V4L/DVB (6006): tuner: move last_div to tuner-simple private data
[wrt350n-kernel.git] / drivers / media / video / cafe_ccic.c
blobef5361824f878f01266567839226871cb07a89f9
1 /*
2 * A driver for the CMOS camera controller in the Marvell 88ALP01 "cafe"
3 * multifunction chip. Currently works with the Omnivision OV7670
4 * sensor.
6 * Copyright 2006 One Laptop Per Child Association, Inc.
7 * Copyright 2006-7 Jonathan Corbet <corbet@lwn.net>
9 * Written by Jonathan Corbet, corbet@lwn.net.
11 * This file may be distributed under the terms of the GNU General
12 * Public License, version 2.
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/init.h>
19 #include <linux/fs.h>
20 #include <linux/pci.h>
21 #include <linux/i2c.h>
22 #include <linux/interrupt.h>
23 #include <linux/spinlock.h>
24 #include <linux/videodev2.h>
25 #include <media/v4l2-common.h>
26 #include <media/v4l2-chip-ident.h>
27 #include <linux/device.h>
28 #include <linux/wait.h>
29 #include <linux/list.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/delay.h>
32 #include <linux/debugfs.h>
33 #include <linux/jiffies.h>
34 #include <linux/vmalloc.h>
36 #include <asm/uaccess.h>
37 #include <asm/io.h>
39 #include "cafe_ccic-regs.h"
41 #define CAFE_VERSION 0x000002
45 * Parameters.
47 MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
48 MODULE_DESCRIPTION("Marvell 88ALP01 CMOS Camera Controller driver");
49 MODULE_LICENSE("GPL");
50 MODULE_SUPPORTED_DEVICE("Video");
53 * Internal DMA buffer management. Since the controller cannot do S/G I/O,
54 * we must have physically contiguous buffers to bring frames into.
55 * These parameters control how many buffers we use, whether we
56 * allocate them at load time (better chance of success, but nails down
57 * memory) or when somebody tries to use the camera (riskier), and,
58 * for load-time allocation, how big they should be.
60 * The controller can cycle through three buffers. We could use
61 * more by flipping pointers around, but it probably makes little
62 * sense.
65 #define MAX_DMA_BUFS 3
66 static int alloc_bufs_at_load = 0;
67 module_param(alloc_bufs_at_load, bool, 0444);
68 MODULE_PARM_DESC(alloc_bufs_at_load,
69 "Non-zero value causes DMA buffers to be allocated at module "
70 "load time. This increases the chances of successfully getting "
71 "those buffers, but at the cost of nailing down the memory from "
72 "the outset.");
74 static int n_dma_bufs = 3;
75 module_param(n_dma_bufs, uint, 0644);
76 MODULE_PARM_DESC(n_dma_bufs,
77 "The number of DMA buffers to allocate. Can be either two "
78 "(saves memory, makes timing tighter) or three.");
80 static int dma_buf_size = VGA_WIDTH * VGA_HEIGHT * 2; /* Worst case */
81 module_param(dma_buf_size, uint, 0444);
82 MODULE_PARM_DESC(dma_buf_size,
83 "The size of the allocated DMA buffers. If actual operating "
84 "parameters require larger buffers, an attempt to reallocate "
85 "will be made.");
87 static int min_buffers = 1;
88 module_param(min_buffers, uint, 0644);
89 MODULE_PARM_DESC(min_buffers,
90 "The minimum number of streaming I/O buffers we are willing "
91 "to work with.");
93 static int max_buffers = 10;
94 module_param(max_buffers, uint, 0644);
95 MODULE_PARM_DESC(max_buffers,
96 "The maximum number of streaming I/O buffers an application "
97 "will be allowed to allocate. These buffers are big and live "
98 "in vmalloc space.");
100 static int flip = 0;
101 module_param(flip, bool, 0444);
102 MODULE_PARM_DESC(flip,
103 "If set, the sensor will be instructed to flip the image "
104 "vertically.");
107 enum cafe_state {
108 S_NOTREADY, /* Not yet initialized */
109 S_IDLE, /* Just hanging around */
110 S_FLAKED, /* Some sort of problem */
111 S_SINGLEREAD, /* In read() */
112 S_SPECREAD, /* Speculative read (for future read()) */
113 S_STREAMING /* Streaming data */
117 * Tracking of streaming I/O buffers.
119 struct cafe_sio_buffer {
120 struct list_head list;
121 struct v4l2_buffer v4lbuf;
122 char *buffer; /* Where it lives in kernel space */
123 int mapcount;
124 struct cafe_camera *cam;
128 * A description of one of our devices.
129 * Locking: controlled by s_mutex. Certain fields, however, require
130 * the dev_lock spinlock; they are marked as such by comments.
131 * dev_lock is also required for access to device registers.
133 struct cafe_camera
135 enum cafe_state state;
136 unsigned long flags; /* Buffer status, mainly (dev_lock) */
137 int users; /* How many open FDs */
138 struct file *owner; /* Who has data access (v4l2) */
141 * Subsystem structures.
143 struct pci_dev *pdev;
144 struct video_device v4ldev;
145 struct i2c_adapter i2c_adapter;
146 struct i2c_client *sensor;
148 unsigned char __iomem *regs;
149 struct list_head dev_list; /* link to other devices */
151 /* DMA buffers */
152 unsigned int nbufs; /* How many are alloc'd */
153 int next_buf; /* Next to consume (dev_lock) */
154 unsigned int dma_buf_size; /* allocated size */
155 void *dma_bufs[MAX_DMA_BUFS]; /* Internal buffer addresses */
156 dma_addr_t dma_handles[MAX_DMA_BUFS]; /* Buffer bus addresses */
157 unsigned int specframes; /* Unconsumed spec frames (dev_lock) */
158 unsigned int sequence; /* Frame sequence number */
159 unsigned int buf_seq[MAX_DMA_BUFS]; /* Sequence for individual buffers */
161 /* Streaming buffers */
162 unsigned int n_sbufs; /* How many we have */
163 struct cafe_sio_buffer *sb_bufs; /* The array of housekeeping structs */
164 struct list_head sb_avail; /* Available for data (we own) (dev_lock) */
165 struct list_head sb_full; /* With data (user space owns) (dev_lock) */
166 struct tasklet_struct s_tasklet;
168 /* Current operating parameters */
169 u32 sensor_type; /* Currently ov7670 only */
170 struct v4l2_pix_format pix_format;
172 /* Locks */
173 struct mutex s_mutex; /* Access to this structure */
174 spinlock_t dev_lock; /* Access to device */
176 /* Misc */
177 wait_queue_head_t smbus_wait; /* Waiting on i2c events */
178 wait_queue_head_t iowait; /* Waiting on frame data */
179 #ifdef CONFIG_VIDEO_ADV_DEBUG
180 struct dentry *dfs_regs;
181 struct dentry *dfs_cam_regs;
182 #endif
186 * Status flags. Always manipulated with bit operations.
188 #define CF_BUF0_VALID 0 /* Buffers valid - first three */
189 #define CF_BUF1_VALID 1
190 #define CF_BUF2_VALID 2
191 #define CF_DMA_ACTIVE 3 /* A frame is incoming */
192 #define CF_CONFIG_NEEDED 4 /* Must configure hardware */
197 * Start over with DMA buffers - dev_lock needed.
199 static void cafe_reset_buffers(struct cafe_camera *cam)
201 int i;
203 cam->next_buf = -1;
204 for (i = 0; i < cam->nbufs; i++)
205 clear_bit(i, &cam->flags);
206 cam->specframes = 0;
209 static inline int cafe_needs_config(struct cafe_camera *cam)
211 return test_bit(CF_CONFIG_NEEDED, &cam->flags);
214 static void cafe_set_config_needed(struct cafe_camera *cam, int needed)
216 if (needed)
217 set_bit(CF_CONFIG_NEEDED, &cam->flags);
218 else
219 clear_bit(CF_CONFIG_NEEDED, &cam->flags);
226 * Debugging and related.
228 #define cam_err(cam, fmt, arg...) \
229 dev_err(&(cam)->pdev->dev, fmt, ##arg);
230 #define cam_warn(cam, fmt, arg...) \
231 dev_warn(&(cam)->pdev->dev, fmt, ##arg);
232 #define cam_dbg(cam, fmt, arg...) \
233 dev_dbg(&(cam)->pdev->dev, fmt, ##arg);
236 /* ---------------------------------------------------------------------*/
238 * We keep a simple list of known devices to search at open time.
