From: jbarnes@sgi.com
[wrt350n-kernel.git] / drivers / scsi / scsi_lib.c
blobd18da21c9c57e0ef590369ea815b7b1adba4042b
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
20 #include <scsi/scsi.h>
21 #include <scsi/scsi_dbg.h>
22 #include <scsi/scsi_device.h>
23 #include <scsi/scsi_driver.h>
24 #include <scsi/scsi_eh.h>
25 #include <scsi/scsi_host.h>
26 #include <scsi/scsi_request.h>
28 #include "scsi_priv.h"
29 #include "scsi_logging.h"
32 #define SG_MEMPOOL_NR (sizeof(scsi_sg_pools)/sizeof(struct scsi_host_sg_pool))
33 #define SG_MEMPOOL_SIZE 32
35 struct scsi_host_sg_pool {
36 size_t size;
37 char *name;
38 kmem_cache_t *slab;
39 mempool_t *pool;
42 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
43 #error SCSI_MAX_PHYS_SEGMENTS is too small
44 #endif
46 #define SP(x) { x, "sgpool-" #x }
47 struct scsi_host_sg_pool scsi_sg_pools[] = {
48 SP(8),
49 SP(16),
50 SP(32),
51 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
52 SP(64),
53 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
54 SP(128),
55 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
56 SP(256),
57 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
58 #error SCSI_MAX_PHYS_SEGMENTS is too large
59 #endif
60 #endif
61 #endif
62 #endif
63 };
64 #undef SP
68 * Function: scsi_insert_special_req()
70 * Purpose: Insert pre-formed request into request queue.
72 * Arguments: sreq - request that is ready to be queued.
73 * at_head - boolean. True if we should insert at head
74 * of queue, false if we should insert at tail.
76 * Lock status: Assumed that lock is not held upon entry.
78 * Returns: Nothing
80 * Notes: This function is called from character device and from
81 * ioctl types of functions where the caller knows exactly
82 * what SCSI command needs to be issued. The idea is that
83 * we merely inject the command into the queue (at the head
84 * for now), and then call the queue request function to actually
85 * process it.
87 int scsi_insert_special_req(struct scsi_request *sreq, int at_head)
90 * Because users of this function are apt to reuse requests with no
91 * modification, we have to sanitise the request flags here
93 sreq->sr_request->flags &= ~REQ_DONTPREP;
94 blk_insert_request(sreq->sr_device->request_queue, sreq->sr_request,
95 at_head, sreq, 0);
96 return 0;
100 * Function: scsi_queue_insert()
102 * Purpose: Insert a command in the midlevel queue.
104 * Arguments: cmd - command that we are adding to queue.
105 * reason - why we are inserting command to queue.
107 * Lock status: Assumed that lock is not held upon entry.
109 * Returns: Nothing.
111 * Notes: We do this for one of two cases. Either the host is busy
112 * and it cannot accept any more commands for the time being,
113 * or the device returned QUEUE_FULL and can accept no more
114 * commands.
115 * Notes: This could be called either from an interrupt context or a
116 * normal process context.
118 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
120 struct Scsi_Host *host = cmd->device->host;
121 struct scsi_device *device = cmd->device;
123 SCSI_LOG_MLQUEUE(1,
124 printk("Inserting command %p into mlqueue\n", cmd));
127 * We are inserting the command into the ml queue. First, we
128 * cancel the timer, so it doesn't time out.
130 scsi_delete_timer(cmd);
133 * Next, set the appropriate busy bit for the device/host.
135 * If the host/device isn't busy, assume that something actually
136 * completed, and that we should be able to queue a command now.
138 * Note that the prior mid-layer assumption that any host could
139 * always queue at least one command is now broken. The mid-layer
140 * will implement a user specifiable stall (see
141 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
142 * if a command is requeued with no other commands outstanding
143 * either for the device or for the host.
145 if (reason == SCSI_MLQUEUE_HOST_BUSY)
146 host->host_blocked = host->max_host_blocked;
147 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
148 device->device_blocked = device->max_device_blocked;
151 * Register the fact that we own the thing for now.
153 cmd->state = SCSI_STATE_MLQUEUE;
154 cmd->owner = SCSI_OWNER_MIDLEVEL;
157 * Decrement the counters, since these commands are no longer
158 * active on the host/device.
160 scsi_device_unbusy(device);
163 * Insert this command at the head of the queue for it's device.
164 * It will go before all other commands that are already in the queue.
166 * NOTE: there is magic here about the way the queue is plugged if
167 * we have no outstanding commands.
169 * Although this *doesn't* plug the queue, it does call the request
170 * function. The SCSI request function detects the blocked condition
171 * and plugs the queue appropriately.
173 blk_insert_request(device->request_queue, cmd->request, 1, cmd, 1);
174 return 0;
178 * Function: scsi_do_req
180 * Purpose: Queue a SCSI request
182 * Arguments: sreq - command descriptor.
183 * cmnd - actual SCSI command to be performed.
184 * buffer - data buffer.
185 * bufflen - size of data buffer.
186 * done - completion function to be run.
187 * timeout - how long to let it run before timeout.
188 * retries - number of retries we allow.
190 * Lock status: No locks held upon entry.
192 * Returns: Nothing.
194 * Notes: This function is only used for queueing requests for things
195 * like ioctls and character device requests - this is because
196 * we essentially just inject a request into the queue for the
197 * device.
199 * In order to support the scsi_device_quiesce function, we
200 * now inject requests on the *head* of the device queue
201 * rather than the tail.
203 void scsi_do_req(struct scsi_request *sreq, const void *cmnd,
204 void *buffer, unsigned bufflen,
205 void (*done)(struct scsi_cmnd *),
206 int timeout, int retries)
209 * If the upper level driver is reusing these things, then
210 * we should release the low-level block now. Another one will
211 * be allocated later when this request is getting queued.
213 __scsi_release_request(sreq);
216 * Our own function scsi_done (which marks the host as not busy,
217 * disables the timeout counter, etc) will be called by us or by the
218 * scsi_hosts[host].queuecommand() function needs to also call
219 * the completion function for the high level driver.
221 memcpy(sreq->sr_cmnd, cmnd, sizeof(sreq->sr_cmnd));
222 sreq->sr_bufflen = bufflen;
223 sreq->sr_buffer = buffer;
224 sreq->sr_allowed = retries;
225 sreq->sr_done = done;
226 sreq->sr_timeout_per_command = timeout;
228 if (sreq->sr_cmd_len == 0)
229 sreq->sr_cmd_len = COMMAND_SIZE(sreq->sr_cmnd[0]);
232 * head injection *required* here otherwise quiesce won't work
234 scsi_insert_special_req(sreq, 1);
236 EXPORT_SYMBOL(scsi_do_req);
238 static void scsi_wait_done(struct scsi_cmnd *cmd)
240 struct request *req = cmd->request;
241 struct request_queue *q = cmd->device->request_queue;
242 unsigned long flags;
244 req->rq_status = RQ_SCSI_DONE; /* Busy, but indicate request done */
246 spin_lock_irqsave(q->queue_lock, flags);
247 if (blk_rq_tagged(req))
248 blk_queue_end_tag(q, req);
249 spin_unlock_irqrestore(q->queue_lock, flags);
251 if (req->waiting)
252 complete(req->waiting);
255 /* This is the end routine we get to if a command was never attached
256 * to the request. Simply complete the request without changing
257 * rq_status; this will cause a DRIVER_ERROR. */
258 static void scsi_wait_req_end_io(struct request *req)
260 BUG_ON(!req->waiting);
262 complete(req->waiting);
265 void scsi_wait_req(struct scsi_request *sreq, const void *cmnd, void *buffer,
266 unsigned bufflen, int timeout, int retries)
268 DECLARE_COMPLETION(wait);
270 sreq->sr_request->waiting = &wait;
271 sreq->sr_request->rq_status = RQ_SCSI_BUSY;
272 sreq->sr_request->end_io = scsi_wait_req_end_io;
273 scsi_do_req(sreq, cmnd, buffer, bufflen, scsi_wait_done,
274 timeout, retries);
275 wait_for_completion(&wait);
276 sreq->sr_request->waiting = NULL;
277 if (sreq->sr_request->rq_status != RQ_SCSI_DONE)
278 sreq->sr_result |= (DRIVER_ERROR << 24);
280 __scsi_release_request(sreq);
282 EXPORT_SYMBOL(scsi_wait_req);
285 * Function: scsi_init_cmd_errh()
287 * Purpose: Initialize cmd fields related to error handling.
