2 * linux/kernel/power/snapshot.c
4 * This file provides system snapshot/restore functionality for swsusp.
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 * This file is released under the GPLv2.
13 #include <linux/version.h>
14 #include <linux/module.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
29 #include <asm/uaccess.h>
30 #include <asm/mmu_context.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlbflush.h>
37 static int swsusp_page_is_free(struct page
*);
38 static void swsusp_set_page_forbidden(struct page
*);
39 static void swsusp_unset_page_forbidden(struct page
*);
41 /* List of PBEs needed for restoring the pages that were allocated before
42 * the suspend and included in the suspend image, but have also been
43 * allocated by the "resume" kernel, so their contents cannot be written
44 * directly to their "original" page frames.
46 struct pbe
*restore_pblist
;
48 /* Pointer to an auxiliary buffer (1 page) */
52 * @safe_needed - on resume, for storing the PBE list and the image,
53 * we can only use memory pages that do not conflict with the pages
54 * used before suspend. The unsafe pages have PageNosaveFree set
55 * and we count them using unsafe_pages.
57 * Each allocated image page is marked as PageNosave and PageNosaveFree
58 * so that swsusp_free() can release it.
63 #define PG_UNSAFE_CLEAR 1
64 #define PG_UNSAFE_KEEP 0
66 static unsigned int allocated_unsafe_pages
;
68 static void *get_image_page(gfp_t gfp_mask
, int safe_needed
)
72 res
= (void *)get_zeroed_page(gfp_mask
);
74 while (res
&& swsusp_page_is_free(virt_to_page(res
))) {
75 /* The page is unsafe, mark it for swsusp_free() */
76 swsusp_set_page_forbidden(virt_to_page(res
));
77 allocated_unsafe_pages
++;
78 res
= (void *)get_zeroed_page(gfp_mask
);
81 swsusp_set_page_forbidden(virt_to_page(res
));
82 swsusp_set_page_free(virt_to_page(res
));
87 unsigned long get_safe_page(gfp_t gfp_mask
)
89 return (unsigned long)get_image_page(gfp_mask
, PG_SAFE
);
92 static struct page
*alloc_image_page(gfp_t gfp_mask
)
96 page
= alloc_page(gfp_mask
);
98 swsusp_set_page_forbidden(page
);
99 swsusp_set_page_free(page
);
105 * free_image_page - free page represented by @addr, allocated with
106 * get_image_page (page flags set by it must be cleared)
109 static inline void free_image_page(void *addr
, int clear_nosave_free
)
113 BUG_ON(!virt_addr_valid(addr
));
115 page
= virt_to_page(addr
);
117 swsusp_unset_page_forbidden(page
);
118 if (clear_nosave_free
)
119 swsusp_unset_page_free(page
);
124 /* struct linked_page is used to build chains of pages */
126 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
129 struct linked_page
*next
;
130 char data
[LINKED_PAGE_DATA_SIZE
];
131 } __attribute__((packed
));
134 free_list_of_pages(struct linked_page
*list
, int clear_page_nosave
)
137 struct linked_page
*lp
= list
->next
;
139 free_image_page(list
, clear_page_nosave
);
145 * struct chain_allocator is used for allocating small objects out of
146 * a linked list of pages called 'the chain'.
148 * The chain grows each time when there is no room for a new object in
149 * the current page. The allocated objects cannot be freed individually.
150 * It is only possible to free them all at once, by freeing the entire
153 * NOTE: The chain allocator may be inefficient if the allocated objects
154 * are not much smaller than PAGE_SIZE.
157 struct chain_allocator
{
158 struct linked_page
*chain
; /* the chain */
159 unsigned int used_space
; /* total size of objects allocated out
160 * of the current page
162 gfp_t gfp_mask
; /* mask for allocating pages */
163 int safe_needed
; /* if set, only "safe" pages are allocated */
167 chain_init(struct chain_allocator
*ca
, gfp_t gfp_mask
, int safe_needed
)
170 ca
->used_space
= LINKED_PAGE_DATA_SIZE
;
171 ca
->gfp_mask
= gfp_mask
;
172 ca
->safe_needed
= safe_needed
;
175 static void *chain_alloc(struct chain_allocator
*ca
, unsigned int size
)
179 if (LINKED_PAGE_DATA_SIZE
- ca
->used_space
< size
) {
180 struct linked_page
*lp
;
182 lp
= get_image_page(ca
->gfp_mask
, ca
->safe_needed
);
186 lp
->next
= ca
->chain
;
190 ret
= ca
->chain
->data
+ ca
->used_space
;
191 ca
->used_space
+= size
;
195 static void chain_free(struct chain_allocator
*ca
, int clear_page_nosave
)
197 free_list_of_pages(ca
->chain
, clear_page_nosave
);
198 memset(ca
, 0, sizeof(struct chain_allocator
));
202 * Data types related to memory bitmaps.
204 * Memory bitmap is a structure consiting of many linked lists of
205 * objects. The main list's elements are of type struct zone_bitmap
206 * and each of them corresonds to one zone. For each zone bitmap
207 * object there is a list of objects of type struct bm_block that
208 * represent each blocks of bit chunks in which information is
211 * struct memory_bitmap contains a pointer to the main list of zone
212 * bitmap objects, a struct bm_position used for browsing the bitmap,
213 * and a pointer to the list of pages used for allocating all of the
214 * zone bitmap objects and bitmap block objects.
216 * NOTE: It has to be possible to lay out the bitmap in memory
217 * using only allocations of order 0. Additionally, the bitmap is
218 * designed to work with arbitrary number of zones (this is over the
219 * top for now, but let's avoid making unnecessary assumptions ;-).
221 * struct zone_bitmap contains a pointer to a list of bitmap block
222 * objects and a pointer to the bitmap block object that has been
223 * most recently used for setting bits. Additionally, it contains the
224 * pfns that correspond to the start and end of the represented zone.
226 * struct bm_block contains a pointer to the memory page in which
227 * information is stored (in the form of a block of bit chunks
228 * of type unsigned long each). It also contains the pfns that
229 * correspond to the start and end of the represented memory area and
230 * the number of bit chunks in the block.