240 static LIST_HEAD(cafe_dev_list);
241 static DEFINE_MUTEX(cafe_dev_list_lock);
243 static void cafe_add_dev(struct cafe_camera *cam)
245 mutex_lock(&cafe_dev_list_lock);
246 list_add_tail(&cam->dev_list, &cafe_dev_list);
247 mutex_unlock(&cafe_dev_list_lock);
250 static void cafe_remove_dev(struct cafe_camera *cam)
252 mutex_lock(&cafe_dev_list_lock);
253 list_del(&cam->dev_list);
254 mutex_unlock(&cafe_dev_list_lock);
257 static struct cafe_camera *cafe_find_dev(int minor)
259 struct cafe_camera *cam;
261 mutex_lock(&cafe_dev_list_lock);
262 list_for_each_entry(cam, &cafe_dev_list, dev_list) {
263 if (cam->v4ldev.minor == minor)
264 goto done;
266 cam = NULL;
267 done:
268 mutex_unlock(&cafe_dev_list_lock);
269 return cam;
273 static struct cafe_camera *cafe_find_by_pdev(struct pci_dev *pdev)
275 struct cafe_camera *cam;
277 mutex_lock(&cafe_dev_list_lock);
278 list_for_each_entry(cam, &cafe_dev_list, dev_list) {
279 if (cam->pdev == pdev)
280 goto done;
282 cam = NULL;
283 done:
284 mutex_unlock(&cafe_dev_list_lock);
285 return cam;
289 /* ------------------------------------------------------------------------ */
291 * Device register I/O
293 static inline void cafe_reg_write(struct cafe_camera *cam, unsigned int reg,
294 unsigned int val)
296 iowrite32(val, cam->regs + reg);
299 static inline unsigned int cafe_reg_read(struct cafe_camera *cam,
300 unsigned int reg)
302 return ioread32(cam->regs + reg);
306 static inline void cafe_reg_write_mask(struct cafe_camera *cam, unsigned int reg,
307 unsigned int val, unsigned int mask)
309 unsigned int v = cafe_reg_read(cam, reg);
311 v = (v & ~mask) | (val & mask);
312 cafe_reg_write(cam, reg, v);
315 static inline void cafe_reg_clear_bit(struct cafe_camera *cam,
316 unsigned int reg, unsigned int val)
318 cafe_reg_write_mask(cam, reg, 0, val);
321 static inline void cafe_reg_set_bit(struct cafe_camera *cam,
322 unsigned int reg, unsigned int val)
324 cafe_reg_write_mask(cam, reg, val, val);
329 /* -------------------------------------------------------------------- */
331 * The I2C/SMBUS interface to the camera itself starts here. The
332 * controller handles SMBUS itself, presenting a relatively simple register
333 * interface; all we have to do is to tell it where to route the data.
335 #define CAFE_SMBUS_TIMEOUT (HZ) /* generous */
337 static int cafe_smbus_write_done(struct cafe_camera *cam)
339 unsigned long flags;
340 int c1;
343 * We must delay after the interrupt, or the controller gets confused
344 * and never does give us good status. Fortunately, we don't do this
345 * often.
347 udelay(20);
348 spin_lock_irqsave(&cam->dev_lock, flags);
349 c1 = cafe_reg_read(cam, REG_TWSIC1);
350 spin_unlock_irqrestore(&cam->dev_lock, flags);
351 return (c1 & (TWSIC1_WSTAT|TWSIC1_ERROR)) != TWSIC1_WSTAT;
354 static int cafe_smbus_write_data(struct cafe_camera *cam,
355 u16 addr, u8 command, u8 value)
357 unsigned int rval;
358 unsigned long flags;
359 DEFINE_WAIT(the_wait);
361 spin_lock_irqsave(&cam->dev_lock, flags);
362 rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID);
363 rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */
365 * Marvell sez set clkdiv to all 1's for now.
367 rval |= TWSIC0_CLKDIV;
368 cafe_reg_write(cam, REG_TWSIC0, rval);
369 (void) cafe_reg_read(cam, REG_TWSIC1); /* force write */
370 rval = value | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR);
371 cafe_reg_write(cam, REG_TWSIC1, rval);
372 spin_unlock_irqrestore(&cam->dev_lock, flags);
375 * Time to wait for the write to complete. THIS IS A RACY
376 * WAY TO DO IT, but the sad fact is that reading the TWSIC1
377 * register too quickly after starting the operation sends
378 * the device into a place that may be kinder and better, but
379 * which is absolutely useless for controlling the sensor. In
380 * practice we have plenty of time to get into our sleep state
381 * before the interrupt hits, and the worst case is that we
382 * time out and then see that things completed, so this seems
383 * the best way for now.
385 do {
386 prepare_to_wait(&cam->smbus_wait, &the_wait,
387 TASK_UNINTERRUPTIBLE);
388 schedule_timeout(1); /* even 1 jiffy is too long */
389 finish_wait(&cam->smbus_wait, &the_wait);
390 } while (!cafe_smbus_write_done(cam));
392 #ifdef IF_THE_CAFE_HARDWARE_WORKED_RIGHT
393 wait_event_timeout(cam->smbus_wait, cafe_smbus_write_done(cam),
394 CAFE_SMBUS_TIMEOUT);
395 #endif
396 spin_lock_irqsave(&cam->dev_lock, flags);
397 rval = cafe_reg_read(cam, REG_TWSIC1);
398 spin_unlock_irqrestore(&cam->dev_lock, flags);
400 if (rval & TWSIC1_WSTAT) {
401 cam_err(cam, "SMBUS write (%02x/%02x/%02x) timed out\n", addr,
402 command, value);
403 return -EIO;
405 if (rval & TWSIC1_ERROR) {
406 cam_err(cam, "SMBUS write (%02x/%02x/%02x) error\n", addr,
407 command, value);
408 return -EIO;
410 return 0;
415 static int cafe_smbus_read_done(struct cafe_camera *cam)
417 unsigned long flags;
418 int c1;
421 * We must delay after the interrupt, or the controller gets confused
422 * and never does give us good status. Fortunately, we don't do this
423 * often.
425 udelay(20);
426 spin_lock_irqsave(&cam->dev_lock, flags);
427 c1 = cafe_reg_read(cam, REG_TWSIC1);
428 spin_unlock_irqrestore(&cam->dev_lock, flags);
429 return c1 & (TWSIC1_RVALID|TWSIC1_ERROR);
434 static int cafe_smbus_read_data(struct cafe_camera *cam,
435 u16 addr, u8 command, u8 *value)
437 unsigned int rval;
438 unsigned long flags;
440 spin_lock_irqsave(&cam->dev_lock, flags);
441 rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID);
442 rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */
444 * Marvel sez set clkdiv to all 1's for now.
446 rval |= TWSIC0_CLKDIV;
447 cafe_reg_write(cam, REG_TWSIC0, rval);
448 (void) cafe_reg_read(cam, REG_TWSIC1); /* force write */
449 rval = TWSIC1_READ | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR);
450 cafe_reg_write(cam, REG_TWSIC1, rval);
451 spin_unlock_irqrestore(&cam->dev_lock, flags);
453 wait_event_timeout(cam->smbus_wait,
454 cafe_smbus_read_done(cam), CAFE_SMBUS_TIMEOUT);
455 spin_lock_irqsave(&cam->dev_lock, flags);
456 rval = cafe_reg_read(cam, REG_TWSIC1);
457 spin_unlock_irqrestore(&cam->dev_lock, flags);
459 if (rval & TWSIC1_ERROR) {
460 cam_err(cam, "SMBUS read (%02x/%02x) error\n", addr, command);
461 return -EIO;
463 if (! (rval & TWSIC1_RVALID)) {
464 cam_err(cam, "SMBUS read (%02x/%02x) timed out\n", addr,
465 command);
466 return -EIO;
468 *value = rval & 0xff;
469 return 0;
473 * Perform a transfer over SMBUS. This thing is called under
474 * the i2c bus lock, so we shouldn't race with ourselves...
476 static int cafe_smbus_xfer(struct i2c_adapter *adapter, u16 addr,
477 unsigned short flags, char rw, u8 command,
478 int size, union i2c_smbus_data *data)
480 struct cafe_camera *cam = i2c_get_adapdata(adapter);
481 int ret = -EINVAL;
484 * Refuse to talk to anything but OV cam chips. We should
485 * never even see an attempt to do so, but one never knows.
487 if (cam->sensor && addr != cam->sensor->addr) {
488 cam_err(cam, "funky smbus addr %d\n", addr);
489 return -EINVAL;
492 * This interface would appear to only do byte data ops. OK
493 * it can do word too, but the cam chip has no use for that.
495 if (size != I2C_SMBUS_BYTE_DATA) {
496 cam_err(cam, "funky xfer size %d\n", size);
497 return -EINVAL;
500 if (rw == I2C_SMBUS_WRITE)
501 ret = cafe_smbus_write_data(cam, addr, command, data->byte);
502 else if (rw == I2C_SMBUS_READ)
503 ret = cafe_smbus_read_data(cam, addr, command, &data->byte);
504 return ret;
508 static void cafe_smbus_enable_irq(struct cafe_camera *cam)
510 unsigned long flags;
512 spin_lock_irqsave(&cam->dev_lock, flags);
513 cafe_reg_set_bit(cam, REG_IRQMASK, TWSIIRQS);
514 spin_unlock_irqrestore(&cam->dev_lock, flags);
517 static u32 cafe_smbus_func(struct i2c_adapter *adapter)
519 return I2C_FUNC_SMBUS_READ_BYTE_DATA |
520 I2C_FUNC_SMBUS_WRITE_BYTE_DATA;
523 static struct i2c_algorithm cafe_smbus_algo = {
524 .smbus_xfer = cafe_smbus_xfer,
525 .functionality = cafe_smbus_func
528 /* Somebody is on the bus */
529 static int cafe_cam_init(struct cafe_camera *cam);
530 static void cafe_ctlr_stop_dma(struct cafe_camera *cam);
531 static void cafe_ctlr_power_down(struct cafe_camera *cam);
533 static int cafe_smbus_attach(struct i2c_client *client)
535 struct cafe_camera *cam = i2c_get_adapdata(client->adapter);
538 * Don't talk to chips we don't recognize.
