1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/tcp.h>
35 #include <linux/ipv6.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
48 #define DRV_VERSION "1.0.8-k2"
49 char igb_driver_name
[] = "igb";
50 char igb_driver_version
[] = DRV_VERSION
;
51 static const char igb_driver_string
[] =
52 "Intel(R) Gigabit Ethernet Network Driver";
53 static const char igb_copyright
[] = "Copyright (c) 2007 Intel Corporation.";
56 static const struct e1000_info
*igb_info_tbl
[] = {
57 [board_82575
] = &e1000_82575_info
,
60 static struct pci_device_id igb_pci_tbl
[] = {
61 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_COPPER
), board_82575
},
62 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_FIBER_SERDES
), board_82575
},
63 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575GB_QUAD_COPPER
), board_82575
},
64 /* required last entry */
68 MODULE_DEVICE_TABLE(pci
, igb_pci_tbl
);
70 void igb_reset(struct igb_adapter
*);
71 static int igb_setup_all_tx_resources(struct igb_adapter
*);
72 static int igb_setup_all_rx_resources(struct igb_adapter
*);
73 static void igb_free_all_tx_resources(struct igb_adapter
*);
74 static void igb_free_all_rx_resources(struct igb_adapter
*);
75 static void igb_free_tx_resources(struct igb_adapter
*, struct igb_ring
*);
76 static void igb_free_rx_resources(struct igb_adapter
*, struct igb_ring
*);
77 void igb_update_stats(struct igb_adapter
*);
78 static int igb_probe(struct pci_dev
*, const struct pci_device_id
*);
79 static void __devexit
igb_remove(struct pci_dev
*pdev
);
80 static int igb_sw_init(struct igb_adapter
*);
81 static int igb_open(struct net_device
*);
82 static int igb_close(struct net_device
*);
83 static void igb_configure_tx(struct igb_adapter
*);
84 static void igb_configure_rx(struct igb_adapter
*);
85 static void igb_setup_rctl(struct igb_adapter
*);
86 static void igb_clean_all_tx_rings(struct igb_adapter
*);
87 static void igb_clean_all_rx_rings(struct igb_adapter
*);
88 static void igb_clean_tx_ring(struct igb_adapter
*, struct igb_ring
*);
89 static void igb_clean_rx_ring(struct igb_adapter
*, struct igb_ring
*);
90 static void igb_set_multi(struct net_device
*);
91 static void igb_update_phy_info(unsigned long);
92 static void igb_watchdog(unsigned long);
93 static void igb_watchdog_task(struct work_struct
*);
94 static int igb_xmit_frame_ring_adv(struct sk_buff
*, struct net_device
*,
96 static int igb_xmit_frame_adv(struct sk_buff
*skb
, struct net_device
*);
97 static struct net_device_stats
*igb_get_stats(struct net_device
*);
98 static int igb_change_mtu(struct net_device
*, int);
99 static int igb_set_mac(struct net_device
*, void *);
100 static irqreturn_t
igb_intr(int irq
, void *);
101 static irqreturn_t
igb_intr_msi(int irq
, void *);
102 static irqreturn_t
igb_msix_other(int irq
, void *);
103 static irqreturn_t
igb_msix_rx(int irq
, void *);
104 static irqreturn_t
igb_msix_tx(int irq
, void *);
105 static int igb_clean_rx_ring_msix(struct napi_struct
*, int);
106 static bool igb_clean_tx_irq(struct igb_adapter
*, struct igb_ring
*);
107 static int igb_clean(struct napi_struct
*, int);
108 static bool igb_clean_rx_irq_adv(struct igb_adapter
*,
109 struct igb_ring
*, int *, int);
110 static void igb_alloc_rx_buffers_adv(struct igb_adapter
*,
111 struct igb_ring
*, int);
112 static int igb_ioctl(struct net_device
*, struct ifreq
*, int cmd
);
113 static void igb_tx_timeout(struct net_device
*);
114 static void igb_reset_task(struct work_struct
*);
115 static void igb_vlan_rx_register(struct net_device
*, struct vlan_group
*);
116 static void igb_vlan_rx_add_vid(struct net_device
*, u16
);
117 static void igb_vlan_rx_kill_vid(struct net_device
*, u16
);
118 static void igb_restore_vlan(struct igb_adapter
*);
120 static int igb_suspend(struct pci_dev
*, pm_message_t
);
122 static int igb_resume(struct pci_dev
*);
124 static void igb_shutdown(struct pci_dev
*);
126 #ifdef CONFIG_NET_POLL_CONTROLLER
127 /* for netdump / net console */
128 static void igb_netpoll(struct net_device
*);
131 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*,
132 pci_channel_state_t
);
133 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*);
134 static void igb_io_resume(struct pci_dev
*);
136 static struct pci_error_handlers igb_err_handler
= {
137 .error_detected
= igb_io_error_detected
,
138 .slot_reset
= igb_io_slot_reset
,
139 .resume
= igb_io_resume
,
143 static struct pci_driver igb_driver
= {
144 .name
= igb_driver_name
,
145 .id_table
= igb_pci_tbl
,
147 .remove
= __devexit_p(igb_remove
),
149 /* Power Managment Hooks */
150 .suspend
= igb_suspend
,
151 .resume
= igb_resume
,
153 .shutdown
= igb_shutdown
,
154 .err_handler
= &igb_err_handler
157 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
158 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
159 MODULE_LICENSE("GPL");
160 MODULE_VERSION(DRV_VERSION
);
164 * igb_get_hw_dev_name - return device name string
165 * used by hardware layer to print debugging information
167 char *igb_get_hw_dev_name(struct e1000_hw
*hw
)
169 struct igb_adapter
*adapter
= hw
->back
;
170 return adapter
->netdev
->name
;
175 * igb_init_module - Driver Registration Routine
177 * igb_init_module is the first routine called when the driver is
178 * loaded. All it does is register with the PCI subsystem.
180 static int __init
igb_init_module(void)
183 printk(KERN_INFO
"%s - version %s\n",
184 igb_driver_string
, igb_driver_version
);
186 printk(KERN_INFO
"%s\n", igb_copyright
);
188 ret
= pci_register_driver(&igb_driver
);
192 module_init(igb_init_module
);
195 * igb_exit_module - Driver Exit Cleanup Routine
197 * igb_exit_module is called just before the driver is removed
200 static void __exit
igb_exit_module(void)
202 pci_unregister_driver(&igb_driver
);
205 module_exit(igb_exit_module
);
208 * igb_alloc_queues - Allocate memory for all rings
209 * @adapter: board private structure to initialize
211 * We allocate one ring per queue at run-time since we don't know the
212 * number of queues at compile-time.
214 static int igb_alloc_queues(struct igb_adapter
*adapter
)
218 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
219 sizeof(struct igb_ring
), GFP_KERNEL
);
220 if (!adapter
->tx_ring
)
223 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
224 sizeof(struct igb_ring
), GFP_KERNEL
);
225 if (!adapter
->rx_ring
) {
226 kfree(adapter
->tx_ring
);
230 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
231 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
232 ring
->adapter
= adapter
;
233 ring
->itr_register
= E1000_ITR
;
235 if (!ring
->napi
.poll
)
236 netif_napi_add(adapter
->netdev
, &ring
->napi
, igb_clean
,
237 adapter
->napi
.weight
/
238 adapter
->num_rx_queues
);
243 #define IGB_N0_QUEUE -1
244 static void igb_assign_vector(struct igb_adapter
*adapter
, int rx_queue
,
245 int tx_queue
, int msix_vector
)
248 struct e1000_hw
*hw
= &adapter
->hw
;
249 /* The 82575 assigns vectors using a bitmask, which matches the
250 bitmask for the EICR/EIMS/EIMC registers. To assign one
251 or more queues to a vector, we write the appropriate bits
252 into the MSIXBM register for that vector. */
253 if (rx_queue
> IGB_N0_QUEUE
) {
254 msixbm
= E1000_EICR_RX_QUEUE0
<< rx_queue
;
255 adapter
->rx_ring
[rx_queue
].eims_value
= msixbm
;
257 if (tx_queue
> IGB_N0_QUEUE
) {
258 msixbm
|= E1000_EICR_TX_QUEUE0
<< tx_queue
;
259 adapter
->tx_ring
[tx_queue
].eims_value
=
260 E1000_EICR_TX_QUEUE0
<< tx_queue
;
262 array_wr32(E1000_MSIXBM(0), msix_vector
, msixbm
);
266 * igb_configure_msix - Configure MSI-X hardware
268 * igb_configure_msix sets up the hardware to properly
269 * generate MSI-X interrupts.
271 static void igb_configure_msix(struct igb_adapter
*adapter
)
275 struct e1000_hw
*hw
= &adapter
->hw
;
277 adapter
->eims_enable_mask
= 0;
279 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
280 struct igb_ring
*tx_ring
= &adapter
->tx_ring
[i
];
281 igb_assign_vector(adapter
, IGB_N0_QUEUE
, i
, vector
++);
282 adapter
->eims_enable_mask
|= tx_ring
->eims_value
;
283 if (tx_ring
->itr_val
)
284 writel(1000000000 / (tx_ring
->itr_val
* 256),
285 hw
->hw_addr
+ tx_ring
->itr_register
);
287 writel(1, hw
->hw_addr
+ tx_ring
->itr_register
);
290 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
291 struct igb_ring
*rx_ring
= &adapter
->rx_ring
[i
];
292 igb_assign_vector(adapter
, i
, IGB_N0_QUEUE
, vector
++);
293 adapter
->eims_enable_mask
|= rx_ring
->eims_value
;
294 if (rx_ring
->itr_val
)
295 writel(1000000000 / (rx_ring
->itr_val
* 256),
296 hw
->hw_addr
+ rx_ring
->itr_register
);
298 writel(1, hw
->hw_addr
+ rx_ring
->itr_register
);
302 /* set vector for other causes, i.e. link changes */
303 array_wr32(E1000_MSIXBM(0), vector
++,
306 /* disable IAM for ICR interrupt bits */
309 tmp
= rd32(E1000_CTRL_EXT
);
310 /* enable MSI-X PBA support*/
311 tmp
|= E1000_CTRL_EXT_PBA_CLR
;
313 /* Auto-Mask interrupts upon ICR read. */
314 tmp
|= E1000_CTRL_EXT_EIAME
;
315 tmp
|= E1000_CTRL_EXT_IRCA
;
317 wr32(E1000_CTRL_EXT
, tmp
);
318 adapter
->eims_enable_mask
|= E1000_EIMS_OTHER
;
324 * igb_request_msix - Initialize MSI-X interrupts
326 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
329 static int igb_request_msix(struct igb_adapter
*adapter
)
331 struct net_device
*netdev
= adapter
->netdev
;
332 int i
, err
= 0, vector
= 0;
336 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
337 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
338 sprintf(ring
->name
, "%s-tx%d", netdev
->name
, i
);
339 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
340 &igb_msix_tx
, 0, ring
->name
,
341 &(adapter
->tx_ring
[i
]));
344 ring
->itr_register
= E1000_EITR(0) + (vector
<< 2);
345 ring
->itr_val
= adapter
->itr
;
348 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
349 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
350 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
351 sprintf(ring
->name
, "%s-rx%d", netdev
->name
, i
);
353 memcpy(ring
->name
, netdev
->name
, IFNAMSIZ
);
354 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
355 &igb_msix_rx
, 0, ring
->name
,
356 &(adapter
->rx_ring
[i
]));
359 ring
->itr_register
= E1000_EITR(0) + (vector
<< 2);
360 ring
->itr_val
= adapter
->itr
;
364 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
365 &igb_msix_other
, 0, netdev
->name
, netdev
);
369 adapter
->napi
.poll
= igb_clean_rx_ring_msix
;
370 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
371 adapter
->rx_ring
[i
].napi
.poll
= adapter
->napi
.poll
;
372 igb_configure_msix(adapter
);
378 static void igb_reset_interrupt_capability(struct igb_adapter
*adapter
)
380 if (adapter
->msix_entries
) {
381 pci_disable_msix(adapter
->pdev
);
382 kfree(adapter
->msix_entries
);
383 adapter
->msix_entries
= NULL
;
384 } else if (adapter
->msi_enabled
)
385 pci_disable_msi(adapter
->pdev
);
391 * igb_set_interrupt_capability - set MSI or MSI-X if supported
393 * Attempt to configure interrupts using the best available
394 * capabilities of the hardware and kernel.
396 static void igb_set_interrupt_capability(struct igb_adapter
*adapter
)
401 numvecs
= adapter
->num_tx_queues
+ adapter
->num_rx_queues
+ 1;
402 adapter
->msix_entries
= kcalloc(numvecs
, sizeof(struct msix_entry
),
404 if (!adapter
->msix_entries
)
407 for (i
= 0; i
< numvecs
; i
++)
408 adapter
->msix_entries
[i
].entry
= i
;
410 err
= pci_enable_msix(adapter
->pdev
,
411 adapter
->msix_entries
,
416 igb_reset_interrupt_capability(adapter
);
418 /* If we can't do MSI-X, try MSI */
420 adapter
->num_rx_queues
= 1;
421 if (!pci_enable_msi(adapter
->pdev
))
422 adapter
->msi_enabled
= 1;
427 * igb_request_irq - initialize interrupts
429 * Attempts to configure interrupts using the best available
430 * capabilities of the hardware and kernel.
432 static int igb_request_irq(struct igb_adapter
*adapter
)
434 struct net_device
*netdev
= adapter
->netdev
;
435 struct e1000_hw
*hw
= &adapter
->hw
;
438 if (adapter
->msix_entries
) {
439 err
= igb_request_msix(adapter
);
441 /* enable IAM, auto-mask,
442 * DO NOT USE EIAME or IAME in legacy mode */
443 wr32(E1000_IAM
, IMS_ENABLE_MASK
);
446 /* fall back to MSI */
447 igb_reset_interrupt_capability(adapter
);
448 if (!pci_enable_msi(adapter
->pdev
))
449 adapter
->msi_enabled
= 1;
450 igb_free_all_tx_resources(adapter
);
451 igb_free_all_rx_resources(adapter
);
452 adapter
->num_rx_queues
= 1;
453 igb_alloc_queues(adapter
);
455 if (adapter
->msi_enabled
) {
456 err
= request_irq(adapter
->pdev
->irq
, &igb_intr_msi
, 0,
457 netdev
->name
, netdev
);
460 /* fall back to legacy interrupts */
461 igb_reset_interrupt_capability(adapter
);
462 adapter
->msi_enabled
= 0;
465 err
= request_irq(adapter
->pdev
->irq
, &igb_intr
, IRQF_SHARED
,
466 netdev
->name
, netdev
);
469 dev_err(&adapter
->pdev
->dev
, "Error %d getting interrupt\n",
474 /* enable IAM, auto-mask */
475 wr32(E1000_IAM
, IMS_ENABLE_MASK
);
481 static void igb_free_irq(struct igb_adapter
*adapter
)
483 struct net_device
*netdev
= adapter
->netdev
;
485 if (adapter
->msix_entries
) {
488 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
489 free_irq(adapter
->msix_entries
[vector
++].vector
,
490 &(adapter
->tx_ring
[i
]));
491 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
492 free_irq(adapter
->msix_entries
[vector
++].vector
,
493 &(adapter
->rx_ring
[i
]));
495 free_irq(adapter
->msix_entries
[vector
++].vector
, netdev
);
499 free_irq(adapter
->pdev
->irq
, netdev
);
503 * igb_irq_disable - Mask off interrupt generation on the NIC
504 * @adapter: board private structure
506 static void igb_irq_disable(struct igb_adapter
*adapter
)
508 struct e1000_hw
*hw
= &adapter
->hw
;
510 if (adapter
->msix_entries
) {
511 wr32(E1000_EIMC
, ~0);
516 synchronize_irq(adapter
->pdev
->irq
);
520 * igb_irq_enable - Enable default interrupt generation settings
521 * @adapter: board private structure
523 static void igb_irq_enable(struct igb_adapter
*adapter
)
525 struct e1000_hw
*hw
= &adapter
->hw
;
527 if (adapter
->msix_entries
) {
529 adapter
->eims_enable_mask
);
531 adapter
->eims_enable_mask
);
532 wr32(E1000_IMS
, E1000_IMS_LSC
);
534 wr32(E1000_IMS
, IMS_ENABLE_MASK
);
537 static void igb_update_mng_vlan(struct igb_adapter
*adapter
)
539 struct net_device
*netdev
= adapter
->netdev
;
540 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
541 u16 old_vid
= adapter
->mng_vlan_id
;
542 if (adapter
->vlgrp
) {
543 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
544 if (adapter
->hw
.mng_cookie
.status
&
545 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
546 igb_vlan_rx_add_vid(netdev
, vid
);
547 adapter
->mng_vlan_id
= vid
;
549 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
551 if ((old_vid
!= (u16
)IGB_MNG_VLAN_NONE
) &&
553 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
554 igb_vlan_rx_kill_vid(netdev
, old_vid
);
556 adapter
->mng_vlan_id
= vid
;
561 * igb_release_hw_control - release control of the h/w to f/w
562 * @adapter: address of board private structure
564 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
565 * For ASF and Pass Through versions of f/w this means that the
566 * driver is no longer loaded.
