns relocation
1020 * adjustment
1022 interp_load_addr = elf_entry;
1023 elf_entry += loc->interp_elf_ex.e_entry;
1026 if (BAD_ADDR(elf_entry)) {
1027 force_sig(SIGSEGV, current);
1028 retval = IS_ERR((void *)elf_entry) ?
1029 (int)elf_entry : -EINVAL;
1030 goto out_free_dentry;
1032 reloc_func_desc = interp_load_addr;
1034 allow_write_access(interpreter);
1035 fput(interpreter);
1036 kfree(elf_interpreter);
1037 } else {
1038 elf_entry = loc->elf_ex.e_entry;
1039 if (BAD_ADDR(elf_entry)) {
1040 force_sig(SIGSEGV, current);
1041 retval = -EINVAL;
1042 goto out_free_dentry;
1046 kfree(elf_phdata);
1048 if (interpreter_type != INTERPRETER_AOUT)
1049 sys_close(elf_exec_fileno);
1051 set_binfmt(&elf_format);
1053 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1054 retval = arch_setup_additional_pages(bprm, executable_stack);
1055 if (retval < 0) {
1056 send_sig(SIGKILL, current, 0);
1057 goto out;
1059 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1061 compute_creds(bprm);
1062 current->flags &= ~PF_FORKNOEXEC;
1063 retval = create_elf_tables(bprm, &loc->elf_ex,
1064 (interpreter_type == INTERPRETER_AOUT),
1065 load_addr, interp_load_addr);
1066 if (retval < 0) {
1067 send_sig(SIGKILL, current, 0);
1068 goto out;
1070 /* N.B. passed_fileno might not be initialized? */
1071 if (interpreter_type == INTERPRETER_AOUT)
1072 current->mm->arg_start += strlen(passed_fileno) + 1;
1073 current->mm->end_code = end_code;
1074 current->mm->start_code = start_code;
1075 current->mm->start_data = start_data;
1076 current->mm->end_data = end_data;
1077 current->mm->start_stack = bprm->p;
1079 #ifdef arch_randomize_brk
1080 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1))
1081 current->mm->brk = current->mm->start_brk =
1082 arch_randomize_brk(current->mm);
1083 #endif
1085 if (current->personality & MMAP_PAGE_ZERO) {
1086 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1087 and some applications "depend" upon this behavior.
1088 Since we do not have the power to recompile these, we
1089 emulate the SVr4 behavior. Sigh. */
1090 down_write(&current->mm->mmap_sem);
1091 error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1092 MAP_FIXED | MAP_PRIVATE, 0);
1093 up_write(&current->mm->mmap_sem);
1096 #ifdef ELF_PLAT_INIT
1098 * The ABI may specify that certain registers be set up in special
1099 * ways (on i386 %edx is the address of a DT_FINI function, for
1100 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1101 * that the e_entry field is the address of the function descriptor
1102 * for the startup routine, rather than the address of the startup
1103 * routine itself. This macro performs whatever initialization to
1104 * the regs structure is required as well as any relocations to the
1105 * function descriptor entries when executing dynamically links apps.