289 * Arguments: cmd - command that is ready to be queued.
291 * Returns: Nothing
293 * Notes: This function has the job of initializing a number of
294 * fields related to error handling. Typically this will
295 * be called once for each command, as required.
297 static int scsi_init_cmd_errh(struct scsi_cmnd *cmd)
299 cmd->owner = SCSI_OWNER_MIDLEVEL;
300 cmd->serial_number = 0;
301 cmd->abort_reason = 0;
303 memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
305 if (cmd->cmd_len == 0)
306 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
309 * We need saved copies of a number of fields - this is because
310 * error handling may need to overwrite these with different values
311 * to run different commands, and once error handling is complete,
312 * we will need to restore these values prior to running the actual
313 * command.
315 cmd->old_use_sg = cmd->use_sg;
316 cmd->old_cmd_len = cmd->cmd_len;
317 cmd->sc_old_data_direction = cmd->sc_data_direction;
318 cmd->old_underflow = cmd->underflow;
319 memcpy(cmd->data_cmnd, cmd->cmnd, sizeof(cmd->cmnd));
320 cmd->buffer = cmd->request_buffer;
321 cmd->bufflen = cmd->request_bufflen;
322 cmd->abort_reason = 0;
324 return 1;
328 * Function: scsi_setup_cmd_retry()
330 * Purpose: Restore the command state for a retry
332 * Arguments: cmd - command to be restored
334 * Returns: Nothing
336 * Notes: Immediately prior to retrying a command, we need
337 * to restore certain fields that we saved above.
339 void scsi_setup_cmd_retry(struct scsi_cmnd *cmd)
341 memcpy(cmd->cmnd, cmd->data_cmnd, sizeof(cmd->data_cmnd));
342 cmd->request_buffer = cmd->buffer;
343 cmd->request_bufflen = cmd->bufflen;
344 cmd->use_sg = cmd->old_use_sg;
345 cmd->cmd_len = cmd->old_cmd_len;
346 cmd->sc_data_direction = cmd->sc_old_data_direction;
347 cmd->underflow = cmd->old_underflow;
350 void scsi_device_unbusy(struct scsi_device *sdev)
352 struct Scsi_Host *shost = sdev->host;
353 unsigned long flags;
355 spin_lock_irqsave(shost->host_lock, flags);
356 shost->host_busy--;
357 if (unlikely(test_bit(SHOST_RECOVERY, &shost->shost_state) &&
358 shost->host_failed))
359 scsi_eh_wakeup(shost);
360 spin_unlock(shost->host_lock);
361 spin_lock(sdev->request_queue->queue_lock);
362 sdev->device_busy--;
363 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
367 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
368 * and call blk_run_queue for all the scsi_devices on the target -
369 * including current_sdev first.
371 * Called with *no* scsi locks held.
373 static void scsi_single_lun_run(struct scsi_device *current_sdev)
375 struct Scsi_Host *shost = current_sdev->host;
376 struct scsi_device *sdev, *tmp;
377 struct scsi_target *starget = scsi_target(current_sdev);
378 unsigned long flags;
380 spin_lock_irqsave(shost->host_lock, flags);
381 starget->starget_sdev_user = NULL;
382 spin_unlock_irqrestore(shost->host_lock, flags);
385 * Call blk_run_queue for all LUNs on the target, starting with
386 * current_sdev. We race with others (to set starget_sdev_user),
387 * but in most cases, we will be first. Ideally, each LU on the
388 * target would get some limited time or requests on the target.
390 blk_run_queue(current_sdev->request_queue);
392 spin_lock_irqsave(shost->host_lock, flags);
393 if (starget->starget_sdev_user)
394 goto out;
395 list_for_each_entry_safe(sdev, tmp, &starget->devices,
396 same_target_siblings) {
397 if (sdev == current_sdev)
398 continue;
399 if (scsi_device_get(sdev))
400 continue;
402 spin_unlock_irqrestore(shost->host_lock, flags);
403 blk_run_queue(sdev->request_queue);
404 spin_lock_irqsave(shost->host_lock, flags);
406 scsi_device_put(sdev);
408 out:
409 spin_unlock_irqrestore(shost->host_lock, flags);
413 * Function: scsi_run_queue()
415 * Purpose: Select a proper request queue to serve next
417 * Arguments: q - last request's queue
419 * Returns: Nothing
421 * Notes: The previous command was completely finished, start
422 * a new one if possible.
424 static void scsi_run_queue(struct request_queue *q)
426 struct scsi_device *sdev = q->queuedata;
427 struct Scsi_Host *shost = sdev->host;
428 unsigned long flags;
430 if (sdev->single_lun)
431 scsi_single_lun_run(sdev);
433 spin_lock_irqsave(shost->host_lock, flags);
434 while (!list_empty(&shost->starved_list) &&
435 !shost->host_blocked && !shost->host_self_blocked &&
436 !((shost->can_queue > 0) &&
437 (shost->host_busy >= shost->can_queue))) {
439 * As long as shost is accepting commands and we have
440 * starved queues, call blk_run_queue. scsi_request_fn
441 * drops the queue_lock and can add us back to the
442 * starved_list.
444 * host_lock protects the starved_list and starved_entry.
445 * scsi_request_fn must get the host_lock before checking
446 * or modifying starved_list or starved_entry.
448 sdev = list_entry(shost->starved_list.next,
449 struct scsi_device, starved_entry);
450 list_del_init(&sdev->starved_entry);
451 spin_unlock_irqrestore(shost->host_lock, flags);
453 blk_run_queue(sdev->request_queue);
455 spin_lock_irqsave(shost->host_lock, flags);
456 if (unlikely(!list_empty(&sdev->starved_entry)))
458 * sdev lost a race, and was put back on the
459 * starved list. This is unlikely but without this
460 * in theory we could loop forever.
462 break;
464 spin_unlock_irqrestore(shost->host_lock, flags);
466 blk_run_queue(q);
470 * Function: scsi_requeue_command()
472 * Purpose: Handle post-processing of completed commands.
474 * Arguments: q - queue to operate on
475 * cmd - command that may need to be requeued.
