sched: make early bootup sched_clock() use safer
[wrt350n-kernel.git] / arch / x86 / kernel / hpet.c
blob429d084e014d4b11a829bbf01f53fdc860e276e2
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/delay.h>
4 #include <linux/errno.h>
5 #include <linux/hpet.h>
6 #include <linux/init.h>
7 #include <linux/sysdev.h>
8 #include <linux/pm.h>
10 #include <asm/fixmap.h>
11 #include <asm/hpet.h>
12 #include <asm/i8253.h>
13 #include <asm/io.h>
15 #define HPET_MASK CLOCKSOURCE_MASK(32)
16 #define HPET_SHIFT 22
18 /* FSEC = 10^-15
19 NSEC = 10^-9 */
20 #define FSEC_PER_NSEC 1000000
23 * HPET address is set in acpi/boot.c, when an ACPI entry exists
25 unsigned long hpet_address;
26 static void __iomem *hpet_virt_address;
28 unsigned long hpet_readl(unsigned long a)
30 return readl(hpet_virt_address + a);
33 static inline void hpet_writel(unsigned long d, unsigned long a)
35 writel(d, hpet_virt_address + a);
38 #ifdef CONFIG_X86_64
40 #include <asm/pgtable.h>
42 static inline void hpet_set_mapping(void)
44 set_fixmap_nocache(FIX_HPET_BASE, hpet_address);
45 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
46 hpet_virt_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
49 static inline void hpet_clear_mapping(void)
51 hpet_virt_address = NULL;
54 #else
56 static inline void hpet_set_mapping(void)
58 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
61 static inline void hpet_clear_mapping(void)
63 iounmap(hpet_virt_address);
64 hpet_virt_address = NULL;
66 #endif
69 * HPET command line enable / disable
71 static int boot_hpet_disable;
72 int hpet_force_user;
74 static int __init hpet_setup(char* str)
76 if (str) {
77 if (!strncmp("disable", str, 7))
78 boot_hpet_disable = 1;
79 if (!strncmp("force", str, 5))
80 hpet_force_user = 1;
82 return 1;
84 __setup("hpet=", hpet_setup);
86 static int __init disable_hpet(char *str)
88 boot_hpet_disable = 1;
89 return 1;
91 __setup("nohpet", disable_hpet);
93 static inline int is_hpet_capable(void)
95 return (!boot_hpet_disable && hpet_address);
99 * HPET timer interrupt enable / disable
101 static int hpet_legacy_int_enabled;
104 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
106 int is_hpet_enabled(void)
108 return is_hpet_capable() && hpet_legacy_int_enabled;
110 EXPORT_SYMBOL_GPL(is_hpet_enabled);
113 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
114 * timer 0 and timer 1 in case of RTC emulation.
116 #ifdef CONFIG_HPET
117 static void hpet_reserve_platform_timers(unsigned long id)
119 struct hpet __iomem *hpet = hpet_virt_address;
120 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
121 unsigned int nrtimers, i;
122 struct hpet_data hd;
124 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
126 memset(&hd, 0, sizeof (hd));
127 hd.hd_phys_address = hpet_address;
128 hd.hd_address = hpet;
129 hd.hd_nirqs = nrtimers;
130 hd.hd_flags = HPET_DATA_PLATFORM;
131 hpet_reserve_timer(&hd, 0);
133 #ifdef CONFIG_HPET_EMULATE_RTC
134 hpet_reserve_timer(&hd, 1);
135 #endif
136 hd.hd_irq[0] = HPET_LEGACY_8254;
137 hd.hd_irq[1] = HPET_LEGACY_RTC;
139 for (i = 2; i < nrtimers; timer++, i++)
140 hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >>
141 Tn_INT_ROUTE_CNF_SHIFT;
142 hpet_alloc(&hd);
144 #else
145 static void hpet_reserve_platform_timers(unsigned long id) { }
146 #endif
149 * Common hpet info
151 static unsigned long hpet_period;
153 static void hpet_legacy_set_mode(enum clock_event_mode mode,
154 struct clock_event_device *evt);
155 static int hpet_legacy_next_event(unsigned long delta,
156 struct clock_event_device *evt);
159 * The hpet clock event device
161 static struct clock_event_device hpet_clockevent = {
162 .name = "hpet",
163 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
164 .set_mode = hpet_legacy_set_mode,
165 .set_next_event = hpet_legacy_next_event,
166 .shift = 32,
167 .irq = 0,
168 .rating = 50,
171 static void hpet_start_counter(void)
173 unsigned long cfg = hpet_readl(HPET_CFG);
175 cfg &= ~HPET_CFG_ENABLE;
176 hpet_writel(cfg, HPET_CFG);
177 hpet_writel(0, HPET_COUNTER);
178 hpet_writel(0, HPET_COUNTER + 4);
179 cfg |= HPET_CFG_ENABLE;
180 hpet_writel(cfg, HPET_CFG);
183 static void hpet_resume_device(void)
185 force_hpet_resume();
188 static void hpet_restart_counter(void)
190 hpet_resume_device();
191 hpet_start_counter();
194 static void hpet_enable_legacy_int(void)
196 unsigned long cfg = hpet_readl(HPET_CFG);
198 cfg |= HPET_CFG_LEGACY;
199 hpet_writel(cfg, HPET_CFG);
200 hpet_legacy_int_enabled = 1;
203 static void hpet_legacy_clockevent_register(void)
205 uint64_t hpet_freq;
207 /* Start HPET legacy interrupts */
208 hpet_enable_legacy_int();
211 * The period is a femto seconds value. We need to calculate the
212 * scaled math multiplication factor for nanosecond to hpet tick
213 * conversion.
