2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * ROUTE - implementation of the IP router.
8 * Version: $Id: route.c,v 1.103 2002/01/12 07:44:09 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Alan Cox, <gw4pts@gw4pts.ampr.org>
13 * Linus Torvalds, <Linus.Torvalds@helsinki.fi>
14 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
17 * Alan Cox : Verify area fixes.
18 * Alan Cox : cli() protects routing changes
19 * Rui Oliveira : ICMP routing table updates
20 * (rco@di.uminho.pt) Routing table insertion and update
21 * Linus Torvalds : Rewrote bits to be sensible
22 * Alan Cox : Added BSD route gw semantics
23 * Alan Cox : Super /proc >4K
24 * Alan Cox : MTU in route table
25 * Alan Cox : MSS actually. Also added the window
27 * Sam Lantinga : Fixed route matching in rt_del()
28 * Alan Cox : Routing cache support.
29 * Alan Cox : Removed compatibility cruft.
30 * Alan Cox : RTF_REJECT support.
31 * Alan Cox : TCP irtt support.
32 * Jonathan Naylor : Added Metric support.
33 * Miquel van Smoorenburg : BSD API fixes.
34 * Miquel van Smoorenburg : Metrics.
35 * Alan Cox : Use __u32 properly
36 * Alan Cox : Aligned routing errors more closely with BSD
37 * our system is still very different.
38 * Alan Cox : Faster /proc handling
39 * Alexey Kuznetsov : Massive rework to support tree based routing,
40 * routing caches and better behaviour.
42 * Olaf Erb : irtt wasn't being copied right.
43 * Bjorn Ekwall : Kerneld route support.
44 * Alan Cox : Multicast fixed (I hope)
45 * Pavel Krauz : Limited broadcast fixed
46 * Mike McLagan : Routing by source
47 * Alexey Kuznetsov : End of old history. Split to fib.c and
48 * route.c and rewritten from scratch.
49 * Andi Kleen : Load-limit warning messages.
50 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
51 * Vitaly E. Lavrov : Race condition in ip_route_input_slow.
52 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow.
53 * Vladimir V. Ivanov : IP rule info (flowid) is really useful.
54 * Marc Boucher : routing by fwmark
55 * Robert Olsson : Added rt_cache statistics
56 * Arnaldo C. Melo : Convert proc stuff to seq_file
57 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
58 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect
59 * Ilia Sotnikov : Removed TOS from hash calculations
61 * This program is free software; you can redistribute it and/or
62 * modify it under the terms of the GNU General Public License
63 * as published by the Free Software Foundation; either version
64 * 2 of the License, or (at your option) any later version.
67 #include <linux/module.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 #include <linux/bitops.h>
71 #include <linux/types.h>
72 #include <linux/kernel.h>
74 #include <linux/bootmem.h>
75 #include <linux/string.h>
76 #include <linux/socket.h>
77 #include <linux/sockios.h>
78 #include <linux/errno.h>
80 #include <linux/inet.h>
81 #include <linux/netdevice.h>
82 #include <linux/proc_fs.h>
83 #include <linux/init.h>
84 #include <linux/workqueue.h>
85 #include <linux/skbuff.h>
86 #include <linux/inetdevice.h>
87 #include <linux/igmp.h>
88 #include <linux/pkt_sched.h>
89 #include <linux/mroute.h>
90 #include <linux/netfilter_ipv4.h>
91 #include <linux/random.h>
92 #include <linux/jhash.h>
93 #include <linux/rcupdate.h>
94 #include <linux/times.h>
96 #include <net/net_namespace.h>
97 #include <net/protocol.h>
99 #include <net/route.h>
100 #include <net/inetpeer.h>
101 #include <net/sock.h>
102 #include <net/ip_fib.h>
105 #include <net/icmp.h>
106 #include <net/xfrm.h>
107 #include <net/netevent.h>
108 #include <net/rtnetlink.h>
110 #include <linux/sysctl.h>
113 #define RT_FL_TOS(oldflp) \
114 ((u32)(oldflp->fl4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
116 #define IP_MAX_MTU 0xFFF0
118 #define RT_GC_TIMEOUT (300*HZ)
120 static int ip_rt_min_delay
= 2 * HZ
;
121 static int ip_rt_max_delay
= 10 * HZ
;
122 static int ip_rt_max_size
;
123 static int ip_rt_gc_timeout
= RT_GC_TIMEOUT
;
124 static int ip_rt_gc_interval
= 60 * HZ
;
125 static int ip_rt_gc_min_interval
= HZ
/ 2;
126 static int ip_rt_redirect_number
= 9;
127 static int ip_rt_redirect_load
= HZ
/ 50;
128 static int ip_rt_redirect_silence
= ((HZ
/ 50) << (9 + 1));
129 static int ip_rt_error_cost
= HZ
;
130 static int ip_rt_error_burst
= 5 * HZ
;
131 static int ip_rt_gc_elasticity
= 8;
132 static int ip_rt_mtu_expires
= 10 * 60 * HZ
;
133 static int ip_rt_min_pmtu
= 512 + 20 + 20;
134 static int ip_rt_min_advmss
= 256;
135 static int ip_rt_secret_interval
= 10 * 60 * HZ
;
136 static int ip_rt_flush_expected
;
137 static unsigned long rt_deadline
;
139 #define RTprint(a...) printk(KERN_DEBUG a)
141 static struct timer_list rt_flush_timer
;
142 static void rt_worker_func(struct work_struct
*work
);
143 static DECLARE_DELAYED_WORK(expires_work
, rt_worker_func
);
144 static struct timer_list rt_secret_timer
;
147 * Interface to generic destination cache.
150 static struct dst_entry
*ipv4_dst_check(struct dst_entry
*dst
, u32 cookie
);
151 static void ipv4_dst_destroy(struct dst_entry
*dst
);
152 static void ipv4_dst_ifdown(struct dst_entry
*dst
,
153 struct net_device
*dev
, int how
);
154 static struct dst_entry
*ipv4_negative_advice(struct dst_entry
*dst
);
155 static void ipv4_link_failure(struct sk_buff
*skb
);
156 static void ip_rt_update_pmtu(struct dst_entry
*dst
, u32 mtu
);
157 static int rt_garbage_collect(struct dst_ops
*ops
);
160 static struct dst_ops ipv4_dst_ops
= {
162 .protocol
= __constant_htons(ETH_P_IP
),
163 .gc
= rt_garbage_collect
,
164 .check
= ipv4_dst_check
,
165 .destroy
= ipv4_dst_destroy
,
166 .ifdown
= ipv4_dst_ifdown
,
167 .negative_advice
= ipv4_negative_advice
,
168 .link_failure
= ipv4_link_failure
,
169 .update_pmtu
= ip_rt_update_pmtu
,
170 .local_out
= ip_local_out
,
171 .entry_size
= sizeof(struct rtable
),
174 #define ECN_OR_COST(class) TC_PRIO_##class
176 const __u8 ip_tos2prio
[16] = {
180 ECN_OR_COST(BESTEFFORT
),
186 ECN_OR_COST(INTERACTIVE
),
188 ECN_OR_COST(INTERACTIVE
),
189 TC_PRIO_INTERACTIVE_BULK
,
190 ECN_OR_COST(INTERACTIVE_BULK
),
191 TC_PRIO_INTERACTIVE_BULK
,
192 ECN_OR_COST(INTERACTIVE_BULK
)
200 /* The locking scheme is rather straight forward:
202 * 1) Read-Copy Update protects the buckets of the central route hash.
203 * 2) Only writers remove entries, and they hold the lock
204 * as they look at rtable reference counts.
205 * 3) Only readers acquire references to rtable entries,
206 * they do so with atomic increments and with the
210 struct rt_hash_bucket
{
211 struct rtable
*chain
;
213 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
214 defined(CONFIG_PROVE_LOCKING)
216 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
217 * The size of this table is a power of two and depends on the number of CPUS.
218 * (on lockdep we have a quite big spinlock_t, so keep the size down there)
220 #ifdef CONFIG_LOCKDEP
221 # define RT_HASH_LOCK_SZ 256
224 # define RT_HASH_LOCK_SZ 4096
226 # define RT_HASH_LOCK_SZ 2048
228 # define RT_HASH_LOCK_SZ 1024
230 # define RT_HASH_LOCK_SZ 512
232 # define RT_HASH_LOCK_SZ 256
236 static spinlock_t
*rt_hash_locks
;
237 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
239 static __init
void rt_hash_lock_init(void)
243 rt_hash_locks
= kmalloc(sizeof(spinlock_t
) * RT_HASH_LOCK_SZ
,
246 panic("IP: failed to allocate rt_hash_locks\n");
248 for (i
= 0; i
< RT_HASH_LOCK_SZ
; i
++)
249 spin_lock_init(&rt_hash_locks
[i
]);
252 # define rt_hash_lock_addr(slot) NULL
254 static inline void rt_hash_lock_init(void)
259 static struct rt_hash_bucket
*rt_hash_table
;
260 static unsigned rt_hash_mask
;
261 static unsigned int rt_hash_log
;
262 static unsigned int rt_hash_rnd
;
264 static DEFINE_PER_CPU(struct rt_cache_stat
, rt_cache_stat
);
265 #define RT_CACHE_STAT_INC(field) \
266 (__raw_get_cpu_var(rt_cache_stat).field++)
268 static int rt_intern_hash(unsigned hash
, struct rtable
*rth
,
269 struct rtable
**res
);
271 static unsigned int rt_hash_code(u32 daddr
, u32 saddr
)
273 return (jhash_2words(daddr
, saddr
, rt_hash_rnd
)
277 #define rt_hash(daddr, saddr, idx) \
278 rt_hash_code((__force u32)(__be32)(daddr),\
279 (__force u32)(__be32)(saddr) ^ ((idx) << 5))
281 #ifdef CONFIG_PROC_FS
282 struct rt_cache_iter_state
{
286 static struct rtable
*rt_cache_get_first(struct seq_file
*seq
)
288 struct rtable
*r
= NULL
;
289 struct rt_cache_iter_state
*st
= seq
->private;
291 for (st
->bucket
= rt_hash_mask
; st
->bucket
>= 0; --st
->bucket
) {
293 r
= rt_hash_table
[st
->bucket
].chain
;
296 rcu_read_unlock_bh();
298 return rcu_dereference(r
);
301 static struct rtable
*rt_cache_get_next(struct seq_file
*seq
, struct rtable
*r
)
303 struct rt_cache_iter_state
*st
= seq
->private;
305 r
= r
->u
.dst
.rt_next
;
307 rcu_read_unlock_bh();
308 if (--st
->bucket
< 0)
311 r
= rt_hash_table
[st
->bucket
].chain
;
313 return rcu_dereference(r
);
316 static struct rtable
*rt_cache_get_idx(struct seq_file
*seq
, loff_t pos
)
318 struct rtable
*r
= rt_cache_get_first(seq
);
321 while (pos
&& (r
= rt_cache_get_next(seq
, r
)))
323 return pos
? NULL
: r
;
326 static void *rt_cache_seq_start(struct seq_file
*seq
, loff_t
*pos
)
328 return *pos
? rt_cache_get_idx(seq
, *pos
- 1) : SEQ_START_TOKEN
;
331 static void *rt_cache_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
333 struct rtable
*r
= NULL
;
335 if (v
== SEQ_START_TOKEN
)
336 r
= rt_cache_get_first(seq
);
338 r
= rt_cache_get_next(seq
, v
);
343 static void rt_cache_seq_stop(struct seq_file
*seq
, void *v
)
345 if (v
&& v
!= SEQ_START_TOKEN
)
346 rcu_read_unlock_bh();
349 static int rt_cache_seq_show(struct seq_file
*seq
, void *v
)
351 if (v
== SEQ_START_TOKEN
)
352 seq_printf(seq
, "%-127s\n",
353 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
354 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
357 struct rtable
*r
= v
;
360 sprintf(temp
, "%s\t%08lX\t%08lX\t%8X\t%d\t%u\t%d\t"
361 "%08lX\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X",
362 r
->u
.dst
.dev
? r
->u
.dst
.dev
->name
: "*",
363 (unsigned long)r
->rt_dst
, (unsigned long)r
->rt_gateway
,
364 r
->rt_flags
, atomic_read(&r
->u
.dst
.__refcnt
),
365 r
->u
.dst
.__use
, 0, (unsigned long)r
->rt_src
,
366 (dst_metric(&r
->u
.dst
, RTAX_ADVMSS
) ?
