2 * Copyright (c) 2003-2007 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
35 #include <linux/if_vlan.h>
36 #include <linux/jhash.h>
37 #include <net/neighbour.h>
40 #include "cxgb3_defs.h"
43 #include "firmware_exports.h"
45 #define VLAN_NONE 0xfff
48 * Module locking notes: There is a RW lock protecting the L2 table as a
49 * whole plus a spinlock per L2T entry. Entry lookups and allocations happen
50 * under the protection of the table lock, individual entry changes happen
51 * while holding that entry's spinlock. The table lock nests outside the
52 * entry locks. Allocations of new entries take the table lock as writers so
53 * no other lookups can happen while allocating new entries. Entry updates
54 * take the table lock as readers so multiple entries can be updated in
55 * parallel. An L2T entry can be dropped by decrementing its reference count
56 * and therefore can happen in parallel with entry allocation but no entry
57 * can change state or increment its ref count during allocation as both of
58 * these perform lookups.
61 static inline unsigned int vlan_prio(const struct l2t_entry
*e
)
66 static inline unsigned int arp_hash(u32 key
, int ifindex
,
67 const struct l2t_data
*d
)
69 return jhash_2words(key
, ifindex
, 0) & (d
->nentries
- 1);
72 static inline void neigh_replace(struct l2t_entry
*e
, struct neighbour
*n
)
76 neigh_release(e
->neigh
);
81 * Set up an L2T entry and send any packets waiting in the arp queue. The
82 * supplied skb is used for the CPL_L2T_WRITE_REQ. Must be called with the
85 static int setup_l2e_send_pending(struct t3cdev
*dev
, struct sk_buff
*skb
,
88 struct cpl_l2t_write_req
*req
;
91 skb
= alloc_skb(sizeof(*req
), GFP_ATOMIC
);
96 req
= (struct cpl_l2t_write_req
*)__skb_put(skb
, sizeof(*req
));
97 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
98 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ
, e
->idx
));
99 req
->params
= htonl(V_L2T_W_IDX(e
->idx
) | V_L2T_W_IFF(e
->smt_idx
) |
100 V_L2T_W_VLAN(e
->vlan
& VLAN_VID_MASK
) |
101 V_L2T_W_PRIO(vlan_prio(e
)));
102 memcpy(e
->dmac
, e
->neigh
->ha
, sizeof(e
->dmac
));
103 memcpy(req
->dst_mac
, e
->dmac
, sizeof(req
->dst_mac
));
104 skb
->priority
= CPL_PRIORITY_CONTROL
;
105 cxgb3_ofld_send(dev
, skb
);
106 while (e
->arpq_head
) {
108 e
->arpq_head
= skb
->next
;
110 cxgb3_ofld_send(dev
, skb
);
113 e
->state
= L2T_STATE_VALID
;
119 * Add a packet to the an L2T entry's queue of packets awaiting resolution.
120 * Must be called with the entry's lock held.
122 static inline void arpq_enqueue(struct l2t_entry
*e
, struct sk_buff
*skb
)
126 e
->arpq_tail
->next
= skb
;
132 int t3_l2t_send_slow(struct t3cdev
*dev
, struct sk_buff
*skb
,
137 case L2T_STATE_STALE
: /* entry is stale, kick off revalidation */
138 neigh_event_send(e
->neigh
, NULL
);
139 spin_lock_bh(&e
->lock
);
140 if (e
->state
== L2T_STATE_STALE
)
141 e
->state
= L2T_STATE_VALID
;
142 spin_unlock_bh(&e
->lock
);
143 case L2T_STATE_VALID
: /* fast-path, send the packet on */
144 return cxgb3_ofld_send(dev
, skb
);
145 case L2T_STATE_RESOLVING
:
146 spin_lock_bh(&e
->lock
);
147 if (e
->state
!= L2T_STATE_RESOLVING
) {
148 /* ARP already completed */
149 spin_unlock_bh(&e
->lock
);
152 arpq_enqueue(e
, skb
);
153 spin_unlock_bh(&e
->lock
);
156 * Only the first packet added to the arpq should kick off
157 * resolution. However, because the alloc_skb below can fail,
158 * we allow each packet added to the arpq to retry resolution
159 * as a way of recovering from transient memory exhaustion.
160 * A better way would be to use a work request to retry L2T
161 * entries when there's no memory.