233 #define BM_END_OF_MAP (~0UL)
235 #define BM_CHUNKS_PER_BLOCK (PAGE_SIZE / sizeof(long))
236 #define BM_BITS_PER_CHUNK (sizeof(long) << 3)
237 #define BM_BITS_PER_BLOCK (PAGE_SIZE << 3)
240 struct bm_block
*next
; /* next element of the list */
241 unsigned long start_pfn
; /* pfn represented by the first bit */
242 unsigned long end_pfn
; /* pfn represented by the last bit plus 1 */
243 unsigned int size
; /* number of bit chunks */
244 unsigned long *data
; /* chunks of bits representing pages */
248 struct zone_bitmap
*next
; /* next element of the list */
249 unsigned long start_pfn
; /* minimal pfn in this zone */
250 unsigned long end_pfn
; /* maximal pfn in this zone plus 1 */
251 struct bm_block
*bm_blocks
; /* list of bitmap blocks */
252 struct bm_block
*cur_block
; /* recently used bitmap block */
255 /* strcut bm_position is used for browsing memory bitmaps */
258 struct zone_bitmap
*zone_bm
;
259 struct bm_block
*block
;
264 struct memory_bitmap
{
265 struct zone_bitmap
*zone_bm_list
; /* list of zone bitmaps */
266 struct linked_page
*p_list
; /* list of pages used to store zone
267 * bitmap objects and bitmap block
270 struct bm_position cur
; /* most recently used bit position */
273 /* Functions that operate on memory bitmaps */
275 static inline void memory_bm_reset_chunk(struct memory_bitmap
*bm
)
281 static void memory_bm_position_reset(struct memory_bitmap
*bm
)
283 struct zone_bitmap
*zone_bm
;
285 zone_bm
= bm
->zone_bm_list
;
286 bm
->cur
.zone_bm
= zone_bm
;
287 bm
->cur
.block
= zone_bm
->bm_blocks
;
288 memory_bm_reset_chunk(bm
);
291 static void memory_bm_free(struct memory_bitmap
*bm
, int clear_nosave_free
);
294 * create_bm_block_list - create a list of block bitmap objects
297 static inline struct bm_block
*
298 create_bm_block_list(unsigned int nr_blocks
, struct chain_allocator
*ca
)
300 struct bm_block
*bblist
= NULL
;
302 while (nr_blocks
-- > 0) {
305 bb
= chain_alloc(ca
, sizeof(struct bm_block
));
316 * create_zone_bm_list - create a list of zone bitmap objects
319 static inline struct zone_bitmap
*
320 create_zone_bm_list(unsigned int nr_zones
, struct chain_allocator
*ca
)
322 struct zone_bitmap
*zbmlist
= NULL
;
324 while (nr_zones
-- > 0) {
325 struct zone_bitmap
*zbm
;
327 zbm
= chain_alloc(ca
, sizeof(struct zone_bitmap
));
338 * memory_bm_create - allocate memory for a memory bitmap
342 memory_bm_create(struct memory_bitmap
*bm
, gfp_t gfp_mask
, int safe_needed
)
344 struct chain_allocator ca
;
346 struct zone_bitmap
*zone_bm
;
350 chain_init(&ca
, gfp_mask
, safe_needed
);
352 /* Compute the number of zones */
355 if (populated_zone(zone
))
358 /* Allocate the list of zones bitmap objects */
359 zone_bm
= create_zone_bm_list(nr
, &ca
);
360 bm
->zone_bm_list
= zone_bm
;
362 chain_free(&ca
, PG_UNSAFE_CLEAR
);
366 /* Initialize the zone bitmap objects */
367 for_each_zone(zone
) {
370 if (!populated_zone(zone
))
373 zone_bm
->start_pfn
= zone
->zone_start_pfn
;
374 zone_bm
->end_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
375 /* Allocate the list of bitmap block objects */
376 nr
= DIV_ROUND_UP(zone
->spanned_pages
, BM_BITS_PER_BLOCK
);
377 bb
= create_bm_block_list(nr
, &ca
);
378 zone_bm
->bm_blocks
= bb
;
379 zone_bm
->cur_block
= bb
;
383 nr
= zone
->spanned_pages
;
384 pfn
= zone
->zone_start_pfn
;
385 /* Initialize the bitmap block objects */
389 ptr
= get_image_page(gfp_mask
, safe_needed
);
395 if (nr
>= BM_BITS_PER_BLOCK
) {
396 pfn
+= BM_BITS_PER_BLOCK
;
397 bb
->size
= BM_CHUNKS_PER_BLOCK
;
398 nr
-= BM_BITS_PER_BLOCK
;
400 /* This is executed only once in the loop */
402 bb
->size
= DIV_ROUND_UP(nr
, BM_BITS_PER_CHUNK
);
407 zone_bm
= zone_bm
->next
;
409 bm
->p_list
= ca
.chain
;
410 memory_bm_position_reset(bm
);
414 bm
->p_list
= ca
.chain
;
415 memory_bm_free(bm
, PG_UNSAFE_CLEAR
);
420 * memory_bm_free - free memory occupied by the memory bitmap @bm
423 static void memory_bm_free(struct memory_bitmap
*bm
, int clear_nosave_free
)
425 struct zone_bitmap
*zone_bm
;
427 /* Free the list of bit blocks for each zone_bitmap object */
428 zone_bm
= bm
->zone_bm_list
;
432 bb
= zone_bm
->bm_blocks
;
435 free_image_page(bb
->data
, clear_nosave_free
);
438 zone_bm
= zone_bm
->next
;
440 free_list_of_pages(bm
->p_list
, clear_nosave_free
);
441 bm
->zone_bm_list
= NULL
;
445 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
446 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
447 * of @bm->cur_zone_bm are updated.
450 static void memory_bm_find_bit(struct memory_bitmap
*bm
, unsigned long pfn
,
451 void **addr
, unsigned int *bit_nr
)
453 struct zone_bitmap
*zone_bm
;
456 /* Check if the pfn is from the current zone */
457 zone_bm
= bm
->cur
.zone_bm
;
458 if (pfn
< zone_bm
->start_pfn
|| pfn
>= zone_bm
->end_pfn
) {
459 zone_bm
= bm
->zone_bm_list
;
460 /* We don't assume that the zones are sorted by pfns */
461 while (pfn
< zone_bm
->start_pfn
|| pfn
>= zone_bm
->end_pfn
) {
462 zone_bm
= zone_bm
->next
;
466 bm
->cur
.zone_bm
= zone_bm
;
468 /* Check if the pfn corresponds to the current bitmap block */
469 bb
= zone_bm
->cur_block
;
470 if (pfn
< bb
->start_pfn
)
471 bb
= zone_bm
->bm_blocks
;
473 while (pfn
>= bb
->end_pfn
) {
478 zone_bm
->cur_block
= bb
;
479 pfn
-= bb
->start_pfn
;
480 *bit_nr
= pfn
% BM_BITS_PER_CHUNK
;
481 *addr
= bb
->data
+ pfn
/ BM_BITS_PER_CHUNK
;
484 static void memory_bm_set_bit(struct memory_bitmap
*bm
, unsigned long pfn
)
489 memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
493 static void memory_bm_clear_bit(struct memory_bitmap
*bm
, unsigned long pfn
)
498 memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
499 clear_bit(bit
, addr
);
502 static int memory_bm_test_bit(struct memory_bitmap
*bm
, unsigned long pfn
)
507 memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
508 return test_bit(bit
, addr
);
511 /* Two auxiliary functions for memory_bm_next_pfn */
513 /* Find the first set bit in the given chunk, if there is one */
515 static inline int next_bit_in_chunk(int bit
, unsigned long *chunk_p
)
518 while (bit
< BM_BITS_PER_CHUNK
) {
519 if (test_bit(bit
, chunk_p
))
527 /* Find a chunk containing some bits set in given block of bits */
529 static inline int next_chunk_in_block(int n
, struct bm_block
*bb
)
532 while (n
< bb
->size
) {
542 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
543 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
546 * It is required to run memory_bm_position_reset() before the first call to
550 static unsigned long memory_bm_next_pfn(struct memory_bitmap
*bm
)
552 struct zone_bitmap
*zone_bm
;
560 chunk
= bm
->cur
.chunk
;
563 bit
= next_bit_in_chunk(bit
, bb
->data
+ chunk
);
567 chunk
= next_chunk_in_block(chunk
, bb
);
569 } while (chunk
>= 0);
572 memory_bm_reset_chunk(bm
);
574 zone_bm
= bm
->cur
.zone_bm
->next
;
576 bm
->cur
.zone_bm
= zone_bm
;
577 bm
->cur
.block
= zone_bm
->bm_blocks
;
578 memory_bm_reset_chunk(bm
);
581 memory_bm_position_reset(bm
);
582 return BM_END_OF_MAP
;
585 bm
->cur
.chunk
= chunk
;
587 return bb
->start_pfn
+ chunk
* BM_BITS_PER_CHUNK
+ bit
;
591 * This structure represents a range of page frames the contents of which
592 * should not be saved during the suspend.