477 * Returns: Nothing
479 * Notes: After command completion, there may be blocks left
480 * over which weren't finished by the previous command
481 * this can be for a number of reasons - the main one is
482 * I/O errors in the middle of the request, in which case
483 * we need to request the blocks that come after the bad
484 * sector.
486 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
488 cmd->request->flags &= ~REQ_DONTPREP;
489 blk_insert_request(q, cmd->request, 1, cmd, 1);
491 scsi_run_queue(q);
494 void scsi_next_command(struct scsi_cmnd *cmd)
496 struct request_queue *q = cmd->device->request_queue;
498 scsi_put_command(cmd);
499 scsi_run_queue(q);
502 void scsi_run_host_queues(struct Scsi_Host *shost)
504 struct scsi_device *sdev;
506 shost_for_each_device(sdev, shost)
507 scsi_run_queue(sdev->request_queue);
511 * Function: scsi_end_request()
513 * Purpose: Post-processing of completed commands (usually invoked at end
514 * of upper level post-processing and scsi_io_completion).
516 * Arguments: cmd - command that is complete.
517 * uptodate - 1 if I/O indicates success, <= 0 for I/O error.
518 * bytes - number of bytes of completed I/O
519 * requeue - indicates whether we should requeue leftovers.
521 * Lock status: Assumed that lock is not held upon entry.
523 * Returns: cmd if requeue done or required, NULL otherwise
525 * Notes: This is called for block device requests in order to
526 * mark some number of sectors as complete.
528 * We are guaranteeing that the request queue will be goosed
529 * at some point during this call.
531 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
532 int bytes, int requeue)
534 request_queue_t *q = cmd->device->request_queue;
535 struct request *req = cmd->request;
536 unsigned long flags;
539 * If there are blocks left over at the end, set up the command
540 * to queue the remainder of them.
542 if (end_that_request_chunk(req, uptodate, bytes)) {
543 int leftover = (req->hard_nr_sectors << 9);
545 if (blk_pc_request(req))
546 leftover = req->data_len;
548 /* kill remainder if no retrys */
549 if (!uptodate && blk_noretry_request(req))
550 end_that_request_chunk(req, 0, leftover);
551 else {
552 if (requeue)
554 * Bleah. Leftovers again. Stick the
555 * leftovers in the front of the
556 * queue, and goose the queue again.
558 scsi_requeue_command(q, cmd);
560 return cmd;
564 add_disk_randomness(req->rq_disk);
566 spin_lock_irqsave(q->queue_lock, flags);
567 if (blk_rq_tagged(req))
568 blk_queue_end_tag(q, req);
569 end_that_request_last(req);
570 spin_unlock_irqrestore(q->queue_lock, flags);
573 * This will goose the queue request function at the end, so we don't
574 * need to worry about launching another command.
576 scsi_next_command(cmd);
577 return NULL;
580 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, int gfp_mask)
582 struct scsi_host_sg_pool *sgp;
583 struct scatterlist *sgl;
585 BUG_ON(!cmd->use_sg);
587 switch (cmd->use_sg) {
588 case 1 ... 8:
589 cmd->sglist_len = 0;
590 break;
591 case 9 ... 16:
592 cmd->sglist_len = 1;
593 break;
594 case 17 ... 32:
595 cmd->sglist_len = 2;
596 break;
597 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
598 case 33 ... 64:
599 cmd->sglist_len = 3;
600 break;
601 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
602 case 65 ... 128:
603 cmd->sglist_len = 4;
604 break;
605 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
606 case 129 ... 256:
607 cmd->sglist_len = 5;
608 break;
609 #endif
610 #endif
611 #endif
612 default:
613 return NULL;
616 sgp = scsi_sg_pools + cmd->sglist_len;
617 sgl = mempool_alloc(sgp->pool, gfp_mask);
618 if (sgl)
619 memset(sgl, 0, sgp->size);
620 return sgl;
623 static void scsi_free_sgtable(struct scatterlist *sgl, int index)
625 struct scsi_host_sg_pool *sgp;
627 BUG_ON(index > SG_MEMPOOL_NR);
629 sgp = scsi_sg_pools + index;
630 mempool_free(sgl, sgp->pool);
634 * Function: scsi_release_buffers()
636 * Purpose: Completion processing for block device I/O requests.
638 * Arguments: cmd - command that we are bailing.
640 * Lock status: Assumed that no lock is held upon entry.
642 * Returns: Nothing
644 * Notes: In the event that an upper level driver rejects a
645 * command, we must release resources allocated during
646 * the __init_io() function. Primarily this would involve
647 * the scatter-gather table, and potentially any bounce
648 * buffers.
650 static void scsi_release_buffers(struct scsi_cmnd *cmd)
652 struct request *req = cmd->request;
655 * Free up any indirection buffers we allocated for DMA purposes.
657 if (cmd->use_sg)
658 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
659 else if (cmd->request_buffer != req->buffer)
660 kfree(cmd->request_buffer);
663 * Zero these out. They now point to freed memory, and it is
664 * dangerous to hang onto the pointers.
666 cmd->buffer = NULL;
667 cmd->bufflen = 0;
668 cmd->request_buffer = NULL;
669 cmd->request_bufflen = 0;
673 * Function: scsi_io_completion()
675 * Purpose: Completion processing for block device I/O requests.
677 * Arguments: cmd - command that is finished.
679 * Lock status: Assumed that no lock is held upon entry.
681 * Returns: Nothing
683 * Notes: This function is matched in terms of capabilities to
684 * the function that created the scatter-gather list.
685 * In other words, if there are no bounce buffers
686 * (the normal case for most drivers), we don't need
687 * the logic to deal with cleaning up afterwards.
689 * We must do one of several things here:
691 * a) Call scsi_end_request. This will finish off the
692 * specified number of sectors. If we are done, the
693 * command block will be released, and the queue
694 * function will be goosed. If we are not done, then
695 * scsi_end_request will directly goose the queue.
697 * b) We can just use scsi_requeue_command() here. This would
698 * be used if we just wanted to retry, for example.
700 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
701 unsigned int block_bytes)
703 int result = cmd->result;
704 int this_count = cmd->bufflen;
705 request_queue_t *q = cmd->device->request_queue;
706 struct request *req = cmd->request;
707 int clear_errors = 1;
708 struct scsi_sense_hdr sshdr;
709 int sense_valid = 0;
710 int sense_deferred = 0;
712 if (blk_complete_barrier_rq(q, req, good_bytes >> 9))
713 return;
716 * Free up any indirection buffers we allocated for DMA purposes.
717 * For the case of a READ, we need to copy the data out of the
718 * bounce buffer and into the real buffer.
720 if (cmd->use_sg)
721 scsi_free_sgtable(cmd->buffer, cmd->sglist_len);
722 else if (cmd->buffer != req->buffer) {
723 if (rq_data_dir(req) == READ) {
724 unsigned long flags;
725 char *to = bio_kmap_irq(req->bio, &flags);
726 memcpy(to, cmd->buffer, cmd->bufflen);
727 bio_kunmap_irq(to, &flags);
729 kfree(cmd->buffer);
732 if (result) {
733 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
734 if (sense_valid)
735 sense_deferred = scsi_sense_is_deferred(&sshdr);
737 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
738 req->errors = result;
739 if (result) {
740 clear_errors = 0;
741 if (sense_valid && req->sense) {
743 * SG_IO wants current and deferred errors
745 int len = 8 + cmd->sense_buffer[7];
747 if (len > SCSI_SENSE_BUFFERSIZE)
748 len = SCSI_SENSE_BUFFERSIZE;
749 memcpy(req->sense, cmd->sense_buffer, len);
750 req->sense_len = len;
752 } else
753 req->data_len = cmd->resid;
757 * Zero these out. They now point to freed memory, and it is
758 * dangerous to hang onto the pointers.