163 if (!neigh_event_send(e
->neigh
, NULL
)) {
164 skb
= alloc_skb(sizeof(struct cpl_l2t_write_req
),
169 spin_lock_bh(&e
->lock
);
171 setup_l2e_send_pending(dev
, skb
, e
);
172 else /* we lost the race */
174 spin_unlock_bh(&e
->lock
);
180 EXPORT_SYMBOL(t3_l2t_send_slow
);
182 void t3_l2t_send_event(struct t3cdev
*dev
, struct l2t_entry
*e
)
186 case L2T_STATE_STALE
: /* entry is stale, kick off revalidation */
187 neigh_event_send(e
->neigh
, NULL
);
188 spin_lock_bh(&e
->lock
);
189 if (e
->state
== L2T_STATE_STALE
) {
190 e
->state
= L2T_STATE_VALID
;
192 spin_unlock_bh(&e
->lock
);
194 case L2T_STATE_VALID
: /* fast-path, send the packet on */
196 case L2T_STATE_RESOLVING
:
197 spin_lock_bh(&e
->lock
);
198 if (e
->state
!= L2T_STATE_RESOLVING
) {
199 /* ARP already completed */
200 spin_unlock_bh(&e
->lock
);
203 spin_unlock_bh(&e
->lock
);
206 * Only the first packet added to the arpq should kick off
207 * resolution. However, because the alloc_skb below can fail,
208 * we allow each packet added to the arpq to retry resolution
209 * as a way of recovering from transient memory exhaustion.
210 * A better way would be to use a work request to retry L2T
211 * entries when there's no memory.
213 neigh_event_send(e
->neigh
, NULL
);
218 EXPORT_SYMBOL(t3_l2t_send_event
);
221 * Allocate a free L2T entry. Must be called with l2t_data.lock held.
223 static struct l2t_entry
*alloc_l2e(struct l2t_data
*d
)
225 struct l2t_entry
*end
, *e
, **p
;
227 if (!atomic_read(&d
->nfree
))
230 /* there's definitely a free entry */
231 for (e
= d
->rover
, end
= &d
->l2tab
[d
->nentries
]; e
!= end
; ++e
)
232 if (atomic_read(&e
->refcnt
) == 0)
235 for (e
= &d
->l2tab
[1]; atomic_read(&e
->refcnt
); ++e
) ;
238 atomic_dec(&d
->nfree
);
241 * The entry we found may be an inactive entry that is
242 * presently in the hash table. We need to remove it.
244 if (e
->state
!= L2T_STATE_UNUSED
) {
245 int hash
= arp_hash(e
->addr
, e
->ifindex
, d
);
247 for (p
= &d
->l2tab
[hash
].first
; *p
; p
= &(*p
)->next
)
252 e
->state
= L2T_STATE_UNUSED
;
258 * Called when an L2T entry has no more users. The entry is left in the hash
259 * table since it is likely to be reused but we also bump nfree to indicate
260 * that the entry can be reallocated for a different neighbor. We also drop
261 * the existing neighbor reference in case the neighbor is going away and is
262 * waiting on our reference.
264 * Because entries can be reallocated to other neighbors once their ref count
265 * drops to 0 we need to take the entry's lock to avoid races with a new
268 void t3_l2e_free(struct l2t_data
*d
, struct l2t_entry
*e
)
270 spin_lock_bh(&e
->lock
);
271 if (atomic_read(&e
->refcnt
) == 0) { /* hasn't been recycled */
273 neigh_release(e
->neigh
);
277 spin_unlock_bh(&e
->lock
);
278 atomic_inc(&d
->nfree
);
281 EXPORT_SYMBOL(t3_l2e_free
);
284 * Update an L2T entry that was previously used for the same next hop as neigh.
285 * Must be called with softirqs disabled.
