2 * ECC algorithm for M-systems disk on chip. We use the excellent Reed
3 * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the
4 * GNU GPL License. The rest is simply to convert the disk on chip
5 * syndrom into a standard syndom.
7 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
8 * Copyright (C) 2000 Netgem S.A.
10 * $Id: docecc.c,v 1.7 2005/11/07 11:14:25 gleixner Exp $
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <asm/errno.h>
30 #include <asm/uaccess.h>
31 #include <linux/miscdevice.h>
32 #include <linux/delay.h>
33 #include <linux/slab.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
37 #include <linux/mtd/compatmac.h> /* for min() in older kernels */
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/doc2000.h>
42 /* need to undef it (from asm/termbits.h) */
45 #define MM 10 /* Symbol size in bits */
46 #define KK (1023-4) /* Number of data symbols per block */
47 #define B0 510 /* First root of generator polynomial, alpha form */
48 #define PRIM 1 /* power of alpha used to generate roots of generator poly */
49 #define NN ((1 << MM) - 1)
51 typedef unsigned short dtype
;
54 static const int Pp
[MM
+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };
56 /* This defines the type used to store an element of the Galois Field
57 * used by the code. Make sure this is something larger than a char if
58 * if anything larger than GF(256) is used.
60 * Note: unsigned char will work up to GF(256) but int seems to run
61 * faster on the Pentium.
65 /* No legal value in index form represents zero, so
66 * we need a special value for this purpose
70 /* Compute x % NN, where NN is 2**MM - 1,
71 * without a slow divide
78 x
= (x
>> MM
) + (x
& NN
);
85 for(ci=(n)-1;ci >=0;ci--)\
89 #define COPY(a,b,n) {\
91 for(ci=(n)-1;ci >=0;ci--)\
95 #define COPYDOWN(a,b,n) {\
97 for(ci=(n)-1;ci >=0;ci--)\
103 /* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m]
104 lookup tables: index->polynomial form alpha_to[] contains j=alpha**i;
105 polynomial form -> index form index_of[j=alpha**i] = i
106 alpha=2 is the primitive element of GF(2**m)
107 HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows:
108 Let @ represent the primitive element commonly called "alpha" that
109 is the root of the primitive polynomial p(x). Then in GF(2^m), for any
111 @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
112 where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation
113 of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for
114 example the polynomial representation of @^5 would be given by the binary
115 representation of the integer "alpha_to[5]".
116 Similarily, index_of[] can be used as follows:
117 As above, let @ represent the primitive element of GF(2^m) that is
118 the root of the primitive polynomial p(x). In order to find the power
119 of @ (alpha) that has the polynomial representation
120 a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
121 we consider the integer "i" whose binary representation with a(0) being LSB
122 and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry
123 "index_of[i]". Now, @^index_of[i] is that element whose polynomial
124 representation is (a(0),a(1),a(2),...,a(m-1)).
126 The element alpha_to[2^m-1] = 0 always signifying that the
127 representation of "@^infinity" = 0 is (0,0,0,...,0).
128 Similarily, the element index_of[0] = A0 always signifying
129 that the power of alpha which has the polynomial representation
130 (0,0,...,0) is "infinity".
135 generate_gf(dtype Alpha_to
[NN
+ 1], dtype Index_of
[NN
+ 1])
137 register int i
, mask
;
141 for (i
= 0; i
< MM
; i
++) {
143 Index_of
[Alpha_to
[i
]] = i
;
144 /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */
146 Alpha_to
[MM
] ^= mask
; /* Bit-wise EXOR operation */
147 mask
<<= 1; /* single left-shift */
149 Index_of
[Alpha_to
[MM
]] = MM
;
151 * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by
152 * poly-repr of @^i shifted left one-bit and accounting for any @^MM
153 * term that may occur when poly-repr of @^i is shifted.