540 if (client->driver->id == I2C_DRIVERID_OV7670) {
541 cam->sensor = client;
542 return cafe_cam_init(cam);
544 return -EINVAL;
547 static int cafe_smbus_detach(struct i2c_client *client)
549 struct cafe_camera *cam = i2c_get_adapdata(client->adapter);
551 if (cam->sensor == client) {
552 cafe_ctlr_stop_dma(cam);
553 cafe_ctlr_power_down(cam);
554 cam_err(cam, "lost the sensor!\n");
555 cam->sensor = NULL; /* Bummer, no camera */
556 cam->state = S_NOTREADY;
558 return 0;
561 static int cafe_smbus_setup(struct cafe_camera *cam)
563 struct i2c_adapter *adap = &cam->i2c_adapter;
564 int ret;
566 cafe_smbus_enable_irq(cam);
567 adap->id = I2C_HW_SMBUS_CAFE;
568 adap->class = I2C_CLASS_CAM_DIGITAL;
569 adap->owner = THIS_MODULE;
570 adap->client_register = cafe_smbus_attach;
571 adap->client_unregister = cafe_smbus_detach;
572 adap->algo = &cafe_smbus_algo;
573 strcpy(adap->name, "cafe_ccic");
574 adap->dev.parent = &cam->pdev->dev;
575 i2c_set_adapdata(adap, cam);
576 ret = i2c_add_adapter(adap);
577 if (ret)
578 printk(KERN_ERR "Unable to register cafe i2c adapter\n");
579 return ret;
582 static void cafe_smbus_shutdown(struct cafe_camera *cam)
584 i2c_del_adapter(&cam->i2c_adapter);
588 /* ------------------------------------------------------------------- */
590 * Deal with the controller.
594 * Do everything we think we need to have the interface operating
595 * according to the desired format.
597 static void cafe_ctlr_dma(struct cafe_camera *cam)
600 * Store the first two Y buffers (we aren't supporting
601 * planar formats for now, so no UV bufs). Then either
602 * set the third if it exists, or tell the controller
603 * to just use two.
605 cafe_reg_write(cam, REG_Y0BAR, cam->dma_handles[0]);
606 cafe_reg_write(cam, REG_Y1BAR, cam->dma_handles[1]);
607 if (cam->nbufs > 2) {
608 cafe_reg_write(cam, REG_Y2BAR, cam->dma_handles[2]);
609 cafe_reg_clear_bit(cam, REG_CTRL1, C1_TWOBUFS);
611 else
612 cafe_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
613 cafe_reg_write(cam, REG_UBAR, 0); /* 32 bits only for now */
616 static void cafe_ctlr_image(struct cafe_camera *cam)
618 int imgsz;
619 struct v4l2_pix_format *fmt = &cam->pix_format;
621 imgsz = ((fmt->height << IMGSZ_V_SHIFT) & IMGSZ_V_MASK) |
622 (fmt->bytesperline & IMGSZ_H_MASK);
623 cafe_reg_write(cam, REG_IMGSIZE, imgsz);
624 cafe_reg_write(cam, REG_IMGOFFSET, 0);
625 /* YPITCH just drops the last two bits */
626 cafe_reg_write_mask(cam, REG_IMGPITCH, fmt->bytesperline,
627 IMGP_YP_MASK);
629 * Tell the controller about the image format we are using.
631 switch (cam->pix_format.pixelformat) {
632 case V4L2_PIX_FMT_YUYV:
633 cafe_reg_write_mask(cam, REG_CTRL0,
634 C0_DF_YUV|C0_YUV_PACKED|C0_YUVE_YUYV,
635 C0_DF_MASK);
636 break;
638 case V4L2_PIX_FMT_RGB444:
639 cafe_reg_write_mask(cam, REG_CTRL0,
640 C0_DF_RGB|C0_RGBF_444|C0_RGB4_XRGB,
641 C0_DF_MASK);
642 /* Alpha value? */
643 break;
645 case V4L2_PIX_FMT_RGB565:
646 cafe_reg_write_mask(cam, REG_CTRL0,
647 C0_DF_RGB|C0_RGBF_565|C0_RGB5_BGGR,
648 C0_DF_MASK);
649 break;
651 default:
652 cam_err(cam, "Unknown format %x\n", cam->pix_format.pixelformat);
653 break;
656 * Make sure it knows we want to use hsync/vsync.
658 cafe_reg_write_mask(cam, REG_CTRL0, C0_SIF_HVSYNC,
659 C0_SIFM_MASK);
664 * Configure the controller for operation; caller holds the
665 * device mutex.
667 static int cafe_ctlr_configure(struct cafe_camera *cam)
669 unsigned long flags;
671 spin_lock_irqsave(&cam->dev_lock, flags);
672 cafe_ctlr_dma(cam);
673 cafe_ctlr_image(cam);
674 cafe_set_config_needed(cam, 0);
675 spin_unlock_irqrestore(&cam->dev_lock, flags);
676 return 0;
679 static void cafe_ctlr_irq_enable(struct cafe_camera *cam)
682 * Clear any pending interrupts, since we do not
683 * expect to have I/O active prior to enabling.
685 cafe_reg_write(cam, REG_IRQSTAT, FRAMEIRQS);
686 cafe_reg_set_bit(cam, REG_IRQMASK, FRAMEIRQS);
689 static void cafe_ctlr_irq_disable(struct cafe_camera *cam)
691 cafe_reg_clear_bit(cam, REG_IRQMASK, FRAMEIRQS);
695 * Make the controller start grabbing images. Everything must
696 * be set up before doing this.
698 static void cafe_ctlr_start(struct cafe_camera *cam)
700 /* set_bit performs a read, so no other barrier should be
701 needed here */
702 cafe_reg_set_bit(cam, REG_CTRL0, C0_ENABLE);
705 static void cafe_ctlr_stop(struct cafe_camera *cam)
707 cafe_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
710 static void cafe_ctlr_init(struct cafe_camera *cam)
712 unsigned long flags;
714 spin_lock_irqsave(&cam->dev_lock, flags);
716 * Added magic to bring up the hardware on the B-Test board
718 cafe_reg_write(cam, 0x3038, 0x8);
719 cafe_reg_write(cam, 0x315c, 0x80008);
721 * Go through the dance needed to wake the device up.
722 * Note that these registers are global and shared
723 * with the NAND and SD devices. Interaction between the
724 * three still needs to be examined.
726 cafe_reg_write(cam, REG_GL_CSR, GCSR_SRS|GCSR_MRS); /* Needed? */
727 cafe_reg_write(cam, REG_GL_CSR, GCSR_SRC|GCSR_MRC);
728 cafe_reg_write(cam, REG_GL_CSR, GCSR_SRC|GCSR_MRS);
730 * Here we must wait a bit for the controller to come around.
732 spin_unlock_irqrestore(&cam->dev_lock, flags);
733 msleep(5);
734 spin_lock_irqsave(&cam->dev_lock, flags);
736 cafe_reg_write(cam, REG_GL_CSR, GCSR_CCIC_EN|GCSR_SRC|GCSR_MRC);
737 cafe_reg_set_bit(cam, REG_GL_IMASK, GIMSK_CCIC_EN);
739 * Make sure it's not powered down.
741 cafe_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
743 * Turn off the enable bit. It sure should be off anyway,
744 * but it's good to be sure.
746 cafe_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
748 * Mask all interrupts.
750 cafe_reg_write(cam, REG_IRQMASK, 0);
752 * Clock the sensor appropriately. Controller clock should
753 * be 48MHz, sensor "typical" value is half that.
755 cafe_reg_write_mask(cam, REG_CLKCTRL, 2, CLK_DIV_MASK);
756 spin_unlock_irqrestore(&cam->dev_lock, flags);
761 * Stop the controller, and don't return until we're really sure that no
762 * further DMA is going on.
764 static void cafe_ctlr_stop_dma(struct cafe_camera *cam)
766 unsigned long flags;
769 * Theory: stop the camera controller (whether it is operating
770 * or not). Delay briefly just in case we race with the SOF
771 * interrupt, then wait until no DMA is active.
773 spin_lock_irqsave(&cam->dev_lock, flags);
774 cafe_ctlr_stop(cam);
775 spin_unlock_irqrestore(&cam->dev_lock, flags);
776 mdelay(1);
777 wait_event_timeout(cam->iowait,
778 !test_bit(CF_DMA_ACTIVE, &cam->flags), HZ);
779 if (test_bit(CF_DMA_ACTIVE, &cam->flags))
780 cam_err(cam, "Timeout waiting for DMA to end\n");
781 /* This would be bad news - what now? */
782 spin_lock_irqsave(&cam->dev_lock, flags);
783 cam->state = S_IDLE;
784 cafe_ctlr_irq_disable(cam);
785 spin_unlock_irqrestore(&cam->dev_lock, flags);
789 * Power up and down.
791 static void cafe_ctlr_power_up(struct cafe_camera *cam)
793 unsigned long flags;
795 spin_lock_irqsave(&cam->dev_lock, flags);
796 cafe_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
798 * Part one of the sensor dance: turn the global
799 * GPIO signal on.
801 cafe_reg_write(cam, REG_GL_FCR, GFCR_GPIO_ON);
802 cafe_reg_write(cam, REG_GL_GPIOR, GGPIO_OUT|GGPIO_VAL);
804 * Put the sensor into operational mode (assumes OLPC-style
805 * wiring). Control 0 is reset - set to 1 to operate.
806 * Control 1 is power down, set to 0 to operate.
808 cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN); /* pwr up, reset */
809 // mdelay(1); /* Marvell says 1ms will do it */
810 cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C0);
811 // mdelay(1); /* Enough? */
812 spin_unlock_irqrestore(&cam->dev_lock, flags);
813 msleep(5); /* Just to be sure */
816 static void cafe_ctlr_power_down(struct cafe_camera *cam)
818 unsigned long flags;
820 spin_lock_irqsave(&cam->dev_lock, flags);
821 cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C1);
822 cafe_reg_write(cam, REG_GL_FCR, GFCR_GPIO_ON);
823 cafe_reg_write(cam, REG_GL_GPIOR, GGPIO_OUT);
824 cafe_reg_set_bit(cam, REG_CTRL1, C1_PWRDWN);
825 spin_unlock_irqrestore(&cam->dev_lock, flags);
828 /* -------------------------------------------------------------------- */
830 * Communications with the sensor.
