Blackfin arch: Add label to call new GPIO API
[wrt350n-kernel.git] / mm / vmstat.c
blobc64d169537bfcfe65fc963b009779de85c9b051a
1 /*
2 * linux/mm/vmstat.c
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/cpu.h>
16 #include <linux/sched.h>
18 #ifdef CONFIG_VM_EVENT_COUNTERS
19 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
20 EXPORT_PER_CPU_SYMBOL(vm_event_states);
22 static void sum_vm_events(unsigned long *ret, cpumask_t *cpumask)
24 int cpu = 0;
25 int i;
27 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
29 cpu = first_cpu(*cpumask);
30 while (cpu < NR_CPUS) {
31 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
33 cpu = next_cpu(cpu, *cpumask);
35 if (cpu < NR_CPUS)
36 prefetch(&per_cpu(vm_event_states, cpu));
39 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
40 ret[i] += this->event[i];
45 * Accumulate the vm event counters across all CPUs.
46 * The result is unavoidably approximate - it can change
47 * during and after execution of this function.
49 void all_vm_events(unsigned long *ret)
51 sum_vm_events(ret, &cpu_online_map);
53 EXPORT_SYMBOL_GPL(all_vm_events);
55 #ifdef CONFIG_HOTPLUG
57 * Fold the foreign cpu events into our own.
59 * This is adding to the events on one processor
60 * but keeps the global counts constant.
62 void vm_events_fold_cpu(int cpu)
64 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
65 int i;
67 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
68 count_vm_events(i, fold_state->event[i]);
69 fold_state->event[i] = 0;
72 #endif /* CONFIG_HOTPLUG */
74 #endif /* CONFIG_VM_EVENT_COUNTERS */
77 * Manage combined zone based / global counters
79 * vm_stat contains the global counters
81 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
82 EXPORT_SYMBOL(vm_stat);
84 #ifdef CONFIG_SMP
86 static int calculate_threshold(struct zone *zone)
88 int threshold;
89 int mem; /* memory in 128 MB units */
92 * The threshold scales with the number of processors and the amount
93 * of memory per zone. More memory means that we can defer updates for
94 * longer, more processors could lead to more contention.
95 * fls() is used to have a cheap way of logarithmic scaling.
97 * Some sample thresholds:
99 * Threshold Processors (fls) Zonesize fls(mem+1)
100 * ------------------------------------------------------------------
101 * 8 1 1 0.9-1 GB 4
102 * 16 2 2 0.9-1 GB 4
103 * 20 2 2 1-2 GB 5
104 * 24 2 2 2-4 GB 6
105 * 28 2 2 4-8 GB 7
106 * 32 2 2 8-16 GB 8
107 * 4 2 2 <128M 1
108 * 30 4 3 2-4 GB 5
109 * 48 4 3 8-16 GB 8
110 * 32 8 4 1-2 GB 4
111 * 32 8 4 0.9-1GB 4
112 * 10 16 5 <128M 1
113 * 40 16 5 900M 4
114 * 70 64 7 2-4 GB 5
115 * 84 64 7 4-8 GB 6
116 * 108 512 9 4-8 GB 6
117 * 125 1024 10 8-16 GB 8
118 * 125 1024 10 16-32 GB 9
121 mem = zone->present_pages >> (27 - PAGE_SHIFT);
123 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
126 * Maximum threshold is 125
128 threshold = min(125, threshold);
130 return threshold;
134 * Refresh the thresholds for each zone.
136 static void refresh_zone_stat_thresholds(void)
138 struct zone *zone;
139 int cpu;
140 int threshold;
142 for_each_zone(zone) {
144 if (!zone->present_pages)
145 continue;
147 threshold = calculate_threshold(zone);
149 for_each_online_cpu(cpu)
150 zone_pcp(zone, cpu)->stat_threshold = threshold;
155 * For use when we know that interrupts are disabled.