760 cmd->buffer = NULL;
761 cmd->bufflen = 0;
762 cmd->request_buffer = NULL;
763 cmd->request_bufflen = 0;
766 * Next deal with any sectors which we were able to correctly
767 * handle.
769 if (good_bytes >= 0) {
770 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, %d bytes done.\n",
771 req->nr_sectors, good_bytes));
772 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
774 if (clear_errors)
775 req->errors = 0;
777 * If multiple sectors are requested in one buffer, then
778 * they will have been finished off by the first command.
779 * If not, then we have a multi-buffer command.
781 * If block_bytes != 0, it means we had a medium error
782 * of some sort, and that we want to mark some number of
783 * sectors as not uptodate. Thus we want to inhibit
784 * requeueing right here - we will requeue down below
785 * when we handle the bad sectors.
787 cmd = scsi_end_request(cmd, 1, good_bytes, result == 0);
790 * If the command completed without error, then either finish off the
791 * rest of the command, or start a new one.
793 if (result == 0 || cmd == NULL ) {
794 return;
798 * Now, if we were good little boys and girls, Santa left us a request
799 * sense buffer. We can extract information from this, so we
800 * can choose a block to remap, etc.
802 if (sense_valid && !sense_deferred) {
803 switch (sshdr.sense_key) {
804 case UNIT_ATTENTION:
805 if (cmd->device->removable) {
806 /* detected disc change. set a bit
807 * and quietly refuse further access.
809 cmd->device->changed = 1;
810 cmd = scsi_end_request(cmd, 0,
811 this_count, 1);
812 return;
813 } else {
815 * Must have been a power glitch, or a
816 * bus reset. Could not have been a
817 * media change, so we just retry the
818 * request and see what happens.
820 scsi_requeue_command(q, cmd);
821 return;
823 break;
824 case ILLEGAL_REQUEST:
826 * If we had an ILLEGAL REQUEST returned, then we may
827 * have performed an unsupported command. The only
828 * thing this should be would be a ten byte read where
829 * only a six byte read was supported. Also, on a
830 * system where READ CAPACITY failed, we may have read
831 * past the end of the disk.
833 if (cmd->device->use_10_for_rw &&
834 (cmd->cmnd[0] == READ_10 ||
835 cmd->cmnd[0] == WRITE_10)) {
836 cmd->device->use_10_for_rw = 0;
838 * This will cause a retry with a 6-byte
839 * command.
841 scsi_requeue_command(q, cmd);
842 result = 0;
843 } else {
844 cmd = scsi_end_request(cmd, 0, this_count, 1);
845 return;
847 break;
848 case NOT_READY:
850 * If the device is in the process of becoming ready,
851 * retry.
853 if (sshdr.asc == 0x04 && sshdr.ascq == 0x01) {
854 scsi_requeue_command(q, cmd);
855 return;
857 printk(KERN_INFO "Device %s not ready.\n",
858 req->rq_disk ? req->rq_disk->disk_name : "");
859 cmd = scsi_end_request(cmd, 0, this_count, 1);
860 return;
861 case VOLUME_OVERFLOW:
862 printk(KERN_INFO "Volume overflow <%d %d %d %d> CDB: ",
863 cmd->device->host->host_no,
864 (int)cmd->device->channel,
865 (int)cmd->device->id, (int)cmd->device->lun);
866 __scsi_print_command(cmd->data_cmnd);
867 scsi_print_sense("", cmd);
868 cmd = scsi_end_request(cmd, 0, block_bytes, 1);
869 return;
870 default:
871 break;
873 } /* driver byte != 0 */
874 if (host_byte(result) == DID_RESET) {
876 * Third party bus reset or reset for error
877 * recovery reasons. Just retry the request
878 * and see what happens.
880 scsi_requeue_command(q, cmd);
881 return;
883 if (result) {
884 printk(KERN_INFO "SCSI error : <%d %d %d %d> return code "
885 "= 0x%x\n", cmd->device->host->host_no,
886 cmd->device->channel,
887 cmd->device->id,
888 cmd->device->lun, result);
890 if (driver_byte(result) & DRIVER_SENSE)
891 scsi_print_sense("", cmd);
893 * Mark a single buffer as not uptodate. Queue the remainder.
894 * We sometimes get this cruft in the event that a medium error
895 * isn't properly reported.
897 block_bytes = req->hard_cur_sectors << 9;
898 if (!block_bytes)
899 block_bytes = req->data_len;
900 cmd = scsi_end_request(cmd, 0, block_bytes, 1);
903 EXPORT_SYMBOL(scsi_io_completion);
906 * Function: scsi_init_io()
908 * Purpose: SCSI I/O initialize function.
910 * Arguments: cmd - Command descriptor we wish to initialize
912 * Returns: 0 on success
913 * BLKPREP_DEFER if the failure is retryable
914 * BLKPREP_KILL if the failure is fatal
916 static int scsi_init_io(struct scsi_cmnd *cmd)
918 struct request *req = cmd->request;
919 struct scatterlist *sgpnt;
920 int count;
923 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
925 if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
926 cmd->request_bufflen = req->data_len;
927 cmd->request_buffer = req->data;
928 req->buffer = req->data;
929 cmd->use_sg = 0;
930 return 0;
934 * we used to not use scatter-gather for single segment request,
935 * but now we do (it makes highmem I/O easier to support without
936 * kmapping pages)
938 cmd->use_sg = req->nr_phys_segments;
941 * if sg table allocation fails, requeue request later.
943 sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
944 if (unlikely(!sgpnt)) {
945 req->flags |= REQ_SPECIAL;
946 return BLKPREP_DEFER;
949 cmd->request_buffer = (char *) sgpnt;
950 cmd->request_bufflen = req->nr_sectors << 9;
951 if (blk_pc_request(req))
952 cmd->request_bufflen = req->data_len;
953 req->buffer = NULL;
956 * Next, walk the list, and fill in the addresses and sizes of
957 * each segment.