569 static void igb_release_hw_control(struct igb_adapter
*adapter
)
571 struct e1000_hw
*hw
= &adapter
->hw
;
574 /* Let firmware take over control of h/w */
575 ctrl_ext
= rd32(E1000_CTRL_EXT
);
577 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
582 * igb_get_hw_control - get control of the h/w from f/w
583 * @adapter: address of board private structure
585 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
586 * For ASF and Pass Through versions of f/w this means that
587 * the driver is loaded.
590 static void igb_get_hw_control(struct igb_adapter
*adapter
)
592 struct e1000_hw
*hw
= &adapter
->hw
;
595 /* Let firmware know the driver has taken over */
596 ctrl_ext
= rd32(E1000_CTRL_EXT
);
598 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
601 static void igb_init_manageability(struct igb_adapter
*adapter
)
603 struct e1000_hw
*hw
= &adapter
->hw
;
605 if (adapter
->en_mng_pt
) {
606 u32 manc2h
= rd32(E1000_MANC2H
);
607 u32 manc
= rd32(E1000_MANC
);
609 /* enable receiving management packets to the host */
610 /* this will probably generate destination unreachable messages
611 * from the host OS, but the packets will be handled on SMBUS */
612 manc
|= E1000_MANC_EN_MNG2HOST
;
613 #define E1000_MNG2HOST_PORT_623 (1 << 5)
614 #define E1000_MNG2HOST_PORT_664 (1 << 6)
615 manc2h
|= E1000_MNG2HOST_PORT_623
;
616 manc2h
|= E1000_MNG2HOST_PORT_664
;
617 wr32(E1000_MANC2H
, manc2h
);
619 wr32(E1000_MANC
, manc
);
624 * igb_configure - configure the hardware for RX and TX
625 * @adapter: private board structure
627 static void igb_configure(struct igb_adapter
*adapter
)
629 struct net_device
*netdev
= adapter
->netdev
;
632 igb_get_hw_control(adapter
);
633 igb_set_multi(netdev
);
635 igb_restore_vlan(adapter
);
636 igb_init_manageability(adapter
);
638 igb_configure_tx(adapter
);
639 igb_setup_rctl(adapter
);
640 igb_configure_rx(adapter
);
641 /* call IGB_DESC_UNUSED which always leaves
642 * at least 1 descriptor unused to make sure
643 * next_to_use != next_to_clean */
644 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
645 struct igb_ring
*ring
= &adapter
->rx_ring
[i
];
646 igb_alloc_rx_buffers_adv(adapter
, ring
, IGB_DESC_UNUSED(ring
));
650 adapter
->tx_queue_len
= netdev
->tx_queue_len
;
655 * igb_up - Open the interface and prepare it to handle traffic
656 * @adapter: board private structure
659 int igb_up(struct igb_adapter
*adapter
)
661 struct e1000_hw
*hw
= &adapter
->hw
;
664 /* hardware has been reset, we need to reload some things */
665 igb_configure(adapter
);
667 clear_bit(__IGB_DOWN
, &adapter
->state
);
669 napi_enable(&adapter
->napi
);
671 if (adapter
->msix_entries
) {
672 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
673 napi_enable(&adapter
->rx_ring
[i
].napi
);
674 igb_configure_msix(adapter
);
677 /* Clear any pending interrupts. */
679 igb_irq_enable(adapter
);
681 /* Fire a link change interrupt to start the watchdog. */
682 wr32(E1000_ICS
, E1000_ICS_LSC
);
686 void igb_down(struct igb_adapter
*adapter
)
688 struct e1000_hw
*hw
= &adapter
->hw
;
689 struct net_device
*netdev
= adapter
->netdev
;
693 /* signal that we're down so the interrupt handler does not
694 * reschedule our watchdog timer */
695 set_bit(__IGB_DOWN
, &adapter
->state
);
697 /* disable receives in the hardware */
698 rctl
= rd32(E1000_RCTL
);
699 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
700 /* flush and sleep below */
702 netif_stop_queue(netdev
);
704 /* disable transmits in the hardware */
705 tctl
= rd32(E1000_TCTL
);
706 tctl
&= ~E1000_TCTL_EN
;
707 wr32(E1000_TCTL
, tctl
);
708 /* flush both disables and wait for them to finish */
712 napi_disable(&adapter
->napi
);
714 if (adapter
->msix_entries
)
715 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
716 napi_disable(&adapter
->rx_ring
[i
].napi
);
717 igb_irq_disable(adapter
);
719 del_timer_sync(&adapter
->watchdog_timer
);
720 del_timer_sync(&adapter
->phy_info_timer
);
722 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
723 netif_carrier_off(netdev
);
724 adapter
->link_speed
= 0;
725 adapter
->link_duplex
= 0;
728 igb_clean_all_tx_rings(adapter
);
729 igb_clean_all_rx_rings(adapter
);
732 void igb_reinit_locked(struct igb_adapter
*adapter
)
734 WARN_ON(in_interrupt());
735 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
739 clear_bit(__IGB_RESETTING
, &adapter
->state
);
742 void igb_reset(struct igb_adapter
*adapter
)
744 struct e1000_hw
*hw
= &adapter
->hw
;
745 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
746 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
749 /* Repartition Pba for greater than 9k mtu
750 * To take effect CTRL.RST is required.
754 if (adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
755 /* adjust PBA for jumbo frames */
756 wr32(E1000_PBA
, pba
);
758 /* To maintain wire speed transmits, the Tx FIFO should be
759 * large enough to accommodate two full transmit packets,
760 * rounded up to the next 1KB and expressed in KB. Likewise,
761 * the Rx FIFO should be large enough to accommodate at least
762 * one full receive packet and is similarly rounded up and
763 * expressed in KB. */
764 pba
= rd32(E1000_PBA
);
765 /* upper 16 bits has Tx packet buffer allocation size in KB */
766 tx_space
= pba
>> 16;
767 /* lower 16 bits has Rx packet buffer allocation size in KB */
769 /* the tx fifo also stores 16 bytes of information about the tx
770 * but don't include ethernet FCS because hardware appends it */
771 min_tx_space
= (adapter
->max_frame_size
+
772 sizeof(struct e1000_tx_desc
) -
774 min_tx_space
= ALIGN(min_tx_space
, 1024);
776 /* software strips receive CRC, so leave room for it */
777 min_rx_space
= adapter
->max_frame_size
;
778 min_rx_space
= ALIGN(min_rx_space
, 1024);
781 /* If current Tx allocation is less than the min Tx FIFO size,
782 * and the min Tx FIFO size is less than the current Rx FIFO
783 * allocation, take space away from current Rx allocation */
784 if (tx_space
< min_tx_space
&&
785 ((min_tx_space
- tx_space
) < pba
)) {
786 pba
= pba
- (min_tx_space
- tx_space
);
788 /* if short on rx space, rx wins and must trump tx
790 if (pba
< min_rx_space
)
794 wr32(E1000_PBA
, pba
);
796 /* flow control settings */
797 /* The high water mark must be low enough to fit one full frame
798 * (or the size used for early receive) above it in the Rx FIFO.
799 * Set it to the lower of:
800 * - 90% of the Rx FIFO size, or
801 * - the full Rx FIFO size minus one full frame */
802 hwm
= min(((pba
<< 10) * 9 / 10),
803 ((pba
<< 10) - adapter
->max_frame_size
));
805 fc
->high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
806 fc
->low_water
= fc
->high_water
- 8;
807 fc
->pause_time
= 0xFFFF;
809 fc
->type
= fc
->original_type
;
811 /* Allow time for pending master requests to run */
812 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
815 if (adapter
->hw
.mac
.ops
.init_hw(&adapter
->hw
))
816 dev_err(&adapter
->pdev
->dev
, "Hardware Error\n");
818 igb_update_mng_vlan(adapter
);
820 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
821 wr32(E1000_VET
, ETHERNET_IEEE_VLAN_TYPE
);
823 igb_reset_adaptive(&adapter
->hw
);
824 adapter
->hw
.phy
.ops
.get_phy_info(&adapter
->hw
);
828 * igb_probe - Device Initialization Routine
829 * @pdev: PCI device information struct
830 * @ent: entry in igb_pci_tbl
832 * Returns 0 on success, negative on failure
834 * igb_probe initializes an adapter identified by a pci_dev structure.
835 * The OS initialization, configuring of the adapter private structure,
836 * and a hardware reset occur.
838 static int __devinit
igb_probe(struct pci_dev
*pdev
,
839 const struct pci_device_id
*ent
)
841 struct net_device
*netdev
;
842 struct igb_adapter
*adapter
;
844 const struct e1000_info
*ei
= igb_info_tbl
[ent
->driver_data
];
845 unsigned long mmio_start
, mmio_len
;
846 static int cards_found
;
847 int i
, err
, pci_using_dac
;
849 u16 eeprom_apme_mask
= IGB_EEPROM_APME
;
852 err
= pci_enable_device(pdev
);
857 err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
);
859 err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
863 err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
865 err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
867 dev_err(&pdev
->dev
, "No usable DMA "
868 "configuration, aborting\n");
874 err
= pci_request_regions(pdev
, igb_driver_name
);
878 pci_set_master(pdev
);
881 netdev
= alloc_etherdev(sizeof(struct igb_adapter
));
883 goto err_alloc_etherdev
;
885 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
887 pci_set_drvdata(pdev
, netdev
);
888 adapter
= netdev_priv(netdev
);
889 adapter
->netdev
= netdev
;
890 adapter
->pdev
= pdev
;
893 adapter
->msg_enable
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
895 mmio_start
= pci_resource_start(pdev
, 0);
896 mmio_len
= pci_resource_len(pdev
, 0);
899 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
900 if (!adapter
->hw
.hw_addr
)
903 netdev
->open
= &igb_open
;
904 netdev
->stop
= &igb_close
;
905 netdev
->get_stats
= &igb_get_stats
;
906 netdev
->set_multicast_list
= &igb_set_multi
;
907 netdev
->set_mac_address
= &igb_set_mac
;
908 netdev
->change_mtu
= &igb_change_mtu
;
909 netdev
->do_ioctl
= &igb_ioctl
;
910 igb_set_ethtool_ops(netdev
);
911 netdev
->tx_timeout
= &igb_tx_timeout
;
912 netdev
->watchdog_timeo
= 5 * HZ
;
913 netif_napi_add(netdev
, &adapter
->napi
, igb_clean
, 64);
914 netdev
->vlan_rx_register
= igb_vlan_rx_register
;
915 netdev
->vlan_rx_add_vid
= igb_vlan_rx_add_vid
;
916 netdev
->vlan_rx_kill_vid
= igb_vlan_rx_kill_vid
;
917 #ifdef CONFIG_NET_POLL_CONTROLLER
918 netdev
->poll_controller
= igb_netpoll
;
920 netdev
->hard_start_xmit
= &igb_xmit_frame_adv
;
922 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
924 netdev
->mem_start
= mmio_start
;
925 netdev
->mem_end
= mmio_start
+ mmio_len
;
927 adapter
->bd_number
= cards_found
;
929 /* PCI config space info */
930 hw
->vendor_id
= pdev
->vendor
;
931 hw
->device_id
= pdev
->device
;
932 hw
->revision_id
= pdev
->revision
;
933 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
934 hw
->subsystem_device_id
= pdev
->subsystem_device
;
936 /* setup the private structure */
938 /* Copy the default MAC, PHY and NVM function pointers */
939 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
940 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
941 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
942 /* Initialize skew-specific constants */
943 err
= ei
->get_invariants(hw
);
947 err
= igb_sw_init(adapter
);
951 igb_get_bus_info_pcie(hw
);
953 hw
->phy
.autoneg_wait_to_complete
= false;
954 hw
->mac
.adaptive_ifs
= true;
957 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
958 hw
->phy
.mdix
= AUTO_ALL_MODES
;
959 hw
->phy
.disable_polarity_correction
= false;
960 hw
->phy
.ms_type
= e1000_ms_hw_default
;
963 if (igb_check_reset_block(hw
))
965 "PHY reset is blocked due to SOL/IDER session.\n");
967 netdev
->features
= NETIF_F_SG
|
971 NETIF_F_HW_VLAN_FILTER
;
973 netdev
->features
|= NETIF_F_TSO
;
975 netdev
->features
|= NETIF_F_TSO6
;
977 netdev
->features
|= NETIF_F_HIGHDMA
;
979 netdev
->features
|= NETIF_F_LLTX
;
980 adapter
->en_mng_pt
= igb_enable_mng_pass_thru(&adapter
->hw
);
982 /* before reading the NVM, reset the controller to put the device in a
983 * known good starting state */
984 hw
->mac
.ops
.reset_hw(hw
);
986 /* make sure the NVM is good */
987 if (igb_validate_nvm_checksum(hw
) < 0) {
988 dev_err(&pdev
->dev
, "The NVM Checksum Is Not Valid\n");
993 /* copy the MAC address out of the NVM */
994 if (hw
->mac
.ops
.read_mac_addr(hw
))
995 dev_err(&pdev
->dev
, "NVM Read Error\n");
997 memcpy(netdev
->dev_addr
, hw
->mac
.addr
, netdev
->addr_len
);
998 memcpy(netdev
->perm_addr
, hw
->mac
.addr
, netdev
->addr_len
);
1000 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
1001 dev_err(&pdev
->dev
, "Invalid MAC Address\n");
1006 init_timer(&adapter
->watchdog_timer
);
1007 adapter
->watchdog_timer
.function
= &igb_watchdog
;
1008 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
1010 init_timer(&adapter
->phy_info_timer
);
1011 adapter
->phy_info_timer
.function
= &igb_update_phy_info
;
1012 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
1014 INIT_WORK(&adapter
->reset_task
, igb_reset_task
);
1015 INIT_WORK(&adapter
->watchdog_task
, igb_watchdog_task
);
1017 /* Initialize link & ring properties that are user-changeable */
1018 adapter
->tx_ring
->count
= 256;
1019 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1020 adapter
->tx_ring
[i
].count
= adapter
->tx_ring
->count
;
1021 adapter
->rx_ring
->count
= 256;
1022 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1023 adapter
->rx_ring
[i
].count
= adapter
->rx_ring
->count
;
1025 adapter
->fc_autoneg
= true;
1026 hw
->mac
.autoneg
= true;
1027 hw
->phy
.autoneg_advertised
= 0x2f;
1029 hw
->fc
.original_type
= e1000_fc_default
;
1030 hw
->fc
.type
= e1000_fc_default
;
1032 adapter
->itr_setting
= 3;
1033 adapter
->itr
= IGB_START_ITR
;
1035 igb_validate_mdi_setting(hw
);
1037 adapter
->rx_csum
= 1;
1039 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1040 * enable the ACPI Magic Packet filter
1043 if (hw
->bus
.func
== 0 ||
1044 hw
->device_id
== E1000_DEV_ID_82575EB_COPPER
)
1045 hw
->nvm
.ops
.read_nvm(hw
, NVM_INIT_CONTROL3_PORT_A
, 1,
1048 if (eeprom_data
& eeprom_apme_mask
)
1049 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1051 /* now that we have the eeprom settings, apply the special cases where
1052 * the eeprom may be wrong or the board simply won't support wake on
1053 * lan on a particular port */
1054 switch (pdev
->device
) {
1055 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
1056 adapter
->eeprom_wol
= 0;
1058 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
1059 /* Wake events only supported on port A for dual fiber
1060 * regardless of eeprom setting */
1061 if (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_1
)
1062 adapter
->eeprom_wol
= 0;
1066 /* initialize the wol settings based on the eeprom settings */
1067 adapter
->wol
= adapter
->eeprom_wol
;
1069 /* reset the hardware with the new settings */
1072 /* let the f/w know that the h/w is now under the control of the
1074 igb_get_hw_control(adapter
);
1076 /* tell the stack to leave us alone until igb_open() is called */
1077 netif_carrier_off(netdev
);
1078 netif_stop_queue(netdev
);
1080 strcpy(netdev
->name
, "eth%d");
1081 err
= register_netdev(netdev
);
1085 dev_info(&pdev
->dev
, "Intel(R) Gigabit Ethernet Network Connection\n");