1107 ELF_PLAT_INIT(regs, reloc_func_desc);
1108 #endif
1110 start_thread(regs, elf_entry, bprm->p);
1111 if (unlikely(current->ptrace & PT_PTRACED)) {
1112 if (current->ptrace & PT_TRACE_EXEC)
1113 ptrace_notify ((PTRACE_EVENT_EXEC << 8) | SIGTRAP);
1114 else
1115 send_sig(SIGTRAP, current, 0);
1117 retval = 0;
1118 out:
1119 kfree(loc);
1120 out_ret:
1121 return retval;
1123 /* error cleanup */
1124 out_free_dentry:
1125 allow_write_access(interpreter);
1126 if (interpreter)
1127 fput(interpreter);
1128 out_free_interp:
1129 kfree(elf_interpreter);
1130 out_free_file:
1131 sys_close(elf_exec_fileno);
1132 out_free_fh:
1133 if (files)
1134 reset_files_struct(current, files);
1135 out_free_ph:
1136 kfree(elf_phdata);
1137 goto out;
1140 /* This is really simpleminded and specialized - we are loading an
1141 a.out library that is given an ELF header. */
1142 static int load_elf_library(struct file *file)
1144 struct elf_phdr *elf_phdata;
1145 struct elf_phdr *eppnt;
1146 unsigned long elf_bss, bss, len;
1147 int retval, error, i, j;
1148 struct elfhdr elf_ex;
1150 error = -ENOEXEC;
1151 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1152 if (retval != sizeof(elf_ex))
1153 goto out;
1155 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1156 goto out;
1158 /* First of all, some simple consistency checks */
1159 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1160 !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1161 goto out;
1163 /* Now read in all of the header information */
1165 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1166 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1168 error = -ENOMEM;
1169 elf_phdata = kmalloc(j, GFP_KERNEL);
1170 if (!elf_phdata)
1171 goto out;
1173 eppnt = elf_phdata;
1174 error = -ENOEXEC;
1175 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1176 if (retval != j)
1177 goto out_free_ph;
1179 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1180 if ((eppnt + i)->p_type == PT_LOAD)
1181 j++;
1182 if (j != 1)
1183 goto out_free_ph;
1185 while (eppnt->p_type != PT_LOAD)
1186 eppnt++;
1188 /* Now use mmap to map the library into memory. */
1189 down_write(&current->mm->mmap_sem);
1190 error = do_mmap(file,
1191 ELF_PAGESTART(eppnt->p_vaddr),
1192 (eppnt->p_filesz +
1193 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1194 PROT_READ | PROT_WRITE | PROT_EXEC,
1195 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1196 (eppnt->p_offset -
1197 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1198 up_write(&current->mm->mmap_sem);
1199 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1200 goto out_free_ph;
1202 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1203 if (padzero(elf_bss)) {
1204 error = -EFAULT;
1205 goto out_free_ph;
1208 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1209 ELF_MIN_ALIGN - 1);
1210 bss = eppnt->p_memsz + eppnt->p_vaddr;
1211 if (bss > len) {
1212 down_write(&current->mm->mmap_sem);
1213 do_brk(len, bss - len);
1214 up_write(&current->mm->mmap_sem);
1216 error = 0;
1218 out_free_ph:
1219 kfree(elf_phdata);
1220 out:
1221 return error;
1225 * Note that some platforms still use traditional core dumps and not
1226 * the ELF core dump. Each platform can select it as appropriate.
1228 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
1231 * ELF core dumper
1233 * Modelled on fs/exec.c:aout_core_dump()
1234 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1237 * These are the only things you should do on a core-file: use only these
1238 * functions to write out all the necessary info.
1240 static int dump_write(struct file *file, const void *addr, int nr)
1242 return file->f_op->write(file, addr, nr, &file->f_pos) == nr;
1245 static int dump_seek(struct file *file, loff_t off)
1247 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
1248 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
1249 return 0;
1250 } else {
1251 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
1252 if (!buf)
1253 return 0;
1254 while (off > 0) {
1255 unsigned long n = off;
1256 if (n > PAGE_SIZE)
1257 n = PAGE_SIZE;
1258 if (!dump_write(file, buf, n))
1259 return 0;
1260 off -= n;
1262 free_page((unsigned long)buf);
1264 return 1;
1268 * Decide what to dump of a segment, part, all or none.
1270 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1271 unsigned long mm_flags)
1273 /* The vma can be set up to tell us the answer directly. */
1274 if (vma->vm_flags & VM_ALWAYSDUMP)
1275 goto whole;
1277 /* Do not dump I/O mapped devices or special mappings */
1278 if (vma->vm_flags & (VM_IO | VM_RESERVED))
1279 return 0;
1281 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1283 /* By default, dump shared memory if mapped from an anonymous file. */
1284 if (vma->vm_flags & VM_SHARED) {
1285 if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1286 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1287 goto whole;
1288 return 0;
1291 /* Dump segments that have been written to. */
1292 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1293 goto whole;
1294 if (vma->vm_file == NULL)
1295 return 0;
1297 if (FILTER(MAPPED_PRIVATE))
1298 goto whole;
1301 * If this looks like the beginning of a DSO or executable mapping,
1302 * check for an ELF header. If we find one, dump the first page to
1303 * aid in determining what was mapped here.
1305 if (FILTER(ELF_HEADERS) && vma->vm_file != NULL && vma->vm_pgoff == 0) {
1306 u32 __user *header = (u32 __user *) vma->vm_start;
1307 u32 word;
1309 * Doing it this way gets the constant folded by GCC.