833 static int __cafe_cam_cmd(struct cafe_camera *cam, int cmd, void *arg)
835 struct i2c_client *sc = cam->sensor;
836 int ret;
838 if (sc == NULL || sc->driver == NULL || sc->driver->command == NULL)
839 return -EINVAL;
840 ret = sc->driver->command(sc, cmd, arg);
841 if (ret == -EPERM) /* Unsupported command */
842 return 0;
843 return ret;
846 static int __cafe_cam_reset(struct cafe_camera *cam)
848 int zero = 0;
849 return __cafe_cam_cmd(cam, VIDIOC_INT_RESET, &zero);
853 * We have found the sensor on the i2c. Let's try to have a
854 * conversation.
856 static int cafe_cam_init(struct cafe_camera *cam)
858 struct v4l2_chip_ident chip = { V4L2_CHIP_MATCH_I2C_ADDR, 0, 0, 0 };
859 int ret;
861 mutex_lock(&cam->s_mutex);
862 if (cam->state != S_NOTREADY)
863 cam_warn(cam, "Cam init with device in funky state %d",
864 cam->state);
865 ret = __cafe_cam_reset(cam);
866 if (ret)
867 goto out;
868 chip.match_chip = cam->sensor->addr;
869 ret = __cafe_cam_cmd(cam, VIDIOC_G_CHIP_IDENT, &chip);
870 if (ret)
871 goto out;
872 cam->sensor_type = chip.ident;
873 // if (cam->sensor->addr != OV7xx0_SID) {
874 if (cam->sensor_type != V4L2_IDENT_OV7670) {
875 cam_err(cam, "Unsupported sensor type %d", cam->sensor->addr);
876 ret = -EINVAL;
877 goto out;
879 /* Get/set parameters? */
880 ret = 0;
881 cam->state = S_IDLE;
882 out:
883 cafe_ctlr_power_down(cam);
884 mutex_unlock(&cam->s_mutex);
885 return ret;
889 * Configure the sensor to match the parameters we have. Caller should
890 * hold s_mutex
892 static int cafe_cam_set_flip(struct cafe_camera *cam)
894 struct v4l2_control ctrl;
896 memset(&ctrl, 0, sizeof(ctrl));
897 ctrl.id = V4L2_CID_VFLIP;
898 ctrl.value = flip;
899 return __cafe_cam_cmd(cam, VIDIOC_S_CTRL, &ctrl);
903 static int cafe_cam_configure(struct cafe_camera *cam)
905 struct v4l2_format fmt;
906 int ret, zero = 0;
908 if (cam->state != S_IDLE)
909 return -EINVAL;
910 fmt.fmt.pix = cam->pix_format;
911 ret = __cafe_cam_cmd(cam, VIDIOC_INT_INIT, &zero);
912 if (ret == 0)
913 ret = __cafe_cam_cmd(cam, VIDIOC_S_FMT, &fmt);
915 * OV7670 does weird things if flip is set *before* format...
917 ret += cafe_cam_set_flip(cam);
918 return ret;
921 /* -------------------------------------------------------------------- */
923 * DMA buffer management. These functions need s_mutex held.
926 /* FIXME: this is inefficient as hell, since dma_alloc_coherent just
927 * does a get_free_pages() call, and we waste a good chunk of an orderN
928 * allocation. Should try to allocate the whole set in one chunk.
930 static int cafe_alloc_dma_bufs(struct cafe_camera *cam, int loadtime)
932 int i;
934 cafe_set_config_needed(cam, 1);
935 if (loadtime)
936 cam->dma_buf_size = dma_buf_size;
937 else
938 cam->dma_buf_size = cam->pix_format.sizeimage;
939 if (n_dma_bufs > 3)
940 n_dma_bufs = 3;
942 cam->nbufs = 0;
943 for (i = 0; i < n_dma_bufs; i++) {
944 cam->dma_bufs[i] = dma_alloc_coherent(&cam->pdev->dev,
945 cam->dma_buf_size, cam->dma_handles + i,
946 GFP_KERNEL);
947 if (cam->dma_bufs[i] == NULL) {
948 cam_warn(cam, "Failed to allocate DMA buffer\n");
949 break;
951 /* For debug, remove eventually */
952 memset(cam->dma_bufs[i], 0xcc, cam->dma_buf_size);
953 (cam->nbufs)++;
956 switch (cam->nbufs) {
957 case 1:
958 dma_free_coherent(&cam->pdev->dev, cam->dma_buf_size,
959 cam->dma_bufs[0], cam->dma_handles[0]);
960 cam->nbufs = 0;
961 case 0:
962 cam_err(cam, "Insufficient DMA buffers, cannot operate\n");
963 return -ENOMEM;
965 case 2:
966 if (n_dma_bufs > 2)
967 cam_warn(cam, "Will limp along with only 2 buffers\n");
968 break;
970 return 0;
973 static void cafe_free_dma_bufs(struct cafe_camera *cam)
975 int i;
977 for (i = 0; i < cam->nbufs; i++) {
978 dma_free_coherent(&cam->pdev->dev, cam->dma_buf_size,
979 cam->dma_bufs[i], cam->dma_handles[i]);
980 cam->dma_bufs[i] = NULL;
982 cam->nbufs = 0;
989 /* ----------------------------------------------------------------------- */
991 * Here starts the V4L2 interface code.
995 * Read an image from the device.
997 static ssize_t cafe_deliver_buffer(struct cafe_camera *cam,
998 char __user *buffer, size_t len, loff_t *pos)
1000 int bufno;
1001 unsigned long flags;
1003 spin_lock_irqsave(&cam->dev_lock, flags);
1004 if (cam->next_buf < 0) {
1005 cam_err(cam, "deliver_buffer: No next buffer\n");
1006 spin_unlock_irqrestore(&cam->dev_lock, flags);
1007 return -EIO;
1009 bufno = cam->next_buf;
1010 clear_bit(bufno, &cam->flags);
1011 if (++(cam->next_buf) >= cam->nbufs)
1012 cam->next_buf = 0;
1013 if (! test_bit(cam->next_buf, &cam->flags))
1014 cam->next_buf = -1;
1015 cam->specframes = 0;
1016 spin_unlock_irqrestore(&cam->dev_lock, flags);
1018 if (len > cam->pix_format.sizeimage)
1019 len = cam->pix_format.sizeimage;
1020 if (copy_to_user(buffer, cam->dma_bufs[bufno], len))
1021 return -EFAULT;
1022 (*pos) += len;
1023 return len;
1027 * Get everything ready, and start grabbing frames.
1029 static int cafe_read_setup(struct cafe_camera *cam, enum cafe_state state)
1031 int ret;
1032 unsigned long flags;
1035 * Configuration. If we still don't have DMA buffers,
1036 * make one last, desperate attempt.
1038 if (cam->nbufs == 0)
1039 if (cafe_alloc_dma_bufs(cam, 0))
1040 return -ENOMEM;
1042 if (cafe_needs_config(cam)) {
1043 cafe_cam_configure(cam);
1044 ret = cafe_ctlr_configure(cam);
1045 if (ret)
1046 return ret;
1050 * Turn it loose.
1052 spin_lock_irqsave(&cam->dev_lock, flags);
1053 cafe_reset_buffers(cam);
1054 cafe_ctlr_irq_enable(cam);
1055 cam->state = state;
1056 cafe_ctlr_start(cam);
1057 spin_unlock_irqrestore(&cam->dev_lock, flags);
1058 return 0;
1062 static ssize_t cafe_v4l_read(struct file *filp,
1063 char __user *buffer, size_t len, loff_t *pos)
1065 struct cafe_camera *cam = filp->private_data;
1066 int ret = 0;
1069 * Perhaps we're in speculative read mode and already
1070 * have data?
1072 mutex_lock(&cam->s_mutex);
1073 if (cam->state == S_SPECREAD) {
1074 if (cam->next_buf >= 0) {
1075 ret = cafe_deliver_buffer(cam, buffer, len, pos);
1076 if (ret != 0)
1077 goto out_unlock;
1079 } else if (cam->state == S_FLAKED || cam->state == S_NOTREADY) {
1080 ret = -EIO;
1081 goto out_unlock;
1082 } else if (cam->state != S_IDLE) {
1083 ret = -EBUSY;
1084 goto out_unlock;
1088 * v4l2: multiple processes can open the device, but only
1089 * one gets to grab data from it.
1091 if (cam->owner && cam->owner != filp) {
1092 ret = -EBUSY;
1093 goto out_unlock;
1095 cam->owner = filp;
1098 * Do setup if need be.
1100 if (cam->state != S_SPECREAD) {
1101 ret = cafe_read_setup(cam, S_SINGLEREAD);
1102 if (ret)
1103 goto out_unlock;
1106 * Wait for something to happen. This should probably
1107 * be interruptible (FIXME).
1109 wait_event_timeout(cam->iowait, cam->next_buf >= 0, HZ);
1110 if (cam->next_buf < 0) {
1111 cam_err(cam, "read() operation timed out\n");
1112 cafe_ctlr_stop_dma(cam);
1113 ret = -EIO;
1114 goto out_unlock;
1117 * Give them their data and we should be done.
1119 ret = cafe_deliver_buffer(cam, buffer, len, pos);
1121 out_unlock:
1122 mutex_unlock(&cam->s_mutex);
1123 return ret;
1134 * Streaming I/O support.