1086 /* print bus type/speed/width info */
1087 dev_info(&pdev
->dev
,
1088 "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1090 ((hw
->bus
.speed
== e1000_bus_speed_2500
)
1091 ? "2.5Gb/s" : "unknown"),
1092 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
)
1093 ? "Width x4" : (hw
->bus
.width
== e1000_bus_width_pcie_x1
)
1094 ? "Width x1" : "unknown"),
1095 netdev
->dev_addr
[0], netdev
->dev_addr
[1], netdev
->dev_addr
[2],
1096 netdev
->dev_addr
[3], netdev
->dev_addr
[4], netdev
->dev_addr
[5]);
1098 igb_read_part_num(hw
, &part_num
);
1099 dev_info(&pdev
->dev
, "%s: PBA No: %06x-%03x\n", netdev
->name
,
1100 (part_num
>> 8), (part_num
& 0xff));
1102 dev_info(&pdev
->dev
,
1103 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1104 adapter
->msix_entries
? "MSI-X" :
1105 adapter
->msi_enabled
? "MSI" : "legacy",
1106 adapter
->num_rx_queues
, adapter
->num_tx_queues
);
1112 igb_release_hw_control(adapter
);
1114 if (!igb_check_reset_block(hw
))
1115 hw
->phy
.ops
.reset_phy(hw
);
1117 if (hw
->flash_address
)
1118 iounmap(hw
->flash_address
);
1120 igb_remove_device(hw
);
1121 kfree(adapter
->tx_ring
);
1122 kfree(adapter
->rx_ring
);
1125 iounmap(hw
->hw_addr
);
1127 free_netdev(netdev
);
1129 pci_release_regions(pdev
);
1132 pci_disable_device(pdev
);
1137 * igb_remove - Device Removal Routine
1138 * @pdev: PCI device information struct
1140 * igb_remove is called by the PCI subsystem to alert the driver
1141 * that it should release a PCI device. The could be caused by a
1142 * Hot-Plug event, or because the driver is going to be removed from
1145 static void __devexit
igb_remove(struct pci_dev
*pdev
)
1147 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1148 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1150 /* flush_scheduled work may reschedule our watchdog task, so
1151 * explicitly disable watchdog tasks from being rescheduled */
1152 set_bit(__IGB_DOWN
, &adapter
->state
);
1153 del_timer_sync(&adapter
->watchdog_timer
);
1154 del_timer_sync(&adapter
->phy_info_timer
);
1156 flush_scheduled_work();
1158 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1159 * would have already happened in close and is redundant. */
1160 igb_release_hw_control(adapter
);
1162 unregister_netdev(netdev
);
1164 if (!igb_check_reset_block(&adapter
->hw
))
1165 adapter
->hw
.phy
.ops
.reset_phy(&adapter
->hw
);
1167 igb_remove_device(&adapter
->hw
);
1168 igb_reset_interrupt_capability(adapter
);
1170 kfree(adapter
->tx_ring
);
1171 kfree(adapter
->rx_ring
);
1173 iounmap(adapter
->hw
.hw_addr
);
1174 if (adapter
->hw
.flash_address
)
1175 iounmap(adapter
->hw
.flash_address
);
1176 pci_release_regions(pdev
);
1178 free_netdev(netdev
);
1180 pci_disable_device(pdev
);
1184 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1185 * @adapter: board private structure to initialize
1187 * igb_sw_init initializes the Adapter private data structure.
1188 * Fields are initialized based on PCI device information and
1189 * OS network device settings (MTU size).
1191 static int __devinit
igb_sw_init(struct igb_adapter
*adapter
)
1193 struct e1000_hw
*hw
= &adapter
->hw
;
1194 struct net_device
*netdev
= adapter
->netdev
;
1195 struct pci_dev
*pdev
= adapter
->pdev
;
1197 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->bus
.pci_cmd_word
);
1199 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1200 adapter
->rx_ps_hdr_size
= 0; /* disable packet split */
1201 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
1202 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
1204 /* Number of supported queues. */
1205 /* Having more queues than CPUs doesn't make sense. */
1206 adapter
->num_tx_queues
= 1;
1207 adapter
->num_rx_queues
= min(IGB_MAX_RX_QUEUES
, num_online_cpus());
1209 igb_set_interrupt_capability(adapter
);
1211 if (igb_alloc_queues(adapter
)) {
1212 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
1216 /* Explicitly disable IRQ since the NIC can be in any state. */
1217 igb_irq_disable(adapter
);
1219 set_bit(__IGB_DOWN
, &adapter
->state
);
1224 * igb_open - Called when a network interface is made active
1225 * @netdev: network interface device structure
1227 * Returns 0 on success, negative value on failure
1229 * The open entry point is called when a network interface is made
1230 * active by the system (IFF_UP). At this point all resources needed
1231 * for transmit and receive operations are allocated, the interrupt
1232 * handler is registered with the OS, the watchdog timer is started,
1233 * and the stack is notified that the interface is ready.
1235 static int igb_open(struct net_device
*netdev
)
1237 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1238 struct e1000_hw
*hw
= &adapter
->hw
;
1242 /* disallow open during test */
1243 if (test_bit(__IGB_TESTING
, &adapter
->state
))
1246 /* allocate transmit descriptors */
1247 err
= igb_setup_all_tx_resources(adapter
);
1251 /* allocate receive descriptors */
1252 err
= igb_setup_all_rx_resources(adapter
);
1256 /* e1000_power_up_phy(adapter); */
1258 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
1259 if ((adapter
->hw
.mng_cookie
.status
&
1260 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
1261 igb_update_mng_vlan(adapter
);
1263 /* before we allocate an interrupt, we must be ready to handle it.
1264 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1265 * as soon as we call pci_request_irq, so we have to setup our
1266 * clean_rx handler before we do so. */
1267 igb_configure(adapter
);
1269 err
= igb_request_irq(adapter
);
1273 /* From here on the code is the same as igb_up() */
1274 clear_bit(__IGB_DOWN
, &adapter
->state
);
1276 napi_enable(&adapter
->napi
);
1277 if (adapter
->msix_entries
)
1278 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1279 napi_enable(&adapter
->rx_ring
[i
].napi
);
1281 igb_irq_enable(adapter
);
1283 /* Clear any pending interrupts. */
1285 /* Fire a link status change interrupt to start the watchdog. */
1286 wr32(E1000_ICS
, E1000_ICS_LSC
);
1291 igb_release_hw_control(adapter
);
1292 /* e1000_power_down_phy(adapter); */
1293 igb_free_all_rx_resources(adapter
);
1295 igb_free_all_tx_resources(adapter
);
1303 * igb_close - Disables a network interface
1304 * @netdev: network interface device structure
1306 * Returns 0, this is not allowed to fail
1308 * The close entry point is called when an interface is de-activated
1309 * by the OS. The hardware is still under the driver's control, but
1310 * needs to be disabled. A global MAC reset is issued to stop the
1311 * hardware, and all transmit and receive resources are freed.
1313 static int igb_close(struct net_device
*netdev
)
1315 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1317 WARN_ON(test_bit(__IGB_RESETTING
, &adapter
->state
));
1320 igb_free_irq(adapter
);
1322 igb_free_all_tx_resources(adapter
);
1323 igb_free_all_rx_resources(adapter
);
1325 /* kill manageability vlan ID if supported, but not if a vlan with
1326 * the same ID is registered on the host OS (let 8021q kill it) */
1327 if ((adapter
->hw
.mng_cookie
.status
&
1328 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
1330 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
)))
1331 igb_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1337 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1338 * @adapter: board private structure
1339 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1341 * Return 0 on success, negative on failure
1344 int igb_setup_tx_resources(struct igb_adapter
*adapter
,
1345 struct igb_ring
*tx_ring
)
1347 struct pci_dev
*pdev
= adapter
->pdev
;
1350 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
1351 tx_ring
->buffer_info
= vmalloc(size
);
1352 if (!tx_ring
->buffer_info
)
1354 memset(tx_ring
->buffer_info
, 0, size
);
1356 /* round up to nearest 4K */
1357 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
)
1359 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1361 tx_ring
->desc
= pci_alloc_consistent(pdev
, tx_ring
->size
,
1367 tx_ring
->adapter
= adapter
;
1368 tx_ring
->next_to_use
= 0;
1369 tx_ring
->next_to_clean
= 0;
1370 spin_lock_init(&tx_ring
->tx_clean_lock
);
1371 spin_lock_init(&tx_ring
->tx_lock
);
1375 vfree(tx_ring
->buffer_info
);
1376 dev_err(&adapter
->pdev
->dev
,
1377 "Unable to allocate memory for the transmit descriptor ring\n");
1382 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1383 * (Descriptors) for all queues
1384 * @adapter: board private structure
1386 * Return 0 on success, negative on failure
1388 static int igb_setup_all_tx_resources(struct igb_adapter
*adapter
)
1392 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1393 err
= igb_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1395 dev_err(&adapter
->pdev
->dev
,
1396 "Allocation for Tx Queue %u failed\n", i
);
1397 for (i
--; i
>= 0; i
--)
1398 igb_free_tx_resources(adapter
,
1399 &adapter
->tx_ring
[i
]);
1408 * igb_configure_tx - Configure transmit Unit after Reset
1409 * @adapter: board private structure
1411 * Configure the Tx unit of the MAC after a reset.
1413 static void igb_configure_tx(struct igb_adapter
*adapter
)
1416 struct e1000_hw
*hw
= &adapter
->hw
;
1421 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1422 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
1424 wr32(E1000_TDLEN(i
),
1425 ring
->count
* sizeof(struct e1000_tx_desc
));
1427 wr32(E1000_TDBAL(i
),
1428 tdba
& 0x00000000ffffffffULL
);
1429 wr32(E1000_TDBAH(i
), tdba
>> 32);
1431 tdwba
= ring
->dma
+ ring
->count
* sizeof(struct e1000_tx_desc
);
1432 tdwba
|= 1; /* enable head wb */
1433 wr32(E1000_TDWBAL(i
),
1434 tdwba
& 0x00000000ffffffffULL
);
1435 wr32(E1000_TDWBAH(i
), tdwba
>> 32);
1437 ring
->head
= E1000_TDH(i
);
1438 ring
->tail
= E1000_TDT(i
);
1439 writel(0, hw
->hw_addr
+ ring
->tail
);
1440 writel(0, hw
->hw_addr
+ ring
->head
);
1441 txdctl
= rd32(E1000_TXDCTL(i
));
1442 txdctl
|= E1000_TXDCTL_QUEUE_ENABLE
;
1443 wr32(E1000_TXDCTL(i
), txdctl
);
1445 /* Turn off Relaxed Ordering on head write-backs. The
1446 * writebacks MUST be delivered in order or it will
1447 * completely screw up our bookeeping.
1449 txctrl
= rd32(E1000_DCA_TXCTRL(i
));
1450 txctrl
&= ~E1000_DCA_TXCTRL_TX_WB_RO_EN
;
1451 wr32(E1000_DCA_TXCTRL(i
), txctrl
);
1456 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1458 /* Program the Transmit Control Register */
1460 tctl
= rd32(E1000_TCTL
);
1461 tctl
&= ~E1000_TCTL_CT
;
1462 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1463 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1465 igb_config_collision_dist(hw
);
1467 /* Setup Transmit Descriptor Settings for eop descriptor */
1468 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_RS
;
1470 /* Enable transmits */
1471 tctl
|= E1000_TCTL_EN
;
1473 wr32(E1000_TCTL
, tctl
);
1477 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1478 * @adapter: board private structure
1479 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1481 * Returns 0 on success, negative on failure
1484 int igb_setup_rx_resources(struct igb_adapter
*adapter
,
1485 struct igb_ring
*rx_ring
)
1487 struct pci_dev
*pdev
= adapter
->pdev
;
1490 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
1491 rx_ring
->buffer_info
= vmalloc(size
);
1492 if (!rx_ring
->buffer_info
)
1494 memset(rx_ring
->buffer_info
, 0, size
);
1496 desc_len
= sizeof(union e1000_adv_rx_desc
);
1498 /* Round up to nearest 4K */
1499 rx_ring
->size
= rx_ring
->count
* desc_len
;
1500 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
1502 rx_ring
->desc
= pci_alloc_consistent(pdev
, rx_ring
->size
,
1508 rx_ring
->next_to_clean
= 0;
1509 rx_ring
->next_to_use
= 0;
1510 rx_ring
->pending_skb
= NULL
;
1512 rx_ring
->adapter
= adapter
;
1513 /* FIXME: do we want to setup ring->napi->poll here? */
1514 rx_ring
->napi
.poll
= adapter
->napi
.poll
;
1519 vfree(rx_ring
->buffer_info
);
1520 dev_err(&adapter
->pdev
->dev
, "Unable to allocate memory for "
1521 "the receive descriptor ring\n");
1526 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1527 * (Descriptors) for all queues
1528 * @adapter: board private structure
1530 * Return 0 on success, negative on failure
1532 static int igb_setup_all_rx_resources(struct igb_adapter
*adapter
)
1536 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1537 err
= igb_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1539 dev_err(&adapter
->pdev
->dev
,
1540 "Allocation for Rx Queue %u failed\n", i
);
1541 for (i
--; i
>= 0; i
--)
1542 igb_free_rx_resources(adapter
,
1543 &adapter
->rx_ring
[i
]);
1552 * igb_setup_rctl - configure the receive control registers
1553 * @adapter: Board private structure
1555 static void igb_setup_rctl(struct igb_adapter
*adapter
)
1557 struct e1000_hw
*hw
= &adapter
->hw
;
1562 rctl
= rd32(E1000_RCTL
);
1564 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1566 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1567 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1568 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1570 /* disable the stripping of CRC because it breaks
1571 * BMC firmware connected over SMBUS
1572 rctl |= E1000_RCTL_SECRC;
1575 rctl
&= ~E1000_RCTL_SBP
;
1577 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1578 rctl
&= ~E1000_RCTL_LPE
;
1580 rctl
|= E1000_RCTL_LPE
;
1581 if (adapter
->rx_buffer_len
<= IGB_RXBUFFER_2048
) {
1582 /* Setup buffer sizes */
1583 rctl
&= ~E1000_RCTL_SZ_4096
;
1584 rctl
|= E1000_RCTL_BSEX
;
1585 switch (adapter
->rx_buffer_len
) {
1586 case IGB_RXBUFFER_256
:
1587 rctl
|= E1000_RCTL_SZ_256
;
1588 rctl
&= ~E1000_RCTL_BSEX
;
1590 case IGB_RXBUFFER_512
:
1591 rctl
|= E1000_RCTL_SZ_512
;
1592 rctl
&= ~E1000_RCTL_BSEX
;
1594 case IGB_RXBUFFER_1024
:
1595 rctl
|= E1000_RCTL_SZ_1024
;
1596 rctl
&= ~E1000_RCTL_BSEX
;
1598 case IGB_RXBUFFER_2048
:
1600 rctl
|= E1000_RCTL_SZ_2048
;
1601 rctl
&= ~E1000_RCTL_BSEX
;
1603 case IGB_RXBUFFER_4096
:
1604 rctl
|= E1000_RCTL_SZ_4096
;
1606 case IGB_RXBUFFER_8192
:
1607 rctl
|= E1000_RCTL_SZ_8192
;
1609 case IGB_RXBUFFER_16384
:
1610 rctl
|= E1000_RCTL_SZ_16384
;
1614 rctl
&= ~E1000_RCTL_BSEX
;
1615 srrctl
= adapter
->rx_buffer_len
>> E1000_SRRCTL_BSIZEPKT_SHIFT
;
1618 /* 82575 and greater support packet-split where the protocol
1619 * header is placed in skb->data and the packet data is
1620 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1621 * In the case of a non-split, skb->data is linearly filled,
1622 * followed by the page buffers. Therefore, skb->data is
1623 * sized to hold the largest protocol header.