1311 union {
1312 u32 cmp;
1313 char elfmag[SELFMAG];
1314 } magic;
1315 BUILD_BUG_ON(SELFMAG != sizeof word);
1316 magic.elfmag[EI_MAG0] = ELFMAG0;
1317 magic.elfmag[EI_MAG1] = ELFMAG1;
1318 magic.elfmag[EI_MAG2] = ELFMAG2;
1319 magic.elfmag[EI_MAG3] = ELFMAG3;
1320 if (get_user(word, header) == 0 && word == magic.cmp)
1321 return PAGE_SIZE;
1324 #undef FILTER
1326 return 0;
1328 whole:
1329 return vma->vm_end - vma->vm_start;
1332 /* An ELF note in memory */
1333 struct memelfnote
1335 const char *name;
1336 int type;
1337 unsigned int datasz;
1338 void *data;
1341 static int notesize(struct memelfnote *en)
1343 int sz;
1345 sz = sizeof(struct elf_note);
1346 sz += roundup(strlen(en->name) + 1, 4);
1347 sz += roundup(en->datasz, 4);
1349 return sz;
1352 #define DUMP_WRITE(addr, nr, foffset) \
1353 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1355 static int alignfile(struct file *file, loff_t *foffset)
1357 static const char buf[4] = { 0, };
1358 DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1359 return 1;
1362 static int writenote(struct memelfnote *men, struct file *file,
1363 loff_t *foffset)
1365 struct elf_note en;
1366 en.n_namesz = strlen(men->name) + 1;
1367 en.n_descsz = men->datasz;
1368 en.n_type = men->type;
1370 DUMP_WRITE(&en, sizeof(en), foffset);
1371 DUMP_WRITE(men->name, en.n_namesz, foffset);
1372 if (!alignfile(file, foffset))
1373 return 0;
1374 DUMP_WRITE(men->data, men->datasz, foffset);
1375 if (!alignfile(file, foffset))
1376 return 0;
1378 return 1;
1380 #undef DUMP_WRITE
1382 #define DUMP_WRITE(addr, nr) \
1383 if ((size += (nr)) > limit || !dump_write(file, (addr), (nr))) \
1384 goto end_coredump;
1385 #define DUMP_SEEK(off) \
1386 if (!dump_seek(file, (off))) \
1387 goto end_coredump;
1389 static void fill_elf_header(struct elfhdr *elf, int segs,
1390 u16 machine, u32 flags, u8 osabi)
1392 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1393 elf->e_ident[EI_CLASS] = ELF_CLASS;
1394 elf->e_ident[EI_DATA] = ELF_DATA;
1395 elf->e_ident[EI_VERSION] = EV_CURRENT;
1396 elf->e_ident[EI_OSABI] = ELF_OSABI;
1397 memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
1399 elf->e_type = ET_CORE;
1400 elf->e_machine = machine;
1401 elf->e_version = EV_CURRENT;
1402 elf->e_entry = 0;
1403 elf->e_phoff = sizeof(struct elfhdr);
1404 elf->e_shoff = 0;
1405 elf->e_flags = flags;
1406 elf->e_ehsize = sizeof(struct elfhdr);
1407 elf->e_phentsize = sizeof(struct elf_phdr);
1408 elf->e_phnum = segs;
1409 elf->e_shentsize = 0;
1410 elf->e_shnum = 0;
1411 elf->e_shstrndx = 0;
1412 return;
1415 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1417 phdr->p_type = PT_NOTE;
1418 phdr->p_offset = offset;
1419 phdr->p_vaddr = 0;
1420 phdr->p_paddr = 0;
1421 phdr->p_filesz = sz;
1422 phdr->p_memsz = 0;
1423 phdr->p_flags = 0;
1424 phdr->p_align = 0;
1425 return;
1428 static void fill_note(struct memelfnote *note, const char *name, int type,
1429 unsigned int sz, void *data)
1431 note->name = name;
1432 note->type = type;
1433 note->datasz = sz;
1434 note->data = data;
1435 return;
1439 * fill up all the fields in prstatus from the given task struct, except
1440 * registers which need to be filled up separately.