367 (int)dst_metric(&r
->u
.dst
, RTAX_ADVMSS
) + 40 : 0),
368 dst_metric(&r
->u
.dst
, RTAX_WINDOW
),
369 (int)((dst_metric(&r
->u
.dst
, RTAX_RTT
) >> 3) +
370 dst_metric(&r
->u
.dst
, RTAX_RTTVAR
)),
372 r
->u
.dst
.hh
? atomic_read(&r
->u
.dst
.hh
->hh_refcnt
) : -1,
373 r
->u
.dst
.hh
? (r
->u
.dst
.hh
->hh_output
==
376 seq_printf(seq
, "%-127s\n", temp
);
381 static const struct seq_operations rt_cache_seq_ops
= {
382 .start
= rt_cache_seq_start
,
383 .next
= rt_cache_seq_next
,
384 .stop
= rt_cache_seq_stop
,
385 .show
= rt_cache_seq_show
,
388 static int rt_cache_seq_open(struct inode
*inode
, struct file
*file
)
390 return seq_open_private(file
, &rt_cache_seq_ops
,
391 sizeof(struct rt_cache_iter_state
));
394 static const struct file_operations rt_cache_seq_fops
= {
395 .owner
= THIS_MODULE
,
396 .open
= rt_cache_seq_open
,
399 .release
= seq_release_private
,
403 static void *rt_cpu_seq_start(struct seq_file
*seq
, loff_t
*pos
)
408 return SEQ_START_TOKEN
;
410 for (cpu
= *pos
-1; cpu
< NR_CPUS
; ++cpu
) {
411 if (!cpu_possible(cpu
))
414 return &per_cpu(rt_cache_stat
, cpu
);
419 static void *rt_cpu_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
423 for (cpu
= *pos
; cpu
< NR_CPUS
; ++cpu
) {
424 if (!cpu_possible(cpu
))
427 return &per_cpu(rt_cache_stat
, cpu
);
433 static void rt_cpu_seq_stop(struct seq_file
*seq
, void *v
)
438 static int rt_cpu_seq_show(struct seq_file
*seq
, void *v
)
440 struct rt_cache_stat
*st
= v
;
442 if (v
== SEQ_START_TOKEN
) {
443 seq_printf(seq
, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
447 seq_printf(seq
,"%08x %08x %08x %08x %08x %08x %08x %08x "
448 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
449 atomic_read(&ipv4_dst_ops
.entries
),
472 static const struct seq_operations rt_cpu_seq_ops
= {
473 .start
= rt_cpu_seq_start
,
474 .next
= rt_cpu_seq_next
,
475 .stop
= rt_cpu_seq_stop
,
476 .show
= rt_cpu_seq_show
,
480 static int rt_cpu_seq_open(struct inode
*inode
, struct file
*file
)
482 return seq_open(file
, &rt_cpu_seq_ops
);
485 static const struct file_operations rt_cpu_seq_fops
= {
486 .owner
= THIS_MODULE
,
487 .open
= rt_cpu_seq_open
,
490 .release
= seq_release
,
493 #ifdef CONFIG_NET_CLS_ROUTE
494 static int ip_rt_acct_read(char *buffer
, char **start
, off_t offset
,
495 int length
, int *eof
, void *data
)
499 if ((offset
& 3) || (length
& 3))
502 if (offset
>= sizeof(struct ip_rt_acct
) * 256) {
507 if (offset
+ length
>= sizeof(struct ip_rt_acct
) * 256) {
508 length
= sizeof(struct ip_rt_acct
) * 256 - offset
;
512 offset
/= sizeof(u32
);
515 u32
*dst
= (u32
*) buffer
;
518 memset(dst
, 0, length
);
520 for_each_possible_cpu(i
) {
524 src
= ((u32
*) per_cpu_ptr(ip_rt_acct
, i
)) + offset
;
525 for (j
= 0; j
< length
/4; j
++)
533 static __init
int ip_rt_proc_init(struct net
*net
)
535 struct proc_dir_entry
*pde
;
537 pde
= proc_net_fops_create(net
, "rt_cache", S_IRUGO
,
542 pde
= create_proc_entry("rt_cache", S_IRUGO
, net
->proc_net_stat
);
546 pde
->proc_fops
= &rt_cpu_seq_fops
;
548 #ifdef CONFIG_NET_CLS_ROUTE
549 pde
= create_proc_read_entry("rt_acct", 0, net
->proc_net
,
550 ip_rt_acct_read
, NULL
);
556 #ifdef CONFIG_NET_CLS_ROUTE
558 remove_proc_entry("rt_cache", net
->proc_net_stat
);
561 remove_proc_entry("rt_cache", net
->proc_net
);
566 static inline int ip_rt_proc_init(struct net
*net
)
570 #endif /* CONFIG_PROC_FS */
572 static __inline__
void rt_free(struct rtable
*rt
)
574 call_rcu_bh(&rt
->u
.dst
.rcu_head
, dst_rcu_free
);
577 static __inline__
void rt_drop(struct rtable
*rt
)
580 call_rcu_bh(&rt
->u
.dst
.rcu_head
, dst_rcu_free
);
583 static __inline__
int rt_fast_clean(struct rtable
*rth
)
585 /* Kill broadcast/multicast entries very aggresively, if they
586 collide in hash table with more useful entries */
587 return (rth
->rt_flags
& (RTCF_BROADCAST
| RTCF_MULTICAST
)) &&
588 rth
->fl
.iif
&& rth
->u
.dst
.rt_next
;
591 static __inline__
int rt_valuable(struct rtable
*rth
)
593 return (rth
->rt_flags
& (RTCF_REDIRECTED
| RTCF_NOTIFY
)) ||
597 static int rt_may_expire(struct rtable
*rth
, unsigned long tmo1
, unsigned long tmo2
)
602 if (atomic_read(&rth
->u
.dst
.__refcnt
))
606 if (rth
->u
.dst
.expires
&&
607 time_after_eq(jiffies
, rth
->u
.dst
.expires
))
610 age
= jiffies
- rth
->u
.dst
.lastuse
;
612 if ((age
<= tmo1
&& !rt_fast_clean(rth
)) ||
613 (age
<= tmo2
&& rt_valuable(rth
)))
619 /* Bits of score are:
621 * 30: not quite useless
622 * 29..0: usage counter
624 static inline u32
rt_score(struct rtable
*rt
)
626 u32 score
= jiffies
- rt
->u
.dst
.lastuse
;
628 score
= ~score
& ~(3<<30);
634 !(rt
->rt_flags
& (RTCF_BROADCAST
|RTCF_MULTICAST
|RTCF_LOCAL
)))
640 static inline int compare_keys(struct flowi
*fl1
, struct flowi
*fl2
)
642 return ((__force u32
)((fl1
->nl_u
.ip4_u
.daddr
^ fl2
->nl_u
.ip4_u
.daddr
) |
643 (fl1
->nl_u
.ip4_u
.saddr
^ fl2
->nl_u
.ip4_u
.saddr
)) |
644 (fl1
->mark
^ fl2
->mark
) |
645 (*(u16
*)&fl1
->nl_u
.ip4_u
.tos
^
646 *(u16
*)&fl2
->nl_u
.ip4_u
.tos
) |
647 (fl1
->oif
^ fl2
->oif
) |
648 (fl1
->iif
^ fl2
->iif
)) == 0;
652 * Perform a full scan of hash table and free all entries.
653 * Can be called by a softirq or a process.
654 * In the later case, we want to be reschedule if necessary
656 static void rt_do_flush(int process_context
)
659 struct rtable
*rth
, *next
;
661 for (i
= 0; i
<= rt_hash_mask
; i
++) {
662 if (process_context
&& need_resched())
664 rth
= rt_hash_table
[i
].chain
;
668 spin_lock_bh(rt_hash_lock_addr(i
));
669 rth
= rt_hash_table
[i
].chain
;
670 rt_hash_table
[i
].chain
= NULL
;
671 spin_unlock_bh(rt_hash_lock_addr(i
));
673 for (; rth
; rth
= next
) {
674 next
= rth
->u
.dst
.rt_next
;
680 static void rt_check_expire(void)
682 static unsigned int rover
;
683 unsigned int i
= rover
, goal
;
684 struct rtable
*rth
, **rthp
;
687 mult
= ((u64
)ip_rt_gc_interval
) << rt_hash_log
;
688 if (ip_rt_gc_timeout
> 1)
689 do_div(mult
, ip_rt_gc_timeout
);
690 goal
= (unsigned int)mult
;
691 if (goal
> rt_hash_mask
)
692 goal
= rt_hash_mask
+ 1;
693 for (; goal
> 0; goal
--) {
694 unsigned long tmo
= ip_rt_gc_timeout
;
696 i
= (i
+ 1) & rt_hash_mask
;
697 rthp
= &rt_hash_table
[i
].chain
;
704 spin_lock_bh(rt_hash_lock_addr(i
));
705 while ((rth
= *rthp
) != NULL
) {
706 if (rth
->u
.dst
.expires
) {
707 /* Entry is expired even if it is in use */
708 if (time_before_eq(jiffies
, rth
->u
.dst
.expires
)) {
710 rthp
= &rth
->u
.dst
.rt_next
;
713 } else if (!rt_may_expire(rth
, tmo
, ip_rt_gc_timeout
)) {
715 rthp
= &rth
->u
.dst
.rt_next
;
719 /* Cleanup aged off entries. */
720 *rthp
= rth
->u
.dst
.rt_next
;
723 spin_unlock_bh(rt_hash_lock_addr(i
));
729 * rt_worker_func() is run in process context.
730 * If a whole flush was scheduled, it is done.
731 * Else, we call rt_check_expire() to scan part of the hash table
733 static void rt_worker_func(struct work_struct
*work
)
735 if (ip_rt_flush_expected
) {
736 ip_rt_flush_expected
= 0;
740 schedule_delayed_work(&expires_work
, ip_rt_gc_interval
);
743 /* This can run from both BH and non-BH contexts, the latter
744 * in the case of a forced flush event.
746 static void rt_run_flush(unsigned long process_context
)
750 get_random_bytes(&rt_hash_rnd
, 4);
752 rt_do_flush(process_context
);
755 static DEFINE_SPINLOCK(rt_flush_lock
);
757 void rt_cache_flush(int delay
)
759 unsigned long now
= jiffies
;
760 int user_mode
= !in_softirq();
763 delay
= ip_rt_min_delay
;
765 spin_lock_bh(&rt_flush_lock
);
767 if (del_timer(&rt_flush_timer
) && delay
> 0 && rt_deadline
) {
768 long tmo
= (long)(rt_deadline
- now
);
770 /* If flush timer is already running
771 and flush request is not immediate (delay > 0):
773 if deadline is not achieved, prolongate timer to "delay",
774 otherwise fire it at deadline time.
777 if (user_mode
&& tmo
< ip_rt_max_delay
-ip_rt_min_delay
)
785 spin_unlock_bh(&rt_flush_lock
);
786 rt_run_flush(user_mode
);
790 if (rt_deadline
== 0)
791 rt_deadline
= now
+ ip_rt_max_delay
;
793 mod_timer(&rt_flush_timer
, now
+delay
);
794 spin_unlock_bh(&rt_flush_lock
);
798 * We change rt_hash_rnd and ask next rt_worker_func() invocation
799 * to perform a flush in process context
801 static void rt_secret_rebuild(unsigned long dummy
)
803 get_random_bytes(&rt_hash_rnd
, 4);
804 ip_rt_flush_expected
= 1;
805 cancel_delayed_work(&expires_work
);
806 schedule_delayed_work(&expires_work
, HZ
/10);
807 mod_timer(&rt_secret_timer
, jiffies
+ ip_rt_secret_interval
);
811 Short description of GC goals.
813 We want to build algorithm, which will keep routing cache
814 at some equilibrium point, when number of aged off entries
815 is kept approximately equal to newly generated ones.
817 Current expiration strength is variable "expire".
818 We try to adjust it dynamically, so that if networking
819 is idle expires is large enough to keep enough of warm entries,
820 and when load increases it reduces to limit cache size.