215 hpet_freq = 1000000000000000ULL;
216 do_div(hpet_freq, hpet_period);
217 hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
218 NSEC_PER_SEC, 32);
219 /* Calculate the min / max delta */
220 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
221 &hpet_clockevent);
222 hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
223 &hpet_clockevent);
226 * Start hpet with the boot cpu mask and make it
227 * global after the IO_APIC has been initialized.
229 hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
230 clockevents_register_device(&hpet_clockevent);
231 global_clock_event = &hpet_clockevent;
232 printk(KERN_DEBUG "hpet clockevent registered\n");
235 static void hpet_legacy_set_mode(enum clock_event_mode mode,
236 struct clock_event_device *evt)
238 unsigned long cfg, cmp, now;
239 uint64_t delta;
241 switch(mode) {
242 case CLOCK_EVT_MODE_PERIODIC:
243 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
244 delta >>= hpet_clockevent.shift;
245 now = hpet_readl(HPET_COUNTER);
246 cmp = now + (unsigned long) delta;
247 cfg = hpet_readl(HPET_T0_CFG);
248 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
249 HPET_TN_SETVAL | HPET_TN_32BIT;
250 hpet_writel(cfg, HPET_T0_CFG);
252 * The first write after writing TN_SETVAL to the
253 * config register sets the counter value, the second
254 * write sets the period.
256 hpet_writel(cmp, HPET_T0_CMP);
257 udelay(1);
258 hpet_writel((unsigned long) delta, HPET_T0_CMP);
259 break;
261 case CLOCK_EVT_MODE_ONESHOT:
262 cfg = hpet_readl(HPET_T0_CFG);
263 cfg &= ~HPET_TN_PERIODIC;
264 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
265 hpet_writel(cfg, HPET_T0_CFG);
266 break;
268 case CLOCK_EVT_MODE_UNUSED:
269 case CLOCK_EVT_MODE_SHUTDOWN:
270 cfg = hpet_readl(HPET_T0_CFG);
271 cfg &= ~HPET_TN_ENABLE;
272 hpet_writel(cfg, HPET_T0_CFG);
273 break;
275 case CLOCK_EVT_MODE_RESUME:
276 hpet_enable_legacy_int();
277 break;
281 static int hpet_legacy_next_event(unsigned long delta,
282 struct clock_event_device *evt)
284 unsigned long cnt;
286 cnt = hpet_readl(HPET_COUNTER);
287 cnt += delta;
288 hpet_writel(cnt, HPET_T0_CMP);
290 return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
294 * Clock source related code
296 static cycle_t read_hpet(void)
298 return (cycle_t)hpet_readl(HPET_COUNTER);
301 #ifdef CONFIG_X86_64
302 static cycle_t __vsyscall_fn vread_hpet(void)
304 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
306 #endif
308 static struct clocksource clocksource_hpet = {
309 .name = "hpet",
310 .rating = 250,
311 .read = read_hpet,
312 .mask = HPET_MASK,
313 .shift = HPET_SHIFT,
314 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
315 .resume = hpet_restart_counter,
316 #ifdef CONFIG_X86_64
317 .vread = vread_hpet,
318 #endif
321 static int hpet_clocksource_register(void)
323 u64 tmp, start, now;
324 cycle_t t1;
326 /* Start the counter */
327 hpet_start_counter();
329 /* Verify whether hpet counter works */
330 t1 = read_hpet();
331 rdtscll(start);
334 * We don't know the TSC frequency yet, but waiting for
335 * 200000 TSC cycles is safe:
336 * 4 GHz == 50us
337 * 1 GHz == 200us
339 do {
340 rep_nop();
341 rdtscll(now);
342 } while ((now - start) < 200000UL);
344 if (t1 == read_hpet()) {
345 printk(KERN_WARNING
346 "HPET counter not counting. HPET disabled\n");
347 return -ENODEV;
350 /* Initialize and register HPET clocksource
352 * hpet period is in femto seconds per cycle
353 * so we need to convert this to ns/cyc units
354 * approximated by mult/2^shift
356 * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
357 * fsec/cyc * 1ns/1000000fsec * 2^shift = mult
358 * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