1442 static void fill_prstatus(struct elf_prstatus *prstatus,
1443 struct task_struct *p, long signr)
1445 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1446 prstatus->pr_sigpend = p->pending.signal.sig[0];
1447 prstatus->pr_sighold = p->blocked.sig[0];
1448 prstatus->pr_pid = task_pid_vnr(p);
1449 prstatus->pr_ppid = task_pid_vnr(p->real_parent);
1450 prstatus->pr_pgrp = task_pgrp_vnr(p);
1451 prstatus->pr_sid = task_session_vnr(p);
1452 if (thread_group_leader(p)) {
1454 * This is the record for the group leader. Add in the
1455 * cumulative times of previous dead threads. This total
1456 * won't include the time of each live thread whose state
1457 * is included in the core dump. The final total reported
1458 * to our parent process when it calls wait4 will include
1459 * those sums as well as the little bit more time it takes
1460 * this and each other thread to finish dying after the
1461 * core dump synchronization phase.
1463 cputime_to_timeval(cputime_add(p->utime, p->signal->utime),
1464 &prstatus->pr_utime);
1465 cputime_to_timeval(cputime_add(p->stime, p->signal->stime),
1466 &prstatus->pr_stime);
1467 } else {
1468 cputime_to_timeval(p->utime, &prstatus->pr_utime);
1469 cputime_to_timeval(p->stime, &prstatus->pr_stime);
1471 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1472 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1475 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1476 struct mm_struct *mm)
1478 unsigned int i, len;
1480 /* first copy the parameters from user space */
1481 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1483 len = mm->arg_end - mm->arg_start;
1484 if (len >= ELF_PRARGSZ)
1485 len = ELF_PRARGSZ-1;
1486 if (copy_from_user(&psinfo->pr_psargs,
1487 (const char __user *)mm->arg_start, len))
1488 return -EFAULT;
1489 for(i = 0; i < len; i++)
1490 if (psinfo->pr_psargs[i] == 0)
1491 psinfo->pr_psargs[i] = ' ';
1492 psinfo->pr_psargs[len] = 0;
1494 psinfo->pr_pid = task_pid_vnr(p);
1495 psinfo->pr_ppid = task_pid_vnr(p->real_parent);
1496 psinfo->pr_pgrp = task_pgrp_vnr(p);
1497 psinfo->pr_sid = task_session_vnr(p);
1499 i = p->state ? ffz(~p->state) + 1 : 0;
1500 psinfo->pr_state = i;
1501 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1502 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1503 psinfo->pr_nice = task_nice(p);
1504 psinfo->pr_flag = p->flags;
1505 SET_UID(psinfo->pr_uid, p->uid);
1506 SET_GID(psinfo->pr_gid, p->gid);
1507 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1509 return 0;
1512 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1514 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1515 int i = 0;
1517 i += 2;
1518 while (auxv[i - 2] != AT_NULL);
1519 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1522 #ifdef CORE_DUMP_USE_REGSET
1523 #include <linux/regset.h>
1525 struct elf_thread_core_info {
1526 struct elf_thread_core_info *next;
1527 struct task_struct *task;
1528 struct elf_prstatus prstatus;
1529 struct memelfnote notes[0];
1532 struct elf_note_info {
1533 struct elf_thread_core_info *thread;
1534 struct memelfnote psinfo;
1535 struct memelfnote auxv;
1536 size_t size;
1537 int thread_notes;
1540 static int fill_thread_core_info(struct elf_thread_core_info *t,
1541 const struct user_regset_view *view,
1542 long signr, size_t *total)
1544 unsigned int i;
1547 * NT_PRSTATUS is the one special case, because the regset data
1548 * goes into the pr_reg field inside the note contents, rather
1549 * than being the whole note contents. We fill the reset in here.
1550 * We assume that regset 0 is NT_PRSTATUS.
1552 fill_prstatus(&t->prstatus, t->task, signr);
1553 (void) view->regsets[0].get(t->task, &view->regsets[0],
1554 0, sizeof(t->prstatus.pr_reg),
1555 &t->prstatus.pr_reg, NULL);
1557 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1558 sizeof(t->prstatus), &t->prstatus);
1559 *total += notesize(&t->notes[0]);
1562 * Each other regset might generate a note too. For each regset
1563 * that has no core_note_type or is inactive, we leave t->notes[i]
1564 * all zero and we'll know to skip writing it later.