1139 static int cafe_vidioc_streamon(struct file *filp, void *priv,
1140 enum v4l2_buf_type type)
1142 struct cafe_camera *cam = filp->private_data;
1143 int ret = -EINVAL;
1145 if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1146 goto out;
1147 mutex_lock(&cam->s_mutex);
1148 if (cam->state != S_IDLE || cam->n_sbufs == 0)
1149 goto out_unlock;
1151 cam->sequence = 0;
1152 ret = cafe_read_setup(cam, S_STREAMING);
1154 out_unlock:
1155 mutex_unlock(&cam->s_mutex);
1156 out:
1157 return ret;
1161 static int cafe_vidioc_streamoff(struct file *filp, void *priv,
1162 enum v4l2_buf_type type)
1164 struct cafe_camera *cam = filp->private_data;
1165 int ret = -EINVAL;
1167 if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1168 goto out;
1169 mutex_lock(&cam->s_mutex);
1170 if (cam->state != S_STREAMING)
1171 goto out_unlock;
1173 cafe_ctlr_stop_dma(cam);
1174 ret = 0;
1176 out_unlock:
1177 mutex_unlock(&cam->s_mutex);
1178 out:
1179 return ret;
1184 static int cafe_setup_siobuf(struct cafe_camera *cam, int index)
1186 struct cafe_sio_buffer *buf = cam->sb_bufs + index;
1188 INIT_LIST_HEAD(&buf->list);
1189 buf->v4lbuf.length = PAGE_ALIGN(cam->pix_format.sizeimage);
1190 buf->buffer = vmalloc_user(buf->v4lbuf.length);
1191 if (buf->buffer == NULL)
1192 return -ENOMEM;
1193 buf->mapcount = 0;
1194 buf->cam = cam;
1196 buf->v4lbuf.index = index;
1197 buf->v4lbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
1198 buf->v4lbuf.field = V4L2_FIELD_NONE;
1199 buf->v4lbuf.memory = V4L2_MEMORY_MMAP;
1201 * Offset: must be 32-bit even on a 64-bit system. video-buf
1202 * just uses the length times the index, but the spec warns
1203 * against doing just that - vma merging problems. So we
1204 * leave a gap between each pair of buffers.
1206 buf->v4lbuf.m.offset = 2*index*buf->v4lbuf.length;
1207 return 0;
1210 static int cafe_free_sio_buffers(struct cafe_camera *cam)
1212 int i;
1215 * If any buffers are mapped, we cannot free them at all.
1217 for (i = 0; i < cam->n_sbufs; i++)
1218 if (cam->sb_bufs[i].mapcount > 0)
1219 return -EBUSY;
1221 * OK, let's do it.
1223 for (i = 0; i < cam->n_sbufs; i++)
1224 vfree(cam->sb_bufs[i].buffer);
1225 cam->n_sbufs = 0;
1226 kfree(cam->sb_bufs);
1227 cam->sb_bufs = NULL;
1228 INIT_LIST_HEAD(&cam->sb_avail);
1229 INIT_LIST_HEAD(&cam->sb_full);
1230 return 0;
1235 static int cafe_vidioc_reqbufs(struct file *filp, void *priv,
1236 struct v4l2_requestbuffers *req)
1238 struct cafe_camera *cam = filp->private_data;
1239 int ret = 0; /* Silence warning */
1242 * Make sure it's something we can do. User pointers could be
1243 * implemented without great pain, but that's not been done yet.
1245 if (req->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1246 return -EINVAL;
1247 if (req->memory != V4L2_MEMORY_MMAP)
1248 return -EINVAL;
1250 * If they ask for zero buffers, they really want us to stop streaming
1251 * (if it's happening) and free everything. Should we check owner?
1253 mutex_lock(&cam->s_mutex);
1254 if (req->count == 0) {
1255 if (cam->state == S_STREAMING)
1256 cafe_ctlr_stop_dma(cam);
1257 ret = cafe_free_sio_buffers (cam);
1258 goto out;
1261 * Device needs to be idle and working. We *could* try to do the
1262 * right thing in S_SPECREAD by shutting things down, but it
1263 * probably doesn't matter.
1265 if (cam->state != S_IDLE || (cam->owner && cam->owner != filp)) {
1266 ret = -EBUSY;
1267 goto out;
1269 cam->owner = filp;
1271 if (req->count < min_buffers)
1272 req->count = min_buffers;
1273 else if (req->count > max_buffers)
1274 req->count = max_buffers;
1275 if (cam->n_sbufs > 0) {
1276 ret = cafe_free_sio_buffers(cam);
1277 if (ret)
1278 goto out;
1281 cam->sb_bufs = kzalloc(req->count*sizeof(struct cafe_sio_buffer),
1282 GFP_KERNEL);
1283 if (cam->sb_bufs == NULL) {
1284 ret = -ENOMEM;
1285 goto out;
1287 for (cam->n_sbufs = 0; cam->n_sbufs < req->count; (cam->n_sbufs++)) {
1288 ret = cafe_setup_siobuf(cam, cam->n_sbufs);
1289 if (ret)
1290 break;
1293 if (cam->n_sbufs == 0) /* no luck at all - ret already set */
1294 kfree(cam->sb_bufs);
1295 req->count = cam->n_sbufs; /* In case of partial success */
1297 out:
1298 mutex_unlock(&cam->s_mutex);
1299 return ret;
1303 static int cafe_vidioc_querybuf(struct file *filp, void *priv,
1304 struct v4l2_buffer *buf)
1306 struct cafe_camera *cam = filp->private_data;
1307 int ret = -EINVAL;
1309 mutex_lock(&cam->s_mutex);
1310 if (buf->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1311 goto out;
1312 if (buf->index < 0 || buf->index >= cam->n_sbufs)
1313 goto out;
1314 *buf = cam->sb_bufs[buf->index].v4lbuf;
1315 ret = 0;
1316 out:
1317 mutex_unlock(&cam->s_mutex);
1318 return ret;
1321 static int cafe_vidioc_qbuf(struct file *filp, void *priv,
1322 struct v4l2_buffer *buf)
1324 struct cafe_camera *cam = filp->private_data;
1325 struct cafe_sio_buffer *sbuf;
1326 int ret = -EINVAL;
1327 unsigned long flags;
1329 mutex_lock(&cam->s_mutex);
1330 if (buf->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1331 goto out;
1332 if (buf->index < 0 || buf->index >= cam->n_sbufs)
1333 goto out;
1334 sbuf = cam->sb_bufs + buf->index;
1335 if (sbuf->v4lbuf.flags & V4L2_BUF_FLAG_QUEUED) {
1336 ret = 0; /* Already queued?? */
1337 goto out;
1339 if (sbuf->v4lbuf.flags & V4L2_BUF_FLAG_DONE) {
1340 /* Spec doesn't say anything, seems appropriate tho */
1341 ret = -EBUSY;
1342 goto out;
1344 sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_QUEUED;
1345 spin_lock_irqsave(&cam->dev_lock, flags);
1346 list_add(&sbuf->list, &cam->sb_avail);
1347 spin_unlock_irqrestore(&cam->dev_lock, flags);
1348 ret = 0;
1349 out:
1350 mutex_unlock(&cam->s_mutex);
1351 return ret;
1354 static int cafe_vidioc_dqbuf(struct file *filp, void *priv,
1355 struct v4l2_buffer *buf)
1357 struct cafe_camera *cam = filp->private_data;
1358 struct cafe_sio_buffer *sbuf;
1359 int ret = -EINVAL;
1360 unsigned long flags;
1362 mutex_lock(&cam->s_mutex);
1363 if (buf->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1364 goto out_unlock;
1365 if (cam->state != S_STREAMING)
1366 goto out_unlock;
1367 if (list_empty(&cam->sb_full) && filp->f_flags & O_NONBLOCK) {
1368 ret = -EAGAIN;
1369 goto out_unlock;
1372 while (list_empty(&cam->sb_full) && cam->state == S_STREAMING) {
1373 mutex_unlock(&cam->s_mutex);
1374 if (wait_event_interruptible(cam->iowait,
1375 !list_empty(&cam->sb_full))) {
1376 ret = -ERESTARTSYS;
1377 goto out;
1379 mutex_lock(&cam->s_mutex);
1382 if (cam->state != S_STREAMING)
1383 ret = -EINTR;
1384 else {
1385 spin_lock_irqsave(&cam->dev_lock, flags);
1386 /* Should probably recheck !list_empty() here */
1387 sbuf = list_entry(cam->sb_full.next,
1388 struct cafe_sio_buffer, list);
1389 list_del_init(&sbuf->list);
1390 spin_unlock_irqrestore(&cam->dev_lock, flags);
1391 sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_DONE;
1392 *buf = sbuf->v4lbuf;
1393 ret = 0;
1396 out_unlock:
1397 mutex_unlock(&cam->s_mutex);
1398 out:
1399 return ret;
1404 static void cafe_v4l_vm_open(struct vm_area_struct *vma)
1406 struct cafe_sio_buffer *sbuf = vma->vm_private_data;
1408 * Locking: done under mmap_sem, so we don't need to
1409 * go back to the camera lock here.