595 struct nosave_region
{
596 struct list_head list
;
597 unsigned long start_pfn
;
598 unsigned long end_pfn
;
601 static LIST_HEAD(nosave_regions
);
604 * register_nosave_region - register a range of page frames the contents
605 * of which should not be saved during the suspend (to be used in the early
606 * initialization code)
610 __register_nosave_region(unsigned long start_pfn
, unsigned long end_pfn
,
613 struct nosave_region
*region
;
615 if (start_pfn
>= end_pfn
)
618 if (!list_empty(&nosave_regions
)) {
619 /* Try to extend the previous region (they should be sorted) */
620 region
= list_entry(nosave_regions
.prev
,
621 struct nosave_region
, list
);
622 if (region
->end_pfn
== start_pfn
) {
623 region
->end_pfn
= end_pfn
;
628 /* during init, this shouldn't fail */
629 region
= kmalloc(sizeof(struct nosave_region
), GFP_KERNEL
);
632 /* This allocation cannot fail */
633 region
= alloc_bootmem_low(sizeof(struct nosave_region
));
634 region
->start_pfn
= start_pfn
;
635 region
->end_pfn
= end_pfn
;
636 list_add_tail(®ion
->list
, &nosave_regions
);
638 printk(KERN_INFO
"PM: Registered nosave memory: %016lx - %016lx\n",
639 start_pfn
<< PAGE_SHIFT
, end_pfn
<< PAGE_SHIFT
);
643 * Set bits in this map correspond to the page frames the contents of which
644 * should not be saved during the suspend.
646 static struct memory_bitmap
*forbidden_pages_map
;
648 /* Set bits in this map correspond to free page frames. */
649 static struct memory_bitmap
*free_pages_map
;
652 * Each page frame allocated for creating the image is marked by setting the
653 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
656 void swsusp_set_page_free(struct page
*page
)
659 memory_bm_set_bit(free_pages_map
, page_to_pfn(page
));
662 static int swsusp_page_is_free(struct page
*page
)
664 return free_pages_map
?
665 memory_bm_test_bit(free_pages_map
, page_to_pfn(page
)) : 0;
668 void swsusp_unset_page_free(struct page
*page
)
671 memory_bm_clear_bit(free_pages_map
, page_to_pfn(page
));
674 static void swsusp_set_page_forbidden(struct page
*page
)
676 if (forbidden_pages_map
)
677 memory_bm_set_bit(forbidden_pages_map
, page_to_pfn(page
));
680 int swsusp_page_is_forbidden(struct page
*page
)
682 return forbidden_pages_map
?
683 memory_bm_test_bit(forbidden_pages_map
, page_to_pfn(page
)) : 0;
686 static void swsusp_unset_page_forbidden(struct page
*page
)
688 if (forbidden_pages_map
)
689 memory_bm_clear_bit(forbidden_pages_map
, page_to_pfn(page
));
693 * mark_nosave_pages - set bits corresponding to the page frames the
694 * contents of which should not be saved in a given bitmap.
697 static void mark_nosave_pages(struct memory_bitmap
*bm
)
699 struct nosave_region
*region
;
701 if (list_empty(&nosave_regions
))
704 list_for_each_entry(region
, &nosave_regions
, list
) {
707 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
708 region
->start_pfn
<< PAGE_SHIFT
,
709 region
->end_pfn
<< PAGE_SHIFT
);
711 for (pfn
= region
->start_pfn
; pfn
< region
->end_pfn
; pfn
++)
713 memory_bm_set_bit(bm
, pfn
);
718 * create_basic_memory_bitmaps - create bitmaps needed for marking page
719 * frames that should not be saved and free page frames. The pointers
720 * forbidden_pages_map and free_pages_map are only modified if everything
721 * goes well, because we don't want the bits to be used before both bitmaps
725 int create_basic_memory_bitmaps(void)
727 struct memory_bitmap
*bm1
, *bm2
;
730 BUG_ON(forbidden_pages_map
|| free_pages_map
);
732 bm1
= kzalloc(sizeof(struct memory_bitmap
), GFP_KERNEL
);
736 error
= memory_bm_create(bm1
, GFP_KERNEL
, PG_ANY
);
738 goto Free_first_object
;
740 bm2
= kzalloc(sizeof(struct memory_bitmap
), GFP_KERNEL
);
742 goto Free_first_bitmap
;
744 error
= memory_bm_create(bm2
, GFP_KERNEL
, PG_ANY
);
746 goto Free_second_object
;
748 forbidden_pages_map
= bm1
;
749 free_pages_map
= bm2
;
750 mark_nosave_pages(forbidden_pages_map
);
752 pr_debug("PM: Basic memory bitmaps created\n");
759 memory_bm_free(bm1
, PG_UNSAFE_CLEAR
);
766 * free_basic_memory_bitmaps - free memory bitmaps allocated by
767 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
768 * so that the bitmaps themselves are not referred to while they are being
772 void free_basic_memory_bitmaps(void)
774 struct memory_bitmap
*bm1
, *bm2
;
776 BUG_ON(!(forbidden_pages_map
&& free_pages_map
));
778 bm1
= forbidden_pages_map
;
779 bm2
= free_pages_map
;
780 forbidden_pages_map
= NULL
;
781 free_pages_map
= NULL
;
782 memory_bm_free(bm1
, PG_UNSAFE_CLEAR
);
784 memory_bm_free(bm2
, PG_UNSAFE_CLEAR
);
787 pr_debug("PM: Basic memory bitmaps freed\n");
791 * snapshot_additional_pages - estimate the number of additional pages
792 * be needed for setting up the suspend image data structures for given
793 * zone (usually the returned value is greater than the exact number)
796 unsigned int snapshot_additional_pages(struct zone
*zone
)
800 res
= DIV_ROUND_UP(zone
->spanned_pages
, BM_BITS_PER_BLOCK
);
801 res
+= DIV_ROUND_UP(res
* sizeof(struct bm_block
), PAGE_SIZE
);
805 #ifdef CONFIG_HIGHMEM
807 * count_free_highmem_pages - compute the total number of free highmem
808 * pages, system-wide.