1625 /* allocations using alloc_page take too long for regular MTU
1626 * so only enable packet split for jumbo frames */
1627 if (rctl
& E1000_RCTL_LPE
) {
1628 adapter
->rx_ps_hdr_size
= IGB_RXBUFFER_128
;
1629 srrctl
= adapter
->rx_ps_hdr_size
<<
1630 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT
;
1631 /* buffer size is ALWAYS one page */
1632 srrctl
|= PAGE_SIZE
>> E1000_SRRCTL_BSIZEPKT_SHIFT
;
1633 srrctl
|= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS
;
1635 adapter
->rx_ps_hdr_size
= 0;
1636 srrctl
|= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF
;
1639 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1640 wr32(E1000_SRRCTL(i
), srrctl
);
1642 wr32(E1000_RCTL
, rctl
);
1646 * igb_configure_rx - Configure receive Unit after Reset
1647 * @adapter: board private structure
1649 * Configure the Rx unit of the MAC after a reset.
1651 static void igb_configure_rx(struct igb_adapter
*adapter
)
1654 struct e1000_hw
*hw
= &adapter
->hw
;
1659 /* disable receives while setting up the descriptors */
1660 rctl
= rd32(E1000_RCTL
);
1661 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
1665 if (adapter
->itr_setting
> 3)
1667 1000000000 / (adapter
->itr
* 256));
1669 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1670 * the Base and Length of the Rx Descriptor Ring */
1671 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1672 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
1674 wr32(E1000_RDBAL(i
),
1675 rdba
& 0x00000000ffffffffULL
);
1676 wr32(E1000_RDBAH(i
), rdba
>> 32);
1677 wr32(E1000_RDLEN(i
),
1678 ring
->count
* sizeof(union e1000_adv_rx_desc
));
1680 ring
->head
= E1000_RDH(i
);
1681 ring
->tail
= E1000_RDT(i
);
1682 writel(0, hw
->hw_addr
+ ring
->tail
);
1683 writel(0, hw
->hw_addr
+ ring
->head
);
1685 rxdctl
= rd32(E1000_RXDCTL(i
));
1686 rxdctl
|= E1000_RXDCTL_QUEUE_ENABLE
;
1687 rxdctl
&= 0xFFF00000;
1688 rxdctl
|= IGB_RX_PTHRESH
;
1689 rxdctl
|= IGB_RX_HTHRESH
<< 8;
1690 rxdctl
|= IGB_RX_WTHRESH
<< 16;
1691 wr32(E1000_RXDCTL(i
), rxdctl
);
1694 if (adapter
->num_rx_queues
> 1) {
1703 get_random_bytes(&random
[0], 40);
1706 for (j
= 0; j
< (32 * 4); j
++) {
1708 (j
% adapter
->num_rx_queues
) << shift
;
1711 hw
->hw_addr
+ E1000_RETA(0) + (j
& ~3));
1713 mrqc
= E1000_MRQC_ENABLE_RSS_4Q
;
1715 /* Fill out hash function seeds */
1716 for (j
= 0; j
< 10; j
++)
1717 array_wr32(E1000_RSSRK(0), j
, random
[j
]);
1719 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV4
|
1720 E1000_MRQC_RSS_FIELD_IPV4_TCP
);
1721 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV6
|
1722 E1000_MRQC_RSS_FIELD_IPV6_TCP
);
1723 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV4_UDP
|
1724 E1000_MRQC_RSS_FIELD_IPV6_UDP
);
1725 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX
|
1726 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX
);
1729 wr32(E1000_MRQC
, mrqc
);
1731 /* Multiqueue and raw packet checksumming are mutually
1732 * exclusive. Note that this not the same as TCP/IP
1733 * checksumming, which works fine. */
1734 rxcsum
= rd32(E1000_RXCSUM
);
1735 rxcsum
|= E1000_RXCSUM_PCSD
;
1736 wr32(E1000_RXCSUM
, rxcsum
);
1738 /* Enable Receive Checksum Offload for TCP and UDP */
1739 rxcsum
= rd32(E1000_RXCSUM
);
1740 if (adapter
->rx_csum
) {
1741 rxcsum
|= E1000_RXCSUM_TUOFL
;
1743 /* Enable IPv4 payload checksum for UDP fragments
1744 * Must be used in conjunction with packet-split. */
1745 if (adapter
->rx_ps_hdr_size
)
1746 rxcsum
|= E1000_RXCSUM_IPPCSE
;
1748 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1749 /* don't need to clear IPPCSE as it defaults to 0 */
1751 wr32(E1000_RXCSUM
, rxcsum
);
1756 adapter
->max_frame_size
+ VLAN_TAG_SIZE
);
1758 wr32(E1000_RLPML
, adapter
->max_frame_size
);
1760 /* Enable Receives */
1761 wr32(E1000_RCTL
, rctl
);
1765 * igb_free_tx_resources - Free Tx Resources per Queue
1766 * @adapter: board private structure
1767 * @tx_ring: Tx descriptor ring for a specific queue
1769 * Free all transmit software resources
1771 static void igb_free_tx_resources(struct igb_adapter
*adapter
,
1772 struct igb_ring
*tx_ring
)
1774 struct pci_dev
*pdev
= adapter
->pdev
;
1776 igb_clean_tx_ring(adapter
, tx_ring
);
1778 vfree(tx_ring
->buffer_info
);
1779 tx_ring
->buffer_info
= NULL
;
1781 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
1783 tx_ring
->desc
= NULL
;
1787 * igb_free_all_tx_resources - Free Tx Resources for All Queues
1788 * @adapter: board private structure
1790 * Free all transmit software resources
1792 static void igb_free_all_tx_resources(struct igb_adapter
*adapter
)
1796 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1797 igb_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1800 static void igb_unmap_and_free_tx_resource(struct igb_adapter
*adapter
,
1801 struct igb_buffer
*buffer_info
)
1803 if (buffer_info
->dma
) {
1804 pci_unmap_page(adapter
->pdev
,
1806 buffer_info
->length
,
1808 buffer_info
->dma
= 0;
1810 if (buffer_info
->skb
) {
1811 dev_kfree_skb_any(buffer_info
->skb
);
1812 buffer_info
->skb
= NULL
;
1814 buffer_info
->time_stamp
= 0;
1815 /* buffer_info must be completely set up in the transmit path */
1819 * igb_clean_tx_ring - Free Tx Buffers
1820 * @adapter: board private structure
1821 * @tx_ring: ring to be cleaned
1823 static void igb_clean_tx_ring(struct igb_adapter
*adapter
,
1824 struct igb_ring
*tx_ring
)
1826 struct igb_buffer
*buffer_info
;
1830 if (!tx_ring
->buffer_info
)
1832 /* Free all the Tx ring sk_buffs */
1834 for (i
= 0; i
< tx_ring
->count
; i
++) {
1835 buffer_info
= &tx_ring
->buffer_info
[i
];
1836 igb_unmap_and_free_tx_resource(adapter
, buffer_info
);
1839 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
1840 memset(tx_ring
->buffer_info
, 0, size
);
1842 /* Zero out the descriptor ring */
1844 memset(tx_ring
->desc
, 0, tx_ring
->size
);
1846 tx_ring
->next_to_use
= 0;
1847 tx_ring
->next_to_clean
= 0;
1849 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
1850 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
1854 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
1855 * @adapter: board private structure
1857 static void igb_clean_all_tx_rings(struct igb_adapter
*adapter
)
1861 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1862 igb_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
1866 * igb_free_rx_resources - Free Rx Resources
1867 * @adapter: board private structure
1868 * @rx_ring: ring to clean the resources from
1870 * Free all receive software resources
1872 static void igb_free_rx_resources(struct igb_adapter
*adapter
,
1873 struct igb_ring
*rx_ring
)
1875 struct pci_dev
*pdev
= adapter
->pdev
;
1877 igb_clean_rx_ring(adapter
, rx_ring
);
1879 vfree(rx_ring
->buffer_info
);
1880 rx_ring
->buffer_info
= NULL
;
1882 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
1884 rx_ring
->desc
= NULL
;
1888 * igb_free_all_rx_resources - Free Rx Resources for All Queues
1889 * @adapter: board private structure
1891 * Free all receive software resources
1893 static void igb_free_all_rx_resources(struct igb_adapter
*adapter
)
1897 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1898 igb_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1902 * igb_clean_rx_ring - Free Rx Buffers per Queue
1903 * @adapter: board private structure
1904 * @rx_ring: ring to free buffers from
1906 static void igb_clean_rx_ring(struct igb_adapter
*adapter
,
1907 struct igb_ring
*rx_ring
)
1909 struct igb_buffer
*buffer_info
;
1910 struct pci_dev
*pdev
= adapter
->pdev
;
1914 if (!rx_ring
->buffer_info
)
1916 /* Free all the Rx ring sk_buffs */
1917 for (i
= 0; i
< rx_ring
->count
; i
++) {
1918 buffer_info
= &rx_ring
->buffer_info
[i
];
1919 if (buffer_info
->dma
) {
1920 if (adapter
->rx_ps_hdr_size
)
1921 pci_unmap_single(pdev
, buffer_info
->dma
,
1922 adapter
->rx_ps_hdr_size
,
1923 PCI_DMA_FROMDEVICE
);
1925 pci_unmap_single(pdev
, buffer_info
->dma
,
1926 adapter
->rx_buffer_len
,
1927 PCI_DMA_FROMDEVICE
);
1928 buffer_info
->dma
= 0;
1931 if (buffer_info
->skb
) {
1932 dev_kfree_skb(buffer_info
->skb
);
1933 buffer_info
->skb
= NULL
;
1935 if (buffer_info
->page
) {
1936 pci_unmap_page(pdev
, buffer_info
->page_dma
,
1937 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
1938 put_page(buffer_info
->page
);
1939 buffer_info
->page
= NULL
;
1940 buffer_info
->page_dma
= 0;
1944 /* there also may be some cached data from a chained receive */
1945 if (rx_ring
->pending_skb
) {
1946 dev_kfree_skb(rx_ring
->pending_skb
);
1947 rx_ring
->pending_skb
= NULL
;
1950 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
1951 memset(rx_ring
->buffer_info
, 0, size
);
1953 /* Zero out the descriptor ring */
1954 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1956 rx_ring
->next_to_clean
= 0;
1957 rx_ring
->next_to_use
= 0;
1959 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
1960 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
1964 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
1965 * @adapter: board private structure
1967 static void igb_clean_all_rx_rings(struct igb_adapter
*adapter
)
1971 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1972 igb_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
1976 * igb_set_mac - Change the Ethernet Address of the NIC
1977 * @netdev: network interface device structure
1978 * @p: pointer to an address structure
1980 * Returns 0 on success, negative on failure
1982 static int igb_set_mac(struct net_device
*netdev
, void *p
)
1984 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1985 struct sockaddr
*addr
= p
;
1987 if (!is_valid_ether_addr(addr
->sa_data
))
1988 return -EADDRNOTAVAIL
;
1990 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
1991 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
1993 adapter
->hw
.mac
.ops
.rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
1999 * igb_set_multi - Multicast and Promiscuous mode set
2000 * @netdev: network interface device structure
2002 * The set_multi entry point is called whenever the multicast address
2003 * list or the network interface flags are updated. This routine is
2004 * responsible for configuring the hardware for proper multicast,
2005 * promiscuous mode, and all-multi behavior.
2007 static void igb_set_multi(struct net_device
*netdev
)
2009 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2010 struct e1000_hw
*hw
= &adapter
->hw
;
2011 struct e1000_mac_info
*mac
= &hw
->mac
;
2012 struct dev_mc_list
*mc_ptr
;
2017 /* Check for Promiscuous and All Multicast modes */
2019 rctl
= rd32(E1000_RCTL
);
2021 if (netdev
->flags
& IFF_PROMISC
)
2022 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2023 else if (netdev
->flags
& IFF_ALLMULTI
) {
2024 rctl
|= E1000_RCTL_MPE
;
2025 rctl
&= ~E1000_RCTL_UPE
;
2027 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2029 wr32(E1000_RCTL
, rctl
);
2031 if (!netdev
->mc_count
) {
2032 /* nothing to program, so clear mc list */
2033 igb_update_mc_addr_list(hw
, NULL
, 0, 1,
2034 mac
->rar_entry_count
);
2038 mta_list
= kzalloc(netdev
->mc_count
* 6, GFP_ATOMIC
);
2042 /* The shared function expects a packed array of only addresses. */
2043 mc_ptr
= netdev
->mc_list
;
2045 for (i
= 0; i
< netdev
->mc_count
; i
++) {
2048 memcpy(mta_list
+ (i
*ETH_ALEN
), mc_ptr
->dmi_addr
, ETH_ALEN
);
2049 mc_ptr
= mc_ptr
->next
;
2051 igb_update_mc_addr_list(hw
, mta_list
, i
, 1, mac
->rar_entry_count
);
2055 /* Need to wait a few seconds after link up to get diagnostic information from
2057 static void igb_update_phy_info(unsigned long data
)
2059 struct igb_adapter
*adapter
= (struct igb_adapter
*) data
;
2060 adapter
->hw
.phy
.ops
.get_phy_info(&adapter
->hw
);
2064 * igb_watchdog - Timer Call-back
2065 * @data: pointer to adapter cast into an unsigned long
2067 static void igb_watchdog(unsigned long data
)
2069 struct igb_adapter
*adapter
= (struct igb_adapter
*)data
;
2070 /* Do the rest outside of interrupt context */
2071 schedule_work(&adapter
->watchdog_task
);
2074 static void igb_watchdog_task(struct work_struct
*work
)
2076 struct igb_adapter
*adapter
= container_of(work
,
2077 struct igb_adapter
, watchdog_task
);
2078 struct e1000_hw
*hw
= &adapter
->hw
;
2080 struct net_device
*netdev
= adapter
->netdev
;
2081 struct igb_ring
*tx_ring
= adapter
->tx_ring
;
2082 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
2086 if ((netif_carrier_ok(netdev
)) &&
2087 (rd32(E1000_STATUS
) & E1000_STATUS_LU
))
2090 ret_val
= hw
->mac
.ops
.check_for_link(&adapter
->hw
);
2091 if ((ret_val
== E1000_ERR_PHY
) &&
2092 (hw
->phy
.type
== e1000_phy_igp_3
) &&
2094 E1000_PHY_CTRL_GBE_DISABLE
))
2095 dev_info(&adapter
->pdev
->dev
,
2096 "Gigabit has been disabled, downgrading speed\n");
2098 if ((hw
->phy
.media_type
== e1000_media_type_internal_serdes
) &&
2099 !(rd32(E1000_TXCW
) & E1000_TXCW_ANE
))
2100 link
= mac
->serdes_has_link
;
2102 link
= rd32(E1000_STATUS
) &
2106 if (!netif_carrier_ok(netdev
)) {
2108 hw
->mac
.ops
.get_speed_and_duplex(&adapter
->hw
,
2109 &adapter
->link_speed
,
2110 &adapter
->link_duplex
);
2112 ctrl
= rd32(E1000_CTRL
);
2113 dev_info(&adapter
->pdev
->dev
,
2114 "NIC Link is Up %d Mbps %s, "
2115 "Flow Control: %s\n",
2116 adapter
->link_speed
,
2117 adapter
->link_duplex
== FULL_DUPLEX
?