156 for (i
= MM
+ 1; i
< NN
; i
++) {
157 if (Alpha_to
[i
- 1] >= mask
)
158 Alpha_to
[i
] = Alpha_to
[MM
] ^ ((Alpha_to
[i
- 1] ^ mask
) << 1);
160 Alpha_to
[i
] = Alpha_to
[i
- 1] << 1;
161 Index_of
[Alpha_to
[i
]] = i
;
168 * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content
169 * of the feedback shift register after having processed the data and
172 * Return number of symbols corrected, or -1 if codeword is illegal
173 * or uncorrectable. If eras_pos is non-null, the detected error locations
174 * are written back. NOTE! This array must be at least NN-KK elements long.
175 * The corrected data are written in eras_val[]. They must be xor with the data
176 * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] .
178 * First "no_eras" erasures are declared by the calling program. Then, the
179 * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2).
180 * If the number of channel errors is not greater than "t_after_eras" the
181 * transmitted codeword will be recovered. Details of algorithm can be found
182 * in R. Blahut's "Theory ... of Error-Correcting Codes".
184 * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure
185 * will result. The decoder *could* check for this condition, but it would involve
186 * extra time on every decoding operation.
189 eras_dec_rs(dtype Alpha_to
[NN
+ 1], dtype Index_of
[NN
+ 1],
190 gf bb
[NN
- KK
+ 1], gf eras_val
[NN
-KK
], int eras_pos
[NN
-KK
],
193 int deg_lambda
, el
, deg_omega
;
195 gf u
,q
,tmp
,num1
,num2
,den
,discr_r
;
196 gf lambda
[NN
-KK
+ 1], s
[NN
-KK
+ 1]; /* Err+Eras Locator poly
197 * and syndrome poly */
198 gf b
[NN
-KK
+ 1], t
[NN
-KK
+ 1], omega
[NN
-KK
+ 1];
199 gf root
[NN
-KK
], reg
[NN
-KK
+ 1], loc
[NN
-KK
];
200 int syn_error
, count
;
207 /* if remainder is zero, data[] is a codeword and there are no
208 * errors to correct. So return data[] unmodified
214 for(i
=1;i
<=NN
-KK
;i
++){
217 for(j
=1;j
<NN
-KK
;j
++){
220 tmp
= Index_of
[bb
[j
]];
222 for(i
=1;i
<=NN
-KK
;i
++)
223 s
[i
] ^= Alpha_to
[modnn(tmp
+ (B0
+i
-1)*PRIM
*j
)];
226 /* undo the feedback register implicit multiplication and convert
227 syndromes to index form */
229 for(i
=1;i
<=NN
-KK
;i
++) {
230 tmp
= Index_of
[s
[i
]];
232 tmp
= modnn(tmp
+ 2 * KK
* (B0
+i
-1)*PRIM
);
236 CLEAR(&lambda
[1],NN
-KK
);
240 /* Init lambda to be the erasure locator polynomial */
241 lambda
[1] = Alpha_to
[modnn(PRIM
* eras_pos
[0])];
242 for (i
= 1; i
< no_eras
; i
++) {
243 u
= modnn(PRIM
*eras_pos
[i
]);
244 for (j
= i
+1; j
> 0; j
--) {
245 tmp
= Index_of
[lambda
[j
- 1]];
247 lambda
[j
] ^= Alpha_to
[modnn(u
+ tmp