157 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
158 int delta)
160 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
161 s8 *p = pcp->vm_stat_diff + item;
162 long x;
164 x = delta + *p;
166 if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
167 zone_page_state_add(x, zone, item);
168 x = 0;
170 *p = x;
172 EXPORT_SYMBOL(__mod_zone_page_state);
175 * For an unknown interrupt state
177 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
178 int delta)
180 unsigned long flags;
182 local_irq_save(flags);
183 __mod_zone_page_state(zone, item, delta);
184 local_irq_restore(flags);
186 EXPORT_SYMBOL(mod_zone_page_state);
189 * Optimized increment and decrement functions.
191 * These are only for a single page and therefore can take a struct page *
192 * argument instead of struct zone *. This allows the inclusion of the code
193 * generated for page_zone(page) into the optimized functions.
195 * No overflow check is necessary and therefore the differential can be
196 * incremented or decremented in place which may allow the compilers to
197 * generate better code.
198 * The increment or decrement is known and therefore one boundary check can
199 * be omitted.
201 * NOTE: These functions are very performance sensitive. Change only
202 * with care.
204 * Some processors have inc/dec instructions that are atomic vs an interrupt.
205 * However, the code must first determine the differential location in a zone
206 * based on the processor number and then inc/dec the counter. There is no
207 * guarantee without disabling preemption that the processor will not change
208 * in between and therefore the atomicity vs. interrupt cannot be exploited
209 * in a useful way here.
211 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
213 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
214 s8 *p = pcp->vm_stat_diff + item;
216 (*p)++;
218 if (unlikely(*p > pcp->stat_threshold)) {
219 int overstep = pcp->stat_threshold / 2;
221 zone_page_state_add(*p + overstep, zone, item);
222 *p = -overstep;
226 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
228 __inc_zone_state(page_zone(page), item);
230 EXPORT_SYMBOL(__inc_zone_page_state);
232 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
234 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
235 s8 *p = pcp->vm_stat_diff + item;
237 (*p)--;
239 if (unlikely(*p < - pcp->stat_threshold)) {
240 int overstep = pcp->stat_threshold / 2;
242 zone_page_state_add(*p - overstep, zone, item);
243 *p = overstep;
247 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
249 __dec_zone_state(page_zone(page), item);
251 EXPORT_SYMBOL(__dec_zone_page_state);
253 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
255 unsigned long flags;
257 local_irq_save(flags);
258 __inc_zone_state(zone, item);
259 local_irq_restore(flags);
262 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
264 unsigned long flags;
265 struct zone *zone;
267 zone = page_zone(page);
268 local_irq_save(flags);
269 __inc_zone_state(zone, item);
270 local_irq_restore(flags);
272 EXPORT_SYMBOL(inc_zone_page_state);
274 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
276 unsigned long flags;
278 local_irq_save(flags);
279 __dec_zone_page_state(page, item);
280 local_irq_restore(flags);
282 EXPORT_SYMBOL(dec_zone_page_state);
285 * Update the zone counters for one cpu.
287 * Note that refresh_cpu_vm_stats strives to only access
288 * node local memory. The per cpu pagesets on remote zones are placed
289 * in the memory local to the processor using that pageset. So the
290 * loop over all zones will access a series of cachelines local to
291 * the processor.
293 * The call to zone_page_state_add updates the cachelines with the
294 * statistics in the remote zone struct as well as the global cachelines
295 * with the global counters. These could cause remote node cache line
296 * bouncing and will have to be only done when necessary.
298 void refresh_cpu_vm_stats(int cpu)
300 struct zone *zone;
301 int i;
302 unsigned long flags;
304 for_each_zone(zone) {
305 struct per_cpu_pageset *p;
307 if (!populated_zone(zone))
308 continue;
310 p = zone_pcp(zone, cpu);
312 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
313 if (p->vm_stat_diff[i]) {
314 local_irq_save(flags);
315 zone_page_state_add(p->vm_stat_diff[i],
316 zone, i);
317 p->vm_stat_diff[i] = 0;
318 #ifdef CONFIG_NUMA
319 /* 3 seconds idle till flush */
320 p->expire = 3;
321 #endif
322 local_irq_restore(flags);
324 #ifdef CONFIG_NUMA
326 * Deal with draining the remote pageset of this
327 * processor
329 * Check if there are pages remaining in this pageset
330 * if not then there is nothing to expire.