2118 "Full Duplex" : "Half Duplex",
2119 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2120 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2121 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2122 E1000_CTRL_TFCE
) ? "TX" : "None")));
2124 /* tweak tx_queue_len according to speed/duplex and
2125 * adjust the timeout factor */
2126 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2127 adapter
->tx_timeout_factor
= 1;
2128 switch (adapter
->link_speed
) {
2130 netdev
->tx_queue_len
= 10;
2131 adapter
->tx_timeout_factor
= 14;
2134 netdev
->tx_queue_len
= 100;
2135 /* maybe add some timeout factor ? */
2139 netif_carrier_on(netdev
);
2140 netif_wake_queue(netdev
);
2142 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2143 mod_timer(&adapter
->phy_info_timer
,
2144 round_jiffies(jiffies
+ 2 * HZ
));
2147 if (netif_carrier_ok(netdev
)) {
2148 adapter
->link_speed
= 0;
2149 adapter
->link_duplex
= 0;
2150 dev_info(&adapter
->pdev
->dev
, "NIC Link is Down\n");
2151 netif_carrier_off(netdev
);
2152 netif_stop_queue(netdev
);
2153 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2154 mod_timer(&adapter
->phy_info_timer
,
2155 round_jiffies(jiffies
+ 2 * HZ
));
2160 igb_update_stats(adapter
);
2162 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2163 adapter
->tpt_old
= adapter
->stats
.tpt
;
2164 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2165 adapter
->colc_old
= adapter
->stats
.colc
;
2167 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
2168 adapter
->gorc_old
= adapter
->stats
.gorc
;
2169 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
2170 adapter
->gotc_old
= adapter
->stats
.gotc
;
2172 igb_update_adaptive(&adapter
->hw
);
2174 if (!netif_carrier_ok(netdev
)) {
2175 if (IGB_DESC_UNUSED(tx_ring
) + 1 < tx_ring
->count
) {
2176 /* We've lost link, so the controller stops DMA,
2177 * but we've got queued Tx work that's never going
2178 * to get done, so reset controller to flush Tx.
2179 * (Do the reset outside of interrupt context). */
2180 adapter
->tx_timeout_count
++;
2181 schedule_work(&adapter
->reset_task
);
2185 /* Cause software interrupt to ensure rx ring is cleaned */
2186 wr32(E1000_ICS
, E1000_ICS_RXDMT0
);
2188 /* Force detection of hung controller every watchdog period */
2189 tx_ring
->detect_tx_hung
= true;
2191 /* Reset the timer */
2192 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2193 mod_timer(&adapter
->watchdog_timer
,
2194 round_jiffies(jiffies
+ 2 * HZ
));
2197 enum latency_range
{
2201 latency_invalid
= 255
2205 static void igb_lower_rx_eitr(struct igb_adapter
*adapter
,
2206 struct igb_ring
*rx_ring
)
2208 struct e1000_hw
*hw
= &adapter
->hw
;
2211 new_val
= rx_ring
->itr_val
/ 2;
2212 if (new_val
< IGB_MIN_DYN_ITR
)
2213 new_val
= IGB_MIN_DYN_ITR
;
2215 if (new_val
!= rx_ring
->itr_val
) {
2216 rx_ring
->itr_val
= new_val
;
2217 wr32(rx_ring
->itr_register
,
2218 1000000000 / (new_val
* 256));
2222 static void igb_raise_rx_eitr(struct igb_adapter
*adapter
,
2223 struct igb_ring
*rx_ring
)
2225 struct e1000_hw
*hw
= &adapter
->hw
;
2228 new_val
= rx_ring
->itr_val
* 2;
2229 if (new_val
> IGB_MAX_DYN_ITR
)
2230 new_val
= IGB_MAX_DYN_ITR
;
2232 if (new_val
!= rx_ring
->itr_val
) {
2233 rx_ring
->itr_val
= new_val
;
2234 wr32(rx_ring
->itr_register
,
2235 1000000000 / (new_val
* 256));
2240 * igb_update_itr - update the dynamic ITR value based on statistics
2241 * Stores a new ITR value based on packets and byte
2242 * counts during the last interrupt. The advantage of per interrupt
2243 * computation is faster updates and more accurate ITR for the current
2244 * traffic pattern. Constants in this function were computed
2245 * based on theoretical maximum wire speed and thresholds were set based
2246 * on testing data as well as attempting to minimize response time
2247 * while increasing bulk throughput.
2248 * this functionality is controlled by the InterruptThrottleRate module
2249 * parameter (see igb_param.c)
2250 * NOTE: These calculations are only valid when operating in a single-
2251 * queue environment.
2252 * @adapter: pointer to adapter
2253 * @itr_setting: current adapter->itr
2254 * @packets: the number of packets during this measurement interval
2255 * @bytes: the number of bytes during this measurement interval
2257 static unsigned int igb_update_itr(struct igb_adapter
*adapter
, u16 itr_setting
,
2258 int packets
, int bytes
)
2260 unsigned int retval
= itr_setting
;
2263 goto update_itr_done
;
2265 switch (itr_setting
) {
2266 case lowest_latency
:
2267 /* handle TSO and jumbo frames */
2268 if (bytes
/packets
> 8000)
2269 retval
= bulk_latency
;
2270 else if ((packets
< 5) && (bytes
> 512))
2271 retval
= low_latency
;
2273 case low_latency
: /* 50 usec aka 20000 ints/s */
2274 if (bytes
> 10000) {
2275 /* this if handles the TSO accounting */
2276 if (bytes
/packets
> 8000) {
2277 retval
= bulk_latency
;
2278 } else if ((packets
< 10) || ((bytes
/packets
) > 1200)) {
2279 retval
= bulk_latency
;
2280 } else if ((packets
> 35)) {
2281 retval
= lowest_latency
;
2283 } else if (bytes
/packets
> 2000) {
2284 retval
= bulk_latency
;
2285 } else if (packets
<= 2 && bytes
< 512) {
2286 retval
= lowest_latency
;
2289 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2290 if (bytes
> 25000) {
2292 retval
= low_latency
;
2293 } else if (bytes
< 6000) {
2294 retval
= low_latency
;
2303 static void igb_set_itr(struct igb_adapter
*adapter
, u16 itr_register
,
2307 u32 new_itr
= adapter
->itr
;
2309 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2310 if (adapter
->link_speed
!= SPEED_1000
) {
2316 adapter
->rx_itr
= igb_update_itr(adapter
,
2318 adapter
->rx_ring
->total_packets
,
2319 adapter
->rx_ring
->total_bytes
);
2320 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2321 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2322 adapter
->rx_itr
= low_latency
;
2325 adapter
->tx_itr
= igb_update_itr(adapter
,
2327 adapter
->tx_ring
->total_packets
,
2328 adapter
->tx_ring
->total_bytes
);
2329 /* conservative mode (itr 3) eliminates the
2330 * lowest_latency setting */
2331 if (adapter
->itr_setting
== 3 &&
2332 adapter
->tx_itr
== lowest_latency
)
2333 adapter
->tx_itr
= low_latency
;
2335 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2337 current_itr
= adapter
->rx_itr
;
2340 switch (current_itr
) {
2341 /* counts and packets in update_itr are dependent on these numbers */
2342 case lowest_latency
:
2346 new_itr
= 20000; /* aka hwitr = ~200 */
2356 if (new_itr
!= adapter
->itr
) {
2357 /* this attempts to bias the interrupt rate towards Bulk
2358 * by adding intermediate steps when interrupt rate is
2360 new_itr
= new_itr
> adapter
->itr
?
2361 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2363 /* Don't write the value here; it resets the adapter's
2364 * internal timer, and causes us to delay far longer than
2365 * we should between interrupts. Instead, we write the ITR
2366 * value at the beginning of the next interrupt so the timing
2367 * ends up being correct.
2369 adapter
->itr
= new_itr
;
2370 adapter
->set_itr
= 1;
2377 #define IGB_TX_FLAGS_CSUM 0x00000001
2378 #define IGB_TX_FLAGS_VLAN 0x00000002
2379 #define IGB_TX_FLAGS_TSO 0x00000004
2380 #define IGB_TX_FLAGS_IPV4 0x00000008
2381 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2382 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2384 static inline int igb_tso_adv(struct igb_adapter
*adapter
,
2385 struct igb_ring
*tx_ring
,
2386 struct sk_buff
*skb
, u32 tx_flags
, u8
*hdr_len
)
2388 struct e1000_adv_tx_context_desc
*context_desc
;
2391 struct igb_buffer
*buffer_info
;
2392 u32 info
= 0, tu_cmd
= 0;
2393 u32 mss_l4len_idx
, l4len
;
2396 if (skb_header_cloned(skb
)) {
2397 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2402 l4len
= tcp_hdrlen(skb
);
2405 if (skb
->protocol
== htons(ETH_P_IP
)) {
2406 struct iphdr
*iph
= ip_hdr(skb
);
2409 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2413 } else if (skb_shinfo(skb
)->gso_type
== SKB_GSO_TCPV6
) {
2414 ipv6_hdr(skb
)->payload_len
= 0;
2415 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2416 &ipv6_hdr(skb
)->daddr
,
2420 i
= tx_ring
->next_to_use
;
2422 buffer_info
= &tx_ring
->buffer_info
[i
];
2423 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
2424 /* VLAN MACLEN IPLEN */
2425 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2426 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
2427 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
2428 *hdr_len
+= skb_network_offset(skb
);
2429 info
|= skb_network_header_len(skb
);
2430 *hdr_len
+= skb_network_header_len(skb
);
2431 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
2433 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2434 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
2436 if (skb
->protocol
== htons(ETH_P_IP
))
2437 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
2438 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2440 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
2443 mss_l4len_idx
= (skb_shinfo(skb
)->gso_size
<< E1000_ADVTXD_MSS_SHIFT
);
2444 mss_l4len_idx
|= (l4len
<< E1000_ADVTXD_L4LEN_SHIFT
);
2446 /* Context index must be unique per ring. Luckily, so is the interrupt
2448 mss_l4len_idx
|= tx_ring
->eims_value
>> 4;
2450 context_desc
->mss_l4len_idx
= cpu_to_le32(mss_l4len_idx
);
2451 context_desc
->seqnum_seed
= 0;
2453 buffer_info
->time_stamp
= jiffies
;
2454 buffer_info
->dma
= 0;
2456 if (i
== tx_ring
->count
)
2459 tx_ring
->next_to_use
= i
;
2464 static inline bool igb_tx_csum_adv(struct igb_adapter
*adapter
,
2465 struct igb_ring
*tx_ring
,
2466 struct sk_buff
*skb
, u32 tx_flags
)
2468 struct e1000_adv_tx_context_desc
*context_desc
;
2470 struct igb_buffer
*buffer_info
;
2471 u32 info
= 0, tu_cmd
= 0;
2473 if ((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
2474 (tx_flags
& IGB_TX_FLAGS_VLAN
)) {
2475 i
= tx_ring
->next_to_use
;
2476 buffer_info
= &tx_ring
->buffer_info
[i
];
2477 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
2479 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2480 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
2481 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
2482 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2483 info
|= skb_network_header_len(skb
);
2485 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
2487 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
2489 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2490 if (skb
->protocol
== htons(ETH_P_IP
))
2491 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
2492 if (skb
->sk
&& (skb
->sk
->sk_protocol
== IPPROTO_TCP
))
2493 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2496 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
2497 context_desc
->seqnum_seed
= 0;
2498 context_desc
->mss_l4len_idx
=
2499 cpu_to_le32(tx_ring
->eims_value
>> 4);
2501 buffer_info
->time_stamp
= jiffies
;
2502 buffer_info
->dma
= 0;
2505 if (i
== tx_ring
->count
)
2507 tx_ring
->next_to_use
= i
;
2516 #define IGB_MAX_TXD_PWR 16
2517 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2519 static inline int igb_tx_map_adv(struct igb_adapter
*adapter
,
2520 struct igb_ring
*tx_ring
,
2521 struct sk_buff
*skb
)
2523 struct igb_buffer
*buffer_info
;
2524 unsigned int len
= skb_headlen(skb
);
2525 unsigned int count
= 0, i
;
2528 i
= tx_ring
->next_to_use
;
2530 buffer_info
= &tx_ring
->buffer_info
[i
];
2531 BUG_ON(len
>= IGB_MAX_DATA_PER_TXD
);
2532 buffer_info
->length
= len
;
2533 /* set time_stamp *before* dma to help avoid a possible race */
2534 buffer_info
->time_stamp
= jiffies
;
2535 buffer_info
->dma
= pci_map_single(adapter
->pdev
, skb
->data
, len
,
2539 if (i
== tx_ring
->count
)
2542 for (f
= 0; f
< skb_shinfo(skb
)->nr_frags
; f
++) {
2543 struct skb_frag_struct
*frag
;
2545 frag
= &skb_shinfo(skb
)->frags
[f
];
2548 buffer_info
= &tx_ring
->buffer_info
[i
];
2549 BUG_ON(len
>= IGB_MAX_DATA_PER_TXD
);
2550 buffer_info
->length
= len
;
2551 buffer_info
->time_stamp
= jiffies
;
2552 buffer_info
->dma
= pci_map_page(adapter
->pdev
,
2560 if (i
== tx_ring
->count
)
2564 i
= (i
== 0) ? tx_ring
->count
- 1 : i
- 1;
2565 tx_ring
->buffer_info
[i
].skb
= skb
;
2570 static inline void igb_tx_queue_adv(struct igb_adapter
*adapter
,
2571 struct igb_ring
*tx_ring
,
2572 int tx_flags
, int count
, u32 paylen
,
2575 union e1000_adv_tx_desc
*tx_desc
= NULL
;
2576 struct igb_buffer
*buffer_info
;
2577 u32 olinfo_status
= 0, cmd_type_len
;
2580 cmd_type_len
= (E1000_ADVTXD_DTYP_DATA
| E1000_ADVTXD_DCMD_IFCS
|
2581 E1000_ADVTXD_DCMD_DEXT
);
2583 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2584 cmd_type_len
|= E1000_ADVTXD_DCMD_VLE
;
2586 if (tx_flags
& IGB_TX_FLAGS_TSO
) {
2587 cmd_type_len
|= E1000_ADVTXD_DCMD_TSE
;
2589 /* insert tcp checksum */
2590 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2592 /* insert ip checksum */
2593 if (tx_flags
& IGB_TX_FLAGS_IPV4
)
2594 olinfo_status
|= E1000_TXD_POPTS_IXSM
<< 8;
2596 } else if (tx_flags
& IGB_TX_FLAGS_CSUM
) {
2597 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2600 if (tx_flags
& (IGB_TX_FLAGS_CSUM
| IGB_TX_FLAGS_TSO
|
2602 olinfo_status
|= tx_ring
->eims_value
>> 4;
2604 olinfo_status
|= ((paylen
- hdr_len
) << E1000_ADVTXD_PAYLEN_SHIFT
);
2606 i
= tx_ring
->next_to_use
;
2608 buffer_info
= &tx_ring
->buffer_info
[i
];
2609 tx_desc
= E1000_TX_DESC_ADV(*tx_ring
, i
);
2610 tx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2611 tx_desc
->read
.cmd_type_len
=
2612 cpu_to_le32(cmd_type_len
| buffer_info
->length
);
2613 tx_desc
->read
.olinfo_status
= cpu_to_le32(olinfo_status
);
2615 if (i
== tx_ring
->count
)
2619 tx_desc
->read
.cmd_type_len
|= cpu_to_le32(adapter
->txd_cmd
);
2620 /* Force memory writes to complete before letting h/w
2621 * know there are new descriptors to fetch. (Only
2622 * applicable for weak-ordered memory model archs,
2623 * such as IA-64). */
2626 tx_ring
->next_to_use
= i
;
2627 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2628 /* we need this if more than one processor can write to our tail
2629 * at a time, it syncronizes IO on IA64/Altix systems */
2633 static int __igb_maybe_stop_tx(struct net_device
*netdev
,
2634 struct igb_ring
*tx_ring
, int size
)