823 static int rt_garbage_collect(struct dst_ops
*ops
)
825 static unsigned long expire
= RT_GC_TIMEOUT
;
826 static unsigned long last_gc
;
828 static int equilibrium
;
829 struct rtable
*rth
, **rthp
;
830 unsigned long now
= jiffies
;
834 * Garbage collection is pretty expensive,
835 * do not make it too frequently.
838 RT_CACHE_STAT_INC(gc_total
);
840 if (now
- last_gc
< ip_rt_gc_min_interval
&&
841 atomic_read(&ipv4_dst_ops
.entries
) < ip_rt_max_size
) {
842 RT_CACHE_STAT_INC(gc_ignored
);
846 /* Calculate number of entries, which we want to expire now. */
847 goal
= atomic_read(&ipv4_dst_ops
.entries
) -
848 (ip_rt_gc_elasticity
<< rt_hash_log
);
850 if (equilibrium
< ipv4_dst_ops
.gc_thresh
)
851 equilibrium
= ipv4_dst_ops
.gc_thresh
;
852 goal
= atomic_read(&ipv4_dst_ops
.entries
) - equilibrium
;
854 equilibrium
+= min_t(unsigned int, goal
>> 1, rt_hash_mask
+ 1);
855 goal
= atomic_read(&ipv4_dst_ops
.entries
) - equilibrium
;
858 /* We are in dangerous area. Try to reduce cache really
861 goal
= max_t(unsigned int, goal
>> 1, rt_hash_mask
+ 1);
862 equilibrium
= atomic_read(&ipv4_dst_ops
.entries
) - goal
;
865 if (now
- last_gc
>= ip_rt_gc_min_interval
)
876 for (i
= rt_hash_mask
, k
= rover
; i
>= 0; i
--) {
877 unsigned long tmo
= expire
;
879 k
= (k
+ 1) & rt_hash_mask
;
880 rthp
= &rt_hash_table
[k
].chain
;
881 spin_lock_bh(rt_hash_lock_addr(k
));
882 while ((rth
= *rthp
) != NULL
) {
883 if (!rt_may_expire(rth
, tmo
, expire
)) {
885 rthp
= &rth
->u
.dst
.rt_next
;
888 *rthp
= rth
->u
.dst
.rt_next
;
892 spin_unlock_bh(rt_hash_lock_addr(k
));
901 /* Goal is not achieved. We stop process if:
903 - if expire reduced to zero. Otherwise, expire is halfed.
904 - if table is not full.
905 - if we are called from interrupt.
906 - jiffies check is just fallback/debug loop breaker.
907 We will not spin here for long time in any case.
910 RT_CACHE_STAT_INC(gc_goal_miss
);
916 #if RT_CACHE_DEBUG >= 2
917 printk(KERN_DEBUG
"expire>> %u %d %d %d\n", expire
,
918 atomic_read(&ipv4_dst_ops
.entries
), goal
, i
);
921 if (atomic_read(&ipv4_dst_ops
.entries
) < ip_rt_max_size
)
923 } while (!in_softirq() && time_before_eq(jiffies
, now
));
925 if (atomic_read(&ipv4_dst_ops
.entries
) < ip_rt_max_size
)
928 printk(KERN_WARNING
"dst cache overflow\n");
929 RT_CACHE_STAT_INC(gc_dst_overflow
);
933 expire
+= ip_rt_gc_min_interval
;
934 if (expire
> ip_rt_gc_timeout
||
935 atomic_read(&ipv4_dst_ops
.entries
) < ipv4_dst_ops
.gc_thresh
)
936 expire
= ip_rt_gc_timeout
;
937 #if RT_CACHE_DEBUG >= 2
938 printk(KERN_DEBUG
"expire++ %u %d %d %d\n", expire
,
939 atomic_read(&ipv4_dst_ops
.entries
), goal
, rover
);
944 static int rt_intern_hash(unsigned hash
, struct rtable
*rt
, struct rtable
**rp
)
946 struct rtable
*rth
, **rthp
;
948 struct rtable
*cand
, **candp
;
951 int attempts
= !in_softirq();
960 rthp
= &rt_hash_table
[hash
].chain
;
962 spin_lock_bh(rt_hash_lock_addr(hash
));
963 while ((rth
= *rthp
) != NULL
) {
964 if (compare_keys(&rth
->fl
, &rt
->fl
)) {
966 *rthp
= rth
->u
.dst
.rt_next
;
968 * Since lookup is lockfree, the deletion
969 * must be visible to another weakly ordered CPU before
970 * the insertion at the start of the hash chain.
972 rcu_assign_pointer(rth
->u
.dst
.rt_next
,
973 rt_hash_table
[hash
].chain
);
975 * Since lookup is lockfree, the update writes
976 * must be ordered for consistency on SMP.
978 rcu_assign_pointer(rt_hash_table
[hash
].chain
, rth
);
980 dst_use(&rth
->u
.dst
, now
);
981 spin_unlock_bh(rt_hash_lock_addr(hash
));
988 if (!atomic_read(&rth
->u
.dst
.__refcnt
)) {
989 u32 score
= rt_score(rth
);
991 if (score
<= min_score
) {
1000 rthp
= &rth
->u
.dst
.rt_next
;
1004 /* ip_rt_gc_elasticity used to be average length of chain
1005 * length, when exceeded gc becomes really aggressive.
1007 * The second limit is less certain. At the moment it allows
1008 * only 2 entries per bucket. We will see.
1010 if (chain_length
> ip_rt_gc_elasticity
) {
1011 *candp
= cand
->u
.dst
.rt_next
;
1016 /* Try to bind route to arp only if it is output
1017 route or unicast forwarding path.
1019 if (rt
->rt_type
== RTN_UNICAST
|| rt
->fl
.iif
== 0) {
1020 int err
= arp_bind_neighbour(&rt
->u
.dst
);
1022 spin_unlock_bh(rt_hash_lock_addr(hash
));
1024 if (err
!= -ENOBUFS
) {
1029 /* Neighbour tables are full and nothing
1030 can be released. Try to shrink route cache,
1031 it is most likely it holds some neighbour records.
1033 if (attempts
-- > 0) {
1034 int saved_elasticity
= ip_rt_gc_elasticity
;
1035 int saved_int
= ip_rt_gc_min_interval
;
1036 ip_rt_gc_elasticity
= 1;
1037 ip_rt_gc_min_interval
= 0;
1038 rt_garbage_collect(&ipv4_dst_ops
);
1039 ip_rt_gc_min_interval
= saved_int
;
1040 ip_rt_gc_elasticity
= saved_elasticity
;
1044 if (net_ratelimit())
1045 printk(KERN_WARNING
"Neighbour table overflow.\n");
1051 rt
->u
.dst
.rt_next
= rt_hash_table
[hash
].chain
;
1052 #if RT_CACHE_DEBUG >= 2
1053 if (rt
->u
.dst
.rt_next
) {
1055 printk(KERN_DEBUG
"rt_cache @%02x: %u.%u.%u.%u", hash
,
1056 NIPQUAD(rt
->rt_dst
));
1057 for (trt
= rt
->u
.dst
.rt_next
; trt
; trt
= trt
->u
.dst
.rt_next
)
1058 printk(" . %u.%u.%u.%u", NIPQUAD(trt
->rt_dst
));
1062 rt_hash_table
[hash
].chain
= rt
;
1063 spin_unlock_bh(rt_hash_lock_addr(hash
));
1068 void rt_bind_peer(struct rtable
*rt
, int create
)
1070 static DEFINE_SPINLOCK(rt_peer_lock
);
1071 struct inet_peer
*peer
;
1073 peer
= inet_getpeer(rt
->rt_dst
, create
);
1075 spin_lock_bh(&rt_peer_lock
);
1076 if (rt
->peer
== NULL
) {
1080 spin_unlock_bh(&rt_peer_lock
);
1086 * Peer allocation may fail only in serious out-of-memory conditions. However
1087 * we still can generate some output.
1088 * Random ID selection looks a bit dangerous because we have no chances to
1089 * select ID being unique in a reasonable period of time.
1090 * But broken packet identifier may be better than no packet at all.
1092 static void ip_select_fb_ident(struct iphdr
*iph
)
1094 static DEFINE_SPINLOCK(ip_fb_id_lock
);
1095 static u32 ip_fallback_id
;
1098 spin_lock_bh(&ip_fb_id_lock
);
1099 salt
= secure_ip_id((__force __be32
)ip_fallback_id
^ iph
->daddr
);
1100 iph
->id
= htons(salt
& 0xFFFF);
1101 ip_fallback_id
= salt
;
1102 spin_unlock_bh(&ip_fb_id_lock
);
1105 void __ip_select_ident(struct iphdr
*iph
, struct dst_entry
*dst
, int more
)
1107 struct rtable
*rt
= (struct rtable
*) dst
;
1110 if (rt
->peer
== NULL
)
1111 rt_bind_peer(rt
, 1);
1113 /* If peer is attached to destination, it is never detached,
1114 so that we need not to grab a lock to dereference it.
1117 iph
->id
= htons(inet_getid(rt
->peer
, more
));
1121 printk(KERN_DEBUG
"rt_bind_peer(0) @%p\n",
1122 __builtin_return_address(0));
1124 ip_select_fb_ident(iph
);
1127 static void rt_del(unsigned hash
, struct rtable
*rt
)
1129 struct rtable
**rthp
;
1131 spin_lock_bh(rt_hash_lock_addr(hash
));
1133 for (rthp
= &rt_hash_table
[hash
].chain
; *rthp
;
1134 rthp
= &(*rthp
)->u
.dst
.rt_next
)
1136 *rthp
= rt
->u
.dst
.rt_next
;
1140 spin_unlock_bh(rt_hash_lock_addr(hash
));
1143 void ip_rt_redirect(__be32 old_gw
, __be32 daddr
, __be32 new_gw
,
1144 __be32 saddr
, struct net_device
*dev
)
1147 struct in_device
*in_dev
= in_dev_get(dev
);
1148 struct rtable
*rth
, **rthp
;
1149 __be32 skeys
[2] = { saddr
, 0 };
1150 int ikeys
[2] = { dev
->ifindex
, 0 };
1151 struct netevent_redirect netevent
;
1156 if (new_gw
== old_gw
|| !IN_DEV_RX_REDIRECTS(in_dev
)
1157 || ipv4_is_multicast(new_gw
) || ipv4_is_badclass(new_gw
)
1158 || ipv4_is_zeronet(new_gw
))
1159 goto reject_redirect
;
1161 if (!IN_DEV_SHARED_MEDIA(in_dev
)) {
1162 if (!inet_addr_onlink(in_dev
, new_gw
, old_gw
))
1163 goto reject_redirect
;
1164 if (IN_DEV_SEC_REDIRECTS(in_dev
) && ip_fib_check_default(new_gw
, dev
))
1165 goto reject_redirect
;
1167 if (inet_addr_type(&init_net
, new_gw
) != RTN_UNICAST
)
1168 goto reject_redirect
;
1171 for (i
= 0; i
< 2; i
++) {
1172 for (k
= 0; k
< 2; k
++) {
1173 unsigned hash
= rt_hash(daddr
, skeys
[i
], ikeys
[k
]);
1175 rthp
=&rt_hash_table
[hash
].chain
;
1178 while ((rth
= rcu_dereference(*rthp
)) != NULL
) {
1181 if (rth
->fl
.fl4_dst
!= daddr
||
1182 rth
->fl
.fl4_src
!= skeys
[i
] ||
1183 rth
->fl
.oif
!= ikeys
[k
] ||
1185 rthp
= &rth
->u
.dst
.rt_next
;
1189 if (rth
->rt_dst
!= daddr
||
1190 rth
->rt_src
!= saddr
||
1192 rth
->rt_gateway
!= old_gw
||
1193 rth
->u
.dst
.dev
!= dev
)
1196 dst_hold(&rth
->u
.dst
);
1199 rt
= dst_alloc(&ipv4_dst_ops
);
1206 /* Copy all the information. */
1208 INIT_RCU_HEAD(&rt
->u
.dst
.rcu_head
);
1209 rt
->u
.dst
.__use
= 1;
1210 atomic_set(&rt
->u
.dst
.__refcnt
, 1);
1211 rt
->u
.dst
.child
= NULL
;
1213 dev_hold(rt
->u
.dst
.dev
);
1215 in_dev_hold(rt
->idev
);
1216 rt
->u
.dst
.obsolete
= 0;
1217 rt
->u
.dst
.lastuse
= jiffies
;
1218 rt
->u
.dst
.path
= &rt
->u
.dst
;
1219 rt
->u
.dst
.neighbour
= NULL
;
1220 rt
->u
.dst
.hh
= NULL
;
1221 rt
->u
.dst
.xfrm
= NULL
;
1223 rt
->rt_flags
|= RTCF_REDIRECTED
;
1225 /* Gateway is different ... */
1226 rt
->rt_gateway
= new_gw
;
1228 /* Redirect received -> path was valid */
1229 dst_confirm(&rth
->u
.dst
);
1232 atomic_inc(&rt
->peer
->refcnt
);
1234 if (arp_bind_neighbour(&rt
->u
.dst
) ||
1235 !(rt
->u
.dst
.neighbour
->nud_state
&
1237 if (rt
->u
.dst
.neighbour
)
1238 neigh_event_send(rt
->u
.dst
.neighbour
, NULL
);
1244 netevent
.old
= &rth
->u
.dst
;
1245 netevent
.new = &rt
->u
.dst
;
1246 call_netevent_notifiers(NETEVENT_REDIRECT
,
1250 if (!rt_intern_hash(hash
, rt
, &rt
))
1263 #ifdef CONFIG_IP_ROUTE_VERBOSE
1264 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit())
1265 printk(KERN_INFO
"Redirect from %u.%u.%u.%u on %s about "
1266 "%u.%u.%u.%u ignored.\n"
1267 " Advised path = %u.%u.%u.%u -> %u.%u.%u.%u\n",
1268 NIPQUAD(old_gw
), dev
->name
, NIPQUAD(new_gw
),
1269 NIPQUAD(saddr
), NIPQUAD(daddr
));
1274 static struct dst_entry
*ipv4_negative_advice(struct dst_entry
*dst
)
1276 struct rtable
*rt
= (struct rtable
*)dst
;
1277 struct dst_entry
*ret
= dst
;
1280 if (dst
->obsolete
) {
1283 } else if ((rt
->rt_flags
& RTCF_REDIRECTED
) ||
1284 rt
->u
.dst
.expires
) {
1285 unsigned hash
= rt_hash(rt
->fl
.fl4_dst
, rt
->fl
.fl4_src
,
1287 #if RT_CACHE_DEBUG >= 1
1288 printk(KERN_DEBUG
"ipv4_negative_advice: redirect to "
1289 "%u.%u.%u.%u/%02x dropped\n",
1290 NIPQUAD(rt
->rt_dst
), rt
->fl
.fl4_tos
);
1301 * 1. The first ip_rt_redirect_number redirects are sent
1302 * with exponential backoff, then we stop sending them at all,
1303 * assuming that the host ignores our redirects.