332 if (!p->expire || (!p->pcp[0].count && !p->pcp[1].count))
333 continue;
336 * We never drain zones local to this processor.
338 if (zone_to_nid(zone) == numa_node_id()) {
339 p->expire = 0;
340 continue;
343 p->expire--;
344 if (p->expire)
345 continue;
347 if (p->pcp[0].count)
348 drain_zone_pages(zone, p->pcp + 0);
350 if (p->pcp[1].count)
351 drain_zone_pages(zone, p->pcp + 1);
352 #endif
356 static void __refresh_cpu_vm_stats(void *dummy)
358 refresh_cpu_vm_stats(smp_processor_id());
362 * Consolidate all counters.
364 * Note that the result is less inaccurate but still inaccurate
365 * if concurrent processes are allowed to run.
367 void refresh_vm_stats(void)
369 on_each_cpu(__refresh_cpu_vm_stats, NULL, 0, 1);
371 EXPORT_SYMBOL(refresh_vm_stats);
373 #endif
375 #ifdef CONFIG_NUMA
377 * zonelist = the list of zones passed to the allocator
378 * z = the zone from which the allocation occurred.
380 * Must be called with interrupts disabled.
382 void zone_statistics(struct zonelist *zonelist, struct zone *z)
384 if (z->zone_pgdat == zonelist->zones[0]->zone_pgdat) {
385 __inc_zone_state(z, NUMA_HIT);
386 } else {
387 __inc_zone_state(z, NUMA_MISS);
388 __inc_zone_state(zonelist->zones[0], NUMA_FOREIGN);
390 if (z->node == numa_node_id())
391 __inc_zone_state(z, NUMA_LOCAL);
392 else
393 __inc_zone_state(z, NUMA_OTHER);
395 #endif
397 #ifdef CONFIG_PROC_FS
399 #include <linux/seq_file.h>
401 static void *frag_start(struct seq_file *m, loff_t *pos)
403 pg_data_t *pgdat;
404 loff_t node = *pos;
405 for (pgdat = first_online_pgdat();
406 pgdat && node;
407 pgdat = next_online_pgdat(pgdat))
408 --node;
410 return pgdat;
413 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
415 pg_data_t *pgdat = (pg_data_t *)arg;
417 (*pos)++;
418 return next_online_pgdat(pgdat);
421 static void frag_stop(struct seq_file *m, void *arg)
426 * This walks the free areas for each zone.