811 static unsigned int count_free_highmem_pages(void)
814 unsigned int cnt
= 0;
817 if (populated_zone(zone
) && is_highmem(zone
))
818 cnt
+= zone_page_state(zone
, NR_FREE_PAGES
);
824 * saveable_highmem_page - Determine whether a highmem page should be
825 * included in the suspend image.
827 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
828 * and it isn't a part of a free chunk of pages.
831 static struct page
*saveable_highmem_page(unsigned long pfn
)
838 page
= pfn_to_page(pfn
);
840 BUG_ON(!PageHighMem(page
));
842 if (swsusp_page_is_forbidden(page
) || swsusp_page_is_free(page
) ||
850 * count_highmem_pages - compute the total number of saveable highmem
854 unsigned int count_highmem_pages(void)
859 for_each_zone(zone
) {
860 unsigned long pfn
, max_zone_pfn
;
862 if (!is_highmem(zone
))
865 mark_free_pages(zone
);
866 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
867 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
868 if (saveable_highmem_page(pfn
))
874 static inline void *saveable_highmem_page(unsigned long pfn
) { return NULL
; }
875 #endif /* CONFIG_HIGHMEM */
878 * saveable_page - Determine whether a non-highmem page should be included
879 * in the suspend image.
881 * We should save the page if it isn't Nosave, and is not in the range
882 * of pages statically defined as 'unsaveable', and it isn't a part of
883 * a free chunk of pages.
886 static struct page
*saveable_page(unsigned long pfn
)
893 page
= pfn_to_page(pfn
);
895 BUG_ON(PageHighMem(page
));
897 if (swsusp_page_is_forbidden(page
) || swsusp_page_is_free(page
))
900 if (PageReserved(page
)
901 && (!kernel_page_present(page
) || pfn_is_nosave(pfn
)))
908 * count_data_pages - compute the total number of saveable non-highmem
912 unsigned int count_data_pages(void)
915 unsigned long pfn
, max_zone_pfn
;
918 for_each_zone(zone
) {
919 if (is_highmem(zone
))
922 mark_free_pages(zone
);
923 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
924 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
925 if(saveable_page(pfn
))
931 /* This is needed, because copy_page and memcpy are not usable for copying
934 static inline void do_copy_page(long *dst
, long *src
)
938 for (n
= PAGE_SIZE
/ sizeof(long); n
; n
--)
944 * safe_copy_page - check if the page we are going to copy is marked as
945 * present in the kernel page tables (this always is the case if
946 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
947 * kernel_page_present() always returns 'true').
949 static void safe_copy_page(void *dst
, struct page
*s_page
)
951 if (kernel_page_present(s_page
)) {
952 do_copy_page(dst
, page_address(s_page
));
954 kernel_map_pages(s_page
, 1, 1);
955 do_copy_page(dst
, page_address(s_page
));
956 kernel_map_pages(s_page
, 1, 0);
961 #ifdef CONFIG_HIGHMEM
962 static inline struct page
*
963 page_is_saveable(struct zone
*zone
, unsigned long pfn
)
965 return is_highmem(zone
) ?
966 saveable_highmem_page(pfn
) : saveable_page(pfn
);
969 static void copy_data_page(unsigned long dst_pfn
, unsigned long src_pfn
)
971 struct page
*s_page
, *d_page
;
974 s_page
= pfn_to_page(src_pfn
);
975 d_page
= pfn_to_page(dst_pfn
);
976 if (PageHighMem(s_page
)) {
977 src
= kmap_atomic(s_page
, KM_USER0
);
978 dst
= kmap_atomic(d_page
, KM_USER1
);
979 do_copy_page(dst
, src
);
980 kunmap_atomic(src
, KM_USER0
);
981 kunmap_atomic(dst
, KM_USER1
);
983 if (PageHighMem(d_page
)) {
984 /* Page pointed to by src may contain some kernel
985 * data modified by kmap_atomic()
987 safe_copy_page(buffer
, s_page
);
988 dst
= kmap_atomic(pfn_to_page(dst_pfn
), KM_USER0
);
989 memcpy(dst
, buffer
, PAGE_SIZE
);
990 kunmap_atomic(dst
, KM_USER0
);
992 safe_copy_page(page_address(d_page
), s_page
);
997 #define page_is_saveable(zone, pfn) saveable_page(pfn)
999 static inline void copy_data_page(unsigned long dst_pfn
, unsigned long src_pfn
)
1001 safe_copy_page(page_address(pfn_to_page(dst_pfn
)),
1002 pfn_to_page(src_pfn
));
1004 #endif /* CONFIG_HIGHMEM */
1007 copy_data_pages(struct memory_bitmap
*copy_bm
, struct memory_bitmap
*orig_bm
)
1012 for_each_zone(zone
) {
1013 unsigned long max_zone_pfn
;
1015 mark_free_pages(zone
);
1016 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1017 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1018 if (page_is_saveable(zone
, pfn
))
1019 memory_bm_set_bit(orig_bm
, pfn
);
1021 memory_bm_position_reset(orig_bm
);
1022 memory_bm_position_reset(copy_bm
);
1024 pfn
= memory_bm_next_pfn(orig_bm
);
1025 if (unlikely(pfn
== BM_END_OF_MAP
))
1027 copy_data_page(memory_bm_next_pfn(copy_bm
), pfn
);
1031 /* Total number of image pages */
1032 static unsigned int nr_copy_pages
;
1033 /* Number of pages needed for saving the original pfns of the image pages */
1034 static unsigned int nr_meta_pages
;
1037 * swsusp_free - free pages allocated for the suspend.
1039 * Suspend pages are alocated before the atomic copy is made, so we
1040 * need to release them after the resume.
1043 void swsusp_free(void)
1046 unsigned long pfn
, max_zone_pfn
;
1048 for_each_zone(zone
) {
1049 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1050 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1051 if (pfn_valid(pfn
)) {
1052 struct page
*page
= pfn_to_page(pfn
);
1054 if (swsusp_page_is_forbidden(page
) &&
1055 swsusp_page_is_free(page
)) {
1056 swsusp_unset_page_forbidden(page
);
1057 swsusp_unset_page_free(page
);
1064 restore_pblist
= NULL
;
1068 #ifdef CONFIG_HIGHMEM
1070 * count_pages_for_highmem - compute the number of non-highmem pages
1071 * that will be necessary for creating copies of highmem pages.
