sched: make early bootup sched_clock() use safer
[wrt350n-kernel.git] / lib / iomap.c
blobdb004a9ff509bb6314793edcb76f48e785240e47
1 /*
2 * Implement the default iomap interfaces
4 * (C) Copyright 2004 Linus Torvalds
5 */
6 #include <linux/pci.h>
7 #include <linux/io.h>
9 #include <linux/module.h>
12 * Read/write from/to an (offsettable) iomem cookie. It might be a PIO
13 * access or a MMIO access, these functions don't care. The info is
14 * encoded in the hardware mapping set up by the mapping functions
15 * (or the cookie itself, depending on implementation and hw).
17 * The generic routines don't assume any hardware mappings, and just
18 * encode the PIO/MMIO as part of the cookie. They coldly assume that
19 * the MMIO IO mappings are not in the low address range.
21 * Architectures for which this is not true can't use this generic
22 * implementation and should do their own copy.
25 #ifndef HAVE_ARCH_PIO_SIZE
27 * We encode the physical PIO addresses (0-0xffff) into the
28 * pointer by offsetting them with a constant (0x10000) and
29 * assuming that all the low addresses are always PIO. That means
30 * we can do some sanity checks on the low bits, and don't
31 * need to just take things for granted.
33 #define PIO_OFFSET 0x10000UL
34 #define PIO_MASK 0x0ffffUL
35 #define PIO_RESERVED 0x40000UL
36 #endif
38 static void bad_io_access(unsigned long port, const char *access)
40 static int count = 10;
41 if (count) {
42 count--;
43 printk(KERN_ERR "Bad IO access at port %#lx (%s)\n", port, access);
44 WARN_ON(1);
49 * Ugly macros are a way of life.
51 #define IO_COND(addr, is_pio, is_mmio) do { \
52 unsigned long port = (unsigned long __force)addr; \
53 if (port >= PIO_RESERVED) { \
54 is_mmio; \
55 } else if (port > PIO_OFFSET) { \
56 port &= PIO_MASK; \
57 is_pio; \
58 } else \
59 bad_io_access(port, #is_pio ); \
60 } while (0)
62 #ifndef pio_read16be
63 #define pio_read16be(port) swab16(inw(port))
64 #define pio_read32be(port) swab32(inl(port))
65 #endif
67 #ifndef mmio_read16be
68 #define mmio_read16be(addr) be16_to_cpu(__raw_readw(addr))
69 #define mmio_read32be(addr) be32_to_cpu(__raw_readl(addr))
70 #endif
72 unsigned int ioread8(void __iomem *addr)
74 IO_COND(addr, return inb(port), return readb(addr));
75 return 0xff;
77 unsigned int ioread16(void __iomem *addr)
79 IO_COND(addr, return inw(port), return readw(addr));
80 return 0xffff;
82 unsigned int ioread16be(void __iomem *addr)
84 IO_COND(addr, return pio_read16be(port), return mmio_read16be(addr));
85 return 0xffff;
87 unsigned int ioread32(void __iomem *addr)
89 IO_COND(addr, return inl(port), return readl(addr));
90 return 0xffffffff;
92 unsigned int ioread32be(void __iomem *addr)
94 IO_COND(addr, return pio_read32be(port), return mmio_read32be(addr));
95 return 0xffffffff;
97 EXPORT_SYMBOL(ioread8);
98 EXPORT_SYMBOL(ioread16);
99 EXPORT_SYMBOL(ioread16be);
100 EXPORT_SYMBOL(ioread32);
101 EXPORT_SYMBOL(ioread32be);
103 #ifndef pio_write16be
104 #define pio_write16be(val,port) outw(swab16(val),port)
105 #define pio_write32be(val,port) outl(swab32(val),port)
106 #endif
108 #ifndef mmio_write16be
109 #define mmio_write16be(val,port) __raw_writew(be16_to_cpu(val),port)
110 #define mmio_write32be(val,port) __raw_writel(be32_to_cpu(val),port)
111 #endif
113 void iowrite8(u8 val, void __iomem *addr)
115 IO_COND(addr, outb(val,port), writeb(val, addr));
117 void iowrite16(u16 val, void __iomem *addr)
119 IO_COND(addr, outw(val,port), writew(val, addr));
121 void iowrite16be(u16 val, void __iomem *addr)
123 IO_COND(addr, pio_write16be(val,port), mmio_write16be(val, addr));
125 void iowrite32(u32 val, void __iomem *addr)
127 IO_COND(addr, outl(val,port), writel(val, addr));
129 void iowrite32be(u32 val, void __iomem *addr)
131 IO_COND(addr, pio_write32be(val,port), mmio_write32be(val, addr));
133 EXPORT_SYMBOL(iowrite8);
134 EXPORT_SYMBOL(iowrite16);
135 EXPORT_SYMBOL(iowrite16be);
136 EXPORT_SYMBOL(iowrite32);
137 EXPORT_SYMBOL(iowrite32be);
140 * These are the "repeat MMIO read/write" functions.