1304 * 2. If we did not see packets requiring redirects
1305 * during ip_rt_redirect_silence, we assume that the host
1306 * forgot redirected route and start to send redirects again.
1308 * This algorithm is much cheaper and more intelligent than dumb load limiting
1311 * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1312 * and "frag. need" (breaks PMTU discovery) in icmp.c.
1315 void ip_rt_send_redirect(struct sk_buff
*skb
)
1317 struct rtable
*rt
= (struct rtable
*)skb
->dst
;
1318 struct in_device
*in_dev
= in_dev_get(rt
->u
.dst
.dev
);
1323 if (!IN_DEV_TX_REDIRECTS(in_dev
))
1326 /* No redirected packets during ip_rt_redirect_silence;
1327 * reset the algorithm.
1329 if (time_after(jiffies
, rt
->u
.dst
.rate_last
+ ip_rt_redirect_silence
))
1330 rt
->u
.dst
.rate_tokens
= 0;
1332 /* Too many ignored redirects; do not send anything
1333 * set u.dst.rate_last to the last seen redirected packet.
1335 if (rt
->u
.dst
.rate_tokens
>= ip_rt_redirect_number
) {
1336 rt
->u
.dst
.rate_last
= jiffies
;
1340 /* Check for load limit; set rate_last to the latest sent
1343 if (rt
->u
.dst
.rate_tokens
== 0 ||
1345 (rt
->u
.dst
.rate_last
+
1346 (ip_rt_redirect_load
<< rt
->u
.dst
.rate_tokens
)))) {
1347 icmp_send(skb
, ICMP_REDIRECT
, ICMP_REDIR_HOST
, rt
->rt_gateway
);
1348 rt
->u
.dst
.rate_last
= jiffies
;
1349 ++rt
->u
.dst
.rate_tokens
;
1350 #ifdef CONFIG_IP_ROUTE_VERBOSE
1351 if (IN_DEV_LOG_MARTIANS(in_dev
) &&
1352 rt
->u
.dst
.rate_tokens
== ip_rt_redirect_number
&&
1354 printk(KERN_WARNING
"host %u.%u.%u.%u/if%d ignores "
1355 "redirects for %u.%u.%u.%u to %u.%u.%u.%u.\n",
1356 NIPQUAD(rt
->rt_src
), rt
->rt_iif
,
1357 NIPQUAD(rt
->rt_dst
), NIPQUAD(rt
->rt_gateway
));
1364 static int ip_error(struct sk_buff
*skb
)
1366 struct rtable
*rt
= (struct rtable
*)skb
->dst
;
1370 switch (rt
->u
.dst
.error
) {
1375 code
= ICMP_HOST_UNREACH
;
1378 code
= ICMP_NET_UNREACH
;
1379 IP_INC_STATS_BH(IPSTATS_MIB_INNOROUTES
);
1382 code
= ICMP_PKT_FILTERED
;
1387 rt
->u
.dst
.rate_tokens
+= now
- rt
->u
.dst
.rate_last
;
1388 if (rt
->u
.dst
.rate_tokens
> ip_rt_error_burst
)
1389 rt
->u
.dst
.rate_tokens
= ip_rt_error_burst
;
1390 rt
->u
.dst
.rate_last
= now
;
1391 if (rt
->u
.dst
.rate_tokens
>= ip_rt_error_cost
) {
1392 rt
->u
.dst
.rate_tokens
-= ip_rt_error_cost
;
1393 icmp_send(skb
, ICMP_DEST_UNREACH
, code
, 0);
1396 out
: kfree_skb(skb
);
1401 * The last two values are not from the RFC but
1402 * are needed for AMPRnet AX.25 paths.
1405 static const unsigned short mtu_plateau
[] =
1406 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1408 static __inline__
unsigned short guess_mtu(unsigned short old_mtu
)
1412 for (i
= 0; i
< ARRAY_SIZE(mtu_plateau
); i
++)
1413 if (old_mtu
> mtu_plateau
[i
])
1414 return mtu_plateau
[i
];
1418 unsigned short ip_rt_frag_needed(struct iphdr
*iph
, unsigned short new_mtu
)
1421 unsigned short old_mtu
= ntohs(iph
->tot_len
);
1423 __be32 skeys
[2] = { iph
->saddr
, 0, };
1424 __be32 daddr
= iph
->daddr
;
1425 unsigned short est_mtu
= 0;
1427 if (ipv4_config
.no_pmtu_disc
)
1430 for (i
= 0; i
< 2; i
++) {
1431 unsigned hash
= rt_hash(daddr
, skeys
[i
], 0);
1434 for (rth
= rcu_dereference(rt_hash_table
[hash
].chain
); rth
;
1435 rth
= rcu_dereference(rth
->u
.dst
.rt_next
)) {
1436 if (rth
->fl
.fl4_dst
== daddr
&&
1437 rth
->fl
.fl4_src
== skeys
[i
] &&
1438 rth
->rt_dst
== daddr
&&
1439 rth
->rt_src
== iph
->saddr
&&
1441 !(dst_metric_locked(&rth
->u
.dst
, RTAX_MTU
))) {
1442 unsigned short mtu
= new_mtu
;
1444 if (new_mtu
< 68 || new_mtu
>= old_mtu
) {
1446 /* BSD 4.2 compatibility hack :-( */
1448 old_mtu
>= rth
->u
.dst
.metrics
[RTAX_MTU
-1] &&
1449 old_mtu
>= 68 + (iph
->ihl
<< 2))
1450 old_mtu
-= iph
->ihl
<< 2;
1452 mtu
= guess_mtu(old_mtu
);
1454 if (mtu
<= rth
->u
.dst
.metrics
[RTAX_MTU
-1]) {
1455 if (mtu
< rth
->u
.dst
.metrics
[RTAX_MTU
-1]) {
1456 dst_confirm(&rth
->u
.dst
);
1457 if (mtu
< ip_rt_min_pmtu
) {
1458 mtu
= ip_rt_min_pmtu
;
1459 rth
->u
.dst
.metrics
[RTAX_LOCK
-1] |=
1462 rth
->u
.dst
.metrics
[RTAX_MTU
-1] = mtu
;
1463 dst_set_expires(&rth
->u
.dst
,
1472 return est_mtu
? : new_mtu
;
1475 static void ip_rt_update_pmtu(struct dst_entry
*dst
, u32 mtu
)
1477 if (dst
->metrics
[RTAX_MTU
-1] > mtu
&& mtu
>= 68 &&
1478 !(dst_metric_locked(dst
, RTAX_MTU
))) {
1479 if (mtu
< ip_rt_min_pmtu
) {
1480 mtu
= ip_rt_min_pmtu
;
1481 dst
->metrics
[RTAX_LOCK
-1] |= (1 << RTAX_MTU
);
1483 dst
->metrics
[RTAX_MTU
-1] = mtu
;
1484 dst_set_expires(dst
, ip_rt_mtu_expires
);
1485 call_netevent_notifiers(NETEVENT_PMTU_UPDATE
, dst
);
1489 static struct dst_entry
*ipv4_dst_check(struct dst_entry
*dst
, u32 cookie
)
1494 static void ipv4_dst_destroy(struct dst_entry
*dst
)
1496 struct rtable
*rt
= (struct rtable
*) dst
;
1497 struct inet_peer
*peer
= rt
->peer
;
1498 struct in_device
*idev
= rt
->idev
;
1511 static void ipv4_dst_ifdown(struct dst_entry
*dst
, struct net_device
*dev
,
1514 struct rtable
*rt
= (struct rtable
*) dst
;
1515 struct in_device
*idev
= rt
->idev
;
1516 if (dev
!= dev
->nd_net
->loopback_dev
&& idev
&& idev
->dev
== dev
) {
1517 struct in_device
*loopback_idev
=
1518 in_dev_get(dev
->nd_net
->loopback_dev
);
1519 if (loopback_idev
) {
1520 rt
->idev
= loopback_idev
;
1526 static void ipv4_link_failure(struct sk_buff
*skb
)
1530 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_HOST_UNREACH
, 0);
1532 rt
= (struct rtable
*) skb
->dst
;
1534 dst_set_expires(&rt
->u
.dst
, 0);
1537 static int ip_rt_bug(struct sk_buff
*skb
)
1539 printk(KERN_DEBUG
"ip_rt_bug: %u.%u.%u.%u -> %u.%u.%u.%u, %s\n",
1540 NIPQUAD(ip_hdr(skb
)->saddr
), NIPQUAD(ip_hdr(skb
)->daddr
),
1541 skb
->dev
? skb
->dev
->name
: "?");
1547 We do not cache source address of outgoing interface,
1548 because it is used only by IP RR, TS and SRR options,
1549 so that it out of fast path.