428 static int frag_show(struct seq_file *m, void *arg)
430 pg_data_t *pgdat = (pg_data_t *)arg;
431 struct zone *zone;
432 struct zone *node_zones = pgdat->node_zones;
433 unsigned long flags;
434 int order;
436 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
437 if (!populated_zone(zone))
438 continue;
440 spin_lock_irqsave(&zone->lock, flags);
441 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
442 for (order = 0; order < MAX_ORDER; ++order)
443 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
444 spin_unlock_irqrestore(&zone->lock, flags);
445 seq_putc(m, '\n');
447 return 0;
450 const struct seq_operations fragmentation_op = {
451 .start = frag_start,
452 .next = frag_next,
453 .stop = frag_stop,
454 .show = frag_show,
457 #ifdef CONFIG_ZONE_DMA
458 #define TEXT_FOR_DMA(xx) xx "_dma",
459 #else
460 #define TEXT_FOR_DMA(xx)
461 #endif
463 #ifdef CONFIG_ZONE_DMA32
464 #define TEXT_FOR_DMA32(xx) xx "_dma32",
465 #else
466 #define TEXT_FOR_DMA32(xx)
467 #endif
469 #ifdef CONFIG_HIGHMEM
470 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
471 #else
472 #define TEXT_FOR_HIGHMEM(xx)
473 #endif
475 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
476 TEXT_FOR_HIGHMEM(xx) xx "_movable",
478 static const char * const vmstat_text[] = {
479 /* Zoned VM counters */
480 "nr_free_pages",
481 "nr_inactive",
482 "nr_active",
483 "nr_anon_pages",
484 "nr_mapped",
485 "nr_file_pages",
486 "nr_dirty",
487 "nr_writeback",
488 "nr_slab_reclaimable",
489 "nr_slab_unreclaimable",
490 "nr_page_table_pages",
491 "nr_unstable",
492 "nr_bounce",
493 "nr_vmscan_write",
495 #ifdef CONFIG_NUMA
496 "numa_hit",
497 "numa_miss",
498 "numa_foreign",
499 "numa_interleave",
500 "numa_local",
501 "numa_other",
502 #endif
504 #ifdef CONFIG_VM_EVENT_COUNTERS
505 "pgpgin",
506 "pgpgout",
507 "pswpin",
508 "pswpout",
510 TEXTS_FOR_ZONES("pgalloc")
512 "pgfree",
513 "pgactivate",
514 "pgdeactivate",
516 "pgfault",
517 "pgmajfault",
519 TEXTS_FOR_ZONES("pgrefill")
520 TEXTS_FOR_ZONES("pgsteal")
521 TEXTS_FOR_ZONES("pgscan_kswapd")
522 TEXTS_FOR_ZONES("pgscan_direct")
524 "pginodesteal",
525 "slabs_scanned",
526 "kswapd_steal",
527 "kswapd_inodesteal",
528 "pageoutrun",
529 "allocstall",
531 "pgrotated",
532 #endif
536 * Output information about zones in @pgdat.
538 static int zoneinfo_show(struct seq_file *m, void *arg)
540 pg_data_t *pgdat = arg;
541 struct zone *zone;
542 struct zone *node_zones = pgdat->node_zones;
543 unsigned long flags;
545 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
546 int i;
548 if (!populated_zone(zone))
549 continue;
551 spin_lock_irqsave(&zone->lock, flags);
552 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
553 seq_printf(m,
554 "\n pages free %lu"
555 "\n min %lu"
556 "\n low %lu"
557 "\n high %lu"
558 "\n scanned %lu (a: %lu i: %lu)"
559 "\n spanned %lu"
560 "\n present %lu",
561 zone_page_state(zone, NR_FREE_PAGES),
562 zone->pages_min,
563 zone->pages_low,
564 zone->pages_high,
565 zone->pages_scanned,
566 zone->nr_scan_active, zone->nr_scan_inactive,
567 zone->spanned_pages,
568 zone->present_pages);
570 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
571 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
572 zone_page_state(zone, i));
574 seq_printf(m,
575 "\n protection: (%lu",
576 zone->lowmem_reserve[0]);
577 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
578 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
579 seq_printf(m,
581 "\n pagesets");
582 for_each_online_cpu(i) {
583 struct per_cpu_pageset *pageset;
584 int j;
586 pageset = zone_pcp(zone, i);
587 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
588 seq_printf(m,
589 "\n cpu: %i pcp: %i"
590 "\n count: %i"
591 "\n high: %i"
592 "\n batch: %i",
593 i, j,
594 pageset->pcp[j].count,