1074 static unsigned int count_pages_for_highmem(unsigned int nr_highmem
)
1076 unsigned int free_highmem
= count_free_highmem_pages();
1078 if (free_highmem
>= nr_highmem
)
1081 nr_highmem
-= free_highmem
;
1087 count_pages_for_highmem(unsigned int nr_highmem
) { return 0; }
1088 #endif /* CONFIG_HIGHMEM */
1091 * enough_free_mem - Make sure we have enough free memory for the
1095 static int enough_free_mem(unsigned int nr_pages
, unsigned int nr_highmem
)
1098 unsigned int free
= 0, meta
= 0;
1100 for_each_zone(zone
) {
1101 meta
+= snapshot_additional_pages(zone
);
1102 if (!is_highmem(zone
))
1103 free
+= zone_page_state(zone
, NR_FREE_PAGES
);
1106 nr_pages
+= count_pages_for_highmem(nr_highmem
);
1107 pr_debug("PM: Normal pages needed: %u + %u + %u, available pages: %u\n",
1108 nr_pages
, PAGES_FOR_IO
, meta
, free
);
1110 return free
> nr_pages
+ PAGES_FOR_IO
+ meta
;
1113 #ifdef CONFIG_HIGHMEM
1115 * get_highmem_buffer - if there are some highmem pages in the suspend
1116 * image, we may need the buffer to copy them and/or load their data.
1119 static inline int get_highmem_buffer(int safe_needed
)
1121 buffer
= get_image_page(GFP_ATOMIC
| __GFP_COLD
, safe_needed
);
1122 return buffer
? 0 : -ENOMEM
;
1126 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1127 * Try to allocate as many pages as needed, but if the number of free
1128 * highmem pages is lesser than that, allocate them all.
1131 static inline unsigned int
1132 alloc_highmem_image_pages(struct memory_bitmap
*bm
, unsigned int nr_highmem
)
1134 unsigned int to_alloc
= count_free_highmem_pages();
1136 if (to_alloc
> nr_highmem
)
1137 to_alloc
= nr_highmem
;
1139 nr_highmem
-= to_alloc
;
1140 while (to_alloc
-- > 0) {
1143 page
= alloc_image_page(__GFP_HIGHMEM
);
1144 memory_bm_set_bit(bm
, page_to_pfn(page
));
1149 static inline int get_highmem_buffer(int safe_needed
) { return 0; }
1151 static inline unsigned int
1152 alloc_highmem_image_pages(struct memory_bitmap
*bm
, unsigned int n
) { return 0; }
1153 #endif /* CONFIG_HIGHMEM */
1156 * swsusp_alloc - allocate memory for the suspend image
1158 * We first try to allocate as many highmem pages as there are
1159 * saveable highmem pages in the system. If that fails, we allocate
1160 * non-highmem pages for the copies of the remaining highmem ones.
1162 * In this approach it is likely that the copies of highmem pages will
1163 * also be located in the high memory, because of the way in which
1164 * copy_data_pages() works.
1168 swsusp_alloc(struct memory_bitmap
*orig_bm
, struct memory_bitmap
*copy_bm
,
1169 unsigned int nr_pages
, unsigned int nr_highmem
)
1173 error
= memory_bm_create(orig_bm
, GFP_ATOMIC
| __GFP_COLD
, PG_ANY
);
1177 error
= memory_bm_create(copy_bm
, GFP_ATOMIC
| __GFP_COLD
, PG_ANY
);
1181 if (nr_highmem
> 0) {
1182 error
= get_highmem_buffer(PG_ANY
);
1186 nr_pages
+= alloc_highmem_image_pages(copy_bm
, nr_highmem
);
1188 while (nr_pages
-- > 0) {
1189 struct page
*page
= alloc_image_page(GFP_ATOMIC
| __GFP_COLD
);
1194 memory_bm_set_bit(copy_bm
, page_to_pfn(page
));
1203 /* Memory bitmap used for marking saveable pages (during suspend) or the
1204 * suspend image pages (during resume)
1206 static struct memory_bitmap orig_bm
;
1207 /* Memory bitmap used on suspend for marking allocated pages that will contain
1208 * the copies of saveable pages. During resume it is initially used for
1209 * marking the suspend image pages, but then its set bits are duplicated in
1210 * @orig_bm and it is released. Next, on systems with high memory, it may be
1211 * used for marking "safe" highmem pages, but it has to be reinitialized for
1214 static struct memory_bitmap copy_bm
;
1216 asmlinkage
int swsusp_save(void)
1218 unsigned int nr_pages
, nr_highmem
;
1220 printk(KERN_INFO
"PM: Creating hibernation image: \n");
1222 drain_local_pages(NULL
);
1223 nr_pages
= count_data_pages();
1224 nr_highmem
= count_highmem_pages();
1225 printk(KERN_INFO
"PM: Need to copy %u pages\n", nr_pages
+ nr_highmem
);
1227 if (!enough_free_mem(nr_pages
, nr_highmem
)) {
1228 printk(KERN_ERR
"PM: Not enough free memory\n");
1232 if (swsusp_alloc(&orig_bm
, ©_bm
, nr_pages
, nr_highmem
)) {
1233 printk(KERN_ERR
"PM: Memory allocation failed\n");
1237 /* During allocating of suspend pagedir, new cold pages may appear.
1240 drain_local_pages(NULL
);
1241 copy_data_pages(©_bm
, &orig_bm
);
1244 * End of critical section. From now on, we can write to memory,
1245 * but we should not touch disk. This specially means we must _not_
1246 * touch swap space! Except we must write out our image of course.
1249 nr_pages
+= nr_highmem
;
1250 nr_copy_pages
= nr_pages
;
1251 nr_meta_pages
= DIV_ROUND_UP(nr_pages
* sizeof(long), PAGE_SIZE
);
1253 printk(KERN_INFO
"PM: Hibernation image created (%d pages copied)\n",
1259 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1260 static int init_header_complete(struct swsusp_info
*info
)
1262 memcpy(&info
->uts
, init_utsname(), sizeof(struct new_utsname
));
1263 info
->version_code
= LINUX_VERSION_CODE
;
1267 static char *check_image_kernel(struct swsusp_info
*info
)
1269 if (info
->version_code
!= LINUX_VERSION_CODE
)
1270 return "kernel version";
1271 if (strcmp(info
->uts
.sysname
,init_utsname()->sysname
))
1272 return "system type";
1273 if (strcmp(info
->uts
.release
,init_utsname()->release
))
1274 return "kernel release";
1275 if (strcmp(info
->uts
.version
,init_utsname()->version
))
1277 if (strcmp(info
->uts
.machine
,init_utsname()->machine
))
1281 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1283 unsigned long snapshot_get_image_size(void)
1285 return nr_copy_pages
+ nr_meta_pages
+ 1;
1288 static int init_header(struct swsusp_info
*info
)
1290 memset(info
, 0, sizeof(struct swsusp_info
));
1291 info
->num_physpages
= num_physpages
;
1292 info
->image_pages
= nr_copy_pages
;
1293 info
->pages
= snapshot_get_image_size();
1294 info
->size
= info
->pages
;
1295 info
->size
<<= PAGE_SHIFT
;
1296 return init_header_complete(info
);
1300 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1301 * are stored in the array @buf[] (1 page at a time)
1305 pack_pfns(unsigned long *buf
, struct memory_bitmap
*bm
)
1309 for (j
= 0; j
< PAGE_SIZE
/ sizeof(long); j
++) {
1310 buf
[j
] = memory_bm_next_pfn(bm
);
1311 if (unlikely(buf
[j
] == BM_END_OF_MAP
))
1317 * snapshot_read_next - used for reading the system memory snapshot.