1566 for (i = 1; i < view->n; ++i) {
1567 const struct user_regset *regset = &view->regsets[i];
1568 if (regset->core_note_type &&
1569 (!regset->active || regset->active(t->task, regset))) {
1570 int ret;
1571 size_t size = regset->n * regset->size;
1572 void *data = kmalloc(size, GFP_KERNEL);
1573 if (unlikely(!data))
1574 return 0;
1575 ret = regset->get(t->task, regset,
1576 0, size, data, NULL);
1577 if (unlikely(ret))
1578 kfree(data);
1579 else {
1580 if (regset->core_note_type != NT_PRFPREG)
1581 fill_note(&t->notes[i], "LINUX",
1582 regset->core_note_type,
1583 size, data);
1584 else {
1585 t->prstatus.pr_fpvalid = 1;
1586 fill_note(&t->notes[i], "CORE",
1587 NT_PRFPREG, size, data);
1589 *total += notesize(&t->notes[i]);
1594 return 1;
1597 static int fill_note_info(struct elfhdr *elf, int phdrs,
1598 struct elf_note_info *info,
1599 long signr, struct pt_regs *regs)
1601 struct task_struct *dump_task = current;
1602 const struct user_regset_view *view = task_user_regset_view(dump_task);
1603 struct elf_thread_core_info *t;
1604 struct elf_prpsinfo *psinfo;
1605 struct task_struct *g, *p;
1606 unsigned int i;
1608 info->size = 0;
1609 info->thread = NULL;
1611 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1612 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1614 if (psinfo == NULL)
1615 return 0;
1618 * Figure out how many notes we're going to need for each thread.
1620 info->thread_notes = 0;
1621 for (i = 0; i < view->n; ++i)
1622 if (view->regsets[i].core_note_type != 0)
1623 ++info->thread_notes;
1626 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1627 * since it is our one special case.
1629 if (unlikely(info->thread_notes == 0) ||
1630 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1631 WARN_ON(1);
1632 return 0;
1636 * Initialize the ELF file header.
1638 fill_elf_header(elf, phdrs,
1639 view->e_machine, view->e_flags, view->ei_osabi);
1642 * Allocate a structure for each thread.
1644 rcu_read_lock();
1645 do_each_thread(g, p)
1646 if (p->mm == dump_task->mm) {
1647 t = kzalloc(offsetof(struct elf_thread_core_info,
1648 notes[info->thread_notes]),
1649 GFP_ATOMIC);
1650 if (unlikely(!t)) {
1651 rcu_read_unlock();
1652 return 0;
1654 t->task = p;
1655 if (p == dump_task || !info->thread) {
1656 t->next = info->thread;
1657 info->thread = t;
1658 } else {
1660 * Make sure to keep the original task at
1661 * the head of the list.
1663 t->next = info->thread->next;
1664 info->thread->next = t;
1667 while_each_thread(g, p);
1668 rcu_read_unlock();
1671 * Now fill in each thread's information.
1673 for (t = info->thread; t != NULL; t = t->next)
1674 if (!fill_thread_core_info(t, view, signr, &info->size))
1675 return 0;
1678 * Fill in the two process-wide notes.
1680 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1681 info->size += notesize(&info->psinfo);
1683 fill_auxv_note(&info->auxv, current->mm);
1684 info->size += notesize(&info->auxv);
1686 return 1;
1689 static size_t get_note_info_size(struct elf_note_info *info)
1691 return info->size;
1695 * Write all the notes for each thread. When writing the first thread, the
1696 * process-wide notes are interleaved after the first thread-specific note.
1698 static int write_note_info(struct elf_note_info *info,
1699 struct file *file, loff_t *foffset)
1701 bool first = 1;
1702 struct elf_thread_core_info *t = info->thread;
1704 do {
1705 int i;
1707 if (!writenote(&t->notes[0], file, foffset))
1708 return 0;
1710 if (first && !writenote(&info->psinfo, file, foffset))
1711 return 0;
1712 if (first && !writenote(&info->auxv, file, foffset))
1713 return 0;
1715 for (i = 1; i < info->thread_notes; ++i)
1716 if (t->notes[i].data &&
1717 !writenote(&t->notes[i], file, foffset))
1718 return 0;
1720 first = 0;
1721 t = t->next;
1722 } while (t);
1724 return 1;
1727 static void free_note_info(struct elf_note_info *info)
1729 struct elf_thread_core_info *threads = info->thread;
1730 while (threads) {
1731 unsigned int i;
1732 struct elf_thread_core_info *t = threads;
1733 threads = t->next;
1734 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1735 for (i = 1; i < info->thread_notes; ++i)
1736 kfree(t->notes[i].data);
1737 kfree(t);
1739 kfree(info->psinfo.data);
1742 #else
1744 /* Here is the structure in which status of each thread is captured. */
1745 struct elf_thread_status
1747 struct list_head list;
1748 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1749 elf_fpregset_t fpu; /* NT_PRFPREG */
1750 struct task_struct *thread;
1751 #ifdef ELF_CORE_COPY_XFPREGS
1752 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1753 #endif
1754 struct memelfnote notes[3];
1755 int num_notes;
1759 * In order to add the specific thread information for the elf file format,
1760 * we need to keep a linked list of every threads pr_status and then create
1761 * a single section for them in the final core file.