)];
251 /* Test code that verifies the erasure locator polynomial just constructed
252 Needed only for decoder debugging. */
254 /* find roots of the erasure location polynomial */
255 for(i
=1;i
<=no_eras
;i
++)
256 reg
[i
] = Index_of
[lambda
[i
]];
258 for (i
= 1,k
=NN
-Ldec
; i
<= NN
; i
++,k
= modnn(NN
+k
-Ldec
)) {
260 for (j
= 1; j
<= no_eras
; j
++)
262 reg
[j
] = modnn(reg
[j
] + j
);
263 q
^= Alpha_to
[reg
[j
]];
267 /* store root and error location number indices */
272 if (count
!= no_eras
) {
273 printf("\n lambda(x) is WRONG\n");
278 printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
279 for (i
= 0; i
< count
; i
++)
280 printf("%d ", loc
[i
]);
285 for(i
=0;i
<NN
-KK
+1;i
++)
286 b
[i
] = Index_of
[lambda
[i
]];
289 * Begin Berlekamp-Massey algorithm to determine error+erasure
294 while (++r
<= NN
-KK
) { /* r is the step number */
295 /* Compute discrepancy at the r-th step in poly-form */
297 for (i
= 0; i
< r
; i
++){
298 if ((lambda
[i
] != 0) && (s
[r
- i
] != A0
)) {
299 discr_r
^= Alpha_to
[modnn(Index_of
[lambda
[i
]] + s
[r
- i
])];
302 discr_r
= Index_of
[discr_r
]; /* Index form */
304 /* 2 lines below: B(x) <-- x*B(x) */
305 COPYDOWN(&b
[1],b
,NN
-KK
);
308 /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
310 for (i
= 0 ; i
< NN
-KK
; i
++) {
312 t
[i
+1] = lambda
[i
+1] ^ Alpha_to
[modnn(discr_r
+ b
[i
])];
314 t
[i
+1] = lambda
[i
+1];
316 if (2 * el
<= r
+ no_eras
- 1) {
317 el
= r
+ no_eras
- el
;
319 * 2 lines below: B(x) <-- inv(discr_r) *
322 for (i
= 0; i
<= NN
-KK
; i
++)
323 b
[i
] = (lambda
[i
] == 0) ? A0
: modnn(Index_of
[lambda
[i
]] - discr_r
+ NN
);
325 /* 2 lines below: B(x) <-- x*B(x) */
326 COPYDOWN(&b
[1],b
,NN
-KK
);
329 COPY(lambda
,t
,NN
-KK
+1);
333 /* Convert lambda to index form and compute deg(lambda(x)) */
335 for(i
=0;i
<NN
-KK
+1;i
++){
336 lambda
[i
] = Index_of
[lambda
[i
]];
341 * Find roots of the error+erasure locator polynomial by Chien
344 COPY(®
[1],&lambda
[1],NN
-KK
);
345 count
= 0; /* Number of roots of lambda(x) */
346 for (i
= 1,k
=NN
-Ldec
; i
<= NN
; i
++,k
= modnn(NN
+k
-Ldec
)) {
348 for (j
= deg_lambda
; j
> 0; j
--){
350 reg
[j
] = modnn(reg
[j
] + j
);
351 q
^= Alpha_to
[reg
[j
]];
356 /* store root (index-form) and error location number */
359 /* If we've already found max possible roots,
360 * abort the search to save time
362 if(++count
== deg_lambda
)
365 if (deg_lambda
!= count
) {
367 * deg(lambda) unequal to number of roots => uncorrectable
374 * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
375 * x**(NN-KK)). in index form. Also find deg(omega).