1319 * On the first call to it @handle should point to a zeroed
1320 * snapshot_handle structure. The structure gets updated and a pointer
1321 * to it should be passed to this function every next time.
1323 * The @count parameter should contain the number of bytes the caller
1324 * wants to read from the snapshot. It must not be zero.
1326 * On success the function returns a positive number. Then, the caller
1327 * is allowed to read up to the returned number of bytes from the memory
1328 * location computed by the data_of() macro. The number returned
1329 * may be smaller than @count, but this only happens if the read would
1330 * cross a page boundary otherwise.
1332 * The function returns 0 to indicate the end of data stream condition,
1333 * and a negative number is returned on error. In such cases the
1334 * structure pointed to by @handle is not updated and should not be used
1338 int snapshot_read_next(struct snapshot_handle
*handle
, size_t count
)
1340 if (handle
->cur
> nr_meta_pages
+ nr_copy_pages
)
1344 /* This makes the buffer be freed by swsusp_free() */
1345 buffer
= get_image_page(GFP_ATOMIC
, PG_ANY
);
1349 if (!handle
->offset
) {
1352 error
= init_header((struct swsusp_info
*)buffer
);
1355 handle
->buffer
= buffer
;
1356 memory_bm_position_reset(&orig_bm
);
1357 memory_bm_position_reset(©_bm
);
1359 if (handle
->prev
< handle
->cur
) {
1360 if (handle
->cur
<= nr_meta_pages
) {
1361 memset(buffer
, 0, PAGE_SIZE
);
1362 pack_pfns(buffer
, &orig_bm
);
1366 page
= pfn_to_page(memory_bm_next_pfn(©_bm
));
1367 if (PageHighMem(page
)) {
1368 /* Highmem pages are copied to the buffer,
1369 * because we can't return with a kmapped
1370 * highmem page (we may not be called again).
1374 kaddr
= kmap_atomic(page
, KM_USER0
);
1375 memcpy(buffer
, kaddr
, PAGE_SIZE
);
1376 kunmap_atomic(kaddr
, KM_USER0
);
1377 handle
->buffer
= buffer
;
1379 handle
->buffer
= page_address(page
);
1382 handle
->prev
= handle
->cur
;
1384 handle
->buf_offset
= handle
->cur_offset
;
1385 if (handle
->cur_offset
+ count
>= PAGE_SIZE
) {
1386 count
= PAGE_SIZE
- handle
->cur_offset
;
1387 handle
->cur_offset
= 0;
1390 handle
->cur_offset
+= count
;
1392 handle
->offset
+= count
;
1397 * mark_unsafe_pages - mark the pages that cannot be used for storing
1398 * the image during resume, because they conflict with the pages that
1399 * had been used before suspend
1402 static int mark_unsafe_pages(struct memory_bitmap
*bm
)
1405 unsigned long pfn
, max_zone_pfn
;
1407 /* Clear page flags */
1408 for_each_zone(zone
) {
1409 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1410 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1412 swsusp_unset_page_free(pfn_to_page(pfn
));
1415 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1416 memory_bm_position_reset(bm
);
1418 pfn
= memory_bm_next_pfn(bm
);
1419 if (likely(pfn
!= BM_END_OF_MAP
)) {
1420 if (likely(pfn_valid(pfn
)))
1421 swsusp_set_page_free(pfn_to_page(pfn
));
1425 } while (pfn
!= BM_END_OF_MAP
);
1427 allocated_unsafe_pages
= 0;
1433 duplicate_memory_bitmap(struct memory_bitmap
*dst
, struct memory_bitmap
*src
)
1437 memory_bm_position_reset(src
);
1438 pfn
= memory_bm_next_pfn(src
);
1439 while (pfn
!= BM_END_OF_MAP
) {
1440 memory_bm_set_bit(dst
, pfn
);
1441 pfn
= memory_bm_next_pfn(src
);
1445 static int check_header(struct swsusp_info
*info
)
1449 reason
= check_image_kernel(info
);
1450 if (!reason
&& info
->num_physpages
!= num_physpages
)
1451 reason
= "memory size";
1453 printk(KERN_ERR
"PM: Image mismatch: %s\n", reason
);
1460 * load header - check the image header and copy data from it
1464 load_header(struct swsusp_info
*info
)
1468 restore_pblist
= NULL
;
1469 error
= check_header(info
);
1471 nr_copy_pages
= info
->image_pages
;
1472 nr_meta_pages
= info
->pages
- info
->image_pages
- 1;
1478 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1479 * the corresponding bit in the memory bitmap @bm
1483 unpack_orig_pfns(unsigned long *buf
, struct memory_bitmap
*bm
)
1487 for (j
= 0; j
< PAGE_SIZE
/ sizeof(long); j
++) {
1488 if (unlikely(buf
[j
] == BM_END_OF_MAP
))
1491 memory_bm_set_bit(bm
, buf
[j
]);
1495 /* List of "safe" pages that may be used to store data loaded from the suspend
1498 static struct linked_page
*safe_pages_list
;
1500 #ifdef CONFIG_HIGHMEM
1501 /* struct highmem_pbe is used for creating the list of highmem pages that
1502 * should be restored atomically during the resume from disk, because the page
1503 * frames they have occupied before the suspend are in use.
1505 struct highmem_pbe
{
1506 struct page
*copy_page
; /* data is here now */
1507 struct page
*orig_page
; /* data was here before the suspend */
1508 struct highmem_pbe
*next
;
1511 /* List of highmem PBEs needed for restoring the highmem pages that were
1512 * allocated before the suspend and included in the suspend image, but have
1513 * also been allocated by the "resume" kernel, so their contents cannot be
1514 * written directly to their "original" page frames.
1516 static struct highmem_pbe
*highmem_pblist
;
1519 * count_highmem_image_pages - compute the number of highmem pages in the
1520 * suspend image. The bits in the memory bitmap @bm that correspond to the
1521 * image pages are assumed to be set.