2636 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2638 netif_stop_queue(netdev
);
2639 /* Herbert's original patch had:
2640 * smp_mb__after_netif_stop_queue();
2641 * but since that doesn't exist yet, just open code it. */
2644 /* We need to check again in a case another CPU has just
2645 * made room available. */
2646 if (IGB_DESC_UNUSED(tx_ring
) < size
)
2650 netif_start_queue(netdev
);
2651 ++adapter
->restart_queue
;
2655 static int igb_maybe_stop_tx(struct net_device
*netdev
,
2656 struct igb_ring
*tx_ring
, int size
)
2658 if (IGB_DESC_UNUSED(tx_ring
) >= size
)
2660 return __igb_maybe_stop_tx(netdev
, tx_ring
, size
);
2663 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2665 static int igb_xmit_frame_ring_adv(struct sk_buff
*skb
,
2666 struct net_device
*netdev
,
2667 struct igb_ring
*tx_ring
)
2669 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2670 unsigned int tx_flags
= 0;
2672 unsigned long irq_flags
;
2676 len
= skb_headlen(skb
);
2678 if (test_bit(__IGB_DOWN
, &adapter
->state
)) {
2679 dev_kfree_skb_any(skb
);
2680 return NETDEV_TX_OK
;
2683 if (skb
->len
<= 0) {
2684 dev_kfree_skb_any(skb
);
2685 return NETDEV_TX_OK
;
2688 if (!spin_trylock_irqsave(&tx_ring
->tx_lock
, irq_flags
))
2689 /* Collision - tell upper layer to requeue */
2690 return NETDEV_TX_LOCKED
;
2692 /* need: 1 descriptor per page,
2693 * + 2 desc gap to keep tail from touching head,
2694 * + 1 desc for skb->data,
2695 * + 1 desc for context descriptor,
2696 * otherwise try next time */
2697 if (igb_maybe_stop_tx(netdev
, tx_ring
, skb_shinfo(skb
)->nr_frags
+ 4)) {
2698 /* this is a hard error */
2699 spin_unlock_irqrestore(&tx_ring
->tx_lock
, irq_flags
);
2700 return NETDEV_TX_BUSY
;
2703 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
2704 tx_flags
|= IGB_TX_FLAGS_VLAN
;
2705 tx_flags
|= (vlan_tx_tag_get(skb
) << IGB_TX_FLAGS_VLAN_SHIFT
);
2708 tso
= skb_is_gso(skb
) ? igb_tso_adv(adapter
, tx_ring
, skb
, tx_flags
,
2712 dev_kfree_skb_any(skb
);
2713 spin_unlock_irqrestore(&tx_ring
->tx_lock
, irq_flags
);
2714 return NETDEV_TX_OK
;
2718 tx_flags
|= IGB_TX_FLAGS_TSO
;
2719 else if (igb_tx_csum_adv(adapter
, tx_ring
, skb
, tx_flags
))
2720 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2721 tx_flags
|= IGB_TX_FLAGS_CSUM
;
2723 if (skb
->protocol
== htons(ETH_P_IP
))
2724 tx_flags
|= IGB_TX_FLAGS_IPV4
;
2726 igb_tx_queue_adv(adapter
, tx_ring
, tx_flags
,
2727 igb_tx_map_adv(adapter
, tx_ring
, skb
),
2730 netdev
->trans_start
= jiffies
;
2732 /* Make sure there is space in the ring for the next send. */
2733 igb_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 4);
2735 spin_unlock_irqrestore(&tx_ring
->tx_lock
, irq_flags
);
2736 return NETDEV_TX_OK
;
2739 static int igb_xmit_frame_adv(struct sk_buff
*skb
, struct net_device
*netdev
)
2741 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2742 struct igb_ring
*tx_ring
= &adapter
->tx_ring
[0];
2744 /* This goes back to the question of how to logically map a tx queue
2745 * to a flow. Right now, performance is impacted slightly negatively
2746 * if using multiple tx queues. If the stack breaks away from a
2747 * single qdisc implementation, we can look at this again. */
2748 return (igb_xmit_frame_ring_adv(skb
, netdev
, tx_ring
));
2752 * igb_tx_timeout - Respond to a Tx Hang
2753 * @netdev: network interface device structure
2755 static void igb_tx_timeout(struct net_device
*netdev
)
2757 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2758 struct e1000_hw
*hw
= &adapter
->hw
;
2760 /* Do the reset outside of interrupt context */
2761 adapter
->tx_timeout_count
++;
2762 schedule_work(&adapter
->reset_task
);
2763 wr32(E1000_EICS
, adapter
->eims_enable_mask
&
2764 ~(E1000_EIMS_TCP_TIMER
| E1000_EIMS_OTHER
));
2767 static void igb_reset_task(struct work_struct
*work
)
2769 struct igb_adapter
*adapter
;
2770 adapter
= container_of(work
, struct igb_adapter
, reset_task
);
2772 igb_reinit_locked(adapter
);
2776 * igb_get_stats - Get System Network Statistics
2777 * @netdev: network interface device structure
2779 * Returns the address of the device statistics structure.
2780 * The statistics are actually updated from the timer callback.
2782 static struct net_device_stats
*
2783 igb_get_stats(struct net_device
*netdev
)
2785 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2787 /* only return the current stats */
2788 return &adapter
->net_stats
;
2792 * igb_change_mtu - Change the Maximum Transfer Unit
2793 * @netdev: network interface device structure
2794 * @new_mtu: new value for maximum frame size
2796 * Returns 0 on success, negative on failure
2798 static int igb_change_mtu(struct net_device
*netdev
, int new_mtu
)
2800 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2801 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
2803 if ((max_frame
< ETH_ZLEN
+ ETH_FCS_LEN
) ||
2804 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
2805 dev_err(&adapter
->pdev
->dev
, "Invalid MTU setting\n");
2809 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2810 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
2811 dev_err(&adapter
->pdev
->dev
, "MTU > 9216 not supported.\n");
2815 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
2817 /* igb_down has a dependency on max_frame_size */
2818 adapter
->max_frame_size
= max_frame
;
2819 if (netif_running(netdev
))
2822 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2823 * means we reserve 2 more, this pushes us to allocate from the next
2825 * i.e. RXBUFFER_2048 --> size-4096 slab
2828 if (max_frame
<= IGB_RXBUFFER_256
)
2829 adapter
->rx_buffer_len
= IGB_RXBUFFER_256
;
2830 else if (max_frame
<= IGB_RXBUFFER_512
)
2831 adapter
->rx_buffer_len
= IGB_RXBUFFER_512
;
2832 else if (max_frame
<= IGB_RXBUFFER_1024
)
2833 adapter
->rx_buffer_len
= IGB_RXBUFFER_1024
;
2834 else if (max_frame
<= IGB_RXBUFFER_2048
)
2835 adapter
->rx_buffer_len
= IGB_RXBUFFER_2048
;
2837 adapter
->rx_buffer_len
= IGB_RXBUFFER_4096
;
2838 /* adjust allocation if LPE protects us, and we aren't using SBP */
2839 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
2840 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
))
2841 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
2843 dev_info(&adapter
->pdev
->dev
, "changing MTU from %d to %d\n",
2844 netdev
->mtu
, new_mtu
);
2845 netdev
->mtu
= new_mtu
;
2847 if (netif_running(netdev
))
2852 clear_bit(__IGB_RESETTING
, &adapter
->state
);
2858 * igb_update_stats - Update the board statistics counters
2859 * @adapter: board private structure
2862 void igb_update_stats(struct igb_adapter
*adapter
)
2864 struct e1000_hw
*hw
= &adapter
->hw
;
2865 struct pci_dev
*pdev
= adapter
->pdev
;
2868 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2871 * Prevent stats update while adapter is being reset, or if the pci
2872 * connection is down.
2874 if (adapter
->link_speed
== 0)
2876 if (pci_channel_offline(pdev
))
2879 adapter
->stats
.crcerrs
+= rd32(E1000_CRCERRS
);
2880 adapter
->stats
.gprc
+= rd32(E1000_GPRC
);
2881 adapter
->stats
.gorc
+= rd32(E1000_GORCL
);
2882 rd32(E1000_GORCH
); /* clear GORCL */
2883 adapter
->stats
.bprc
+= rd32(E1000_BPRC
);
2884 adapter
->stats
.mprc
+= rd32(E1000_MPRC
);
2885 adapter
->stats
.roc
+= rd32(E1000_ROC
);
2887 adapter
->stats
.prc64
+= rd32(E1000_PRC64
);
2888 adapter
->stats
.prc127
+= rd32(E1000_PRC127
);
2889 adapter
->stats
.prc255
+= rd32(E1000_PRC255
);
2890 adapter
->stats
.prc511
+= rd32(E1000_PRC511
);
2891 adapter
->stats
.prc1023
+= rd32(E1000_PRC1023
);
2892 adapter
->stats
.prc1522
+= rd32(E1000_PRC1522
);
2893 adapter
->stats
.symerrs
+= rd32(E1000_SYMERRS
);
2894 adapter
->stats
.sec
+= rd32(E1000_SEC
);
2896 adapter
->stats
.mpc
+= rd32(E1000_MPC
);
2897 adapter
->stats
.scc
+= rd32(E1000_SCC
);
2898 adapter
->stats
.ecol
+= rd32(E1000_ECOL
);
2899 adapter
->stats
.mcc
+= rd32(E1000_MCC
);
2900 adapter
->stats
.latecol
+= rd32(E1000_LATECOL
);
2901 adapter
->stats
.dc
+= rd32(E1000_DC
);
2902 adapter
->stats
.rlec
+= rd32(E1000_RLEC
);
2903 adapter
->stats
.xonrxc
+= rd32(E1000_XONRXC
);
2904 adapter
->stats
.xontxc
+= rd32(E1000_XONTXC
);
2905 adapter
->stats
.xoffrxc
+= rd32(E1000_XOFFRXC
);
2906 adapter
->stats
.xofftxc
+= rd32(E1000_XOFFTXC
);
2907 adapter
->stats
.fcruc
+= rd32(E1000_FCRUC
);
2908 adapter
->stats
.gptc
+= rd32(E1000_GPTC
);
2909 adapter
->stats
.gotc
+= rd32(E1000_GOTCL
);
2910 rd32(E1000_GOTCH
); /* clear GOTCL */
2911 adapter
->stats
.rnbc
+= rd32(E1000_RNBC
);
2912 adapter
->stats
.ruc
+= rd32(E1000_RUC
);
2913 adapter
->stats
.rfc
+= rd32(E1000_RFC
);
2914 adapter
->stats
.rjc
+= rd32(E1000_RJC
);
2915 adapter
->stats
.tor
+= rd32(E1000_TORH
);
2916 adapter
->stats
.tot
+= rd32(E1000_TOTH
);
2917 adapter
->stats
.tpr
+= rd32(E1000_TPR
);
2919 adapter
->stats
.ptc64
+= rd32(E1000_PTC64
);
2920 adapter
->stats
.ptc127
+= rd32(E1000_PTC127
);
2921 adapter
->stats
.ptc255
+= rd32(E1000_PTC255
);
2922 adapter
->stats
.ptc511
+= rd32(E1000_PTC511
);
2923 adapter
->stats
.ptc1023
+= rd32(E1000_PTC1023
);
2924 adapter
->stats
.ptc1522
+= rd32(E1000_PTC1522
);
2926 adapter
->stats
.mptc
+= rd32(E1000_MPTC
);
2927 adapter
->stats
.bptc
+= rd32(E1000_BPTC
);
2929 /* used for adaptive IFS */
2931 hw
->mac
.tx_packet_delta
= rd32(E1000_TPT
);
2932 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
2933 hw
->mac
.collision_delta
= rd32(E1000_COLC
);
2934 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
2936 adapter
->stats
.algnerrc
+= rd32(E1000_ALGNERRC
);
2937 adapter
->stats
.rxerrc
+= rd32(E1000_RXERRC
);
2938 adapter
->stats
.tncrs
+= rd32(E1000_TNCRS
);
2939 adapter
->stats
.tsctc
+= rd32(E1000_TSCTC
);
2940 adapter
->stats
.tsctfc
+= rd32(E1000_TSCTFC
);
2942 adapter
->stats
.iac
+= rd32(E1000_IAC
);
2943 adapter
->stats
.icrxoc
+= rd32(E1000_ICRXOC
);
2944 adapter
->stats
.icrxptc
+= rd32(E1000_ICRXPTC
);
2945 adapter
->stats
.icrxatc
+= rd32(E1000_ICRXATC
);
2946 adapter
->stats
.ictxptc
+= rd32(E1000_ICTXPTC
);
2947 adapter
->stats
.ictxatc
+= rd32(E1000_ICTXATC
);
2948 adapter
->stats
.ictxqec
+= rd32(E1000_ICTXQEC
);
2949 adapter
->stats
.ictxqmtc
+= rd32(E1000_ICTXQMTC
);
2950 adapter
->stats
.icrxdmtc
+= rd32(E1000_ICRXDMTC
);
2952 /* Fill out the OS statistics structure */
2953 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
2954 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
2958 /* RLEC on some newer hardware can be incorrect so build
2959 * our own version based on RUC and ROC */
2960 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
2961 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
2962 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
2963 adapter
->stats
.cexterr
;
2964 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.ruc
+
2966 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
2967 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
2968 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
2971 adapter
->net_stats
.tx_errors
= adapter
->stats
.ecol
+
2972 adapter
->stats
.latecol
;
2973 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
2974 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
2975 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
2977 /* Tx Dropped needs to be maintained elsewhere */
2980 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
2981 if ((adapter
->link_speed
== SPEED_1000
) &&
2982 (!hw
->phy
.ops
.read_phy_reg(hw
, PHY_1000T_STATUS
,
2984 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
2985 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
2989 /* Management Stats */
2990 adapter
->stats
.mgptc
+= rd32(E1000_MGTPTC
);
2991 adapter
->stats
.mgprc
+= rd32(E1000_MGTPRC
);
2992 adapter
->stats
.mgpdc
+= rd32(E1000_MGTPDC
);
2996 static irqreturn_t
igb_msix_other(int irq
, void *data
)
2998 struct net_device
*netdev
= data
;
2999 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3000 struct e1000_hw
*hw
= &adapter
->hw
;
3002 /* disable interrupts from the "other" bit, avoid re-entry */
3003 wr32(E1000_EIMC
, E1000_EIMS_OTHER
);
3005 eicr
= rd32(E1000_EICR
);
3007 if (eicr
& E1000_EIMS_OTHER
) {
3008 u32 icr
= rd32(E1000_ICR
);
3009 /* reading ICR causes bit 31 of EICR to be cleared */
3010 if (!(icr
& E1000_ICR_LSC
))
3011 goto no_link_interrupt
;
3012 hw
->mac
.get_link_status
= 1;
3013 /* guard against interrupt when we're going down */
3014 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3015 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3019 wr32(E1000_IMS
, E1000_IMS_LSC
);
3020 wr32(E1000_EIMS
, E1000_EIMS_OTHER
);
3025 static irqreturn_t
igb_msix_tx(int irq
, void *data
)
3027 struct igb_ring
*tx_ring
= data
;
3028 struct igb_adapter
*adapter
= tx_ring
->adapter
;
3029 struct e1000_hw
*hw
= &adapter
->hw
;
3031 if (!tx_ring
->itr_val
)
3032 wr32(E1000_EIMC
, tx_ring
->eims_value
);
3034 tx_ring
->total_bytes
= 0;
3035 tx_ring
->total_packets
= 0;
3036 if (!igb_clean_tx_irq(adapter
, tx_ring
))
3037 /* Ring was not completely cleaned, so fire another interrupt */
3038 wr32(E1000_EICS
, tx_ring
->eims_value
);
3040 if (!tx_ring
->itr_val
)
3041 wr32(E1000_EIMS
, tx_ring
->eims_value
);
3045 static irqreturn_t
igb_msix_rx(int irq
, void *data
)
3047 struct igb_ring
*rx_ring
= data
;
3048 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3049 struct e1000_hw
*hw
= &adapter
->hw
;
3051 if (!rx_ring
->itr_val
)
3052 wr32(E1000_EIMC
, rx_ring
->eims_value
);
3054 if (netif_rx_schedule_prep(adapter
->netdev
, &rx_ring
->napi
)) {
3055 rx_ring
->total_bytes
= 0;
3056 rx_ring
->total_packets
= 0;
3057 rx_ring
->no_itr_adjust
= 0;
3058 __netif_rx_schedule(adapter
->netdev
, &rx_ring
->napi
);
3060 if (!rx_ring
->no_itr_adjust
) {
3061 igb_lower_rx_eitr(adapter
, rx_ring
);
3062 rx_ring
->no_itr_adjust
= 1;
3071 * igb_intr_msi - Interrupt Handler
3072 * @irq: interrupt number
3073 * @data: pointer to a network interface device structure
3075 static irqreturn_t
igb_intr_msi(int irq
, void *data
)
3077 struct net_device
*netdev
= data
;
3078 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3079 struct napi_struct
*napi
= &adapter
->napi
;
3080 struct e1000_hw
*hw
= &adapter
->hw
;
3081 /* read ICR disables interrupts using IAM */
3082 u32 icr
= rd32(E1000_ICR
);
3084 /* Write the ITR value calculated at the end of the
3085 * previous interrupt.