959 count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
962 * mapped well, send it off
964 if (likely(count <= cmd->use_sg)) {
965 cmd->use_sg = count;
966 return 0;
969 printk(KERN_ERR "Incorrect number of segments after building list\n");
970 printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
971 printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
972 req->current_nr_sectors);
974 /* release the command and kill it */
975 scsi_release_buffers(cmd);
976 scsi_put_command(cmd);
977 return BLKPREP_KILL;
980 static int scsi_prepare_flush_fn(request_queue_t *q, struct request *rq)
982 struct scsi_device *sdev = q->queuedata;
983 struct scsi_driver *drv;
985 if (sdev->sdev_state == SDEV_RUNNING) {
986 drv = *(struct scsi_driver **) rq->rq_disk->private_data;
988 if (drv->prepare_flush)
989 return drv->prepare_flush(q, rq);
992 return 0;
995 static void scsi_end_flush_fn(request_queue_t *q, struct request *rq)
997 struct scsi_device *sdev = q->queuedata;
998 struct request *flush_rq = rq->end_io_data;
999 struct scsi_driver *drv;
1001 if (flush_rq->errors) {
1002 printk("scsi: barrier error, disabling flush support\n");
1003 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1006 if (sdev->sdev_state == SDEV_RUNNING) {
1007 drv = *(struct scsi_driver **) rq->rq_disk->private_data;
1008 drv->end_flush(q, rq);
1012 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1013 sector_t *error_sector)
1015 struct scsi_device *sdev = q->queuedata;
1016 struct scsi_driver *drv;
1018 if (sdev->sdev_state != SDEV_RUNNING)
1019 return -ENXIO;
1021 drv = *(struct scsi_driver **) disk->private_data;
1022 if (drv->issue_flush)
1023 return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1025 return -EOPNOTSUPP;
1028 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1030 struct scsi_device *sdev = q->queuedata;
1031 struct scsi_cmnd *cmd;
1032 int specials_only = 0;
1035 * Just check to see if the device is online. If it isn't, we
1036 * refuse to process any commands. The device must be brought
1037 * online before trying any recovery commands
1039 if (unlikely(!scsi_device_online(sdev))) {
1040 printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to offline device\n",
1041 sdev->host->host_no, sdev->id, sdev->lun);
1042 return BLKPREP_KILL;
1044 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1045 /* OK, we're not in a running state don't prep
1046 * user commands */
1047 if (sdev->sdev_state == SDEV_DEL) {
1048 /* Device is fully deleted, no commands
1049 * at all allowed down */
1050 printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to dead device\n",
1051 sdev->host->host_no, sdev->id, sdev->lun);
1052 return BLKPREP_KILL;
1054 /* OK, we only allow special commands (i.e. not
1055 * user initiated ones */
1056 specials_only = sdev->sdev_state;
1060 * Find the actual device driver associated with this command.
1061 * The SPECIAL requests are things like character device or
1062 * ioctls, which did not originate from ll_rw_blk. Note that
1063 * the special field is also used to indicate the cmd for
1064 * the remainder of a partially fulfilled request that can
1065 * come up when there is a medium error. We have to treat
1066 * these two cases differently. We differentiate by looking
1067 * at request->cmd, as this tells us the real story.
1069 if (req->flags & REQ_SPECIAL) {
1070 struct scsi_request *sreq = req->special;
1072 if (sreq->sr_magic == SCSI_REQ_MAGIC) {
1073 cmd = scsi_get_command(sreq->sr_device, GFP_ATOMIC);
1074 if (unlikely(!cmd))
1075 goto defer;
1076 scsi_init_cmd_from_req(cmd, sreq);
1077 } else
1078 cmd = req->special;
1079 } else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1081 if(unlikely(specials_only)) {
1082 if(specials_only == SDEV_QUIESCE ||
1083 specials_only == SDEV_BLOCK)
1084 return BLKPREP_DEFER;
1086 printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to device being removed\n",
1087 sdev->host->host_no, sdev->id, sdev->lun);
1088 return BLKPREP_KILL;
1093 * Now try and find a command block that we can use.
1095 if (!req->special) {
1096 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1097 if (unlikely(!cmd))
1098 goto defer;
1099 } else
1100 cmd = req->special;
1102 /* pull a tag out of the request if we have one */
1103 cmd->tag = req->tag;
1104 } else {
1105 blk_dump_rq_flags(req, "SCSI bad req");
1106 return BLKPREP_KILL;
1109 /* note the overloading of req->special. When the tag
1110 * is active it always means cmd. If the tag goes
1111 * back for re-queueing, it may be reset */
1112 req->special = cmd;
1113 cmd->request = req;
1116 * FIXME: drop the lock here because the functions below
1117 * expect to be called without the queue lock held. Also,
1118 * previously, we dequeued the request before dropping the
1119 * lock. We hope REQ_STARTED prevents anything untoward from
1120 * happening now.
1122 if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1123 struct scsi_driver *drv;
1124 int ret;
1127 * This will do a couple of things:
1128 * 1) Fill in the actual SCSI command.
1129 * 2) Fill in any other upper-level specific fields
1130 * (timeout).
1132 * If this returns 0, it means that the request failed
1133 * (reading past end of disk, reading offline device,
1134 * etc). This won't actually talk to the device, but
1135 * some kinds of consistency checking may cause the
1136 * request to be rejected immediately.
1140 * This sets up the scatter-gather table (allocating if
1141 * required).
1143 ret = scsi_init_io(cmd);
1144 if (ret) /* BLKPREP_KILL return also releases the command */
1145 return ret;
1148 * Initialize the actual SCSI command for this request.
1150 drv = *(struct scsi_driver **)req->rq_disk->private_data;
1151 if (unlikely(!drv->init_command(cmd))) {
1152 scsi_release_buffers(cmd);
1153 scsi_put_command(cmd);
1154 return BLKPREP_KILL;
1159 * The request is now prepped, no need to come back here
1161 req->flags |= REQ_DONTPREP;
1162 return BLKPREP_OK;
1164 defer:
1165 /* If we defer, the elv_next_request() returns NULL, but the
1166 * queue must be restarted, so we plug here if no returning
1167 * command will automatically do that. */
1168 if (sdev->device_busy == 0)
1169 blk_plug_device(q);
1170 return BLKPREP_DEFER;
1174 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1175 * return 0.
1177 * Called with the queue_lock held.
1179 static inline int scsi_dev_queue_ready(struct request_queue *q,
1180 struct scsi_device *sdev)
1182 if (sdev->device_busy >= sdev->queue_depth)
1183 return 0;
1184 if (sdev->device_busy == 0 && sdev->device_blocked) {
1186 * unblock after device_blocked iterates to zero
1188 if (--sdev->device_blocked == 0) {
1189 SCSI_LOG_MLQUEUE(3,
1190 printk("scsi%d (%d:%d) unblocking device at"
1191 " zero depth\n", sdev->host->host_no,
1192 sdev->id, sdev->lun));
1193 } else {
1194 blk_plug_device(q);
1195 return 0;
1198 if (sdev->device_blocked)
1199 return 0;
1201 return 1;
1205 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1206 * return 0. We must end up running the queue again whenever 0 is
1207 * returned, else IO can hang.
1209 * Called with host_lock held.
1211 static inline int scsi_host_queue_ready(struct request_queue *q,
1212 struct Scsi_Host *shost,
1213 struct scsi_device *sdev)
1215 if (test_bit(SHOST_RECOVERY, &shost->shost_state))
1216 return 0;
1217 if (shost->host_busy == 0 && shost->host_blocked) {
1219 * unblock after host_blocked iterates to zero
1221 if (--shost->host_blocked == 0) {
1222 SCSI_LOG_MLQUEUE(3,
1223 printk("scsi%d unblocking host at zero depth\n",
1224 shost->host_no));
1225 } else {
1226 blk_plug_device(q);
1227 return 0;
1230 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1231 shost->host_blocked || shost->host_self_blocked) {
1232 if (list_empty(&sdev->starved_entry))
1233 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1234 return 0;
1237 /* We're OK to process the command, so we can't be starved */
1238 if (!list_empty(&sdev->starved_entry))
1239 list_del_init(&sdev->starved_entry);
1241 return 1;
1245 * Kill requests for a dead device
1247 static void scsi_kill_requests(request_queue_t *q)
1249 struct request *req;
1251 while ((req = elv_next_request(q)) != NULL) {
1252 blkdev_dequeue_request(req);
1253 req->flags |= REQ_QUIET;
1254 while (end_that_request_first(req, 0, req->nr_sectors))
1256 end_that_request_last(req);
1261 * Function: scsi_request_fn()
1263 * Purpose: Main strategy routine for SCSI.