141 * Note the "__raw" accesses, since we don't want to
142 * convert to CPU byte order. We write in "IO byte
143 * order" (we also don't have IO barriers).
145 #ifndef mmio_insb
146 static inline void mmio_insb(void __iomem *addr, u8 *dst, int count)
148 while (--count >= 0) {
149 u8 data = __raw_readb(addr);
150 *dst = data;
151 dst++;
154 static inline void mmio_insw(void __iomem *addr, u16 *dst, int count)
156 while (--count >= 0) {
157 u16 data = __raw_readw(addr);
158 *dst = data;
159 dst++;
162 static inline void mmio_insl(void __iomem *addr, u32 *dst, int count)
164 while (--count >= 0) {
165 u32 data = __raw_readl(addr);
166 *dst = data;
167 dst++;
170 #endif
172 #ifndef mmio_outsb
173 static inline void mmio_outsb(void __iomem *addr, const u8 *src, int count)
175 while (--count >= 0) {
176 __raw_writeb(*src, addr);
177 src++;
180 static inline void mmio_outsw(void __iomem *addr, const u16 *src, int count)
182 while (--count >= 0) {
183 __raw_writew(*src, addr);
184 src++;
187 static inline void mmio_outsl(void __iomem *addr, const u32 *src, int count)
189 while (--count >= 0) {
190 __raw_writel(*src, addr);
191 src++;
194 #endif
196 void ioread8_rep(void __iomem *addr, void *dst, unsigned long count)
198 IO_COND(addr, insb(port,dst,count), mmio_insb(addr, dst, count));
200 void ioread16_rep(void __iomem *addr, void *dst, unsigned long count)
202 IO_COND(addr, insw(port,dst,count), mmio_insw(addr, dst, count));
204 void ioread32_rep(void __iomem *addr, void *dst, unsigned long count)
206 IO_COND(addr, insl(port,dst,count), mmio_insl(addr, dst, count));
208 EXPORT_SYMBOL(ioread8_rep);
209 EXPORT_SYMBOL(ioread16_rep);
210 EXPORT_SYMBOL(ioread32_rep);
212 void iowrite8_rep(void __iomem *addr, const void *src, unsigned long count)
214 IO_COND(addr, outsb(port, src, count), mmio_outsb(addr, src, count));
216 void iowrite16_rep(void __iomem *addr, const void *src, unsigned long count)
218 IO_COND(addr, outsw(port, src, count), mmio_outsw(addr, src, count));
220 void iowrite32_rep(void __iomem *addr, const void *src, unsigned long count)
222 IO_COND(addr, outsl(port, src,count), mmio_outsl(addr, src, count));
224 EXPORT_SYMBOL(iowrite8_rep);
225 EXPORT_SYMBOL(iowrite16_rep);
226 EXPORT_SYMBOL(iowrite32_rep);
228 /* Create a virtual mapping cookie for an IO port range */
229 void __iomem *ioport_map(unsigned long port, unsigned int nr)
231 if (port > PIO_MASK)
232 return NULL;
233 return (void __iomem *) (unsigned long) (port + PIO_OFFSET);
236 void ioport_unmap(void __iomem *addr)
238 /* Nothing to do */
240 EXPORT_SYMBOL(ioport_map);
241 EXPORT_SYMBOL(ioport_unmap);
244 * pci_iomap - create a virtual mapping cookie for a PCI BAR
245 * @dev: PCI device that owns the BAR
246 * @bar: BAR number
247 * @maxlen: length of the memory to map
249 * Using this function you will get a __iomem address to your device BAR.
250 * You can access it using ioread*() and iowrite*(). These functions hide
251 * the details if this is a MMIO or PIO address space and will just do what
252 * you expect from them in the correct way.
254 * @maxlen specifies the maximum length to map. If you want to get access to
255 * the complete BAR without checking for its length first, pass %0 here.
256 * */
257 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen)
259 unsigned long start = pci_resource_start(dev, bar);
260 unsigned long len = pci_resource_len(dev, bar);
261 unsigned long flags = pci_resource_flags(dev, bar);
263 if (!len || !start)
264 return NULL;
265 if (maxlen && len > maxlen)
266 len = maxlen;
267 if (flags & IORESOURCE_IO)
268 return ioport_map(start, len);
269 if (flags & IORESOURCE_MEM) {
270 if (flags & IORESOURCE_CACHEABLE)
271 return ioremap(start, len);
272 return ioremap_nocache(start, len);
274 /* What? */
275 return NULL;
278 void pci_iounmap(struct pci_dev *dev, void __iomem * addr)
280 IO_COND(addr, /* nothing */, iounmap(addr));
282 EXPORT_SYMBOL(pci_iomap);
283 EXPORT_SYMBOL(pci_iounmap);