3087 if (adapter
->set_itr
) {
3089 1000000000 / (adapter
->itr
* 256));
3090 adapter
->set_itr
= 0;
3093 /* read ICR disables interrupts using IAM */
3094 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
3095 hw
->mac
.get_link_status
= 1;
3096 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3097 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3100 if (netif_rx_schedule_prep(netdev
, napi
)) {
3101 adapter
->tx_ring
->total_bytes
= 0;
3102 adapter
->tx_ring
->total_packets
= 0;
3103 adapter
->rx_ring
->total_bytes
= 0;
3104 adapter
->rx_ring
->total_packets
= 0;
3105 __netif_rx_schedule(netdev
, napi
);
3112 * igb_intr - Interrupt Handler
3113 * @irq: interrupt number
3114 * @data: pointer to a network interface device structure
3116 static irqreturn_t
igb_intr(int irq
, void *data
)
3118 struct net_device
*netdev
= data
;
3119 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3120 struct napi_struct
*napi
= &adapter
->napi
;
3121 struct e1000_hw
*hw
= &adapter
->hw
;
3122 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3123 * need for the IMC write */
3124 u32 icr
= rd32(E1000_ICR
);
3127 return IRQ_NONE
; /* Not our interrupt */
3129 /* Write the ITR value calculated at the end of the
3130 * previous interrupt.
3132 if (adapter
->set_itr
) {
3134 1000000000 / (adapter
->itr
* 256));
3135 adapter
->set_itr
= 0;
3138 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3139 * not set, then the adapter didn't send an interrupt */
3140 if (!(icr
& E1000_ICR_INT_ASSERTED
))
3143 eicr
= rd32(E1000_EICR
);
3145 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
3146 hw
->mac
.get_link_status
= 1;
3147 /* guard against interrupt when we're going down */
3148 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3149 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3152 if (netif_rx_schedule_prep(netdev
, napi
)) {
3153 adapter
->tx_ring
->total_bytes
= 0;
3154 adapter
->rx_ring
->total_bytes
= 0;
3155 adapter
->tx_ring
->total_packets
= 0;
3156 adapter
->rx_ring
->total_packets
= 0;
3157 __netif_rx_schedule(netdev
, napi
);
3164 * igb_clean - NAPI Rx polling callback
3165 * @adapter: board private structure
3167 static int igb_clean(struct napi_struct
*napi
, int budget
)
3169 struct igb_adapter
*adapter
= container_of(napi
, struct igb_adapter
,
3171 struct net_device
*netdev
= adapter
->netdev
;
3172 int tx_clean_complete
= 1, work_done
= 0;
3175 /* Must NOT use netdev_priv macro here. */
3176 adapter
= netdev
->priv
;
3178 /* Keep link state information with original netdev */
3179 if (!netif_carrier_ok(netdev
))
3182 /* igb_clean is called per-cpu. This lock protects tx_ring[i] from
3183 * being cleaned by multiple cpus simultaneously. A failure obtaining
3184 * the lock means tx_ring[i] is currently being cleaned anyway. */
3185 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
3186 if (spin_trylock(&adapter
->tx_ring
[i
].tx_clean_lock
)) {
3187 tx_clean_complete
&= igb_clean_tx_irq(adapter
,
3188 &adapter
->tx_ring
[i
]);
3189 spin_unlock(&adapter
->tx_ring
[i
].tx_clean_lock
);
3193 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
3194 igb_clean_rx_irq_adv(adapter
, &adapter
->rx_ring
[i
], &work_done
,
3195 adapter
->rx_ring
[i
].napi
.weight
);
3197 /* If no Tx and not enough Rx work done, exit the polling mode */
3198 if ((tx_clean_complete
&& (work_done
< budget
)) ||
3199 !netif_running(netdev
)) {
3201 if (adapter
->itr_setting
& 3)
3202 igb_set_itr(adapter
, E1000_ITR
, false);
3203 netif_rx_complete(netdev
, napi
);
3204 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3205 igb_irq_enable(adapter
);
3212 static int igb_clean_rx_ring_msix(struct napi_struct
*napi
, int budget
)
3214 struct igb_ring
*rx_ring
= container_of(napi
, struct igb_ring
, napi
);
3215 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3216 struct e1000_hw
*hw
= &adapter
->hw
;
3217 struct net_device
*netdev
= adapter
->netdev
;
3220 /* Keep link state information with original netdev */
3221 if (!netif_carrier_ok(netdev
))
3224 igb_clean_rx_irq_adv(adapter
, rx_ring
, &work_done
, budget
);
3227 /* If not enough Rx work done, exit the polling mode */
3228 if ((work_done
== 0) || !netif_running(netdev
)) {
3230 netif_rx_complete(netdev
, napi
);
3232 wr32(E1000_EIMS
, rx_ring
->eims_value
);
3233 if ((adapter
->itr_setting
& 3) && !rx_ring
->no_itr_adjust
&&
3234 (rx_ring
->total_packets
> IGB_DYN_ITR_PACKET_THRESHOLD
)) {
3235 int mean_size
= rx_ring
->total_bytes
/
3236 rx_ring
->total_packets
;
3237 if (mean_size
< IGB_DYN_ITR_LENGTH_LOW
)
3238 igb_raise_rx_eitr(adapter
, rx_ring
);
3239 else if (mean_size
> IGB_DYN_ITR_LENGTH_HIGH
)
3240 igb_lower_rx_eitr(adapter
, rx_ring
);
3248 * igb_clean_tx_irq - Reclaim resources after transmit completes
3249 * @adapter: board private structure
3250 * returns true if ring is completely cleaned
3252 static bool igb_clean_tx_irq(struct igb_adapter
*adapter
,
3253 struct igb_ring
*tx_ring
)
3255 struct net_device
*netdev
= adapter
->netdev
;
3256 struct e1000_hw
*hw
= &adapter
->hw
;
3257 struct e1000_tx_desc
*tx_desc
;
3258 struct igb_buffer
*buffer_info
;
3259 struct sk_buff
*skb
;
3262 unsigned int count
= 0;
3263 bool cleaned
= false;
3265 unsigned int total_bytes
= 0, total_packets
= 0;
3268 head
= *(volatile u32
*)((struct e1000_tx_desc
*)tx_ring
->desc
3270 head
= le32_to_cpu(head
);
3271 i
= tx_ring
->next_to_clean
;
3275 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3276 buffer_info
= &tx_ring
->buffer_info
[i
];
3277 skb
= buffer_info
->skb
;
3280 unsigned int segs
, bytecount
;
3281 /* gso_segs is currently only valid for tcp */
3282 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
3283 /* multiply data chunks by size of headers */
3284 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
3286 total_packets
+= segs
;
3287 total_bytes
+= bytecount
;
3290 igb_unmap_and_free_tx_resource(adapter
, buffer_info
);
3291 tx_desc
->upper
.data
= 0;
3294 if (i
== tx_ring
->count
)
3298 if (count
== IGB_MAX_TX_CLEAN
) {
3305 head
= *(volatile u32
*)((struct e1000_tx_desc
*)tx_ring
->desc
3307 head
= le32_to_cpu(head
);
3308 if (head
== oldhead
)
3313 tx_ring
->next_to_clean
= i
;
3315 if (unlikely(cleaned
&&
3316 netif_carrier_ok(netdev
) &&
3317 IGB_DESC_UNUSED(tx_ring
) >= IGB_TX_QUEUE_WAKE
)) {
3318 /* Make sure that anybody stopping the queue after this
3319 * sees the new next_to_clean.
3322 if (netif_queue_stopped(netdev
) &&
3323 !(test_bit(__IGB_DOWN
, &adapter
->state
))) {
3324 netif_wake_queue(netdev
);
3325 ++adapter
->restart_queue
;
3329 if (tx_ring
->detect_tx_hung
) {
3330 /* Detect a transmit hang in hardware, this serializes the
3331 * check with the clearing of time_stamp and movement of i */
3332 tx_ring
->detect_tx_hung
= false;
3333 if (tx_ring
->buffer_info
[i
].time_stamp
&&
3334 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
+
3335 (adapter
->tx_timeout_factor
* HZ
))
3336 && !(rd32(E1000_STATUS
) &
3337 E1000_STATUS_TXOFF
)) {
3339 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3340 /* detected Tx unit hang */
3341 dev_err(&adapter
->pdev
->dev
,
3342 "Detected Tx Unit Hang\n"
3346 " next_to_use <%x>\n"
3347 " next_to_clean <%x>\n"
3349 "buffer_info[next_to_clean]\n"
3350 " time_stamp <%lx>\n"
3352 " desc.status <%x>\n",
3353 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
3354 sizeof(struct igb_ring
)),
3355 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
3356 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
3357 tx_ring
->next_to_use
,
3358 tx_ring
->next_to_clean
,
3360 tx_ring
->buffer_info
[i
].time_stamp
,
3362 tx_desc
->upper
.fields
.status
);
3363 netif_stop_queue(netdev
);
3366 tx_ring
->total_bytes
+= total_bytes
;
3367 tx_ring
->total_packets
+= total_packets
;
3368 adapter
->net_stats
.tx_bytes
+= total_bytes
;
3369 adapter
->net_stats
.tx_packets
+= total_packets
;
3375 * igb_receive_skb - helper function to handle rx indications
3376 * @adapter: board private structure
3377 * @status: descriptor status field as written by hardware
3378 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3379 * @skb: pointer to sk_buff to be indicated to stack
3381 static void igb_receive_skb(struct igb_adapter
*adapter
, u8 status
, u16 vlan
,
3382 struct sk_buff
*skb
)
3384 if (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))
3385 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
3387 E1000_RXD_SPC_VLAN_MASK
);
3389 netif_receive_skb(skb
);
3393 static inline void igb_rx_checksum_adv(struct igb_adapter
*adapter
,
3394 u32 status_err
, struct sk_buff
*skb
)
3396 skb
->ip_summed
= CHECKSUM_NONE
;
3398 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3399 if ((status_err
& E1000_RXD_STAT_IXSM
) || !adapter
->rx_csum
)
3401 /* TCP/UDP checksum error bit is set */
3403 (E1000_RXDEXT_STATERR_TCPE
| E1000_RXDEXT_STATERR_IPE
)) {
3404 /* let the stack verify checksum errors */
3405 adapter
->hw_csum_err
++;
3408 /* It must be a TCP or UDP packet with a valid checksum */
3409 if (status_err
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
))
3410 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3412 adapter
->hw_csum_good
++;
3415 static bool igb_clean_rx_irq_adv(struct igb_adapter
*adapter
,
3416 struct igb_ring
*rx_ring
,
3417 int *work_done
, int budget
)
3419 struct net_device
*netdev
= adapter
->netdev
;
3420 struct pci_dev
*pdev
= adapter
->pdev
;
3421 union e1000_adv_rx_desc
*rx_desc
, *next_rxd
;
3422 struct igb_buffer
*buffer_info
, *next_buffer
;
3423 struct sk_buff
*skb
;
3425 u32 length
, hlen
, staterr
;
3426 bool cleaned
= false;
3427 int cleaned_count
= 0;
3428 unsigned int total_bytes
= 0, total_packets
= 0;
3430 i
= rx_ring
->next_to_clean
;
3431 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3432 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
3434 while (staterr
& E1000_RXD_STAT_DD
) {
3435 if (*work_done
>= budget
)
3438 buffer_info
= &rx_ring
->buffer_info
[i
];
3440 /* HW will not DMA in data larger than the given buffer, even
3441 * if it parses the (NFS, of course) header to be larger. In
3442 * that case, it fills the header buffer and spills the rest
3445 hlen
= le16_to_cpu((rx_desc
->wb
.lower
.lo_dword
.hdr_info
&
3446 E1000_RXDADV_HDRBUFLEN_MASK
) >> E1000_RXDADV_HDRBUFLEN_SHIFT
);
3447 if (hlen
> adapter
->rx_ps_hdr_size
)
3448 hlen
= adapter
->rx_ps_hdr_size
;
3450 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
3454 if (rx_ring
->pending_skb
!= NULL
) {
3455 skb
= rx_ring
->pending_skb
;
3456 rx_ring
->pending_skb
= NULL
;
3457 j
= rx_ring
->pending_skb_page
;
3459 skb
= buffer_info
->skb
;
3460 prefetch(skb
->data
- NET_IP_ALIGN
);
3461 buffer_info
->skb
= NULL
;
3463 pci_unmap_single(pdev
, buffer_info
->dma
,
3464 adapter
->rx_ps_hdr_size
+
3466 PCI_DMA_FROMDEVICE
);
3469 pci_unmap_single(pdev
, buffer_info
->dma
,
3470 adapter
->rx_buffer_len
+
3472 PCI_DMA_FROMDEVICE
);
3473 skb_put(skb
, length
);
3480 pci_unmap_page(pdev
, buffer_info
->page_dma
,
3481 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3482 buffer_info
->page_dma
= 0;
3483 skb_fill_page_desc(skb
, j
, buffer_info
->page
,
3485 buffer_info
->page
= NULL
;
3488 skb
->data_len
+= length
;
3489 skb
->truesize
+= length
;
3490 rx_desc
->wb
.upper
.status_error
= 0;
3491 if (staterr
& E1000_RXD_STAT_EOP
)
3497 if (i
== rx_ring
->count
)
3500 buffer_info
= &rx_ring
->buffer_info
[i
];
3501 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3502 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
3503 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
3504 if (!(staterr
& E1000_RXD_STAT_DD
)) {
3505 rx_ring
->pending_skb
= skb
;
3506 rx_ring
->pending_skb_page
= j
;
3511 pskb_trim(skb
, skb
->len
- 4);
3513 if (i
== rx_ring
->count
)
3515 next_rxd
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3517 next_buffer
= &rx_ring
->buffer_info
[i
];
3519 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
3520 dev_kfree_skb_irq(skb
);
3523 rx_ring
->no_itr_adjust
|= (staterr
& E1000_RXD_STAT_DYNINT
);
3525 total_bytes
+= skb
->len
;
3528 igb_rx_checksum_adv(adapter
, staterr
, skb
);
3530 skb
->protocol
= eth_type_trans(skb
, netdev
);
3532 igb_receive_skb(adapter
, staterr
, rx_desc
->wb
.upper
.vlan
, skb
);
3534 netdev
->last_rx
= jiffies
;
3537 rx_desc
->wb
.upper
.status_error
= 0;
3539 /* return some buffers to hardware, one at a time is too slow */
3540 if (cleaned_count
>= IGB_RX_BUFFER_WRITE
) {
3541 igb_alloc_rx_buffers_adv(adapter
, rx_ring
,
3546 /* use prefetched values */
3548 buffer_info
= next_buffer
;
3550 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
3553 rx_ring
->next_to_clean
= i
;
3554 cleaned_count
= IGB_DESC_UNUSED(rx_ring
);
3557 igb_alloc_rx_buffers_adv(adapter
, rx_ring
, cleaned_count
);
3559 rx_ring
->total_packets
+= total_packets
;
3560 rx_ring
->total_bytes
+= total_bytes
;
3561 rx_ring
->rx_stats
.packets
+= total_packets
;
3562 rx_ring
->rx_stats
