5 * In contrary to the Amiga and Atari platforms, the Mac hardware seems to
6 * exclusively use the autovector interrupts (the 'generic level0-level7'
7 * interrupts with exception vectors 0x19-0x1f). The following interrupt levels
10 * - slot 0: one second interrupt (CA2)
11 * - slot 1: VBlank (CA1)
12 * - slot 2: ADB data ready (SR full)
13 * - slot 3: ADB data (CB2)
14 * - slot 4: ADB clock (CB1)
17 * - slot 7: status of IRQ; signals 'any enabled int.'
20 * - slot 0: SCSI DRQ (CA2)
21 * - slot 1: NUBUS IRQ (CA1) need to read port A to find which
22 * - slot 2: /EXP IRQ (only on IIci)
23 * - slot 3: SCSI IRQ (CB2)
24 * - slot 4: ASC IRQ (CB1)
25 * - slot 5: timer 2 (not on IIci)
26 * - slot 6: timer 1 (not on IIci)
27 * - slot 7: status of IRQ; signals 'any enabled int.'
29 * 2 - OSS (IIfx only?)
30 * - slot 0: SCSI interrupt
31 * - slot 1: Sound interrupt
33 * Levels 3-6 vary by machine type. For VIA or RBV Macintoshes:
37 * 4 - SCC (slot number determined by reading RR3 on the SSC itself)
38 * - slot 1: SCC channel A
39 * - slot 2: SCC channel B
42 * [serial errors or special conditions seem to raise level 6
43 * interrupts on some models (LC4xx?)]
47 * For OSS Macintoshes (IIfx only at this point):
58 * - slot 1: SCC channel A
59 * - slot 2: SCC channel B
65 * For PSC Macintoshes (660AV, 840AV):
71 * - slot 1: SCC channel A interrupt
72 * - slot 2: SCC channel B interrupt
79 * Finally we have good 'ole level 7, the non-maskable interrupt:
81 * 7 - NMI (programmer's switch on the back of some Macs)
82 * Also RAM parity error on models which support it (IIc, IIfx?)
84 * The current interrupt logic looks something like this:
86 * - We install dispatchers for the autovector interrupts (1-7). These
87 * dispatchers are responsible for querying the hardware (the
88 * VIA/RBV/OSS/PSC chips) to determine the actual interrupt source. Using
89 * this information a machspec interrupt number is generated by placing the
90 * index of the interrupt hardware into the low three bits and the original
91 * autovector interrupt number in the upper 5 bits. The handlers for the
92 * resulting machspec interrupt are then called.
94 * - Nubus is a special case because its interrupts are hidden behind two
95 * layers of hardware. Nubus interrupts come in as index 1 on VIA #2,
96 * which translates to IRQ number 17. In this spot we install _another_
97 * dispatcher. This dispatcher finds the interrupting slot number (9-F) and
98 * then forms a new machspec interrupt number as above with the slot number
99 * minus 9 in the low three bits and the pseudo-level 7 in the upper five
100 * bits. The handlers for this new machspec interrupt number are then
101 * called. This puts Nubus interrupts into the range 56-62.
103 * - The Baboon interrupts (used on some PowerBooks) are an even more special
104 * case. They're hidden behind the Nubus slot $C interrupt thus adding a
105 * third layer of indirection. Why oh why did the Apple engineers do that?
107 * - We support "fast" and "slow" handlers, just like the Amiga port. The
108 * fast handlers are called first and with all interrupts disabled. They
109 * are expected to execute quickly (hence the name). The slow handlers are
110 * called last with interrupts enabled and the interrupt level restored.
111 * They must therefore be reentrant.