1763 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1765 int sz = 0;
1766 struct task_struct *p = t->thread;
1767 t->num_notes = 0;
1769 fill_prstatus(&t->prstatus, p, signr);
1770 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1772 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1773 &(t->prstatus));
1774 t->num_notes++;
1775 sz += notesize(&t->notes[0]);
1777 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1778 &t->fpu))) {
1779 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1780 &(t->fpu));
1781 t->num_notes++;
1782 sz += notesize(&t->notes[1]);
1785 #ifdef ELF_CORE_COPY_XFPREGS
1786 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1787 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1788 sizeof(t->xfpu), &t->xfpu);
1789 t->num_notes++;
1790 sz += notesize(&t->notes[2]);
1792 #endif
1793 return sz;
1796 struct elf_note_info {
1797 struct memelfnote *notes;
1798 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1799 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1800 struct list_head thread_list;
1801 elf_fpregset_t *fpu;
1802 #ifdef ELF_CORE_COPY_XFPREGS
1803 elf_fpxregset_t *xfpu;
1804 #endif
1805 int thread_status_size;
1806 int numnote;
1809 static int fill_note_info(struct elfhdr *elf, int phdrs,
1810 struct elf_note_info *info,
1811 long signr, struct pt_regs *regs)
1813 #define NUM_NOTES 6
1814 struct list_head *t;
1815 struct task_struct *g, *p;
1817 info->notes = NULL;
1818 info->prstatus = NULL;
1819 info->psinfo = NULL;
1820 info->fpu = NULL;
1821 #ifdef ELF_CORE_COPY_XFPREGS
1822 info->xfpu = NULL;
1823 #endif
1824 INIT_LIST_HEAD(&info->thread_list);
1826 info->notes = kmalloc(NUM_NOTES * sizeof(struct memelfnote),
1827 GFP_KERNEL);
1828 if (!info->notes)
1829 return 0;
1830 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1831 if (!info->psinfo)
1832 return 0;
1833 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1834 if (!info->prstatus)
1835 return 0;
1836 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1837 if (!info->fpu)
1838 return 0;
1839 #ifdef ELF_CORE_COPY_XFPREGS
1840 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1841 if (!info->xfpu)
1842 return 0;
1843 #endif
1845 info->thread_status_size = 0;
1846 if (signr) {
1847 struct elf_thread_status *tmp;
1848 rcu_read_lock();
1849 do_each_thread(g, p)
1850 if (current->mm == p->mm && current != p) {
1851 tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
1852 if (!tmp) {
1853 rcu_read_unlock();
1854 return 0;
1856 tmp->thread = p;
1857 list_add(&tmp->list, &info->thread_list);
1859 while_each_thread(g, p);
1860 rcu_read_unlock();
1861 list_for_each(t, &info->thread_list) {
1862 struct elf_thread_status *tmp;
1863 int sz;
1865 tmp = list_entry(t, struct elf_thread_status, list);
1866 sz = elf_dump_thread_status(signr, tmp);
1867 info->thread_status_size += sz;
1870 /* now collect the dump for the current */
1871 memset(info->prstatus, 0, sizeof(*info->prstatus));
1872 fill_prstatus(info->prstatus, current, signr);
1873 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1875 /* Set up header */
1876 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1879 * Set up the notes in similar form to SVR4 core dumps made
1880 * with info from their /proc.