1551 BTW remember: "addr" is allowed to be not aligned
1555 void ip_rt_get_source(u8
*addr
, struct rtable
*rt
)
1558 struct fib_result res
;
1560 if (rt
->fl
.iif
== 0)
1562 else if (fib_lookup(&rt
->fl
, &res
) == 0) {
1563 src
= FIB_RES_PREFSRC(res
);
1566 src
= inet_select_addr(rt
->u
.dst
.dev
, rt
->rt_gateway
,
1568 memcpy(addr
, &src
, 4);
1571 #ifdef CONFIG_NET_CLS_ROUTE
1572 static void set_class_tag(struct rtable
*rt
, u32 tag
)
1574 if (!(rt
->u
.dst
.tclassid
& 0xFFFF))
1575 rt
->u
.dst
.tclassid
|= tag
& 0xFFFF;
1576 if (!(rt
->u
.dst
.tclassid
& 0xFFFF0000))
1577 rt
->u
.dst
.tclassid
|= tag
& 0xFFFF0000;
1581 static void rt_set_nexthop(struct rtable
*rt
, struct fib_result
*res
, u32 itag
)
1583 struct fib_info
*fi
= res
->fi
;
1586 if (FIB_RES_GW(*res
) &&
1587 FIB_RES_NH(*res
).nh_scope
== RT_SCOPE_LINK
)
1588 rt
->rt_gateway
= FIB_RES_GW(*res
);
1589 memcpy(rt
->u
.dst
.metrics
, fi
->fib_metrics
,
1590 sizeof(rt
->u
.dst
.metrics
));
1591 if (fi
->fib_mtu
== 0) {
1592 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = rt
->u
.dst
.dev
->mtu
;
1593 if (rt
->u
.dst
.metrics
[RTAX_LOCK
-1] & (1 << RTAX_MTU
) &&
1594 rt
->rt_gateway
!= rt
->rt_dst
&&
1595 rt
->u
.dst
.dev
->mtu
> 576)
1596 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = 576;
1598 #ifdef CONFIG_NET_CLS_ROUTE
1599 rt
->u
.dst
.tclassid
= FIB_RES_NH(*res
).nh_tclassid
;
1602 rt
->u
.dst
.metrics
[RTAX_MTU
-1]= rt
->u
.dst
.dev
->mtu
;
1604 if (rt
->u
.dst
.metrics
[RTAX_HOPLIMIT
-1] == 0)
1605 rt
->u
.dst
.metrics
[RTAX_HOPLIMIT
-1] = sysctl_ip_default_ttl
;
1606 if (rt
->u
.dst
.metrics
[RTAX_MTU
-1] > IP_MAX_MTU
)
1607 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = IP_MAX_MTU
;
1608 if (rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] == 0)
1609 rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] = max_t(unsigned int, rt
->u
.dst
.dev
->mtu
- 40,
1611 if (rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] > 65535 - 40)
1612 rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] = 65535 - 40;
1614 #ifdef CONFIG_NET_CLS_ROUTE
1615 #ifdef CONFIG_IP_MULTIPLE_TABLES
1616 set_class_tag(rt
, fib_rules_tclass(res
));
1618 set_class_tag(rt
, itag
);
1620 rt
->rt_type
= res
->type
;
1623 static int ip_route_input_mc(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
1624 u8 tos
, struct net_device
*dev
, int our
)
1629 struct in_device
*in_dev
= in_dev_get(dev
);
1632 /* Primary sanity checks. */
1637 if (ipv4_is_multicast(saddr
) || ipv4_is_badclass(saddr
) ||
1638 ipv4_is_loopback(saddr
) || skb
->protocol
!= htons(ETH_P_IP
))
1641 if (ipv4_is_zeronet(saddr
)) {
1642 if (!ipv4_is_local_multicast(daddr
))
1644 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_LINK
);
1645 } else if (fib_validate_source(saddr
, 0, tos
, 0,
1646 dev
, &spec_dst
, &itag
) < 0)
1649 rth
= dst_alloc(&ipv4_dst_ops
);
1653 rth
->u
.dst
.output
= ip_rt_bug
;
1655 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
1656 rth
->u
.dst
.flags
= DST_HOST
;
1657 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
1658 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
1659 rth
->fl
.fl4_dst
= daddr
;
1660 rth
->rt_dst
= daddr
;
1661 rth
->fl
.fl4_tos
= tos
;
1662 rth
->fl
.mark
= skb
->mark
;
1663 rth
->fl
.fl4_src
= saddr
;
1664 rth
->rt_src
= saddr
;
1665 #ifdef CONFIG_NET_CLS_ROUTE
1666 rth
->u
.dst
.tclassid
= itag
;
1669 rth
->fl
.iif
= dev
->ifindex
;
1670 rth
->u
.dst
.dev
= init_net
.loopback_dev
;
1671 dev_hold(rth
->u
.dst
.dev
);
1672 rth
->idev
= in_dev_get(rth
->u
.dst
.dev
);
1674 rth
->rt_gateway
= daddr
;
1675 rth
->rt_spec_dst
= spec_dst
;
1676 rth
->rt_type
= RTN_MULTICAST
;
1677 rth
->rt_flags
= RTCF_MULTICAST
;
1679 rth
->u
.dst
.input
= ip_local_deliver
;
1680 rth
->rt_flags
|= RTCF_LOCAL
;
1683 #ifdef CONFIG_IP_MROUTE
1684 if (!ipv4_is_local_multicast(daddr
) && IN_DEV_MFORWARD(in_dev
))
1685 rth
->u
.dst
.input
= ip_mr_input
;
1687 RT_CACHE_STAT_INC(in_slow_mc
);
1690 hash
= rt_hash(daddr
, saddr
, dev
->ifindex
);
1691 return rt_intern_hash(hash
, rth
, (struct rtable
**) &skb
->dst
);
1703 static void ip_handle_martian_source(struct net_device
*dev
,
1704 struct in_device
*in_dev
,
1705 struct sk_buff
*skb
,
1709 RT_CACHE_STAT_INC(in_martian_src
);
1710 #ifdef CONFIG_IP_ROUTE_VERBOSE
1711 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit()) {
1713 * RFC1812 recommendation, if source is martian,
1714 * the only hint is MAC header.
1716 printk(KERN_WARNING
"martian source %u.%u.%u.%u from "
1717 "%u.%u.%u.%u, on dev %s\n",
1718 NIPQUAD(daddr
), NIPQUAD(saddr
), dev
->name
);
1719 if (dev
->hard_header_len
&& skb_mac_header_was_set(skb
)) {
1721 const unsigned char *p
= skb_mac_header(skb
);
1722 printk(KERN_WARNING
"ll header: ");
1723 for (i
= 0; i
< dev
->hard_header_len
; i
++, p
++) {
1725 if (i
< (dev
->hard_header_len
- 1))
1734 static inline int __mkroute_input(struct sk_buff
*skb
,
1735 struct fib_result
* res
,
1736 struct in_device
*in_dev
,
1737 __be32 daddr
, __be32 saddr
, u32 tos
,
1738 struct rtable
**result
)
1743 struct in_device
*out_dev
;
1748 /* get a working reference to the output device */
1749 out_dev
= in_dev_get(FIB_RES_DEV(*res
));
1750 if (out_dev
== NULL
) {
1751 if (net_ratelimit())
1752 printk(KERN_CRIT
"Bug in ip_route_input" \
1753 "_slow(). Please, report\n");
1758 err
= fib_validate_source(saddr
, daddr
, tos
, FIB_RES_OIF(*res
),
1759 in_dev
->dev
, &spec_dst
, &itag
);
1761 ip_handle_martian_source(in_dev
->dev
, in_dev
, skb
, daddr
,
1769 flags
|= RTCF_DIRECTSRC
;
1771 if (out_dev
== in_dev
&& err
&& !(flags
& RTCF_MASQ
) &&
1772 (IN_DEV_SHARED_MEDIA(out_dev
) ||
1773 inet_addr_onlink(out_dev
, saddr
, FIB_RES_GW(*res
))))
1774 flags
|= RTCF_DOREDIRECT
;
1776 if (skb
->protocol
!= htons(ETH_P_IP
)) {
1777 /* Not IP (i.e. ARP). Do not create route, if it is
1778 * invalid for proxy arp. DNAT routes are always valid.
1780 if (out_dev
== in_dev
) {
1787 rth
= dst_alloc(&ipv4_dst_ops
);
1793 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
1794 rth
->u
.dst
.flags
= DST_HOST
;
1795 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
1796 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
1797 if (IN_DEV_CONF_GET(out_dev
, NOXFRM
))
1798 rth
->u
.dst
.flags
|= DST_NOXFRM
;
1799 rth
->fl
.fl4_dst
= daddr
;
1800 rth
->rt_dst
= daddr
;
1801 rth
->fl
.fl4_tos
= tos
;
1802 rth
->fl
.mark
= skb
->mark
;
1803 rth
->fl
.fl4_src
= saddr
;
1804 rth
->rt_src
= saddr
;
1805 rth
->rt_gateway
= daddr
;
1807 rth
->fl
.iif
= in_dev
->dev
->ifindex
;
1808 rth
->u
.dst
.dev
= (out_dev
)->dev
;
1809 dev_hold(rth
->u
.dst
.dev
);
1810 rth
->idev
= in_dev_get(rth
->u
.dst
.dev
);
1812 rth
->rt_spec_dst
= spec_dst
;
1814 rth
->u
.dst
.input
= ip_forward
;
1815 rth
->u
.dst
.output
= ip_output
;
1817 rt_set_nexthop(rth
, res
, itag
);
1819 rth
->rt_flags
= flags
;
1824 /* release the working reference to the output device */
1825 in_dev_put(out_dev
);
1829 static inline int ip_mkroute_input(struct sk_buff
*skb
,
1830 struct fib_result
* res
,
1831 const struct flowi
*fl
,
1832 struct in_device
*in_dev
,
1833 __be32 daddr
, __be32 saddr
, u32 tos
)
1835 struct rtable
* rth
= NULL
;
1839 #ifdef CONFIG_IP_ROUTE_MULTIPATH
1840 if (res
->fi
&& res
->fi
->fib_nhs
> 1 && fl
->oif
== 0)
1841 fib_select_multipath(fl
, res
);
1844 /* create a routing cache entry */
1845 err
= __mkroute_input(skb
, res
, in_dev
, daddr
, saddr
, tos
, &rth
);
1849 /* put it into the cache */
1850 hash
= rt_hash(daddr
, saddr
, fl
->iif
);
1851 return rt_intern_hash(hash
, rth
, (struct rtable
**)&skb
->dst
);
1855 * NOTE. We drop all the packets that has local source
1856 * addresses, because every properly looped back packet
1857 * must have correct destination already attached by output routine.
1859 * Such approach solves two big problems:
1860 * 1. Not simplex devices are handled properly.
1861 * 2. IP spoofing attempts are filtered with 100% of guarantee.
1864 static int ip_route_input_slow(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
1865 u8 tos
, struct net_device
*dev
)
1867 struct fib_result res
;
1868 struct in_device
*in_dev
= in_dev_get(dev
);
1869 struct flowi fl
= { .nl_u
= { .ip4_u
=
1873 .scope
= RT_SCOPE_UNIVERSE
,
1876 .iif
= dev
->ifindex
};
1879 struct rtable
* rth
;
1885 /* IP on this device is disabled. */
1890 /* Check for the most weird martians, which can be not detected
1894 if (ipv4_is_multicast(saddr
) || ipv4_is_badclass(saddr
) ||
1895 ipv4_is_loopback(saddr
))
1896 goto martian_source
;
1898 if (daddr
== htonl(0xFFFFFFFF) || (saddr
== 0 && daddr
== 0))
1901 /* Accept zero addresses only to limited broadcast;
1902 * I even do not know to fix it or not. Waiting for complains :-)
1904 if (ipv4_is_zeronet(saddr
))
1905 goto martian_source
;
1907 if (ipv4_is_badclass(daddr
) || ipv4_is_zeronet(daddr
) ||
1908 ipv4_is_loopback(daddr
))
1909 goto martian_destination
;
1912 * Now we are ready to route packet.