1524 static unsigned int count_highmem_image_pages(struct memory_bitmap
*bm
)
1527 unsigned int cnt
= 0;
1529 memory_bm_position_reset(bm
);
1530 pfn
= memory_bm_next_pfn(bm
);
1531 while (pfn
!= BM_END_OF_MAP
) {
1532 if (PageHighMem(pfn_to_page(pfn
)))
1535 pfn
= memory_bm_next_pfn(bm
);
1541 * prepare_highmem_image - try to allocate as many highmem pages as
1542 * there are highmem image pages (@nr_highmem_p points to the variable
1543 * containing the number of highmem image pages). The pages that are
1544 * "safe" (ie. will not be overwritten when the suspend image is
1545 * restored) have the corresponding bits set in @bm (it must be
1548 * NOTE: This function should not be called if there are no highmem
1552 static unsigned int safe_highmem_pages
;
1554 static struct memory_bitmap
*safe_highmem_bm
;
1557 prepare_highmem_image(struct memory_bitmap
*bm
, unsigned int *nr_highmem_p
)
1559 unsigned int to_alloc
;
1561 if (memory_bm_create(bm
, GFP_ATOMIC
, PG_SAFE
))
1564 if (get_highmem_buffer(PG_SAFE
))
1567 to_alloc
= count_free_highmem_pages();
1568 if (to_alloc
> *nr_highmem_p
)
1569 to_alloc
= *nr_highmem_p
;
1571 *nr_highmem_p
= to_alloc
;
1573 safe_highmem_pages
= 0;
1574 while (to_alloc
-- > 0) {
1577 page
= alloc_page(__GFP_HIGHMEM
);
1578 if (!swsusp_page_is_free(page
)) {
1579 /* The page is "safe", set its bit the bitmap */
1580 memory_bm_set_bit(bm
, page_to_pfn(page
));
1581 safe_highmem_pages
++;
1583 /* Mark the page as allocated */
1584 swsusp_set_page_forbidden(page
);
1585 swsusp_set_page_free(page
);
1587 memory_bm_position_reset(bm
);
1588 safe_highmem_bm
= bm
;
1593 * get_highmem_page_buffer - for given highmem image page find the buffer
1594 * that suspend_write_next() should set for its caller to write to.
1596 * If the page is to be saved to its "original" page frame or a copy of
1597 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1598 * the copy of the page is to be made in normal memory, so the address of
1599 * the copy is returned.
1601 * If @buffer is returned, the caller of suspend_write_next() will write
1602 * the page's contents to @buffer, so they will have to be copied to the
1603 * right location on the next call to suspend_write_next() and it is done
1604 * with the help of copy_last_highmem_page(). For this purpose, if
1605 * @buffer is returned, @last_highmem page is set to the page to which
1606 * the data will have to be copied from @buffer.
1609 static struct page
*last_highmem_page
;
1612 get_highmem_page_buffer(struct page
*page
, struct chain_allocator
*ca
)
1614 struct highmem_pbe
*pbe
;
1617 if (swsusp_page_is_forbidden(page
) && swsusp_page_is_free(page
)) {
1618 /* We have allocated the "original" page frame and we can
1619 * use it directly to store the loaded page.
1621 last_highmem_page
= page
;
1624 /* The "original" page frame has not been allocated and we have to
1625 * use a "safe" page frame to store the loaded page.
1627 pbe
= chain_alloc(ca
, sizeof(struct highmem_pbe
));
1632 pbe
->orig_page
= page
;
1633 if (safe_highmem_pages
> 0) {
1636 /* Copy of the page will be stored in high memory */
1638 tmp
= pfn_to_page(memory_bm_next_pfn(safe_highmem_bm
));
1639 safe_highmem_pages
--;
1640 last_highmem_page
= tmp
;
1641 pbe
->copy_page
= tmp
;
1643 /* Copy of the page will be stored in normal memory */
1644 kaddr
= safe_pages_list
;
1645 safe_pages_list
= safe_pages_list
->next
;
1646 pbe
->copy_page
= virt_to_page(kaddr
);
1648 pbe
->next
= highmem_pblist
;
1649 highmem_pblist
= pbe
;
1654 * copy_last_highmem_page - copy the contents of a highmem image from
1655 * @buffer, where the caller of snapshot_write_next() has place them,
1656 * to the right location represented by @last_highmem_page .
1659 static void copy_last_highmem_page(void)
1661 if (last_highmem_page
) {
1664 dst
= kmap_atomic(last_highmem_page
, KM_USER0
);
1665 memcpy(dst
, buffer
, PAGE_SIZE
);
1666 kunmap_atomic(dst
, KM_USER0
);
1667 last_highmem_page
= NULL
;
1671 static inline int last_highmem_page_copied(void)
1673 return !last_highmem_page
;
1676 static inline void free_highmem_data(void)
1678 if (safe_highmem_bm
)
1679 memory_bm_free(safe_highmem_bm
, PG_UNSAFE_CLEAR
);
1682 free_image_page(buffer
, PG_UNSAFE_CLEAR
);
1685 static inline int get_safe_write_buffer(void) { return 0; }
1688 count_highmem_image_pages(struct memory_bitmap
*bm
) { return 0; }
1691 prepare_highmem_image(struct memory_bitmap
*bm
, unsigned int *nr_highmem_p
)
1696 static inline void *
1697 get_highmem_page_buffer(struct page
*page
, struct chain_allocator
*ca
)
1702 static inline void copy_last_highmem_page(void) {}
1703 static inline int last_highmem_page_copied(void) { return 1; }
1704 static inline void free_highmem_data(void) {}
1705 #endif /* CONFIG_HIGHMEM */
1708 * prepare_image - use the memory bitmap @bm to mark the pages that will
1709 * be overwritten in the process of restoring the system memory state
1710 * from the suspend image ("unsafe" pages) and allocate memory for the
1713 * The idea is to allocate a new memory bitmap first and then allocate
1714 * as many pages as needed for the image data, but not to assign these
1715 * pages to specific tasks initially. Instead, we just mark them as
1716 * allocated and create a lists of "safe" pages that will be used
1717 * later. On systems with high memory a list of "safe" highmem pages is
1721 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1724 prepare_image(struct memory_bitmap
*new_bm
, struct memory_bitmap
*bm
)
1726 unsigned int nr_pages
, nr_highmem
;
1727 struct linked_page
*sp_list
, *lp
;
1730 /* If there is no highmem, the buffer will not be necessary */
1731 free_image_page(buffer
, PG_UNSAFE_CLEAR
);
1734 nr_highmem
= count_highmem_image_pages(bm
);
1735 error
= mark_unsafe_pages(bm
);
1739 error
= memory_bm_create(new_bm
, GFP_ATOMIC
, PG_SAFE
);
1743 duplicate_memory_bitmap(new_bm
, bm
);
1744 memory_bm_free(bm
, PG_UNSAFE_KEEP
);
1745 if (nr_highmem
> 0) {
1746 error
= prepare_highmem_image(bm
, &nr_highmem
);
1750 /* Reserve some safe pages for potential later use.
1752 * NOTE: This way we make sure there will be enough safe pages for the
1753 * chain_alloc() in get_buffer(). It is a bit wasteful, but
1754 * nr_copy_pages cannot be greater than 50% of the memory anyway.