117 #include <linux/types.h>
118 #include <linux/kernel.h>
119 #include <linux/sched.h>
120 #include <linux/kernel_stat.h>
121 #include <linux/interrupt.h> /* for intr_count */
122 #include <linux/delay.h>
123 #include <linux/seq_file.h>
125 #include <asm/system.h>
127 #include <asm/traps.h>
128 #include <asm/bootinfo.h>
129 #include <asm/machw.h>
130 #include <asm/macintosh.h>
131 #include <asm/mac_via.h>
132 #include <asm/mac_psc.h>
133 #include <asm/hwtest.h>
134 #include <asm/errno.h>
135 #include <asm/macints.h>
136 #include <asm/irq_regs.h>
138 #define DEBUG_SPURIOUS
141 /* SCC interrupt mask */
149 extern void via_init(void);
150 extern void via_register_interrupts(void);
151 extern void via_irq_enable(int);
152 extern void via_irq_disable(int);
153 extern void via_irq_clear(int);
154 extern int via_irq_pending(int);
160 extern int oss_present
;
162 extern void oss_init(void);
163 extern void oss_register_interrupts(void);
164 extern void oss_irq_enable(int);
165 extern void oss_irq_disable(int);
166 extern void oss_irq_clear(int);
167 extern int oss_irq_pending(int);
173 extern int psc_present
;
175 extern void psc_init(void);
176 extern void psc_register_interrupts(void);
177 extern void psc_irq_enable(int);
178 extern void psc_irq_disable(int);
179 extern void psc_irq_clear(int);
180 extern int psc_irq_pending(int);
186 extern void iop_register_interrupts(void);
192 extern int baboon_present
;
194 extern void baboon_init(void);
195 extern void baboon_register_interrupts(void);
196 extern void baboon_irq_enable(int);
197 extern void baboon_irq_disable(int);
198 extern void baboon_irq_clear(int);
199 extern int baboon_irq_pending(int);
202 * SCC interrupt routines
205 static void scc_irq_enable(unsigned int);
206 static void scc_irq_disable(unsigned int);
209 * console_loglevel determines NMI handler function
212 irqreturn_t
mac_nmi_handler(int, void *);
213 irqreturn_t
mac_debug_handler(int, void *);
215 /* #define DEBUG_MACINTS */
217 static void mac_enable_irq(unsigned int irq
);
218 static void mac_disable_irq(unsigned int irq
);
220 static struct irq_controller mac_irq_controller
= {
222 .lock
= SPIN_LOCK_UNLOCKED
,
223 .enable
= mac_enable_irq
,
224 .disable
= mac_disable_irq
,
227 void mac_init_IRQ(void)
230 printk("mac_init_IRQ(): Setting things up...\n");
234 m68k_setup_irq_controller(&mac_irq_controller
, IRQ_USER
,
235 NUM_MAC_SOURCES
- IRQ_USER
);
236 /* Make sure the SONIC interrupt is cleared or things get ugly */
238 printk("Killing onboard sonic... ");
239 /* This address should hopefully be mapped already */
240 if (hwreg_present((void*)(0x50f0a000))) {
241 *(long *)(0x50f0a014) = 0x7fffL
;
242 *(long *)(0x50f0a010) = 0L;
245 #endif /* SHUTUP_SONIC */
248 * Now register the handlers for the master IRQ handlers
249 * at levels 1-7. Most of the work is done elsewhere.
253 oss_register_interrupts();
255 via_register_interrupts();
257 psc_register_interrupts();
259 baboon_register_interrupts();
260 iop_register_interrupts();
261 request_irq(IRQ_AUTO_7
, mac_nmi_handler
, 0, "NMI",
264 printk("mac_init_IRQ(): Done!\n");
269 * mac_enable_irq - enable an interrupt source
270 * mac_disable_irq - disable an interrupt source
271 * mac_clear_irq - clears a pending interrupt
272 * mac_pending_irq - Returns the pending status of an IRQ (nonzero = pending)
274 * These routines are just dispatchers to the VIA/OSS/PSC routines.