1411 sbuf->mapcount++;
1415 static void cafe_v4l_vm_close(struct vm_area_struct *vma)
1417 struct cafe_sio_buffer *sbuf = vma->vm_private_data;
1419 mutex_lock(&sbuf->cam->s_mutex);
1420 sbuf->mapcount--;
1421 /* Docs say we should stop I/O too... */
1422 if (sbuf->mapcount == 0)
1423 sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_MAPPED;
1424 mutex_unlock(&sbuf->cam->s_mutex);
1427 static struct vm_operations_struct cafe_v4l_vm_ops = {
1428 .open = cafe_v4l_vm_open,
1429 .close = cafe_v4l_vm_close
1433 static int cafe_v4l_mmap(struct file *filp, struct vm_area_struct *vma)
1435 struct cafe_camera *cam = filp->private_data;
1436 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
1437 int ret = -EINVAL;
1438 int i;
1439 struct cafe_sio_buffer *sbuf = NULL;
1441 if (! (vma->vm_flags & VM_WRITE) || ! (vma->vm_flags & VM_SHARED))
1442 return -EINVAL;
1444 * Find the buffer they are looking for.
1446 mutex_lock(&cam->s_mutex);
1447 for (i = 0; i < cam->n_sbufs; i++)
1448 if (cam->sb_bufs[i].v4lbuf.m.offset == offset) {
1449 sbuf = cam->sb_bufs + i;
1450 break;
1452 if (sbuf == NULL)
1453 goto out;
1455 ret = remap_vmalloc_range(vma, sbuf->buffer, 0);
1456 if (ret)
1457 goto out;
1458 vma->vm_flags |= VM_DONTEXPAND;
1459 vma->vm_private_data = sbuf;
1460 vma->vm_ops = &cafe_v4l_vm_ops;
1461 sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_MAPPED;
1462 cafe_v4l_vm_open(vma);
1463 ret = 0;
1464 out:
1465 mutex_unlock(&cam->s_mutex);
1466 return ret;
1471 static int cafe_v4l_open(struct inode *inode, struct file *filp)
1473 struct cafe_camera *cam;
1475 cam = cafe_find_dev(iminor(inode));
1476 if (cam == NULL)
1477 return -ENODEV;
1478 filp->private_data = cam;
1480 mutex_lock(&cam->s_mutex);
1481 if (cam->users == 0) {
1482 cafe_ctlr_power_up(cam);
1483 __cafe_cam_reset(cam);
1484 cafe_set_config_needed(cam, 1);
1485 /* FIXME make sure this is complete */
1487 (cam->users)++;
1488 mutex_unlock(&cam->s_mutex);
1489 return 0;
1493 static int cafe_v4l_release(struct inode *inode, struct file *filp)
1495 struct cafe_camera *cam = filp->private_data;
1497 mutex_lock(&cam->s_mutex);
1498 (cam->users)--;
1499 if (filp == cam->owner) {
1500 cafe_ctlr_stop_dma(cam);
1501 cafe_free_sio_buffers(cam);
1502 cam->owner = NULL;
1504 if (cam->users == 0) {
1505 cafe_ctlr_power_down(cam);
1506 if (! alloc_bufs_at_load)
1507 cafe_free_dma_bufs(cam);
1509 mutex_unlock(&cam->s_mutex);
1510 return 0;
1515 static unsigned int cafe_v4l_poll(struct file *filp,
1516 struct poll_table_struct *pt)
1518 struct cafe_camera *cam = filp->private_data;
1520 poll_wait(filp, &cam->iowait, pt);
1521 if (cam->next_buf >= 0)
1522 return POLLIN | POLLRDNORM;
1523 return 0;
1528 static int cafe_vidioc_queryctrl(struct file *filp, void *priv,
1529 struct v4l2_queryctrl *qc)
1531 struct cafe_camera *cam = filp->private_data;
1532 int ret;
1534 mutex_lock(&cam->s_mutex);
1535 ret = __cafe_cam_cmd(cam, VIDIOC_QUERYCTRL, qc);
1536 mutex_unlock(&cam->s_mutex);
1537 return ret;
1541 static int cafe_vidioc_g_ctrl(struct file *filp, void *priv,
1542 struct v4l2_control *ctrl)
1544 struct cafe_camera *cam = filp->private_data;
1545 int ret;
1547 mutex_lock(&cam->s_mutex);
1548 ret = __cafe_cam_cmd(cam, VIDIOC_G_CTRL, ctrl);
1549 mutex_unlock(&cam->s_mutex);
1550 return ret;
1554 static int cafe_vidioc_s_ctrl(struct file *filp, void *priv,
1555 struct v4l2_control *ctrl)
1557 struct cafe_camera *cam = filp->private_data;
1558 int ret;
1560 mutex_lock(&cam->s_mutex);
1561 ret = __cafe_cam_cmd(cam, VIDIOC_S_CTRL, ctrl);
1562 mutex_unlock(&cam->s_mutex);
1563 return ret;
1570 static int cafe_vidioc_querycap(struct file *file, void *priv,
1571 struct v4l2_capability *cap)
1573 strcpy(cap->driver, "cafe_ccic");
1574 strcpy(cap->card, "cafe_ccic");
1575 cap->version = CAFE_VERSION;
1576 cap->capabilities = V4L2_CAP_VIDEO_CAPTURE |
1577 V4L2_CAP_READWRITE | V4L2_CAP_STREAMING;
1578 return 0;
1583 * The default format we use until somebody says otherwise.
1585 static struct v4l2_pix_format cafe_def_pix_format = {
1586 .width = VGA_WIDTH,
1587 .height = VGA_HEIGHT,
1588 .pixelformat = V4L2_PIX_FMT_YUYV,
1589 .field = V4L2_FIELD_NONE,
1590 .bytesperline = VGA_WIDTH*2,
1591 .sizeimage = VGA_WIDTH*VGA_HEIGHT*2,
1594 static int cafe_vidioc_enum_fmt_cap(struct file *filp,
1595 void *priv, struct v4l2_fmtdesc *fmt)
1597 struct cafe_camera *cam = priv;
1598 int ret;
1600 if (fmt->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1601 return -EINVAL;
1602 mutex_lock(&cam->s_mutex);
1603 ret = __cafe_cam_cmd(cam, VIDIOC_ENUM_FMT, fmt);
1604 mutex_unlock(&cam->s_mutex);
1605 return ret;
1609 static int cafe_vidioc_try_fmt_cap (struct file *filp, void *priv,
1610 struct v4l2_format *fmt)
1612 struct cafe_camera *cam = priv;
1613 int ret;
1615 mutex_lock(&cam->s_mutex);
1616 ret = __cafe_cam_cmd(cam, VIDIOC_TRY_FMT, fmt);
1617 mutex_unlock(&cam->s_mutex);
1618 return ret;
1621 static int cafe_vidioc_s_fmt_cap(struct file *filp, void *priv,
1622 struct v4l2_format *fmt)
1624 struct cafe_camera *cam = priv;
1625 int ret;
1628 * Can't do anything if the device is not idle
1629 * Also can't if there are streaming buffers in place.
1631 if (cam->state != S_IDLE || cam->n_sbufs > 0)
1632 return -EBUSY;
1634 * See if the formatting works in principle.
1636 ret = cafe_vidioc_try_fmt_cap(filp, priv, fmt);
1637 if (ret)
1638 return ret;
1640 * Now we start to change things for real, so let's do it
1641 * under lock.
1643 mutex_lock(&cam->s_mutex);
1644 cam->pix_format = fmt->fmt.pix;
1646 * Make sure we have appropriate DMA buffers.
1648 ret = -ENOMEM;
1649 if (cam->nbufs > 0 && cam->dma_buf_size < cam->pix_format.sizeimage)
1650 cafe_free_dma_bufs(cam);
1651 if (cam->nbufs == 0) {
1652 if (cafe_alloc_dma_bufs(cam, 0))
1653 goto out;
1656 * It looks like this might work, so let's program the sensor.
1658 ret = cafe_cam_configure(cam);
1659 if (! ret)
1660 ret = cafe_ctlr_configure(cam);
1661 out:
1662 mutex_unlock(&cam->s_mutex);
1663 return ret;
1667 * Return our stored notion of how the camera is/should be configured.
1668 * The V4l2 spec wants us to be smarter, and actually get this from
1669 * the camera (and not mess with it at open time). Someday.
1671 static int cafe_vidioc_g_fmt_cap(struct file *filp, void *priv,
1672 struct v4l2_format *f)
1674 struct cafe_camera *cam = priv;
1676 f->fmt.pix = cam->pix_format;
1677 return 0;
1681 * We only have one input - the sensor - so minimize the nonsense here.
1683 static int cafe_vidioc_enum_input(struct file *filp, void *priv,
1684 struct v4l2_input *input)
1686 if (input->index != 0)
1687 return -EINVAL;
1689 input->type = V4L2_INPUT_TYPE_CAMERA;
1690 input->std = V4L2_STD_ALL; /* Not sure what should go here */
1691 strcpy(input->name, "Camera");
1692 return 0;
1695 static int cafe_vidioc_g_input(struct file *filp, void *priv, unsigned int *i)
1697 *i = 0;
1698 return 0;
1701 static int cafe_vidioc_s_input(struct file *filp, void *priv, unsigned int i)
1703 if (i != 0)
1704 return -EINVAL;
1705 return 0;
1708 /* from vivi.c */
1709 static int cafe_vidioc_s_std(struct file *filp, void *priv, v4l2_std_id *a)
1711 return 0;
1715 * G/S_PARM. Most of this is done by the sensor, but we are
1716 * the level which controls the number of read buffers.