.bytes
+= total_bytes
;
3563 adapter
->net_stats
.rx_bytes
+= total_bytes
;
3564 adapter
->net_stats
.rx_packets
+= total_packets
;
3570 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3571 * @adapter: address of board private structure
3573 static void igb_alloc_rx_buffers_adv(struct igb_adapter
*adapter
,
3574 struct igb_ring
*rx_ring
,
3577 struct net_device
*netdev
= adapter
->netdev
;
3578 struct pci_dev
*pdev
= adapter
->pdev
;
3579 union e1000_adv_rx_desc
*rx_desc
;
3580 struct igb_buffer
*buffer_info
;
3581 struct sk_buff
*skb
;
3584 i
= rx_ring
->next_to_use
;
3585 buffer_info
= &rx_ring
->buffer_info
[i
];
3587 while (cleaned_count
--) {
3588 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3590 if (adapter
->rx_ps_hdr_size
&& !buffer_info
->page
) {
3591 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
3592 if (!buffer_info
->page
) {
3593 adapter
->alloc_rx_buff_failed
++;
3596 buffer_info
->page_dma
=
3600 PCI_DMA_FROMDEVICE
);
3603 if (!buffer_info
->skb
) {
3606 if (adapter
->rx_ps_hdr_size
)
3607 bufsz
= adapter
->rx_ps_hdr_size
;
3609 bufsz
= adapter
->rx_buffer_len
;
3610 bufsz
+= NET_IP_ALIGN
;
3611 skb
= netdev_alloc_skb(netdev
, bufsz
);
3614 adapter
->alloc_rx_buff_failed
++;
3618 /* Make buffer alignment 2 beyond a 16 byte boundary
3619 * this will result in a 16 byte aligned IP header after
3620 * the 14 byte MAC header is removed
3622 skb_reserve(skb
, NET_IP_ALIGN
);
3624 buffer_info
->skb
= skb
;
3625 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
3627 PCI_DMA_FROMDEVICE
);
3630 /* Refresh the desc even if buffer_addrs didn't change because
3631 * each write-back erases this info. */
3632 if (adapter
->rx_ps_hdr_size
) {
3633 rx_desc
->read
.pkt_addr
=
3634 cpu_to_le64(buffer_info
->page_dma
);
3635 rx_desc
->read
.hdr_addr
= cpu_to_le64(buffer_info
->dma
);
3637 rx_desc
->read
.pkt_addr
=
3638 cpu_to_le64(buffer_info
->dma
);
3639 rx_desc
->read
.hdr_addr
= 0;
3643 if (i
== rx_ring
->count
)
3645 buffer_info
= &rx_ring
->buffer_info
[i
];
3649 if (rx_ring
->next_to_use
!= i
) {
3650 rx_ring
->next_to_use
= i
;
3652 i
= (rx_ring
->count
- 1);
3656 /* Force memory writes to complete before letting h/w
3657 * know there are new descriptors to fetch. (Only
3658 * applicable for weak-ordered memory model archs,
3659 * such as IA-64). */
3661 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
3671 static int igb_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
3673 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3674 struct mii_ioctl_data
*data
= if_mii(ifr
);
3676 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
3681 data
->phy_id
= adapter
->hw
.phy
.addr
;
3684 if (!capable(CAP_NET_ADMIN
))
3686 if (adapter
->hw
.phy
.ops
.read_phy_reg(&adapter
->hw
,
3688 & 0x1F, &data
->val_out
))
3704 static int igb_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
3710 return igb_mii_ioctl(netdev
, ifr
, cmd
);
3716 static void igb_vlan_rx_register(struct net_device
*netdev
,
3717 struct vlan_group
*grp
)
3719 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3720 struct e1000_hw
*hw
= &adapter
->hw
;
3723 igb_irq_disable(adapter
);
3724 adapter
->vlgrp
= grp
;
3727 /* enable VLAN tag insert/strip */
3728 ctrl
= rd32(E1000_CTRL
);
3729 ctrl
|= E1000_CTRL_VME
;
3730 wr32(E1000_CTRL
, ctrl
);
3732 /* enable VLAN receive filtering */
3733 rctl
= rd32(E1000_RCTL
);
3734 rctl
|= E1000_RCTL_VFE
;
3735 rctl
&= ~E1000_RCTL_CFIEN
;
3736 wr32(E1000_RCTL
, rctl
);
3737 igb_update_mng_vlan(adapter
);
3739 adapter
->max_frame_size
+ VLAN_TAG_SIZE
);
3741 /* disable VLAN tag insert/strip */
3742 ctrl
= rd32(E1000_CTRL
);
3743 ctrl
&= ~E1000_CTRL_VME
;
3744 wr32(E1000_CTRL
, ctrl
);
3746 /* disable VLAN filtering */
3747 rctl
= rd32(E1000_RCTL
);
3748 rctl
&= ~E1000_RCTL_VFE
;
3749 wr32(E1000_RCTL
, rctl
);
3750 if (adapter
->mng_vlan_id
!= (u16
)IGB_MNG_VLAN_NONE
) {
3751 igb_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
3752 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
3755 adapter
->max_frame_size
);
3758 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3759 igb_irq_enable(adapter
);
3762 static void igb_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
3764 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3765 struct e1000_hw
*hw
= &adapter
->hw
;
3768 if ((adapter
->hw
.mng_cookie
.status
&
3769 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
3770 (vid
== adapter
->mng_vlan_id
))
3772 /* add VID to filter table */
3773 index
= (vid
>> 5) & 0x7F;
3774 vfta
= array_rd32(E1000_VFTA
, index
);
3775 vfta
|= (1 << (vid
& 0x1F));
3776 igb_write_vfta(&adapter
->hw
, index
, vfta
);
3779 static void igb_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
3781 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3782 struct e1000_hw
*hw
= &adapter
->hw
;
3785 igb_irq_disable(adapter
);
3786 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
3788 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3789 igb_irq_enable(adapter
);
3791 if ((adapter
->hw
.mng_cookie
.status
&
3792 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
3793 (vid
== adapter
->mng_vlan_id
)) {
3794 /* release control to f/w */
3795 igb_release_hw_control(adapter
);
3799 /* remove VID from filter table */
3800 index
= (vid
>> 5) & 0x7F;
3801 vfta
= array_rd32(E1000_VFTA
, index
);
3802 vfta
&= ~(1 << (vid
& 0x1F));
3803 igb_write_vfta(&adapter
->hw
, index
, vfta
);
3806 static void igb_restore_vlan(struct igb_adapter
*adapter
)
3808 igb_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
3810 if (adapter
->vlgrp
) {
3812 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
3813 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
3815 igb_vlan_rx_add_vid(adapter
->netdev
, vid
);
3820 int igb_set_spd_dplx(struct igb_adapter
*adapter
, u16 spddplx
)
3822 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3826 /* Fiber NICs only allow 1000 gbps Full duplex */
3827 if ((adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
) &&
3828 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
3829 dev_err(&adapter
->pdev
->dev
,
3830 "Unsupported Speed/Duplex configuration\n");
3835 case SPEED_10
+ DUPLEX_HALF
:
3836 mac
->forced_speed_duplex
= ADVERTISE_10_HALF
;
3838 case SPEED_10
+ DUPLEX_FULL
:
3839 mac
->forced_speed_duplex
= ADVERTISE_10_FULL
;
3841 case SPEED_100
+ DUPLEX_HALF
:
3842 mac
->forced_speed_duplex
= ADVERTISE_100_HALF
;
3844 case SPEED_100
+ DUPLEX_FULL
:
3845 mac
->forced_speed_duplex
= ADVERTISE_100_FULL
;
3847 case SPEED_1000
+ DUPLEX_FULL
:
3849 adapter
->hw
.phy
.autoneg_advertised
= ADVERTISE_1000_FULL
;
3851 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
3853 dev_err(&adapter
->pdev
->dev
,
3854 "Unsupported Speed/Duplex configuration\n");
3861 static int igb_suspend(struct pci_dev
*pdev
, pm_message_t state
)
3863 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3864 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3865 struct e1000_hw
*hw
= &adapter
->hw
;
3866 u32 ctrl
, ctrl_ext
, rctl
, status
;
3867 u32 wufc
= adapter
->wol
;
3872 netif_device_detach(netdev
);
3874 if (netif_running(netdev
)) {
3875 WARN_ON(test_bit(__IGB_RESETTING
, &adapter
->state
));
3877 igb_free_irq(adapter
);
3881 retval
= pci_save_state(pdev
);
3886 status
= rd32(E1000_STATUS
);
3887 if (status
& E1000_STATUS_LU
)
3888 wufc
&= ~E1000_WUFC_LNKC
;
3891 igb_setup_rctl(adapter
);
3892 igb_set_multi(netdev
);
3894 /* turn on all-multi mode if wake on multicast is enabled */
3895 if (wufc
& E1000_WUFC_MC
) {
3896 rctl
= rd32(E1000_RCTL
);
3897 rctl
|= E1000_RCTL_MPE
;
3898 wr32(E1000_RCTL
, rctl
);
3901 ctrl
= rd32(E1000_CTRL
);
3902 /* advertise wake from D3Cold */
3903 #define E1000_CTRL_ADVD3WUC 0x00100000
3904 /* phy power management enable */
3905 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3906 ctrl
|= E1000_CTRL_ADVD3WUC
;
3907 wr32(E1000_CTRL
, ctrl
);
3909 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
3910 adapter
->hw
.phy
.media_type
==
3911 e1000_media_type_internal_serdes
) {
3912 /* keep the laser running in D3 */
3913 ctrl_ext
= rd32(E1000_CTRL_EXT
);
3914 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
3915 wr32(E1000_CTRL_EXT
, ctrl_ext
);
3918 /* Allow time for pending master requests to run */
3919 igb_disable_pcie_master(&adapter
->hw
);
3921 wr32(E1000_WUC
, E1000_WUC_PME_EN
);
3922 wr32(E1000_WUFC
, wufc
);
3923 pci_enable_wake(pdev
, PCI_D3hot
, 1);
3924 pci_enable_wake(pdev
, PCI_D3cold
, 1);
3927 wr32(E1000_WUFC
, 0);
3928 pci_enable_wake(pdev
, PCI_D3hot
, 0);
3929 pci_enable_wake(pdev
, PCI_D3cold
, 0);
3932 /* make sure adapter isn't asleep if manageability is enabled */
3933 if (adapter
->en_mng_pt
) {
3934 pci_enable_wake(pdev
, PCI_D3hot
, 1);
3935 pci_enable_wake(pdev
, PCI_D3cold
, 1);
3938 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3939 * would have already happened in close and is redundant. */
3940 igb_release_hw_control(adapter
);
3942 pci_disable_device(pdev
);
3944 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
3950 static int igb_resume(struct pci_dev
*pdev
)
3952 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3953 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3954 struct e1000_hw
*hw
= &adapter
->hw
;
3957 pci_set_power_state(pdev
, PCI_D0
);
3958 pci_restore_state(pdev
);
3959 err
= pci_enable_device(pdev
);
3962 "igb: Cannot enable PCI device from suspend\n");
3965 pci_set_master(pdev
);
3967 pci_enable_wake(pdev
, PCI_D3hot
, 0);
3968 pci_enable_wake(pdev
, PCI_D3cold
, 0);
3970 if (netif_running(netdev
)) {
3971 err
= igb_request_irq(adapter
);
3976 /* e1000_power_up_phy(adapter); */
3979 wr32(E1000_WUS
, ~0);
3981 igb_init_manageability(adapter
);
3983 if (netif_running(netdev
))
3986 netif_device_attach(netdev
);
3988 /* let the f/w know that the h/w is now under the control of the
3990 igb_get_hw_control(adapter
);
3996 static void igb_shutdown(struct pci_dev
*pdev
)
3998 igb_suspend(pdev
, PMSG_SUSPEND
);
4001 #ifdef CONFIG_NET_POLL_CONTROLLER
4003 * Polling 'interrupt' - used by things like netconsole to send skbs
4004 * without having to re-enable interrupts. It's not called while
4005 * the interrupt routine is executing.
4007 static void igb_netpoll(struct net_device
*netdev
)
4009 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4013 igb_irq_disable(adapter
);
4014 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
4015 igb_clean_tx_irq(adapter
, &adapter
->tx_ring
[i
]);
4017 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
4018 igb_clean_rx_irq_adv(adapter
, &adapter
->rx_ring
[i
],
4020 adapter
->rx_ring
[i
].napi
.weight
);
4022 igb_irq_enable(adapter
);
4024 #endif /* CONFIG_NET_POLL_CONTROLLER */
4027 * igb_io_error_detected - called when PCI error is detected
4028 * @pdev: Pointer to PCI device
4029 * @state: The current pci connection state
4031 * This function is called after a PCI bus error affecting
4032 * this device has been detected.
4034 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*pdev
,
4035 pci_channel_state_t state
)
4037 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4038 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4040 netif_device_detach(netdev
);
4042 if (netif_running(netdev
))
4044 pci_disable_device(pdev
);
4046 /* Request a slot slot reset. */
4047 return PCI_ERS_RESULT_NEED_RESET
;
4051 * igb_io_slot_reset - called after the pci bus has been reset.
4052 * @pdev: Pointer to PCI device
4054 * Restart the card from scratch, as if from a cold-boot. Implementation
4055 * resembles the first-half of the igb_resume routine.
4057 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*pdev
)
4059 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4060 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4061 struct e1000_hw
*hw
= &adapter
->hw
;
4063 if (pci_enable_device(pdev
)) {
4065 "Cannot re-enable PCI device after reset.\n");
4066 return PCI_ERS_RESULT_DISCONNECT
;
4068 pci_set_master(pdev
);
4070 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4071 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4074 wr32(E1000_WUS
, ~0);
4076 return PCI_ERS_RESULT_RECOVERED
;
4080 * igb_io_resume - called when traffic can start flowing again.
4081 * @pdev: Pointer to PCI device
4083 * This callback is called when the error recovery driver tells us that
4084 * its OK to resume normal operation. Implementation resembles the
4085 * second-half of the igb_resume routine.
4087 static void igb_io_resume(struct pci_dev
*pdev
)
4089 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4090 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4092 igb_init_manageability(adapter
);
4094 if (netif_running(netdev
)) {
4095 if (igb_up(adapter
)) {
4096 dev_err(&pdev
->dev
, "igb_up failed after reset\n");
4101 netif_device_attach(netdev
);
4103 /* let the f/w know that the h/w is now under the control of the
4105 igb_get_hw_control(adapter
);