378 for (i
= 0; i
< NN
-KK
;i
++){
380 j
= (deg_lambda
< i
) ? deg_lambda
: i
;
382 if ((s
[i
+ 1 - j
] != A0
) && (lambda
[j
] != A0
))
383 tmp
^= Alpha_to
[modnn(s
[i
+ 1 - j
] + lambda
[j
])];
387 omega
[i
] = Index_of
[tmp
];
392 * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
393 * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form
395 for (j
= count
-1; j
>=0; j
--) {
397 for (i
= deg_omega
; i
>= 0; i
--) {
399 num1
^= Alpha_to
[modnn(omega
[i
] + i
* root
[j
])];
401 num2
= Alpha_to
[modnn(root
[j
] * (B0
- 1) + NN
)];
404 /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
405 for (i
= min(deg_lambda
,NN
-KK
-1) & ~1; i
>= 0; i
-=2) {
406 if(lambda
[i
+1] != A0
)
407 den
^= Alpha_to
[modnn(lambda
[i
+1] + i
* root
[j
])];
411 printf("\n ERROR: denominator = 0\n");
413 /* Convert to dual- basis */
417 /* Apply error to data */
419 eras_val
[j
] = Alpha_to
[modnn(Index_of
[num1
] + Index_of
[num2
] + NN
- Index_of
[den
])];
426 eras_pos
[i
] = loc
[i
];
430 /***************************************************************************/
431 /* The DOC specific code begins here */
433 #define SECTOR_SIZE 512
434 /* The sector bytes are packed into NB_DATA MM bits words */
435 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM)
438 * Correct the errors in 'sector[]' by using 'ecc1[]' which is the
439 * content of the feedback shift register applyied to the sector and
440 * the ECC. Return the number of errors corrected (and correct them in
441 * sector), or -1 if error
443 int doc_decode_ecc(unsigned char sector
[SECTOR_SIZE
], unsigned char ecc1
[6])
445 int parity
, i
, nb_errors
;
448 int error_pos
[NN
-KK
], pos
, bitpos
, index
, val
;
449 dtype
*Alpha_to
, *Index_of
;
451 /* init log and exp tables here to save memory. However, it is slower */
452 Alpha_to
= kmalloc((NN
+ 1) * sizeof(dtype
), GFP_KERNEL
);
456 Index_of
= kmalloc((NN
+ 1) * sizeof(dtype
), GFP_KERNEL
);
462 generate_gf(Alpha_to
, Index_of
);
466 bb
[0] = (ecc1
[4] & 0xff) | ((ecc1
[5] & 0x03) << 8);
467 bb
[1] = ((ecc1
[5] & 0xfc) >> 2) | ((ecc1
[2] & 0x0f) << 6);
468 bb
[2] = ((ecc1
[2] & 0xf0) >> 4) | ((ecc1
[3] & 0x3f) << 4);
469 bb
[3] = ((ecc1
[3] & 0xc0) >> 6) | ((ecc1
[0] & 0xff) << 2);
471 nb_errors
= eras_dec_rs(Alpha_to
, Index_of
, bb
,
472 error_val
, error_pos
, 0);
476 /* correct the errors */
477 for(i
=0;i
<nb_errors
;i
++) {
479 if (pos
>= NB_DATA
&& pos
< KK
) {
484 /* extract bit position (MSB first) */
485 pos
= 10 * (NB_DATA
- 1 - pos
) - 6;
486 /* now correct the following 10 bits. At most two bytes
487 can be modified since pos is even */
488 index
= (pos
>> 3) ^ 1;
490 if ((index
>= 0 && index
< SECTOR_SIZE
) ||
491 index
== (SECTOR_SIZE
+ 1)) {
492 val
= error_val
[i
] >> (2 + bitpos
);
494 if (index
< SECTOR_SIZE
)
495 sector
[index
] ^= val
;
497 index
= ((pos
>> 3) + 1) ^ 1;
498 bitpos
= (bitpos
+ 10) & 7;
501 if ((index
>= 0 && index
< SECTOR_SIZE
) ||
502 index
== (SECTOR_SIZE
+ 1)) {
503 val
= error_val
[i
] << (8 - bitpos
);
505 if (index
< SECTOR_SIZE
)
506 sector
[index
] ^= val
;
511 /* use parity to test extra errors */
512 if ((parity
& 0xff) != 0)
521 EXPORT_SYMBOL_GPL(doc_decode_ecc
);
523 MODULE_LICENSE("GPL");
524 MODULE_AUTHOR("Fabrice Bellard <fabrice.bellard@netgem.com>");
525 MODULE_DESCRIPTION("ECC code for correcting errors detected by DiskOnChip 2000 and Millennium ECC hardware");