1718 static int cafe_vidioc_g_parm(struct file *filp, void *priv,
1719 struct v4l2_streamparm *parms)
1721 struct cafe_camera *cam = priv;
1722 int ret;
1724 mutex_lock(&cam->s_mutex);
1725 ret = __cafe_cam_cmd(cam, VIDIOC_G_PARM, parms);
1726 mutex_unlock(&cam->s_mutex);
1727 parms->parm.capture.readbuffers = n_dma_bufs;
1728 return ret;
1731 static int cafe_vidioc_s_parm(struct file *filp, void *priv,
1732 struct v4l2_streamparm *parms)
1734 struct cafe_camera *cam = priv;
1735 int ret;
1737 mutex_lock(&cam->s_mutex);
1738 ret = __cafe_cam_cmd(cam, VIDIOC_S_PARM, parms);
1739 mutex_unlock(&cam->s_mutex);
1740 parms->parm.capture.readbuffers = n_dma_bufs;
1741 return ret;
1745 static void cafe_v4l_dev_release(struct video_device *vd)
1747 struct cafe_camera *cam = container_of(vd, struct cafe_camera, v4ldev);
1749 kfree(cam);
1754 * This template device holds all of those v4l2 methods; we
1755 * clone it for specific real devices.
1758 static const struct file_operations cafe_v4l_fops = {
1759 .owner = THIS_MODULE,
1760 .open = cafe_v4l_open,
1761 .release = cafe_v4l_release,
1762 .read = cafe_v4l_read,
1763 .poll = cafe_v4l_poll,
1764 .mmap = cafe_v4l_mmap,
1765 .ioctl = video_ioctl2,
1766 .llseek = no_llseek,
1769 static struct video_device cafe_v4l_template = {
1770 .name = "cafe",
1771 .type = VFL_TYPE_GRABBER,
1772 .type2 = VID_TYPE_CAPTURE,
1773 .minor = -1, /* Get one dynamically */
1774 .tvnorms = V4L2_STD_NTSC_M,
1775 .current_norm = V4L2_STD_NTSC_M, /* make mplayer happy */
1777 .fops = &cafe_v4l_fops,
1778 .release = cafe_v4l_dev_release,
1780 .vidioc_querycap = cafe_vidioc_querycap,
1781 .vidioc_enum_fmt_cap = cafe_vidioc_enum_fmt_cap,
1782 .vidioc_try_fmt_cap = cafe_vidioc_try_fmt_cap,
1783 .vidioc_s_fmt_cap = cafe_vidioc_s_fmt_cap,
1784 .vidioc_g_fmt_cap = cafe_vidioc_g_fmt_cap,
1785 .vidioc_enum_input = cafe_vidioc_enum_input,
1786 .vidioc_g_input = cafe_vidioc_g_input,
1787 .vidioc_s_input = cafe_vidioc_s_input,
1788 .vidioc_s_std = cafe_vidioc_s_std,
1789 .vidioc_reqbufs = cafe_vidioc_reqbufs,
1790 .vidioc_querybuf = cafe_vidioc_querybuf,
1791 .vidioc_qbuf = cafe_vidioc_qbuf,
1792 .vidioc_dqbuf = cafe_vidioc_dqbuf,
1793 .vidioc_streamon = cafe_vidioc_streamon,
1794 .vidioc_streamoff = cafe_vidioc_streamoff,
1795 .vidioc_queryctrl = cafe_vidioc_queryctrl,
1796 .vidioc_g_ctrl = cafe_vidioc_g_ctrl,
1797 .vidioc_s_ctrl = cafe_vidioc_s_ctrl,
1798 .vidioc_g_parm = cafe_vidioc_g_parm,
1799 .vidioc_s_parm = cafe_vidioc_s_parm,
1808 /* ---------------------------------------------------------------------- */
1810 * Interrupt handler stuff
1815 static void cafe_frame_tasklet(unsigned long data)
1817 struct cafe_camera *cam = (struct cafe_camera *) data;
1818 int i;
1819 unsigned long flags;
1820 struct cafe_sio_buffer *sbuf;
1822 spin_lock_irqsave(&cam->dev_lock, flags);
1823 for (i = 0; i < cam->nbufs; i++) {
1824 int bufno = cam->next_buf;
1825 if (bufno < 0) { /* "will never happen" */
1826 cam_err(cam, "No valid bufs in tasklet!\n");
1827 break;
1829 if (++(cam->next_buf) >= cam->nbufs)
1830 cam->next_buf = 0;
1831 if (! test_bit(bufno, &cam->flags))
1832 continue;
1833 if (list_empty(&cam->sb_avail))
1834 break; /* Leave it valid, hope for better later */
1835 clear_bit(bufno, &cam->flags);
1836 sbuf = list_entry(cam->sb_avail.next,
1837 struct cafe_sio_buffer, list);
1839 * Drop the lock during the big copy. This *should* be safe...
1841 spin_unlock_irqrestore(&cam->dev_lock, flags);
1842 memcpy(sbuf->buffer, cam->dma_bufs[bufno],
1843 cam->pix_format.sizeimage);
1844 sbuf->v4lbuf.bytesused = cam->pix_format.sizeimage;
1845 sbuf->v4lbuf.sequence = cam->buf_seq[bufno];
1846 sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_QUEUED;
1847 sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_DONE;
1848 spin_lock_irqsave(&cam->dev_lock, flags);
1849 list_move_tail(&sbuf->list, &cam->sb_full);
1851 if (! list_empty(&cam->sb_full))
1852 wake_up(&cam->iowait);
1853 spin_unlock_irqrestore(&cam->dev_lock, flags);
1858 static void cafe_frame_complete(struct cafe_camera *cam, int frame)
1861 * Basic frame housekeeping.
1863 if (test_bit(frame, &cam->flags) && printk_ratelimit())
1864 cam_err(cam, "Frame overrun on %d, frames lost\n", frame);
1865 set_bit(frame, &cam->flags);
1866 clear_bit(CF_DMA_ACTIVE, &cam->flags);
1867 if (cam->next_buf < 0)
1868 cam->next_buf = frame;
1869 cam->buf_seq[frame] = ++(cam->sequence);
1871 switch (cam->state) {
1873 * If in single read mode, try going speculative.
1875 case S_SINGLEREAD:
1876 cam->state = S_SPECREAD;
1877 cam->specframes = 0;
1878 wake_up(&cam->iowait);
1879 break;
1882 * If we are already doing speculative reads, and nobody is
1883 * reading them, just stop.
1885 case S_SPECREAD:
1886 if (++(cam->specframes) >= cam->nbufs) {
1887 cafe_ctlr_stop(cam);
1888 cafe_ctlr_irq_disable(cam);
1889 cam->state = S_IDLE;
1891 wake_up(&cam->iowait);
1892 break;
1894 * For the streaming case, we defer the real work to the
1895 * camera tasklet.
1897 * FIXME: if the application is not consuming the buffers,
1898 * we should eventually put things on hold and restart in
1899 * vidioc_dqbuf().
1901 case S_STREAMING:
1902 tasklet_schedule(&cam->s_tasklet);
1903 break;
1905 default:
1906 cam_err(cam, "Frame interrupt in non-operational state\n");
1907 break;
1914 static void cafe_frame_irq(struct cafe_camera *cam, unsigned int irqs)
1916 unsigned int frame;
1918 cafe_reg_write(cam, REG_IRQSTAT, FRAMEIRQS); /* Clear'em all */
1920 * Handle any frame completions. There really should
1921 * not be more than one of these, or we have fallen
1922 * far behind.
1924 for (frame = 0; frame < cam->nbufs; frame++)
1925 if (irqs & (IRQ_EOF0 << frame))
1926 cafe_frame_complete(cam, frame);
1928 * If a frame starts, note that we have DMA active. This
1929 * code assumes that we won't get multiple frame interrupts
1930 * at once; may want to rethink that.
1932 if (irqs & (IRQ_SOF0 | IRQ_SOF1 | IRQ_SOF2))
1933 set_bit(CF_DMA_ACTIVE, &cam->flags);
1938 static irqreturn_t cafe_irq(int irq, void *data)
1940 struct cafe_camera *cam = data;
1941 unsigned int irqs;
1943 spin_lock(&cam->dev_lock);
1944 irqs = cafe_reg_read(cam, REG_IRQSTAT);
1945 if ((irqs & ALLIRQS) == 0) {
1946 spin_unlock(&cam->dev_lock);
1947 return IRQ_NONE;
1949 if (irqs & FRAMEIRQS)
1950 cafe_frame_irq(cam, irqs);
1951 if (irqs & TWSIIRQS) {
1952 cafe_reg_write(cam, REG_IRQSTAT, TWSIIRQS);
1953 wake_up(&cam->smbus_wait);
1955 spin_unlock(&cam->dev_lock);
1956 return IRQ_HANDLED;
1960 /* -------------------------------------------------------------------------- */
1961 #ifdef CONFIG_VIDEO_ADV_DEBUG
1963 * Debugfs stuff.