277 static void mac_enable_irq(unsigned int irq
)
279 int irq_src
= IRQ_SRC(irq
);
298 else if (oss_present
)
300 else if (irq_src
== 4)
305 baboon_irq_enable(irq
);
310 static void mac_disable_irq(unsigned int irq
)
312 int irq_src
= IRQ_SRC(irq
);
316 via_irq_disable(irq
);
321 oss_irq_disable(irq
);
323 via_irq_disable(irq
);
330 psc_irq_disable(irq
);
331 else if (oss_present
)
332 oss_irq_disable(irq
);
333 else if (irq_src
== 4)
334 scc_irq_disable(irq
);
338 baboon_irq_disable(irq
);
343 void mac_clear_irq(unsigned int irq
)
345 switch(IRQ_SRC(irq
)) {
362 else if (oss_present
)
367 baboon_irq_clear(irq
);
372 int mac_irq_pending(unsigned int irq
)
374 switch(IRQ_SRC(irq
)) {
376 return via_irq_pending(irq
);
380 return oss_irq_pending(irq
);
382 return via_irq_pending(irq
);
388 return psc_irq_pending(irq
);
389 else if (oss_present
)
390 return oss_irq_pending(irq
);
395 static int num_debug
[8];
397 irqreturn_t
mac_debug_handler(int irq
, void *dev_id
)
399 if (num_debug
[irq
] < 10) {
400 printk("DEBUG: Unexpected IRQ %d\n", irq
);
407 static volatile int nmi_hold
;
409 irqreturn_t
mac_nmi_handler(int irq
, void *dev_id
)
413 * generate debug output on NMI switch if 'debug' kernel option given
414 * (only works with Penguin!)
418 for (i
=0; i
<100; i
++)
423 printk("... pausing, press NMI to resume ...");
431 while (nmi_hold
== 1)
434 if (console_loglevel
>= 8) {
436 struct pt_regs
*fp
= get_irq_regs();
438 printk("PC: %08lx\nSR: %04x SP: %p\n", fp
->pc
, fp
->sr
, fp
);
439 printk("d0: %08lx d1: %08lx d2: %08lx d3: %08lx\n",
440 fp
->d0
, fp
->d1
, fp
->d2
, fp
->d3
);
441 printk("d4: %08lx d5: %08lx a0: %08lx a1: %08lx\n",
442 fp
->d4
, fp
->d5
, fp
->a0
, fp
->a1
);
444 if (STACK_MAGIC
!= *(unsigned long *)current
->kernel_stack_page
)
445 printk("Corrupted stack page\n");
446 printk("Process %s (pid: %d, stackpage=%08lx)\n",
447 current
->comm
, current
->pid
, current
->kernel_stack_page
);
449 dump_stack((struct frame
*)fp
);
451 /* printk("NMI "); */
459 * Simple routines for masking and unmasking
460 * SCC interrupts in cases where this can't be
461 * done in hardware (only the PSC can do that.)
464 static void scc_irq_enable(unsigned int irq
)
466 int irq_idx
= IRQ_IDX(irq
);
468 scc_mask
|= (1 << irq_idx
);
471 static void scc_irq_disable(unsigned int irq
)
473 int irq_idx
= IRQ_IDX(irq
);
475 scc_mask
&= ~(1 << irq_idx
);
479 * SCC master interrupt handler. We have to do a bit of magic here
480 * to figure out what channel gave us the interrupt; putting this
481 * here is cleaner than hacking it into drivers/char/macserial.c.
484 void mac_scc_dispatch(int irq
, void *dev_id
)
486 volatile unsigned char *scc
= (unsigned char *) mac_bi_data
.sccbase
+ 2;
490 /* Read RR3 from the chip. Always do this on channel A */
491 /* This must be an atomic operation so disable irqs. */
493 local_irq_save(flags
);
496 local_irq_restore(flags
);
498 /* Now dispatch. Bits 0-2 are for channel B and */
499 /* bits 3-5 are for channel A. We can safely */
500 /* ignore the remaining bits here. */
502 /* Note that we're ignoring scc_mask for now. */
503 /* If we actually mask the ints then we tend to */
504 /* get hammered by very persistent SCC irqs, */
505 /* and since they're autovector interrupts they */
506 /* pretty much kill the system. */
509 m68k_handle_int(IRQ_SCCA
);
511 m68k_handle_int(IRQ_SCCB
);