1883 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1884 sizeof(*info->prstatus), info->prstatus);
1885 fill_psinfo(info->psinfo, current->group_leader, current->mm);
1886 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1887 sizeof(*info->psinfo), info->psinfo);
1889 info->numnote = 2;
1891 fill_auxv_note(&info->notes[info->numnote++], current->mm);
1893 /* Try to dump the FPU. */
1894 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1895 info->fpu);
1896 if (info->prstatus->pr_fpvalid)
1897 fill_note(info->notes + info->numnote++,
1898 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1899 #ifdef ELF_CORE_COPY_XFPREGS
1900 if (elf_core_copy_task_xfpregs(current, info->xfpu))
1901 fill_note(info->notes + info->numnote++,
1902 "LINUX", ELF_CORE_XFPREG_TYPE,
1903 sizeof(*info->xfpu), info->xfpu);
1904 #endif
1906 return 1;
1908 #undef NUM_NOTES
1911 static size_t get_note_info_size(struct elf_note_info *info)
1913 int sz = 0;
1914 int i;
1916 for (i = 0; i < info->numnote; i++)
1917 sz += notesize(info->notes + i);
1919 sz += info->thread_status_size;
1921 return sz;
1924 static int write_note_info(struct elf_note_info *info,
1925 struct file *file, loff_t *foffset)
1927 int i;
1928 struct list_head *t;
1930 for (i = 0; i < info->numnote; i++)
1931 if (!writenote(info->notes + i, file, foffset))
1932 return 0;
1934 /* write out the thread status notes section */
1935 list_for_each(t, &info->thread_list) {
1936 struct elf_thread_status *tmp =
1937 list_entry(t, struct elf_thread_status, list);
1939 for (i = 0; i < tmp->num_notes; i++)
1940 if (!writenote(&tmp->notes[i], file, foffset))
1941 return 0;
1944 return 1;
1947 static void free_note_info(struct elf_note_info *info)
1949 while (!list_empty(&info->thread_list)) {
1950 struct list_head *tmp = info->thread_list.next;
1951 list_del(tmp);
1952 kfree(list_entry(tmp, struct elf_thread_status, list));
1955 kfree(info->prstatus);
1956 kfree(info->psinfo);
1957 kfree(info->notes);
1958 kfree(info->fpu);
1959 #ifdef ELF_CORE_COPY_XFPREGS
1960 kfree(info->xfpu);
1961 #endif
1964 #endif
1966 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1967 struct vm_area_struct *gate_vma)
1969 struct vm_area_struct *ret = tsk->mm->mmap;
1971 if (ret)
1972 return ret;
1973 return gate_vma;
1976 * Helper function for iterating across a vma list. It ensures that the caller
1977 * will visit `gate_vma' prior to terminating the search.
1979 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1980 struct vm_area_struct *gate_vma)
1982 struct vm_area_struct *ret;
1984 ret = this_vma->vm_next;
1985 if (ret)
1986 return ret;
1987 if (this_vma == gate_vma)
1988 return NULL;
1989 return gate_vma;
1993 * Actual dumper
1995 * This is a two-pass process; first we find the offsets of the bits,
1996 * and then they are actually written out. If we run out of core limit
1997 * we just truncate.
1999 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit)
2001 int has_dumped = 0;
2002 mm_segment_t fs;
2003 int segs;
2004 size_t size = 0;
2005 struct vm_area_struct *vma, *gate_vma;
2006 struct elfhdr *elf = NULL;
2007 loff_t offset = 0, dataoff, foffset;
2008 unsigned long mm_flags;
2009 struct elf_note_info info;
2012 * We no longer stop all VM operations.
2014 * This is because those proceses that could possibly change map_count
2015 * or the mmap / vma pages are now blocked in do_exit on current
2016 * finishing this core dump.
2018 * Only ptrace can touch these memory addresses, but it doesn't change
2019 * the map_count or the pages allocated. So no possibility of crashing
2020 * exists while dumping the mm->vm_next areas to the core file.
2023 /* alloc memory for large data structures: too large to be on stack */
2024 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2025 if (!elf)
2026 goto cleanup;
2028 segs = current->mm->map_count;
2029 #ifdef ELF_CORE_EXTRA_PHDRS
2030 segs += ELF_CORE_EXTRA_PHDRS;
2031 #endif
2033 gate_vma = get_gate_vma(current);
2034 if (gate_vma != NULL)
2035 segs++;
2038 * Collect all the non-memory information about the process for the
2039 * notes. This also sets up the file header.