1265 * Arguments: q - Pointer to actual queue.
1267 * Returns: Nothing
1269 * Lock status: IO request lock assumed to be held when called.
1271 static void scsi_request_fn(struct request_queue *q)
1273 struct scsi_device *sdev = q->queuedata;
1274 struct Scsi_Host *shost;
1275 struct scsi_cmnd *cmd;
1276 struct request *req;
1278 if (!sdev) {
1279 printk("scsi: killing requests for dead queue\n");
1280 scsi_kill_requests(q);
1281 return;
1284 if(!get_device(&sdev->sdev_gendev))
1285 /* We must be tearing the block queue down already */
1286 return;
1289 * To start with, we keep looping until the queue is empty, or until
1290 * the host is no longer able to accept any more requests.
1292 shost = sdev->host;
1293 while (!blk_queue_plugged(q)) {
1294 int rtn;
1296 * get next queueable request. We do this early to make sure
1297 * that the request is fully prepared even if we cannot
1298 * accept it.
1300 req = elv_next_request(q);
1301 if (!req || !scsi_dev_queue_ready(q, sdev))
1302 break;
1304 if (unlikely(!scsi_device_online(sdev))) {
1305 printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to offline device\n",
1306 sdev->host->host_no, sdev->id, sdev->lun);
1307 blkdev_dequeue_request(req);
1308 req->flags |= REQ_QUIET;
1309 while (end_that_request_first(req, 0, req->nr_sectors))
1311 end_that_request_last(req);
1312 continue;
1317 * Remove the request from the request list.
1319 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1320 blkdev_dequeue_request(req);
1321 sdev->device_busy++;
1323 spin_unlock(q->queue_lock);
1324 spin_lock(shost->host_lock);
1326 if (!scsi_host_queue_ready(q, shost, sdev))
1327 goto not_ready;
1328 if (sdev->single_lun) {
1329 if (scsi_target(sdev)->starget_sdev_user &&
1330 scsi_target(sdev)->starget_sdev_user != sdev)
1331 goto not_ready;
1332 scsi_target(sdev)->starget_sdev_user = sdev;
1334 shost->host_busy++;
1337 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1338 * take the lock again.
1340 spin_unlock_irq(shost->host_lock);
1342 cmd = req->special;
1343 if (unlikely(cmd == NULL)) {
1344 printk(KERN_CRIT "impossible request in %s.\n"
1345 "please mail a stack trace to "
1346 "linux-scsi@vger.kernel.org",
1347 __FUNCTION__);
1348 BUG();
1352 * Finally, initialize any error handling parameters, and set up
1353 * the timers for timeouts.
1355 scsi_init_cmd_errh(cmd);
1358 * Dispatch the command to the low-level driver.
1360 rtn = scsi_dispatch_cmd(cmd);
1361 spin_lock_irq(q->queue_lock);
1362 if(rtn) {
1363 /* we're refusing the command; because of
1364 * the way locks get dropped, we need to
1365 * check here if plugging is required */
1366 if(sdev->device_busy == 0)
1367 blk_plug_device(q);
1369 break;
1373 goto out;
1375 not_ready:
1376 spin_unlock_irq(shost->host_lock);
1379 * lock q, handle tag, requeue req, and decrement device_busy. We
1380 * must return with queue_lock held.
1382 * Decrementing device_busy without checking it is OK, as all such
1383 * cases (host limits or settings) should run the queue at some
1384 * later time.
1386 spin_lock_irq(q->queue_lock);
1387 blk_requeue_request(q, req);
1388 sdev->device_busy--;
1389 if(sdev->device_busy == 0)
1390 blk_plug_device(q);
1391 out:
1392 /* must be careful here...if we trigger the ->remove() function
1393 * we cannot be holding the q lock */
1394 spin_unlock_irq(q->queue_lock);
1395 put_device(&sdev->sdev_gendev);
1396 spin_lock_irq(q->queue_lock);
1399 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1401 struct device *host_dev;
1402 u64 bounce_limit = 0xffffffff;
1404 if (shost->unchecked_isa_dma)
1405 return BLK_BOUNCE_ISA;
1407 * Platforms with virtual-DMA translation
1408 * hardware have no practical limit.
1410 if (!PCI_DMA_BUS_IS_PHYS)
1411 return BLK_BOUNCE_ANY;
1413 host_dev = scsi_get_device(shost);
1414 if (host_dev && host_dev->dma_mask)
1415 bounce_limit = *host_dev->dma_mask;
1417 return bounce_limit;
1419 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1421 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1423 struct Scsi_Host *shost = sdev->host;
1424 struct request_queue *q;
1426 q = blk_init_queue(scsi_request_fn, NULL);
1427 if (!q)
1428 return NULL;
1430 blk_queue_prep_rq(q, scsi_prep_fn);
1432 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1433 blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1434 blk_queue_max_sectors(q, shost->max_sectors);
1435 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1436 blk_queue_segment_boundary(q, shost->dma_boundary);
1437 blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1440 * ordered tags are superior to flush ordering
1442 if (shost->ordered_tag)
1443 blk_queue_ordered(q, QUEUE_ORDERED_TAG);
1444 else if (shost->ordered_flush) {
1445 blk_queue_ordered(q, QUEUE_ORDERED_FLUSH);
1446 q->prepare_flush_fn = scsi_prepare_flush_fn;
1447 q->end_flush_fn = scsi_end_flush_fn;
1450 if (!shost->use_clustering)
1451 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1452 return q;
1455 void scsi_free_queue(struct request_queue *q)
1457 blk_cleanup_queue(q);
1461 * Function: scsi_block_requests()
1463 * Purpose: Utility function used by low-level drivers to prevent further
1464 * commands from being queued to the device.
1466 * Arguments: shost - Host in question
1468 * Returns: Nothing
1470 * Lock status: No locks are assumed held.
1472 * Notes: There is no timer nor any other means by which the requests
1473 * get unblocked other than the low-level driver calling
1474 * scsi_unblock_requests().
1476 void scsi_block_requests(struct Scsi_Host *shost)
1478 shost->host_self_blocked = 1;
1480 EXPORT_SYMBOL(scsi_block_requests);
1483 * Function: scsi_unblock_requests()
1485 * Purpose: Utility function used by low-level drivers to allow further
1486 * commands from being queued to the device.
1488 * Arguments: shost - Host in question
1490 * Returns: Nothing
1492 * Lock status: No locks are assumed held.
1494 * Notes: There is no timer nor any other means by which the requests
1495 * get unblocked other than the low-level driver calling
1496 * scsi_unblock_requests().
1498 * This is done as an API function so that changes to the
1499 * internals of the scsi mid-layer won't require wholesale
1500 * changes to drivers that use this feature.