359 * (fsec/cyc << shift)/1000000 = mult
360 * (hpet_period << shift)/FSEC_PER_NSEC = mult
362 tmp = (u64)hpet_period << HPET_SHIFT;
363 do_div(tmp, FSEC_PER_NSEC);
364 clocksource_hpet.mult = (u32)tmp;
366 clocksource_register(&clocksource_hpet);
368 return 0;
372 * Try to setup the HPET timer
374 int __init hpet_enable(void)
376 unsigned long id;
378 if (!is_hpet_capable())
379 return 0;
381 hpet_set_mapping();
384 * Read the period and check for a sane value:
386 hpet_period = hpet_readl(HPET_PERIOD);
387 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
388 goto out_nohpet;
391 * Read the HPET ID register to retrieve the IRQ routing
392 * information and the number of channels
394 id = hpet_readl(HPET_ID);
396 #ifdef CONFIG_HPET_EMULATE_RTC
398 * The legacy routing mode needs at least two channels, tick timer
399 * and the rtc emulation channel.
401 if (!(id & HPET_ID_NUMBER))
402 goto out_nohpet;
403 #endif
405 if (hpet_clocksource_register())
406 goto out_nohpet;
408 if (id & HPET_ID_LEGSUP) {
409 hpet_legacy_clockevent_register();
410 return 1;
412 return 0;
414 out_nohpet:
415 hpet_clear_mapping();
416 boot_hpet_disable = 1;
417 return 0;
421 * Needs to be late, as the reserve_timer code calls kalloc !
423 * Not a problem on i386 as hpet_enable is called from late_time_init,
424 * but on x86_64 it is necessary !
426 static __init int hpet_late_init(void)
428 if (boot_hpet_disable)
429 return -ENODEV;
431 if (!hpet_address) {
432 if (!force_hpet_address)
433 return -ENODEV;
435 hpet_address = force_hpet_address;
436 hpet_enable();
437 if (!hpet_virt_address)
438 return -ENODEV;
441 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
443 return 0;
445 fs_initcall(hpet_late_init);
447 void hpet_disable(void)
449 if (is_hpet_capable()) {
450 unsigned long cfg = hpet_readl(HPET_CFG);
452 if (hpet_legacy_int_enabled) {
453 cfg &= ~HPET_CFG_LEGACY;
454 hpet_legacy_int_enabled = 0;
456 cfg &= ~HPET_CFG_ENABLE;
457 hpet_writel(cfg, HPET_CFG);
461 #ifdef CONFIG_HPET_EMULATE_RTC
463 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
464 * is enabled, we support RTC interrupt functionality in software.
465 * RTC has 3 kinds of interrupts:
466 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
467 * is updated
468 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
469 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
470 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
471 * (1) and (2) above are implemented using polling at a frequency of
472 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
473 * overhead. (DEFAULT_RTC_INT_FREQ)
474 * For (3), we use interrupts at 64Hz or user specified periodic
475 * frequency, whichever is higher.
477 #include <linux/mc146818rtc.h>
478 #include <linux/rtc.h>
479 #include <asm/rtc.h>
481 #define DEFAULT_RTC_INT_FREQ 64
482 #define DEFAULT_RTC_SHIFT 6
483 #define RTC_NUM_INTS 1
485 static unsigned long hpet_rtc_flags;
486 static unsigned long hpet_prev_update_sec;
487 static struct rtc_time hpet_alarm_time;
488 static unsigned long hpet_pie_count;
489 static unsigned long hpet_t1_cmp;
490 static unsigned long hpet_default_delta;
491 static unsigned long hpet_pie_delta;
492 static unsigned long hpet_pie_limit;
494 static rtc_irq_handler irq_handler;
497 * Registers a IRQ handler.
499 int hpet_register_irq_handler(rtc_irq_handler handler)
501 if (!is_hpet_enabled())
502 return -ENODEV;
503 if (irq_handler)
504 return -EBUSY;
506 irq_handler = handler;
508 return 0;
510 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
513 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
514 * and does cleanup.