1757 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
1758 nr_pages
= nr_copy_pages
- nr_highmem
- allocated_unsafe_pages
;
1759 nr_pages
= DIV_ROUND_UP(nr_pages
, PBES_PER_LINKED_PAGE
);
1760 while (nr_pages
> 0) {
1761 lp
= get_image_page(GFP_ATOMIC
, PG_SAFE
);
1770 /* Preallocate memory for the image */
1771 safe_pages_list
= NULL
;
1772 nr_pages
= nr_copy_pages
- nr_highmem
- allocated_unsafe_pages
;
1773 while (nr_pages
> 0) {
1774 lp
= (struct linked_page
*)get_zeroed_page(GFP_ATOMIC
);
1779 if (!swsusp_page_is_free(virt_to_page(lp
))) {
1780 /* The page is "safe", add it to the list */
1781 lp
->next
= safe_pages_list
;
1782 safe_pages_list
= lp
;
1784 /* Mark the page as allocated */
1785 swsusp_set_page_forbidden(virt_to_page(lp
));
1786 swsusp_set_page_free(virt_to_page(lp
));
1789 /* Free the reserved safe pages so that chain_alloc() can use them */
1792 free_image_page(sp_list
, PG_UNSAFE_CLEAR
);
1803 * get_buffer - compute the address that snapshot_write_next() should
1804 * set for its caller to write to.
1807 static void *get_buffer(struct memory_bitmap
*bm
, struct chain_allocator
*ca
)
1810 struct page
*page
= pfn_to_page(memory_bm_next_pfn(bm
));
1812 if (PageHighMem(page
))
1813 return get_highmem_page_buffer(page
, ca
);
1815 if (swsusp_page_is_forbidden(page
) && swsusp_page_is_free(page
))
1816 /* We have allocated the "original" page frame and we can
1817 * use it directly to store the loaded page.
1819 return page_address(page
);
1821 /* The "original" page frame has not been allocated and we have to
1822 * use a "safe" page frame to store the loaded page.
1824 pbe
= chain_alloc(ca
, sizeof(struct pbe
));
1829 pbe
->orig_address
= page_address(page
);
1830 pbe
->address
= safe_pages_list
;
1831 safe_pages_list
= safe_pages_list
->next
;
1832 pbe
->next
= restore_pblist
;
1833 restore_pblist
= pbe
;
1834 return pbe
->address
;
1838 * snapshot_write_next - used for writing the system memory snapshot.
1840 * On the first call to it @handle should point to a zeroed
1841 * snapshot_handle structure. The structure gets updated and a pointer
1842 * to it should be passed to this function every next time.
1844 * The @count parameter should contain the number of bytes the caller
1845 * wants to write to the image. It must not be zero.
1847 * On success the function returns a positive number. Then, the caller
1848 * is allowed to write up to the returned number of bytes to the memory
1849 * location computed by the data_of() macro. The number returned
1850 * may be smaller than @count, but this only happens if the write would
1851 * cross a page boundary otherwise.
1853 * The function returns 0 to indicate the "end of file" condition,
1854 * and a negative number is returned on error. In such cases the
1855 * structure pointed to by @handle is not updated and should not be used
1859 int snapshot_write_next(struct snapshot_handle
*handle
, size_t count
)
1861 static struct chain_allocator ca
;
1864 /* Check if we have already loaded the entire image */
1865 if (handle
->prev
&& handle
->cur
> nr_meta_pages
+ nr_copy_pages
)
1868 if (handle
->offset
== 0) {
1870 /* This makes the buffer be freed by swsusp_free() */
1871 buffer
= get_image_page(GFP_ATOMIC
, PG_ANY
);
1876 handle
->buffer
= buffer
;
1878 handle
->sync_read
= 1;
1879 if (handle
->prev
< handle
->cur
) {
1880 if (handle
->prev
== 0) {
1881 error
= load_header(buffer
);
1885 error
= memory_bm_create(©_bm
, GFP_ATOMIC
, PG_ANY
);
1889 } else if (handle
->prev
<= nr_meta_pages
) {
1890 unpack_orig_pfns(buffer
, ©_bm
);
1891 if (handle
->prev
== nr_meta_pages
) {
1892 error
= prepare_image(&orig_bm
, ©_bm
);
1896 chain_init(&ca
, GFP_ATOMIC
, PG_SAFE
);
1897 memory_bm_position_reset(&orig_bm
);
1898 restore_pblist
= NULL
;
1899 handle
->buffer
= get_buffer(&orig_bm
, &ca
);
1900 handle
->sync_read
= 0;
1901 if (!handle
->buffer
)
1905 copy_last_highmem_page();
1906 handle
->buffer
= get_buffer(&orig_bm
, &ca
);
1907 if (handle
->buffer
!= buffer
)
1908 handle
->sync_read
= 0;
1910 handle
->prev
= handle
->cur
;
1912 handle
->buf_offset
= handle
->cur_offset
;
1913 if (handle
->cur_offset
+ count
>= PAGE_SIZE
) {
1914 count
= PAGE_SIZE
- handle
->cur_offset
;
1915 handle
->cur_offset
= 0;
1918 handle
->cur_offset
+= count
;
1920 handle
->offset
+= count
;
1925 * snapshot_write_finalize - must be called after the last call to
1926 * snapshot_write_next() in case the last page in the image happens
1927 * to be a highmem page and its contents should be stored in the
1928 * highmem. Additionally, it releases the memory that will not be
1932 void snapshot_write_finalize(struct snapshot_handle
*handle
)
1934 copy_last_highmem_page();
1935 /* Free only if we have loaded the image entirely */
1936 if (handle
->prev
&& handle
->cur
> nr_meta_pages
+ nr_copy_pages
) {
1937 memory_bm_free(&orig_bm
, PG_UNSAFE_CLEAR
);
1938 free_highmem_data();
1942 int snapshot_image_loaded(struct snapshot_handle
*handle
)
1944 return !(!nr_copy_pages
|| !last_highmem_page_copied() ||
1945 handle
->cur
<= nr_meta_pages
+ nr_copy_pages
);
1948 #ifdef CONFIG_HIGHMEM
1949 /* Assumes that @buf is ready and points to a "safe" page */
1951 swap_two_pages_data(struct page
*p1
, struct page
*p2
, void *buf
)
1953 void *kaddr1
, *kaddr2
;
1955 kaddr1
= kmap_atomic(p1
, KM_USER0
);
1956 kaddr2
= kmap_atomic(p2
, KM_USER1
);
1957 memcpy(buf
, kaddr1
, PAGE_SIZE
);
1958 memcpy(kaddr1
, kaddr2
, PAGE_SIZE
);
1959 memcpy(kaddr2
, buf
, PAGE_SIZE
);
1960 kunmap_atomic(kaddr1
, KM_USER0
);
1961 kunmap_atomic(kaddr2
, KM_USER1
);
1965 * restore_highmem - for each highmem page that was allocated before
1966 * the suspend and included in the suspend image, and also has been
1967 * allocated by the "resume" kernel swap its current (ie. "before
1968 * resume") contents with the previous (ie. "before suspend") one.
1970 * If the resume eventually fails, we can call this function once
1971 * again and restore the "before resume" highmem state.
1974 int restore_highmem(void)
1976 struct highmem_pbe
*pbe
= highmem_pblist
;
1982 buf
= get_image_page(GFP_ATOMIC
, PG_SAFE
);
1987 swap_two_pages_data(pbe
->copy_page
, pbe
->orig_page
, buf
);
1990 free_image_page(buf
, PG_UNSAFE_CLEAR
);
1993 #endif /* CONFIG_HIGHMEM */