1914 if ((err
= fib_lookup(&fl
, &res
)) != 0) {
1915 if (!IN_DEV_FORWARD(in_dev
))
1921 RT_CACHE_STAT_INC(in_slow_tot
);
1923 if (res
.type
== RTN_BROADCAST
)
1926 if (res
.type
== RTN_LOCAL
) {
1928 result
= fib_validate_source(saddr
, daddr
, tos
,
1929 init_net
.loopback_dev
->ifindex
,
1930 dev
, &spec_dst
, &itag
);
1932 goto martian_source
;
1934 flags
|= RTCF_DIRECTSRC
;
1939 if (!IN_DEV_FORWARD(in_dev
))
1941 if (res
.type
!= RTN_UNICAST
)
1942 goto martian_destination
;
1944 err
= ip_mkroute_input(skb
, &res
, &fl
, in_dev
, daddr
, saddr
, tos
);
1952 if (skb
->protocol
!= htons(ETH_P_IP
))
1955 if (ipv4_is_zeronet(saddr
))
1956 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_LINK
);
1958 err
= fib_validate_source(saddr
, 0, tos
, 0, dev
, &spec_dst
,
1961 goto martian_source
;
1963 flags
|= RTCF_DIRECTSRC
;
1965 flags
|= RTCF_BROADCAST
;
1966 res
.type
= RTN_BROADCAST
;
1967 RT_CACHE_STAT_INC(in_brd
);
1970 rth
= dst_alloc(&ipv4_dst_ops
);
1974 rth
->u
.dst
.output
= ip_rt_bug
;
1976 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
1977 rth
->u
.dst
.flags
= DST_HOST
;
1978 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
1979 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
1980 rth
->fl
.fl4_dst
= daddr
;
1981 rth
->rt_dst
= daddr
;
1982 rth
->fl
.fl4_tos
= tos
;
1983 rth
->fl
.mark
= skb
->mark
;
1984 rth
->fl
.fl4_src
= saddr
;
1985 rth
->rt_src
= saddr
;
1986 #ifdef CONFIG_NET_CLS_ROUTE
1987 rth
->u
.dst
.tclassid
= itag
;
1990 rth
->fl
.iif
= dev
->ifindex
;
1991 rth
->u
.dst
.dev
= init_net
.loopback_dev
;
1992 dev_hold(rth
->u
.dst
.dev
);
1993 rth
->idev
= in_dev_get(rth
->u
.dst
.dev
);
1994 rth
->rt_gateway
= daddr
;
1995 rth
->rt_spec_dst
= spec_dst
;
1996 rth
->u
.dst
.input
= ip_local_deliver
;
1997 rth
->rt_flags
= flags
|RTCF_LOCAL
;
1998 if (res
.type
== RTN_UNREACHABLE
) {
1999 rth
->u
.dst
.input
= ip_error
;
2000 rth
->u
.dst
.error
= -err
;
2001 rth
->rt_flags
&= ~RTCF_LOCAL
;
2003 rth
->rt_type
= res
.type
;
2004 hash
= rt_hash(daddr
, saddr
, fl
.iif
);
2005 err
= rt_intern_hash(hash
, rth
, (struct rtable
**)&skb
->dst
);
2009 RT_CACHE_STAT_INC(in_no_route
);
2010 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_UNIVERSE
);
2011 res
.type
= RTN_UNREACHABLE
;
2017 * Do not cache martian addresses: they should be logged (RFC1812)
2019 martian_destination
:
2020 RT_CACHE_STAT_INC(in_martian_dst
);
2021 #ifdef CONFIG_IP_ROUTE_VERBOSE
2022 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit())
2023 printk(KERN_WARNING
"martian destination %u.%u.%u.%u from "
2024 "%u.%u.%u.%u, dev %s\n",
2025 NIPQUAD(daddr
), NIPQUAD(saddr
), dev
->name
);
2029 err
= -EHOSTUNREACH
;
2041 ip_handle_martian_source(dev
, in_dev
, skb
, daddr
, saddr
);
2045 int ip_route_input(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
2046 u8 tos
, struct net_device
*dev
)
2048 struct rtable
* rth
;
2050 int iif
= dev
->ifindex
;
2052 tos
&= IPTOS_RT_MASK
;
2053 hash
= rt_hash(daddr
, saddr
, iif
);
2056 for (rth
= rcu_dereference(rt_hash_table
[hash
].chain
); rth
;
2057 rth
= rcu_dereference(rth
->u
.dst
.rt_next
)) {
2058 if (rth
->fl
.fl4_dst
== daddr
&&
2059 rth
->fl
.fl4_src
== saddr
&&
2060 rth
->fl
.iif
== iif
&&
2062 rth
->fl
.mark
== skb
->mark
&&
2063 rth
->fl
.fl4_tos
== tos
) {
2064 dst_use(&rth
->u
.dst
, jiffies
);
2065 RT_CACHE_STAT_INC(in_hit
);
2067 skb
->dst
= (struct dst_entry
*)rth
;
2070 RT_CACHE_STAT_INC(in_hlist_search
);
2074 /* Multicast recognition logic is moved from route cache to here.
2075 The problem was that too many Ethernet cards have broken/missing
2076 hardware multicast filters :-( As result the host on multicasting
2077 network acquires a lot of useless route cache entries, sort of
2078 SDR messages from all the world. Now we try to get rid of them.
2079 Really, provided software IP multicast filter is organized
2080 reasonably (at least, hashed), it does not result in a slowdown
2081 comparing with route cache reject entries.
2082 Note, that multicast routers are not affected, because
2083 route cache entry is created eventually.
2085 if (ipv4_is_multicast(daddr
)) {
2086 struct in_device
*in_dev
;
2089 if ((in_dev
= __in_dev_get_rcu(dev
)) != NULL
) {
2090 int our
= ip_check_mc(in_dev
, daddr
, saddr
,
2091 ip_hdr(skb
)->protocol
);
2093 #ifdef CONFIG_IP_MROUTE
2094 || (!ipv4_is_local_multicast(daddr
) &&
2095 IN_DEV_MFORWARD(in_dev
))
2099 return ip_route_input_mc(skb
, daddr
, saddr
,
2106 return ip_route_input_slow(skb
, daddr
, saddr
, tos
, dev
);
2109 static inline int __mkroute_output(struct rtable
**result
,
2110 struct fib_result
* res
,
2111 const struct flowi
*fl
,
2112 const struct flowi
*oldflp
,
2113 struct net_device
*dev_out
,
2117 struct in_device
*in_dev
;
2118 u32 tos
= RT_FL_TOS(oldflp
);
2121 if (ipv4_is_loopback(fl
->fl4_src
) && !(dev_out
->flags
&IFF_LOOPBACK
))
2124 if (fl
->fl4_dst
== htonl(0xFFFFFFFF))
2125 res
->type
= RTN_BROADCAST
;
2126 else if (ipv4_is_multicast(fl
->fl4_dst
))
2127 res
->type
= RTN_MULTICAST
;
2128 else if (ipv4_is_badclass(fl
->fl4_dst
) || ipv4_is_zeronet(fl
->fl4_dst
))
2131 if (dev_out
->flags
& IFF_LOOPBACK
)
2132 flags
|= RTCF_LOCAL
;
2134 /* get work reference to inet device */
2135 in_dev
= in_dev_get(dev_out
);
2139 if (res
->type
== RTN_BROADCAST
) {
2140 flags
|= RTCF_BROADCAST
| RTCF_LOCAL
;
2142 fib_info_put(res
->fi
);
2145 } else if (res
->type
== RTN_MULTICAST
) {
2146 flags
|= RTCF_MULTICAST
|RTCF_LOCAL
;
2147 if (!ip_check_mc(in_dev
, oldflp
->fl4_dst
, oldflp
->fl4_src
,
2149 flags
&= ~RTCF_LOCAL
;
2150 /* If multicast route do not exist use
2151 default one, but do not gateway in this case.
2154 if (res
->fi
&& res
->prefixlen
< 4) {
2155 fib_info_put(res
->fi
);
2161 rth
= dst_alloc(&ipv4_dst_ops
);
2167 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
2168 rth
->u
.dst
.flags
= DST_HOST
;
2169 if (IN_DEV_CONF_GET(in_dev
, NOXFRM
))
2170 rth
->u
.dst
.flags
|= DST_NOXFRM
;
2171 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
2172 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
2174 rth
->fl
.fl4_dst
= oldflp
->fl4_dst
;
2175 rth
->fl
.fl4_tos
= tos
;
2176 rth
->fl
.fl4_src
= oldflp
->fl4_src
;
2177 rth
->fl
.oif
= oldflp
->oif
;
2178 rth
->fl
.mark
= oldflp
->mark
;
2179 rth
->rt_dst
= fl
->fl4_dst
;
2180 rth
->rt_src
= fl
->fl4_src
;
2181 rth
->rt_iif
= oldflp
->oif
? : dev_out
->ifindex
;
2182 /* get references to the devices that are to be hold by the routing
2184 rth
->u
.dst
.dev
= dev_out
;
2186 rth
->idev
= in_dev_get(dev_out
);
2187 rth
->rt_gateway
= fl
->fl4_dst
;
2188 rth
->rt_spec_dst
= fl
->fl4_src
;
2190 rth
->u
.dst
.output
=ip_output
;
2192 RT_CACHE_STAT_INC(out_slow_tot
);
2194 if (flags
& RTCF_LOCAL
) {
2195 rth
->u
.dst
.input
= ip_local_deliver
;
2196 rth
->rt_spec_dst
= fl
->fl4_dst
;
2198 if (flags
& (RTCF_BROADCAST
| RTCF_MULTICAST
)) {
2199 rth
->rt_spec_dst
= fl
->fl4_src
;
2200 if (flags
& RTCF_LOCAL
&&
2201 !(dev_out
->flags
& IFF_LOOPBACK
)) {
2202 rth
->u
.dst
.output
= ip_mc_output
;
2203 RT_CACHE_STAT_INC(out_slow_mc
);
2205 #ifdef CONFIG_IP_MROUTE
2206 if (res
->type
== RTN_MULTICAST
) {
2207 if (IN_DEV_MFORWARD(in_dev
) &&
2208 !ipv4_is_local_multicast(oldflp
->fl4_dst
)) {
2209 rth
->u
.dst
.input
= ip_mr_input
;
2210 rth
->u
.dst
.output
= ip_mc_output
;
2216 rt_set_nexthop(rth
, res
, 0);
2218 rth
->rt_flags
= flags
;
2222 /* release work reference to inet device */
2228 static inline int ip_mkroute_output(struct rtable
**rp
,
2229 struct fib_result
* res
,
2230 const struct flowi
*fl
,
2231 const struct flowi
*oldflp
,
2232 struct net_device
*dev_out
,
2235 struct rtable
*rth
= NULL
;
2236 int err
= __mkroute_output(&rth
, res
, fl
, oldflp
, dev_out
, flags
);
2239 hash
= rt_hash(oldflp
->fl4_dst
, oldflp
->fl4_src
, oldflp
->oif
);
2240 err
= rt_intern_hash(hash
, rth
, rp
);
2247 * Major route resolver routine.
2250 static int ip_route_output_slow(struct rtable
**rp
, const struct flowi
*oldflp
)
2252 u32 tos
= RT_FL_TOS(oldflp
);
2253 struct flowi fl
= { .nl_u
= { .ip4_u
=
2254 { .daddr
= oldflp
->fl4_dst
,
2255 .saddr
= oldflp
->fl4_src
,
2256 .tos
= tos
& IPTOS_RT_MASK
,
2257 .scope
= ((tos
& RTO_ONLINK
) ?
2261 .mark
= oldflp
->mark
,
2262 .iif
= init_net
.loopback_dev
->ifindex
,
2263 .oif
= oldflp
->oif
};
2264 struct fib_result res
;
2266 struct net_device
*dev_out
= NULL
;
2272 #ifdef CONFIG_IP_MULTIPLE_TABLES
2276 if (oldflp
->fl4_src
) {
2278 if (ipv4_is_multicast(oldflp
->fl4_src
) ||
2279 ipv4_is_badclass(oldflp
->fl4_src
) ||
2280 ipv4_is_zeronet(oldflp
->fl4_src
))
2283 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2284 dev_out
= ip_dev_find(oldflp
->fl4_src
);
2285 if (dev_out
== NULL
)
2288 /* I removed check for oif == dev_out->oif here.
2289 It was wrong for two reasons:
2290 1. ip_dev_find(saddr) can return wrong iface, if saddr is
2291 assigned to multiple interfaces.
2292 2. Moreover, we are allowed to send packets with saddr
2293 of another iface. --ANK
2296 if (oldflp
->oif
== 0
2297 && (ipv4_is_multicast(oldflp
->fl4_dst
) ||
2298 oldflp
->fl4_dst
== htonl(0xFFFFFFFF))) {
2299 /* Special hack: user can direct multicasts
2300 and limited broadcast via necessary interface
2301 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2302 This hack is not just for fun, it allows
2303 vic,vat and friends to work.
2304 They bind socket to loopback, set ttl to zero
2305 and expect that it will work.