595 pageset->pcp[j].high,
596 pageset->pcp[j].batch);
598 #ifdef CONFIG_SMP
599 seq_printf(m, "\n vm stats threshold: %d",
600 pageset->stat_threshold);
601 #endif
603 seq_printf(m,
604 "\n all_unreclaimable: %u"
605 "\n prev_priority: %i"
606 "\n start_pfn: %lu",
607 zone->all_unreclaimable,
608 zone->prev_priority,
609 zone->zone_start_pfn);
610 spin_unlock_irqrestore(&zone->lock, flags);
611 seq_putc(m, '\n');
613 return 0;
616 const struct seq_operations zoneinfo_op = {
617 .start = frag_start, /* iterate over all zones. The same as in
618 * fragmentation. */
619 .next = frag_next,
620 .stop = frag_stop,
621 .show = zoneinfo_show,
624 static void *vmstat_start(struct seq_file *m, loff_t *pos)
626 unsigned long *v;
627 #ifdef CONFIG_VM_EVENT_COUNTERS
628 unsigned long *e;
629 #endif
630 int i;
632 if (*pos >= ARRAY_SIZE(vmstat_text))
633 return NULL;
635 #ifdef CONFIG_VM_EVENT_COUNTERS
636 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
637 + sizeof(struct vm_event_state), GFP_KERNEL);
638 #else
639 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
640 GFP_KERNEL);
641 #endif
642 m->private = v;
643 if (!v)
644 return ERR_PTR(-ENOMEM);
645 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
646 v[i] = global_page_state(i);
647 #ifdef CONFIG_VM_EVENT_COUNTERS
648 e = v + NR_VM_ZONE_STAT_ITEMS;
649 all_vm_events(e);
650 e[PGPGIN] /= 2; /* sectors -> kbytes */
651 e[PGPGOUT] /= 2;
652 #endif
653 return v + *pos;
656 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
658 (*pos)++;
659 if (*pos >= ARRAY_SIZE(vmstat_text))
660 return NULL;
661 return (unsigned long *)m->private + *pos;
664 static int vmstat_show(struct seq_file *m, void *arg)
666 unsigned long *l = arg;
667 unsigned long off = l - (unsigned long *)m->private;
669 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
670 return 0;
673 static void vmstat_stop(struct seq_file *m, void *arg)
675 kfree(m->private);
676 m->private = NULL;
679 const struct seq_operations vmstat_op = {
680 .start = vmstat_start,
681 .next = vmstat_next,
682 .stop = vmstat_stop,
683 .show = vmstat_show,
686 #endif /* CONFIG_PROC_FS */
688 #ifdef CONFIG_SMP
689 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
690 int sysctl_stat_interval __read_mostly = HZ;
692 static void vmstat_update(struct work_struct *w)
694 refresh_cpu_vm_stats(smp_processor_id());
695 schedule_delayed_work(&__get_cpu_var(vmstat_work),
696 sysctl_stat_interval);
699 static void __devinit start_cpu_timer(int cpu)
701 struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu);
703 INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update);
704 schedule_delayed_work_on(cpu, vmstat_work, HZ + cpu);
708 * Use the cpu notifier to insure that the thresholds are recalculated
709 * when necessary.
711 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
712 unsigned long action,
713 void *hcpu)
715 long cpu = (long)hcpu;
717 switch (action) {
718 case CPU_ONLINE:
719 case CPU_ONLINE_FROZEN:
720 start_cpu_timer(cpu);
721 break;
722 case CPU_DOWN_PREPARE:
723 case CPU_DOWN_PREPARE_FROZEN:
724 cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
725 per_cpu(vmstat_work, cpu).work.func = NULL;
726 break;
727 case CPU_DOWN_FAILED:
728 case CPU_DOWN_FAILED_FROZEN:
729 start_cpu_timer(cpu);
730 break;
731 case CPU_DEAD:
732 case CPU_DEAD_FROZEN:
733 refresh_zone_stat_thresholds();
734 break;
735 default:
736 break;
738 return NOTIFY_OK;
741 static struct notifier_block __cpuinitdata vmstat_notifier =
742 { &vmstat_cpuup_callback, NULL, 0 };
744 int __init setup_vmstat(void)
746 int cpu;
748 refresh_zone_stat_thresholds();
749 register_cpu_notifier(&vmstat_notifier);
751 for_each_online_cpu(cpu)
752 start_cpu_timer(cpu);
753 return 0;
755 module_init(setup_vmstat)
756 #endif