1502 void scsi_unblock_requests(struct Scsi_Host *shost)
1504 shost->host_self_blocked = 0;
1505 scsi_run_host_queues(shost);
1507 EXPORT_SYMBOL(scsi_unblock_requests);
1509 int __init scsi_init_queue(void)
1511 int i;
1513 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1514 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1515 int size = sgp->size * sizeof(struct scatterlist);
1517 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1518 SLAB_HWCACHE_ALIGN, NULL, NULL);
1519 if (!sgp->slab) {
1520 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1521 sgp->name);
1524 sgp->pool = mempool_create(SG_MEMPOOL_SIZE,
1525 mempool_alloc_slab, mempool_free_slab,
1526 sgp->slab);
1527 if (!sgp->pool) {
1528 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1529 sgp->name);
1533 return 0;
1536 void scsi_exit_queue(void)
1538 int i;
1540 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1541 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1542 mempool_destroy(sgp->pool);
1543 kmem_cache_destroy(sgp->slab);
1547 * __scsi_mode_sense - issue a mode sense, falling back from 10 to
1548 * six bytes if necessary.
1549 * @sreq: SCSI request to fill in with the MODE_SENSE
1550 * @dbd: set if mode sense will allow block descriptors to be returned
1551 * @modepage: mode page being requested
1552 * @buffer: request buffer (may not be smaller than eight bytes)
1553 * @len: length of request buffer.
1554 * @timeout: command timeout
1555 * @retries: number of retries before failing
1556 * @data: returns a structure abstracting the mode header data
1558 * Returns zero if unsuccessful, or the header offset (either 4
1559 * or 8 depending on whether a six or ten byte command was
1560 * issued) if successful.
1563 __scsi_mode_sense(struct scsi_request *sreq, int dbd, int modepage,
1564 unsigned char *buffer, int len, int timeout, int retries,
1565 struct scsi_mode_data *data) {
1566 unsigned char cmd[12];
1567 int use_10_for_ms;
1568 int header_length;
1570 memset(data, 0, sizeof(*data));
1571 memset(&cmd[0], 0, 12);
1572 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1573 cmd[2] = modepage;
1575 retry:
1576 use_10_for_ms = sreq->sr_device->use_10_for_ms;
1578 if (use_10_for_ms) {
1579 if (len < 8)
1580 len = 8;
1582 cmd[0] = MODE_SENSE_10;
1583 cmd[8] = len;
1584 header_length = 8;
1585 } else {
1586 if (len < 4)
1587 len = 4;
1589 cmd[0] = MODE_SENSE;
1590 cmd[4] = len;
1591 header_length = 4;
1594 sreq->sr_cmd_len = 0;
1595 memset(sreq->sr_sense_buffer, 0, sizeof(sreq->sr_sense_buffer));
1596 sreq->sr_data_direction = DMA_FROM_DEVICE;
1598 memset(buffer, 0, len);
1600 scsi_wait_req(sreq, cmd, buffer, len, timeout, retries);
1602 /* This code looks awful: what it's doing is making sure an
1603 * ILLEGAL REQUEST sense return identifies the actual command
1604 * byte as the problem. MODE_SENSE commands can return
1605 * ILLEGAL REQUEST if the code page isn't supported */
1607 if (use_10_for_ms && !scsi_status_is_good(sreq->sr_result) &&
1608 (driver_byte(sreq->sr_result) & DRIVER_SENSE)) {
1609 struct scsi_sense_hdr sshdr;
1611 if (scsi_request_normalize_sense(sreq, &sshdr)) {
1612 if ((sshdr.sense_key == ILLEGAL_REQUEST) &&
1613 (sshdr.asc == 0x20) && (sshdr.ascq == 0)) {
1615 * Invalid command operation code
1617 sreq->sr_device->use_10_for_ms = 0;
1618 goto retry;
1623 if(scsi_status_is_good(sreq->sr_result)) {
1624 data->header_length = header_length;
1625 if(use_10_for_ms) {
1626 data->length = buffer[0]*256 + buffer[1] + 2;
1627 data->medium_type = buffer[2];
1628 data->device_specific = buffer[3];
1629 data->longlba = buffer[4] & 0x01;
1630 data->block_descriptor_length = buffer[6]*256
1631 + buffer[7];
1632 } else {
1633 data->length = buffer[0] + 1;
1634 data->medium_type = buffer[1];
1635 data->device_specific = buffer[2];
1636 data->block_descriptor_length = buffer[3];
1640 return sreq->sr_result;
1642 EXPORT_SYMBOL(__scsi_mode_sense);
1645 * scsi_mode_sense - issue a mode sense, falling back from 10 to
1646 * six bytes if necessary.
1647 * @sdev: scsi device to send command to.
1648 * @dbd: set if mode sense will disable block descriptors in the return
1649 * @modepage: mode page being requested
1650 * @buffer: request buffer (may not be smaller than eight bytes)
1651 * @len: length of request buffer.
1652 * @timeout: command timeout
1653 * @retries: number of retries before failing
1655 * Returns zero if unsuccessful, or the header offset (either 4
1656 * or 8 depending on whether a six or ten byte command was
1657 * issued) if successful.
1660 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1661 unsigned char *buffer, int len, int timeout, int retries,
1662 struct scsi_mode_data *data)
1664 struct scsi_request *sreq = scsi_allocate_request(sdev, GFP_KERNEL);
1665 int ret;
1667 if (!sreq)
1668 return -1;
1670 ret = __scsi_mode_sense(sreq, dbd, modepage, buffer, len,
1671 timeout, retries, data);
1673 scsi_release_request(sreq);
1675 return ret;
1677 EXPORT_SYMBOL(scsi_mode_sense);
1680 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1682 struct scsi_request *sreq;
1683 char cmd[] = {
1684 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1686 int result;
1688 sreq = scsi_allocate_request(sdev, GFP_KERNEL);
1689 if (!sreq)
1690 return -ENOMEM;
1692 sreq->sr_data_direction = DMA_NONE;
1693 scsi_wait_req(sreq, cmd, NULL, 0, timeout, retries);
1695 if ((driver_byte(sreq->sr_result) & DRIVER_SENSE) && sdev->removable) {
1696 struct scsi_sense_hdr sshdr;
1698 if ((scsi_request_normalize_sense(sreq, &sshdr)) &&
1699 ((sshdr.sense_key == UNIT_ATTENTION) ||
1700 (sshdr.sense_key == NOT_READY))) {
1701 sdev->changed = 1;
1702 sreq->sr_result = 0;
1705 result = sreq->sr_result;
1706 scsi_release_request(sreq);
1707 return result;
1709 EXPORT_SYMBOL(scsi_test_unit_ready);
1712 * scsi_device_set_state - Take the given device through the device
1713 * state model.
1714 * @sdev: scsi device to change the state of.
1715 * @state: state to change to.
1717 * Returns zero if unsuccessful or an error if the requested
1718 * transition is illegal.