2306 From the viewpoint of routing cache they are broken,
2307 because we are not allowed to build multicast path
2308 with loopback source addr (look, routing cache
2309 cannot know, that ttl is zero, so that packet
2310 will not leave this host and route is valid).
2311 Luckily, this hack is good workaround.
2314 fl
.oif
= dev_out
->ifindex
;
2324 dev_out
= dev_get_by_index(&init_net
, oldflp
->oif
);
2326 if (dev_out
== NULL
)
2329 /* RACE: Check return value of inet_select_addr instead. */
2330 if (__in_dev_get_rtnl(dev_out
) == NULL
) {
2332 goto out
; /* Wrong error code */
2335 if (ipv4_is_local_multicast(oldflp
->fl4_dst
) ||
2336 oldflp
->fl4_dst
== htonl(0xFFFFFFFF)) {
2338 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2343 if (ipv4_is_multicast(oldflp
->fl4_dst
))
2344 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2346 else if (!oldflp
->fl4_dst
)
2347 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2353 fl
.fl4_dst
= fl
.fl4_src
;
2355 fl
.fl4_dst
= fl
.fl4_src
= htonl(INADDR_LOOPBACK
);
2358 dev_out
= init_net
.loopback_dev
;
2360 fl
.oif
= init_net
.loopback_dev
->ifindex
;
2361 res
.type
= RTN_LOCAL
;
2362 flags
|= RTCF_LOCAL
;
2366 if (fib_lookup(&fl
, &res
)) {
2369 /* Apparently, routing tables are wrong. Assume,
2370 that the destination is on link.
2373 Because we are allowed to send to iface
2374 even if it has NO routes and NO assigned
2375 addresses. When oif is specified, routing
2376 tables are looked up with only one purpose:
2377 to catch if destination is gatewayed, rather than
2378 direct. Moreover, if MSG_DONTROUTE is set,
2379 we send packet, ignoring both routing tables
2380 and ifaddr state. --ANK
2383 We could make it even if oif is unknown,
2384 likely IPv6, but we do not.
2387 if (fl
.fl4_src
== 0)
2388 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2390 res
.type
= RTN_UNICAST
;
2400 if (res
.type
== RTN_LOCAL
) {
2402 fl
.fl4_src
= fl
.fl4_dst
;
2405 dev_out
= init_net
.loopback_dev
;
2407 fl
.oif
= dev_out
->ifindex
;
2409 fib_info_put(res
.fi
);
2411 flags
|= RTCF_LOCAL
;
2415 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2416 if (res
.fi
->fib_nhs
> 1 && fl
.oif
== 0)
2417 fib_select_multipath(&fl
, &res
);
2420 if (!res
.prefixlen
&& res
.type
== RTN_UNICAST
&& !fl
.oif
)
2421 fib_select_default(&fl
, &res
);
2424 fl
.fl4_src
= FIB_RES_PREFSRC(res
);
2428 dev_out
= FIB_RES_DEV(res
);
2430 fl
.oif
= dev_out
->ifindex
;
2434 err
= ip_mkroute_output(rp
, &res
, &fl
, oldflp
, dev_out
, flags
);
2444 int __ip_route_output_key(struct rtable
**rp
, const struct flowi
*flp
)
2449 hash
= rt_hash(flp
->fl4_dst
, flp
->fl4_src
, flp
->oif
);
2452 for (rth
= rcu_dereference(rt_hash_table
[hash
].chain
); rth
;
2453 rth
= rcu_dereference(rth
->u
.dst
.rt_next
)) {
2454 if (rth
->fl
.fl4_dst
== flp
->fl4_dst
&&
2455 rth
->fl
.fl4_src
== flp
->fl4_src
&&
2457 rth
->fl
.oif
== flp
->oif
&&
2458 rth
->fl
.mark
== flp
->mark
&&
2459 !((rth
->fl
.fl4_tos
^ flp
->fl4_tos
) &
2460 (IPTOS_RT_MASK
| RTO_ONLINK
))) {
2461 dst_use(&rth
->u
.dst
, jiffies
);
2462 RT_CACHE_STAT_INC(out_hit
);
2463 rcu_read_unlock_bh();
2467 RT_CACHE_STAT_INC(out_hlist_search
);
2469 rcu_read_unlock_bh();
2471 return ip_route_output_slow(rp
, flp
);
2474 EXPORT_SYMBOL_GPL(__ip_route_output_key
);
2476 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry
*dst
, u32 mtu
)
2480 static struct dst_ops ipv4_dst_blackhole_ops
= {
2482 .protocol
= __constant_htons(ETH_P_IP
),
2483 .destroy
= ipv4_dst_destroy
,
2484 .check
= ipv4_dst_check
,
2485 .update_pmtu
= ipv4_rt_blackhole_update_pmtu
,
2486 .entry_size
= sizeof(struct rtable
),
2490 static int ipv4_dst_blackhole(struct rtable
**rp
, struct flowi
*flp
, struct sock
*sk
)
2492 struct rtable
*ort
= *rp
;
2493 struct rtable
*rt
= (struct rtable
*)
2494 dst_alloc(&ipv4_dst_blackhole_ops
);
2497 struct dst_entry
*new = &rt
->u
.dst
;
2499 atomic_set(&new->__refcnt
, 1);
2501 new->input
= dst_discard
;
2502 new->output
= dst_discard
;
2503 memcpy(new->metrics
, ort
->u
.dst
.metrics
, RTAX_MAX
*sizeof(u32
));
2505 new->dev
= ort
->u
.dst
.dev
;
2511 rt
->idev
= ort
->idev
;
2513 in_dev_hold(rt
->idev
);
2514 rt
->rt_flags
= ort
->rt_flags
;
2515 rt
->rt_type
= ort
->rt_type
;
2516 rt
->rt_dst
= ort
->rt_dst
;
2517 rt
->rt_src
= ort
->rt_src
;
2518 rt
->rt_iif
= ort
->rt_iif
;
2519 rt
->rt_gateway
= ort
->rt_gateway
;
2520 rt
->rt_spec_dst
= ort
->rt_spec_dst
;
2521 rt
->peer
= ort
->peer
;
2523 atomic_inc(&rt
->peer
->refcnt
);
2528 dst_release(&(*rp
)->u
.dst
);
2530 return (rt
? 0 : -ENOMEM
);
2533 int ip_route_output_flow(struct rtable
**rp
, struct flowi
*flp
, struct sock
*sk
, int flags
)
2537 if ((err
= __ip_route_output_key(rp
, flp
)) != 0)
2542 flp
->fl4_src
= (*rp
)->rt_src
;
2544 flp
->fl4_dst
= (*rp
)->rt_dst
;
2545 err
= __xfrm_lookup((struct dst_entry
**)rp
, flp
, sk
,
2546 flags
? XFRM_LOOKUP_WAIT
: 0);
2547 if (err
== -EREMOTE
)
2548 err
= ipv4_dst_blackhole(rp
, flp
, sk
);
2556 EXPORT_SYMBOL_GPL(ip_route_output_flow
);
2558 int ip_route_output_key(struct rtable
**rp
, struct flowi
*flp
)
2560 return ip_route_output_flow(rp
, flp
, NULL
, 0);
2563 static int rt_fill_info(struct sk_buff
*skb
, u32 pid
, u32 seq
, int event
,
2564 int nowait
, unsigned int flags
)
2566 struct rtable
*rt
= (struct rtable
*)skb
->dst
;
2568 struct nlmsghdr
*nlh
;
2570 u32 id
= 0, ts
= 0, tsage
= 0, error
;
2572 nlh
= nlmsg_put(skb
, pid
, seq
, event
, sizeof(*r
), flags
);
2576 r
= nlmsg_data(nlh
);
2577 r
->rtm_family
= AF_INET
;
2578 r
->rtm_dst_len
= 32;
2580 r
->rtm_tos
= rt
->fl
.fl4_tos
;
2581 r
->rtm_table
= RT_TABLE_MAIN
;
2582 NLA_PUT_U32(skb
, RTA_TABLE
, RT_TABLE_MAIN
);
2583 r
->rtm_type
= rt
->rt_type
;
2584 r
->rtm_scope
= RT_SCOPE_UNIVERSE
;
2585 r
->rtm_protocol
= RTPROT_UNSPEC
;
2586 r
->rtm_flags
= (rt
->rt_flags
& ~0xFFFF) | RTM_F_CLONED
;
2587 if (rt
->rt_flags
& RTCF_NOTIFY
)
2588 r
->rtm_flags
|= RTM_F_NOTIFY
;
2590 NLA_PUT_BE32(skb
, RTA_DST
, rt
->rt_dst
);
2592 if (rt
->fl
.fl4_src
) {
2593 r
->rtm_src_len
= 32;
2594 NLA_PUT_BE32(skb
, RTA_SRC
, rt
->fl
.fl4_src
);
2597 NLA_PUT_U32(skb
, RTA_OIF
, rt
->u
.dst
.dev
->ifindex
);
2598 #ifdef CONFIG_NET_CLS_ROUTE
2599 if (rt
->u
.dst
.tclassid
)
2600 NLA_PUT_U32(skb
, RTA_FLOW
, rt
->u
.dst
.tclassid
);
2603 NLA_PUT_BE32(skb
, RTA_PREFSRC
, rt
->rt_spec_dst
);
2604 else if (rt
->rt_src
!= rt
->fl
.fl4_src
)
2605 NLA_PUT_BE32(skb
, RTA_PREFSRC
, rt
->rt_src
);
2607 if (rt
->rt_dst
!= rt
->rt_gateway
)
2608 NLA_PUT_BE32(skb
, RTA_GATEWAY
, rt
->rt_gateway
);
2610 if (rtnetlink_put_metrics(skb
, rt
->u
.dst
.metrics
) < 0)
2611 goto nla_put_failure
;
2613 error
= rt
->u
.dst
.error
;
2614 expires
= rt
->u
.dst
.expires
? rt
->u
.dst
.expires
- jiffies
: 0;
2616 id
= rt
->peer
->ip_id_count
;
2617 if (rt
->peer
->tcp_ts_stamp
) {
2618 ts
= rt
->peer
->tcp_ts
;
2619 tsage
= get_seconds() - rt
->peer
->tcp_ts_stamp
;
2624 #ifdef CONFIG_IP_MROUTE
2625 __be32 dst
= rt
->rt_dst
;
2627 if (ipv4_is_multicast(dst
) && !ipv4_is_local_multicast(dst
) &&
2628 IPV4_DEVCONF_ALL(&init_net
, MC_FORWARDING
)) {
2629 int err
= ipmr_get_route(skb
, r
, nowait
);
2634 goto nla_put_failure
;
2636 if (err
== -EMSGSIZE
)
2637 goto nla_put_failure
;
2643 NLA_PUT_U32(skb
, RTA_IIF
, rt
->fl
.iif
);
2646 if (rtnl_put_cacheinfo(skb
, &rt
->u
.dst
, id
, ts
, tsage
,
2647 expires
, error
) < 0)
2648 goto nla_put_failure
;
2650 return nlmsg_end(skb
, nlh
);
2653 nlmsg_cancel(skb
, nlh
);
2657 static int inet_rtm_getroute(struct sk_buff
*in_skb
, struct nlmsghdr
* nlh
, void *arg
)
2659 struct net
*net
= in_skb
->sk
->sk_net
;
2661 struct nlattr
*tb
[RTA_MAX
+1];
2662 struct rtable
*rt
= NULL
;
2667 struct sk_buff
*skb
;
2669 if (net
!= &init_net
)
2672 err
= nlmsg_parse(nlh
, sizeof(*rtm
), tb
, RTA_MAX
, rtm_ipv4_policy
);
2676 rtm
= nlmsg_data(nlh
);
2678 skb
= alloc_skb(NLMSG_GOODSIZE
, GFP_KERNEL
);
2684 /* Reserve room for dummy headers, this skb can pass
2685 through good chunk of routing engine.