516 void hpet_unregister_irq_handler(rtc_irq_handler handler)
518 if (!is_hpet_enabled())
519 return;
521 irq_handler = NULL;
522 hpet_rtc_flags = 0;
524 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
527 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
528 * is not supported by all HPET implementations for timer 1.
530 * hpet_rtc_timer_init() is called when the rtc is initialized.
532 int hpet_rtc_timer_init(void)
534 unsigned long cfg, cnt, delta, flags;
536 if (!is_hpet_enabled())
537 return 0;
539 if (!hpet_default_delta) {
540 uint64_t clc;
542 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
543 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
544 hpet_default_delta = (unsigned long) clc;
547 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
548 delta = hpet_default_delta;
549 else
550 delta = hpet_pie_delta;
552 local_irq_save(flags);
554 cnt = delta + hpet_readl(HPET_COUNTER);
555 hpet_writel(cnt, HPET_T1_CMP);
556 hpet_t1_cmp = cnt;
558 cfg = hpet_readl(HPET_T1_CFG);
559 cfg &= ~HPET_TN_PERIODIC;
560 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
561 hpet_writel(cfg, HPET_T1_CFG);
563 local_irq_restore(flags);
565 return 1;
567 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
570 * The functions below are called from rtc driver.
571 * Return 0 if HPET is not being used.
572 * Otherwise do the necessary changes and return 1.
574 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
576 if (!is_hpet_enabled())
577 return 0;
579 hpet_rtc_flags &= ~bit_mask;
580 return 1;
582 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
584 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
586 unsigned long oldbits = hpet_rtc_flags;
588 if (!is_hpet_enabled())
589 return 0;
591 hpet_rtc_flags |= bit_mask;
593 if (!oldbits)
594 hpet_rtc_timer_init();
596 return 1;
598 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
600 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
601 unsigned char sec)
603 if (!is_hpet_enabled())
604 return 0;
606 hpet_alarm_time.tm_hour = hrs;
607 hpet_alarm_time.tm_min = min;
608 hpet_alarm_time.tm_sec = sec;
610 return 1;
612 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
614 int hpet_set_periodic_freq(unsigned long freq)
616 uint64_t clc;
618 if (!is_hpet_enabled())
619 return 0;
621 if (freq <= DEFAULT_RTC_INT_FREQ)
622 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
623 else {
624 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
625 do_div(clc, freq);
626 clc >>= hpet_clockevent.shift;
627 hpet_pie_delta = (unsigned long) clc;
629 return 1;
631 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
633 int hpet_rtc_dropped_irq(void)
635 return is_hpet_enabled();
637 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
639 static void hpet_rtc_timer_reinit(void)
641 unsigned long cfg, delta;
642 int lost_ints = -1;
644 if (unlikely(!hpet_rtc_flags)) {
645 cfg = hpet_readl(HPET_T1_CFG);
646 cfg &= ~HPET_TN_ENABLE;
647 hpet_writel(cfg, HPET_T1_CFG);
648 return;
651 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
652 delta = hpet_default_delta;
653 else
654 delta = hpet_pie_delta;
657 * Increment the comparator value until we are ahead of the
658 * current count.
660 do {
661 hpet_t1_cmp += delta;
662 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
663 lost_ints++;
664 } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
666 if (lost_ints) {
667 if (hpet_rtc_flags & RTC_PIE)
668 hpet_pie_count += lost_ints;
669 if (printk_ratelimit())
670 printk(KERN_WARNING "rtc: lost %d interrupts\n",
671 lost_ints);
675 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
677 struct rtc_time curr_time;
678 unsigned long rtc_int_flag = 0;
680 hpet_rtc_timer_reinit();
681 memset(&curr_time, 0, sizeof(struct rtc_time));
683 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
684 get_rtc_time(&curr_time);
686 if (hpet_rtc_flags & RTC_UIE &&
687 curr_time.tm_sec != hpet_prev_update_sec) {
688 rtc_int_flag = RTC_UF;
689 hpet_prev_update_sec = curr_time.tm_sec;
692 if (hpet_rtc_flags & RTC_PIE &&
693 ++hpet_pie_count >= hpet_pie_limit) {
694 rtc_int_flag |= RTC_PF;
695 hpet_pie_count = 0;
698 if (hpet_rtc_flags & RTC_AIE &&
699 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
700 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
701 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
702 rtc_int_flag |= RTC_AF;
704 if (rtc_int_flag) {
705 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
706 if (irq_handler)
707 irq_handler(rtc_int_flag, dev_id);
709 return IRQ_HANDLED;
711 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
712 #endif