1721 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1723 enum scsi_device_state oldstate = sdev->sdev_state;
1725 if (state == oldstate)
1726 return 0;
1728 switch (state) {
1729 case SDEV_CREATED:
1730 /* There are no legal states that come back to
1731 * created. This is the manually initialised start
1732 * state */
1733 goto illegal;
1735 case SDEV_RUNNING:
1736 switch (oldstate) {
1737 case SDEV_CREATED:
1738 case SDEV_OFFLINE:
1739 case SDEV_QUIESCE:
1740 case SDEV_BLOCK:
1741 break;
1742 default:
1743 goto illegal;
1745 break;
1747 case SDEV_QUIESCE:
1748 switch (oldstate) {
1749 case SDEV_RUNNING:
1750 case SDEV_OFFLINE:
1751 break;
1752 default:
1753 goto illegal;
1755 break;
1757 case SDEV_OFFLINE:
1758 switch (oldstate) {
1759 case SDEV_CREATED:
1760 case SDEV_RUNNING:
1761 case SDEV_QUIESCE:
1762 case SDEV_BLOCK:
1763 break;
1764 default:
1765 goto illegal;
1767 break;
1769 case SDEV_BLOCK:
1770 switch (oldstate) {
1771 case SDEV_CREATED:
1772 case SDEV_RUNNING:
1773 break;
1774 default:
1775 goto illegal;
1777 break;
1779 case SDEV_CANCEL:
1780 switch (oldstate) {
1781 case SDEV_CREATED:
1782 case SDEV_RUNNING:
1783 case SDEV_OFFLINE:
1784 case SDEV_BLOCK:
1785 break;
1786 default:
1787 goto illegal;
1789 break;
1791 case SDEV_DEL:
1792 switch (oldstate) {
1793 case SDEV_CANCEL:
1794 break;
1795 default:
1796 goto illegal;
1798 break;
1801 sdev->sdev_state = state;
1802 return 0;
1804 illegal:
1805 SCSI_LOG_ERROR_RECOVERY(1,
1806 dev_printk(KERN_ERR, &sdev->sdev_gendev,
1807 "Illegal state transition %s->%s\n",
1808 scsi_device_state_name(oldstate),
1809 scsi_device_state_name(state))
1811 return -EINVAL;
1813 EXPORT_SYMBOL(scsi_device_set_state);
1816 * scsi_device_quiesce - Block user issued commands.
1817 * @sdev: scsi device to quiesce.
1819 * This works by trying to transition to the SDEV_QUIESCE state
1820 * (which must be a legal transition). When the device is in this
1821 * state, only special requests will be accepted, all others will
1822 * be deferred. Since special requests may also be requeued requests,
1823 * a successful return doesn't guarantee the device will be
1824 * totally quiescent.
1826 * Must be called with user context, may sleep.
1828 * Returns zero if unsuccessful or an error if not.
1831 scsi_device_quiesce(struct scsi_device *sdev)
1833 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
1834 if (err)
1835 return err;
1837 scsi_run_queue(sdev->request_queue);
1838 while (sdev->device_busy) {
1839 msleep_interruptible(200);
1840 scsi_run_queue(sdev->request_queue);
1842 return 0;
1844 EXPORT_SYMBOL(scsi_device_quiesce);
1847 * scsi_device_resume - Restart user issued commands to a quiesced device.
1848 * @sdev: scsi device to resume.
1850 * Moves the device from quiesced back to running and restarts the
1851 * queues.
1853 * Must be called with user context, may sleep.
1855 void
1856 scsi_device_resume(struct scsi_device *sdev)
1858 if(scsi_device_set_state(sdev, SDEV_RUNNING))
1859 return;
1860 scsi_run_queue(sdev->request_queue);
1862 EXPORT_SYMBOL(scsi_device_resume);
1864 static void
1865 device_quiesce_fn(struct scsi_device *sdev, void *data)
1867 scsi_device_quiesce(sdev);
1870 void
1871 scsi_target_quiesce(struct scsi_target *starget)
1873 starget_for_each_device(starget, NULL, device_quiesce_fn);
1875 EXPORT_SYMBOL(scsi_target_quiesce);
1877 static void
1878 device_resume_fn(struct scsi_device *sdev, void *data)
1880 scsi_device_resume(sdev);
1883 void
1884 scsi_target_resume(struct scsi_target *starget)
1886 starget_for_each_device(starget, NULL, device_resume_fn);
1888 EXPORT_SYMBOL(scsi_target_resume);
1891 * scsi_internal_device_block - internal function to put a device
1892 * temporarily into the SDEV_BLOCK state
1893 * @sdev: device to block
1895 * Block request made by scsi lld's to temporarily stop all
1896 * scsi commands on the specified device. Called from interrupt
1897 * or normal process context.
1899 * Returns zero if successful or error if not
1901 * Notes:
1902 * This routine transitions the device to the SDEV_BLOCK state
1903 * (which must be a legal transition). When the device is in this
1904 * state, all commands are deferred until the scsi lld reenables
1905 * the device with scsi_device_unblock or device_block_tmo fires.
1906 * This routine assumes the host_lock is held on entry.
1909 scsi_internal_device_block(struct scsi_device *sdev)
1911 request_queue_t *q = sdev->request_queue;
1912 unsigned long flags;
1913 int err = 0;
1915 err = scsi_device_set_state(sdev, SDEV_BLOCK);
1916 if (err)
1917 return err;
1920 * The device has transitioned to SDEV_BLOCK. Stop the
1921 * block layer from calling the midlayer with this device's
1922 * request queue.
1924 spin_lock_irqsave(q->queue_lock, flags);
1925 blk_stop_queue(q);
1926 spin_unlock_irqrestore(q->queue_lock, flags);
1928 return 0;
1930 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
1933 * scsi_internal_device_unblock - resume a device after a block request
1934 * @sdev: device to resume
1936 * Called by scsi lld's or the midlayer to restart the device queue
1937 * for the previously suspended scsi device. Called from interrupt or
1938 * normal process context.
1940 * Returns zero if successful or error if not.
1942 * Notes:
1943 * This routine transitions the device to the SDEV_RUNNING state
1944 * (which must be a legal transition) allowing the midlayer to
1945 * goose the queue for this device. This routine assumes the
1946 * host_lock is held upon entry.
1949 scsi_internal_device_unblock(struct scsi_device *sdev)
1951 request_queue_t *q = sdev->request_queue;
1952 int err;
1953 unsigned long flags;
1956 * Try to transition the scsi device to SDEV_RUNNING
1957 * and goose the device queue if successful.
1959 err = scsi_device_set_state(sdev, SDEV_RUNNING);
1960 if (err)
1961 return err;
1963 spin_lock_irqsave(q->queue_lock, flags);
1964 blk_start_queue(q);
1965 spin_unlock_irqrestore(q->queue_lock, flags);
1967 return 0;
1969 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
1971 static void
1972 device_block(struct scsi_device *sdev, void *data)
1974 scsi_internal_device_block(sdev);
1977 static int
1978 target_block(struct device *dev, void *data)
1980 if (scsi_is_target_device(dev))
1981 starget_for_each_device(to_scsi_target(dev), NULL,
1982 device_block);
1983 return 0;
1986 void
1987 scsi_target_block(struct device *dev)
1989 if (scsi_is_target_device(dev))
1990 starget_for_each_device(to_scsi_target(dev), NULL,
1991 device_block);
1992 else
1993 device_for_each_child(dev, NULL, target_block);
1995 EXPORT_SYMBOL_GPL(scsi_target_block);
1997 static void
1998 device_unblock(struct scsi_device *sdev, void *data)
2000 scsi_internal_device_unblock(sdev);
2003 static int
2004 target_unblock(struct device *dev, void *data)
2006 if (scsi_is_target_device(dev))
2007 starget_for_each_device(to_scsi_target(dev), NULL,
2008 device_unblock);
2009 return 0;
2012 void
2013 scsi_target_unblock(struct device *dev)
2015 if (scsi_is_target_device(dev))
2016 starget_for_each_device(to_scsi_target(dev), NULL,
2017 device_unblock);
2018 else
2019 device_for_each_child(dev, NULL, target_unblock);
2021 EXPORT_SYMBOL_GPL(scsi_target_unblock);