2687 skb_reset_mac_header(skb
);
2688 skb_reset_network_header(skb
);
2690 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2691 ip_hdr(skb
)->protocol
= IPPROTO_ICMP
;
2692 skb_reserve(skb
, MAX_HEADER
+ sizeof(struct iphdr
));
2694 src
= tb
[RTA_SRC
] ? nla_get_be32(tb
[RTA_SRC
]) : 0;
2695 dst
= tb
[RTA_DST
] ? nla_get_be32(tb
[RTA_DST
]) : 0;
2696 iif
= tb
[RTA_IIF
] ? nla_get_u32(tb
[RTA_IIF
]) : 0;
2699 struct net_device
*dev
;
2701 dev
= __dev_get_by_index(&init_net
, iif
);
2707 skb
->protocol
= htons(ETH_P_IP
);
2710 err
= ip_route_input(skb
, dst
, src
, rtm
->rtm_tos
, dev
);
2713 rt
= (struct rtable
*) skb
->dst
;
2714 if (err
== 0 && rt
->u
.dst
.error
)
2715 err
= -rt
->u
.dst
.error
;
2722 .tos
= rtm
->rtm_tos
,
2725 .oif
= tb
[RTA_OIF
] ? nla_get_u32(tb
[RTA_OIF
]) : 0,
2727 err
= ip_route_output_key(&rt
, &fl
);
2733 skb
->dst
= &rt
->u
.dst
;
2734 if (rtm
->rtm_flags
& RTM_F_NOTIFY
)
2735 rt
->rt_flags
|= RTCF_NOTIFY
;
2737 err
= rt_fill_info(skb
, NETLINK_CB(in_skb
).pid
, nlh
->nlmsg_seq
,
2738 RTM_NEWROUTE
, 0, 0);
2742 err
= rtnl_unicast(skb
, &init_net
, NETLINK_CB(in_skb
).pid
);
2751 int ip_rt_dump(struct sk_buff
*skb
, struct netlink_callback
*cb
)
2760 s_idx
= idx
= cb
->args
[1];
2761 for (h
= s_h
; h
<= rt_hash_mask
; h
++) {
2763 for (rt
= rcu_dereference(rt_hash_table
[h
].chain
), idx
= 0; rt
;
2764 rt
= rcu_dereference(rt
->u
.dst
.rt_next
), idx
++) {
2767 skb
->dst
= dst_clone(&rt
->u
.dst
);
2768 if (rt_fill_info(skb
, NETLINK_CB(cb
->skb
).pid
,
2769 cb
->nlh
->nlmsg_seq
, RTM_NEWROUTE
,
2770 1, NLM_F_MULTI
) <= 0) {
2771 dst_release(xchg(&skb
->dst
, NULL
));
2772 rcu_read_unlock_bh();
2775 dst_release(xchg(&skb
->dst
, NULL
));
2777 rcu_read_unlock_bh();
2787 void ip_rt_multicast_event(struct in_device
*in_dev
)
2792 #ifdef CONFIG_SYSCTL
2793 static int flush_delay
;
2795 static int ipv4_sysctl_rtcache_flush(ctl_table
*ctl
, int write
,
2796 struct file
*filp
, void __user
*buffer
,
2797 size_t *lenp
, loff_t
*ppos
)
2800 proc_dointvec(ctl
, write
, filp
, buffer
, lenp
, ppos
);
2801 rt_cache_flush(flush_delay
);
2808 static int ipv4_sysctl_rtcache_flush_strategy(ctl_table
*table
,
2811 void __user
*oldval
,
2812 size_t __user
*oldlenp
,
2813 void __user
*newval
,
2817 if (newlen
!= sizeof(int))
2819 if (get_user(delay
, (int __user
*)newval
))
2821 rt_cache_flush(delay
);
2825 ctl_table ipv4_route_table
[] = {
2827 .ctl_name
= NET_IPV4_ROUTE_FLUSH
,
2828 .procname
= "flush",
2829 .data
= &flush_delay
,
2830 .maxlen
= sizeof(int),
2832 .proc_handler
= &ipv4_sysctl_rtcache_flush
,
2833 .strategy
= &ipv4_sysctl_rtcache_flush_strategy
,
2836 .ctl_name
= NET_IPV4_ROUTE_MIN_DELAY
,
2837 .procname
= "min_delay",
2838 .data
= &ip_rt_min_delay
,
2839 .maxlen
= sizeof(int),
2841 .proc_handler
= &proc_dointvec_jiffies
,
2842 .strategy
= &sysctl_jiffies
,
2845 .ctl_name
= NET_IPV4_ROUTE_MAX_DELAY
,
2846 .procname
= "max_delay",
2847 .data
= &ip_rt_max_delay
,
2848 .maxlen
= sizeof(int),
2850 .proc_handler
= &proc_dointvec_jiffies
,
2851 .strategy
= &sysctl_jiffies
,
2854 .ctl_name
= NET_IPV4_ROUTE_GC_THRESH
,
2855 .procname
= "gc_thresh",
2856 .data
= &ipv4_dst_ops
.gc_thresh
,
2857 .maxlen
= sizeof(int),
2859 .proc_handler
= &proc_dointvec
,
2862 .ctl_name
= NET_IPV4_ROUTE_MAX_SIZE
,
2863 .procname
= "max_size",
2864 .data
= &ip_rt_max_size
,
2865 .maxlen
= sizeof(int),
2867 .proc_handler
= &proc_dointvec
,
2870 /* Deprecated. Use gc_min_interval_ms */
2872 .ctl_name
= NET_IPV4_ROUTE_GC_MIN_INTERVAL
,
2873 .procname
= "gc_min_interval",
2874 .data
= &ip_rt_gc_min_interval
,
2875 .maxlen
= sizeof(int),
2877 .proc_handler
= &proc_dointvec_jiffies
,
2878 .strategy
= &sysctl_jiffies
,
2881 .ctl_name
= NET_IPV4_ROUTE_GC_MIN_INTERVAL_MS
,
2882 .procname
= "gc_min_interval_ms",
2883 .data
= &ip_rt_gc_min_interval
,
2884 .maxlen
= sizeof(int),
2886 .proc_handler
= &proc_dointvec_ms_jiffies
,
2887 .strategy
= &sysctl_ms_jiffies
,
2890 .ctl_name
= NET_IPV4_ROUTE_GC_TIMEOUT
,
2891 .procname
= "gc_timeout",
2892 .data
= &ip_rt_gc_timeout
,
2893 .maxlen
= sizeof(int),
2895 .proc_handler
= &proc_dointvec_jiffies
,
2896 .strategy
= &sysctl_jiffies
,
2899 .ctl_name
= NET_IPV4_ROUTE_GC_INTERVAL
,
2900 .procname
= "gc_interval",
2901 .data
= &ip_rt_gc_interval
,
2902 .maxlen
= sizeof(int),
2904 .proc_handler
= &proc_dointvec_jiffies
,
2905 .strategy
= &sysctl_jiffies
,
2908 .ctl_name
= NET_IPV4_ROUTE_REDIRECT_LOAD
,
2909 .procname
= "redirect_load",
2910 .data
= &ip_rt_redirect_load
,
2911 .maxlen
= sizeof(int),
2913 .proc_handler
= &proc_dointvec
,
2916 .ctl_name
= NET_IPV4_ROUTE_REDIRECT_NUMBER
,
2917 .procname
= "redirect_number",
2918 .data
= &ip_rt_redirect_number
,
2919 .maxlen
= sizeof(int),
2921 .proc_handler
= &proc_dointvec
,
2924 .ctl_name
= NET_IPV4_ROUTE_REDIRECT_SILENCE
,
2925 .procname
= "redirect_silence",
2926 .data
= &ip_rt_redirect_silence
,
2927 .maxlen
= sizeof(int),
2929 .proc_handler
= &proc_dointvec
,
2932 .ctl_name
= NET_IPV4_ROUTE_ERROR_COST
,
2933 .procname
= "error_cost",
2934 .data
= &ip_rt_error_cost
,
2935 .maxlen
= sizeof(int),
2937 .proc_handler
= &proc_dointvec
,
2940 .ctl_name
= NET_IPV4_ROUTE_ERROR_BURST
,
2941 .procname
= "error_burst",
2942 .data
= &ip_rt_error_burst
,
2943 .maxlen
= sizeof(int),
2945 .proc_handler
= &proc_dointvec
,
2948 .ctl_name
= NET_IPV4_ROUTE_GC_ELASTICITY
,
2949 .procname
= "gc_elasticity",
2950 .data
= &ip_rt_gc_elasticity
,
2951 .maxlen
= sizeof(int),
2953 .proc_handler
= &proc_dointvec
,
2956 .ctl_name
= NET_IPV4_ROUTE_MTU_EXPIRES
,
2957 .procname
= "mtu_expires",
2958 .data
= &ip_rt_mtu_expires
,
2959 .maxlen
= sizeof(int),
2961 .proc_handler
= &proc_dointvec_jiffies
,
2962 .strategy
= &sysctl_jiffies
,
2965 .ctl_name
= NET_IPV4_ROUTE_MIN_PMTU
,
2966 .procname
= "min_pmtu",
2967 .data
= &ip_rt_min_pmtu
,
2968 .maxlen
= sizeof(int),
2970 .proc_handler
= &proc_dointvec
,
2973 .ctl_name
= NET_IPV4_ROUTE_MIN_ADVMSS
,
2974 .procname
= "min_adv_mss",
2975 .data
= &ip_rt_min_advmss
,
2976 .maxlen
= sizeof(int),
2978 .proc_handler
= &proc_dointvec
,
2981 .ctl_name
= NET_IPV4_ROUTE_SECRET_INTERVAL
,
2982 .procname
= "secret_interval",
2983 .data
= &ip_rt_secret_interval
,
2984 .maxlen
= sizeof(int),
2986 .proc_handler
= &proc_dointvec_jiffies
,
2987 .strategy
= &sysctl_jiffies
,
2993 #ifdef CONFIG_NET_CLS_ROUTE
2994 struct ip_rt_acct
*ip_rt_acct __read_mostly
;
2995 #endif /* CONFIG_NET_CLS_ROUTE */
2997 static __initdata
unsigned long rhash_entries
;
2998 static int __init
set_rhash_entries(char *str
)
3002 rhash_entries
= simple_strtoul(str
, &str
, 0);
3005 __setup("rhash_entries=", set_rhash_entries
);
3007 int __init
ip_rt_init(void)
3011 rt_hash_rnd
= (int) ((num_physpages
^ (num_physpages
>>8)) ^
3012 (jiffies
^ (jiffies
>> 7)));
3014 #ifdef CONFIG_NET_CLS_ROUTE
3015 ip_rt_acct
= __alloc_percpu(256 * sizeof(struct ip_rt_acct
));
3017 panic("IP: failed to allocate ip_rt_acct\n");
3020 ipv4_dst_ops
.kmem_cachep
=
3021 kmem_cache_create("ip_dst_cache", sizeof(struct rtable
), 0,
3022 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3024 ipv4_dst_blackhole_ops
.kmem_cachep
= ipv4_dst_ops
.kmem_cachep
;
3026 rt_hash_table
= (struct rt_hash_bucket
*)
3027 alloc_large_system_hash("IP route cache",
3028 sizeof(struct rt_hash_bucket
),
3030 (num_physpages
>= 128 * 1024) ?
3036 memset(rt_hash_table
, 0, (rt_hash_mask
+ 1) * sizeof(struct rt_hash_bucket
));
3037 rt_hash_lock_init();
3039 ipv4_dst_ops
.gc_thresh
= (rt_hash_mask
+ 1);
3040 ip_rt_max_size
= (rt_hash_mask
+ 1) * 16;
3045 setup_timer(&rt_flush_timer
, rt_run_flush
, 0);
3046 setup_timer(&rt_secret_timer
, rt_secret_rebuild
, 0);
3048 /* All the timers, started at system startup tend
3049 to synchronize. Perturb it a bit.
3051 schedule_delayed_work(&expires_work
,
3052 net_random() % ip_rt_gc_interval
+ ip_rt_gc_interval
);
3054 rt_secret_timer
.expires
= jiffies
+ net_random() % ip_rt_secret_interval
+
3055 ip_rt_secret_interval
;
3056 add_timer(&rt_secret_timer
);
3058 if (ip_rt_proc_init(&init_net
))
3059 printk(KERN_ERR
"Unable to create route proc files\n");
3064 rtnl_register(PF_INET
, RTM_GETROUTE
, inet_rtm_getroute
, NULL
);
3069 EXPORT_SYMBOL(__ip_select_ident
);
3070 EXPORT_SYMBOL(ip_route_input
);
3071 EXPORT_SYMBOL(ip_route_output_key
);