287 static inline void reuse_entry(struct l2t_entry
*e
, struct neighbour
*neigh
)
289 unsigned int nud_state
;
291 spin_lock(&e
->lock
); /* avoid race with t3_l2t_free */
293 if (neigh
!= e
->neigh
)
294 neigh_replace(e
, neigh
);
295 nud_state
= neigh
->nud_state
;
296 if (memcmp(e
->dmac
, neigh
->ha
, sizeof(e
->dmac
)) ||
297 !(nud_state
& NUD_VALID
))
298 e
->state
= L2T_STATE_RESOLVING
;
299 else if (nud_state
& NUD_CONNECTED
)
300 e
->state
= L2T_STATE_VALID
;
302 e
->state
= L2T_STATE_STALE
;
303 spin_unlock(&e
->lock
);
306 struct l2t_entry
*t3_l2t_get(struct t3cdev
*cdev
, struct neighbour
*neigh
,
307 struct net_device
*dev
)
310 struct l2t_data
*d
= L2DATA(cdev
);
311 u32 addr
= *(u32
*) neigh
->primary_key
;
312 int ifidx
= neigh
->dev
->ifindex
;
313 int hash
= arp_hash(addr
, ifidx
, d
);
314 struct port_info
*p
= netdev_priv(dev
);
315 int smt_idx
= p
->port_id
;
317 write_lock_bh(&d
->lock
);
318 for (e
= d
->l2tab
[hash
].first
; e
; e
= e
->next
)
319 if (e
->addr
== addr
&& e
->ifindex
== ifidx
&&
320 e
->smt_idx
== smt_idx
) {
322 if (atomic_read(&e
->refcnt
) == 1)
323 reuse_entry(e
, neigh
);
327 /* Need to allocate a new entry */
330 spin_lock(&e
->lock
); /* avoid race with t3_l2t_free */
331 e
->next
= d
->l2tab
[hash
].first
;
332 d
->l2tab
[hash
].first
= e
;
333 e
->state
= L2T_STATE_RESOLVING
;
336 e
->smt_idx
= smt_idx
;
337 atomic_set(&e
->refcnt
, 1);
338 neigh_replace(e
, neigh
);
339 if (neigh
->dev
->priv_flags
& IFF_802_1Q_VLAN
)
340 e
->vlan
= vlan_dev_info(neigh
->dev
)->vlan_id
;
343 spin_unlock(&e
->lock
);
346 write_unlock_bh(&d
->lock
);
350 EXPORT_SYMBOL(t3_l2t_get
);
353 * Called when address resolution fails for an L2T entry to handle packets
354 * on the arpq head. If a packet specifies a failure handler it is invoked,
355 * otherwise the packets is sent to the offload device.
357 * XXX: maybe we should abandon the latter behavior and just require a failure
360 static void handle_failed_resolution(struct t3cdev
*dev
, struct sk_buff
*arpq
)
363 struct sk_buff
*skb
= arpq
;
364 struct l2t_skb_cb
*cb
= L2T_SKB_CB(skb
);
368 if (cb
->arp_failure_handler
)
369 cb
->arp_failure_handler(dev
, skb
);
371 cxgb3_ofld_send(dev
, skb
);
376 * Called when the host's ARP layer makes a change to some entry that is
377 * loaded into the HW L2 table.
379 void t3_l2t_update(struct t3cdev
*dev
, struct neighbour
*neigh
)
382 struct sk_buff
*arpq
= NULL
;
383 struct l2t_data
*d
= L2DATA(dev
);
384 u32 addr
= *(u32
*) neigh
->primary_key
;
385 int ifidx
= neigh
->dev
->ifindex
;
386 int hash
= arp_hash(addr
, ifidx
, d
);
388 read_lock_bh(&d
->lock
);
389 for (e
= d
->l2tab
[hash
].first
; e
; e
= e
->next
)
390 if (e
->addr
== addr
&& e
->ifindex
== ifidx
) {
394 read_unlock_bh(&d
->lock
);
398 read_unlock(&d
->lock
);
399 if (atomic_read(&e
->refcnt
)) {
400 if (neigh
!= e
->neigh
)
401 neigh_replace(e
, neigh
);
403 if (e
->state
== L2T_STATE_RESOLVING
) {
404 if (neigh
->nud_state
& NUD_FAILED
) {
406 e
->arpq_head
= e
->arpq_tail
= NULL
;
407 } else if (neigh
->nud_state
& (NUD_CONNECTED
|NUD_STALE
))
408 setup_l2e_send_pending(dev
, NULL
, e
);
410 e
->state
= neigh_is_connected(neigh
) ?
411 L2T_STATE_VALID
: L2T_STATE_STALE
;
412 if (memcmp(e
->dmac
, neigh
->ha
, 6))
413 setup_l2e_send_pending(dev
, NULL
, e
);
416 spin_unlock_bh(&e
->lock
);
419 handle_failed_resolution(dev
, arpq
);
422 struct l2t_data
*t3_init_l2t(unsigned int l2t_capacity
)
425 int i
, size
= sizeof(*d
) + l2t_capacity
* sizeof(struct l2t_entry
);
427 d
= cxgb_alloc_mem(size
);
431 d
->nentries
= l2t_capacity
;
432 d
->rover
= &d
->l2tab
[1]; /* entry 0 is not used */
433 atomic_set(&d
->nfree
, l2t_capacity
- 1);
434 rwlock_init(&d
->lock
);
436 for (i
= 0; i
< l2t_capacity
; ++i
) {
438 d
->l2tab
[i
].state
= L2T_STATE_UNUSED
;
439 spin_lock_init(&d
->l2tab
[i
].lock
);
440 atomic_set(&d
->l2tab
[i
].refcnt
, 0);
445 void t3_free_l2t(struct l2t_data
*d
)