2041 if (!fill_note_info(elf, segs + 1, /* including notes section */
2042 &info, signr, regs))
2043 goto cleanup;
2045 has_dumped = 1;
2046 current->flags |= PF_DUMPCORE;
2048 fs = get_fs();
2049 set_fs(KERNEL_DS);
2051 DUMP_WRITE(elf, sizeof(*elf));
2052 offset += sizeof(*elf); /* Elf header */
2053 offset += (segs + 1) * sizeof(struct elf_phdr); /* Program headers */
2054 foffset = offset;
2056 /* Write notes phdr entry */
2058 struct elf_phdr phdr;
2059 size_t sz = get_note_info_size(&info);
2061 sz += elf_coredump_extra_notes_size();
2063 fill_elf_note_phdr(&phdr, sz, offset);
2064 offset += sz;
2065 DUMP_WRITE(&phdr, sizeof(phdr));
2068 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2071 * We must use the same mm->flags while dumping core to avoid
2072 * inconsistency between the program headers and bodies, otherwise an
2073 * unusable core file can be generated.
2075 mm_flags = current->mm->flags;
2077 /* Write program headers for segments dump */
2078 for (vma = first_vma(current, gate_vma); vma != NULL;
2079 vma = next_vma(vma, gate_vma)) {
2080 struct elf_phdr phdr;
2082 phdr.p_type = PT_LOAD;
2083 phdr.p_offset = offset;
2084 phdr.p_vaddr = vma->vm_start;
2085 phdr.p_paddr = 0;
2086 phdr.p_filesz = vma_dump_size(vma, mm_flags);
2087 phdr.p_memsz = vma->vm_end - vma->vm_start;
2088 offset += phdr.p_filesz;
2089 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2090 if (vma->vm_flags & VM_WRITE)
2091 phdr.p_flags |= PF_W;
2092 if (vma->vm_flags & VM_EXEC)
2093 phdr.p_flags |= PF_X;
2094 phdr.p_align = ELF_EXEC_PAGESIZE;
2096 DUMP_WRITE(&phdr, sizeof(phdr));
2099 #ifdef ELF_CORE_WRITE_EXTRA_PHDRS
2100 ELF_CORE_WRITE_EXTRA_PHDRS;
2101 #endif
2103 /* write out the notes section */
2104 if (!write_note_info(&info, file, &foffset))
2105 goto end_coredump;
2107 if (elf_coredump_extra_notes_write(file, &foffset))
2108 goto end_coredump;
2110 /* Align to page */
2111 DUMP_SEEK(dataoff - foffset);
2113 for (vma = first_vma(current, gate_vma); vma != NULL;
2114 vma = next_vma(vma, gate_vma)) {
2115 unsigned long addr;
2116 unsigned long end;
2118 end = vma->vm_start + vma_dump_size(vma, mm_flags);
2120 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2121 struct page *page;
2122 struct vm_area_struct *vma;
2124 if (get_user_pages(current, current->mm, addr, 1, 0, 1,
2125 &page, &vma) <= 0) {
2126 DUMP_SEEK(PAGE_SIZE);
2127 } else {
2128 if (page == ZERO_PAGE(0)) {
2129 if (!dump_seek(file, PAGE_SIZE)) {
2130 page_cache_release(page);
2131 goto end_coredump;
2133 } else {
2134 void *kaddr;
2135 flush_cache_page(vma, addr,
2136 page_to_pfn(page));
2137 kaddr = kmap(page);
2138 if ((size += PAGE_SIZE) > limit ||
2139 !dump_write(file, kaddr,
2140 PAGE_SIZE)) {
2141 kunmap(page);
2142 page_cache_release(page);
2143 goto end_coredump;
2145 kunmap(page);
2147 page_cache_release(page);
2152 #ifdef ELF_CORE_WRITE_EXTRA_DATA
2153 ELF_CORE_WRITE_EXTRA_DATA;
2154 #endif
2156 end_coredump:
2157 set_fs(fs);
2159 cleanup:
2160 kfree(elf);
2161 free_note_info(&info);
2162 return has_dumped;
2165 #endif /* USE_ELF_CORE_DUMP */
2167 static int __init init_elf_binfmt(void)
2169 return register_binfmt(&elf_format);
2172 static void __exit exit_elf_binfmt(void)
2174 /* Remove the COFF and ELF loaders. */
2175 unregister_binfmt(&elf_format);
2178 core_initcall(init_elf_binfmt);
2179 module_exit(exit_elf_binfmt);
2180 MODULE_LICENSE("GPL");