1966 static char cafe_debug_buf[1024];
1967 static struct dentry *cafe_dfs_root;
1969 static void cafe_dfs_setup(void)
1971 cafe_dfs_root = debugfs_create_dir("cafe_ccic", NULL);
1972 if (IS_ERR(cafe_dfs_root)) {
1973 cafe_dfs_root = NULL; /* Never mind */
1974 printk(KERN_NOTICE "cafe_ccic unable to set up debugfs\n");
1978 static void cafe_dfs_shutdown(void)
1980 if (cafe_dfs_root)
1981 debugfs_remove(cafe_dfs_root);
1984 static int cafe_dfs_open(struct inode *inode, struct file *file)
1986 file->private_data = inode->i_private;
1987 return 0;
1990 static ssize_t cafe_dfs_read_regs(struct file *file,
1991 char __user *buf, size_t count, loff_t *ppos)
1993 struct cafe_camera *cam = file->private_data;
1994 char *s = cafe_debug_buf;
1995 int offset;
1997 for (offset = 0; offset < 0x44; offset += 4)
1998 s += sprintf(s, "%02x: %08x\n", offset,
1999 cafe_reg_read(cam, offset));
2000 for (offset = 0x88; offset <= 0x90; offset += 4)
2001 s += sprintf(s, "%02x: %08x\n", offset,
2002 cafe_reg_read(cam, offset));
2003 for (offset = 0xb4; offset <= 0xbc; offset += 4)
2004 s += sprintf(s, "%02x: %08x\n", offset,
2005 cafe_reg_read(cam, offset));
2006 for (offset = 0x3000; offset <= 0x300c; offset += 4)
2007 s += sprintf(s, "%04x: %08x\n", offset,
2008 cafe_reg_read(cam, offset));
2009 return simple_read_from_buffer(buf, count, ppos, cafe_debug_buf,
2010 s - cafe_debug_buf);
2013 static const struct file_operations cafe_dfs_reg_ops = {
2014 .owner = THIS_MODULE,
2015 .read = cafe_dfs_read_regs,
2016 .open = cafe_dfs_open
2019 static ssize_t cafe_dfs_read_cam(struct file *file,
2020 char __user *buf, size_t count, loff_t *ppos)
2022 struct cafe_camera *cam = file->private_data;
2023 char *s = cafe_debug_buf;
2024 int offset;
2026 if (! cam->sensor)
2027 return -EINVAL;
2028 for (offset = 0x0; offset < 0x8a; offset++)
2030 u8 v;
2032 cafe_smbus_read_data(cam, cam->sensor->addr, offset, &v);
2033 s += sprintf(s, "%02x: %02x\n", offset, v);
2035 return simple_read_from_buffer(buf, count, ppos, cafe_debug_buf,
2036 s - cafe_debug_buf);
2039 static const struct file_operations cafe_dfs_cam_ops = {
2040 .owner = THIS_MODULE,
2041 .read = cafe_dfs_read_cam,
2042 .open = cafe_dfs_open
2047 static void cafe_dfs_cam_setup(struct cafe_camera *cam)
2049 char fname[40];
2051 if (!cafe_dfs_root)
2052 return;
2053 sprintf(fname, "regs-%d", cam->v4ldev.minor);
2054 cam->dfs_regs = debugfs_create_file(fname, 0444, cafe_dfs_root,
2055 cam, &cafe_dfs_reg_ops);
2056 sprintf(fname, "cam-%d", cam->v4ldev.minor);
2057 cam->dfs_cam_regs = debugfs_create_file(fname, 0444, cafe_dfs_root,
2058 cam, &cafe_dfs_cam_ops);
2062 static void cafe_dfs_cam_shutdown(struct cafe_camera *cam)
2064 if (! IS_ERR(cam->dfs_regs))
2065 debugfs_remove(cam->dfs_regs);
2066 if (! IS_ERR(cam->dfs_cam_regs))
2067 debugfs_remove(cam->dfs_cam_regs);
2070 #else
2072 #define cafe_dfs_setup()
2073 #define cafe_dfs_shutdown()
2074 #define cafe_dfs_cam_setup(cam)
2075 #define cafe_dfs_cam_shutdown(cam)
2076 #endif /* CONFIG_VIDEO_ADV_DEBUG */
2081 /* ------------------------------------------------------------------------*/
2083 * PCI interface stuff.
2086 static int cafe_pci_probe(struct pci_dev *pdev,
2087 const struct pci_device_id *id)
2089 int ret;
2090 u16 classword;
2091 struct cafe_camera *cam;
2093 * Make sure we have a camera here - we'll get calls for
2094 * the other cafe devices as well.
2096 pci_read_config_word(pdev, PCI_CLASS_DEVICE, &classword);
2097 if (classword != PCI_CLASS_MULTIMEDIA_VIDEO)
2098 return -ENODEV;
2100 * Start putting together one of our big camera structures.
2102 ret = -ENOMEM;
2103 cam = kzalloc(sizeof(struct cafe_camera), GFP_KERNEL);
2104 if (cam == NULL)
2105 goto out;
2106 mutex_init(&cam->s_mutex);
2107 mutex_lock(&cam->s_mutex);
2108 spin_lock_init(&cam->dev_lock);
2109 cam->state = S_NOTREADY;
2110 cafe_set_config_needed(cam, 1);
2111 init_waitqueue_head(&cam->smbus_wait);
2112 init_waitqueue_head(&cam->iowait);
2113 cam->pdev = pdev;
2114 cam->pix_format = cafe_def_pix_format;
2115 INIT_LIST_HEAD(&cam->dev_list);
2116 INIT_LIST_HEAD(&cam->sb_avail);
2117 INIT_LIST_HEAD(&cam->sb_full);
2118 tasklet_init(&cam->s_tasklet, cafe_frame_tasklet, (unsigned long) cam);
2120 * Get set up on the PCI bus.
2122 ret = pci_enable_device(pdev);
2123 if (ret)
2124 goto out_free;
2125 pci_set_master(pdev);
2127 ret = -EIO;
2128 cam->regs = pci_iomap(pdev, 0, 0);
2129 if (! cam->regs) {
2130 printk(KERN_ERR "Unable to ioremap cafe-ccic regs\n");
2131 goto out_free;
2133 ret = request_irq(pdev->irq, cafe_irq, IRQF_SHARED, "cafe-ccic", cam);
2134 if (ret)
2135 goto out_iounmap;
2137 * Initialize the controller and leave it powered up. It will
2138 * stay that way until the sensor driver shows up.
2140 cafe_ctlr_init(cam);
2141 cafe_ctlr_power_up(cam);
2143 * Set up I2C/SMBUS communications. We have to drop the mutex here
2144 * because the sensor could attach in this call chain, leading to
2145 * unsightly deadlocks.
2147 mutex_unlock(&cam->s_mutex); /* attach can deadlock */
2148 ret = cafe_smbus_setup(cam);
2149 if (ret)
2150 goto out_freeirq;
2152 * Get the v4l2 setup done.
2154 mutex_lock(&cam->s_mutex);
2155 cam->v4ldev = cafe_v4l_template;
2156 cam->v4ldev.debug = 0;
2157 // cam->v4ldev.debug = V4L2_DEBUG_IOCTL_ARG;
2158 cam->v4ldev.dev = &pdev->dev;
2159 ret = video_register_device(&cam->v4ldev, VFL_TYPE_GRABBER, -1);
2160 if (ret)
2161 goto out_smbus;
2163 * If so requested, try to get our DMA buffers now.
2165 if (alloc_bufs_at_load) {
2166 if (cafe_alloc_dma_bufs(cam, 1))
2167 cam_warn(cam, "Unable to alloc DMA buffers at load"
2168 " will try again later.");
2171 cafe_dfs_cam_setup(cam);
2172 mutex_unlock(&cam->s_mutex);
2173 cafe_add_dev(cam);
2174 return 0;
2176 out_smbus:
2177 cafe_smbus_shutdown(cam);
2178 out_freeirq:
2179 cafe_ctlr_power_down(cam);
2180 free_irq(pdev->irq, cam);
2181 out_iounmap:
2182 pci_iounmap(pdev, cam->regs);
2183 out_free:
2184 kfree(cam);
2185 out:
2186 return ret;
2191 * Shut down an initialized device
2193 static void cafe_shutdown(struct cafe_camera *cam)
2195 /* FIXME: Make sure we take care of everything here */
2196 cafe_dfs_cam_shutdown(cam);
2197 if (cam->n_sbufs > 0)
2198 /* What if they are still mapped? Shouldn't be, but... */
2199 cafe_free_sio_buffers(cam);
2200 cafe_remove_dev(cam);
2201 cafe_ctlr_stop_dma(cam);
2202 cafe_ctlr_power_down(cam);
2203 cafe_smbus_shutdown(cam);
2204 cafe_free_dma_bufs(cam);
2205 free_irq(cam->pdev->irq, cam);
2206 pci_iounmap(cam->pdev, cam->regs);
2207 video_unregister_device(&cam->v4ldev);
2208 /* kfree(cam); done in v4l_release () */
2212 static void cafe_pci_remove(struct pci_dev *pdev)
2214 struct cafe_camera *cam = cafe_find_by_pdev(pdev);
2216 if (cam == NULL) {
2217 printk(KERN_WARNING "pci_remove on unknown pdev %p\n", pdev);
2218 return;
2220 mutex_lock(&cam->s_mutex);
2221 if (cam->users > 0)
2222 cam_warn(cam, "Removing a device with users!\n");
2223 cafe_shutdown(cam);
2224 /* No unlock - it no longer exists */
2228 #ifdef CONFIG_PM
2230 * Basic power management.
2232 static int cafe_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2234 struct cafe_camera *cam = cafe_find_by_pdev(pdev);
2235 int ret;
2237 ret = pci_save_state(pdev);
2238 if (ret)
2239 return ret;
2240 cafe_ctlr_stop_dma(cam);
2241 cafe_ctlr_power_down(cam);
2242 pci_disable_device(pdev);
2243 return 0;
2247 static int cafe_pci_resume(struct pci_dev *pdev)
2249 struct cafe_camera *cam = cafe_find_by_pdev(pdev);
2250 int ret = 0;
2252 ret = pci_restore_state(pdev);
2253 if (ret)
2254 return ret;
2255 ret = pci_enable_device(pdev);
2257 if (ret) {
2258 cam_warn(cam, "Unable to re-enable device on resume!\n");
2259 return ret;
2261 cafe_ctlr_init(cam);
2262 cafe_ctlr_power_down(cam);
2264 mutex_lock(&cam->s_mutex);
2265 if (cam->users > 0) {
2266 cafe_ctlr_power_up(cam);
2267 __cafe_cam_reset(cam);
2269 mutex_unlock(&cam->s_mutex);
2271 set_bit(CF_CONFIG_NEEDED, &cam->flags);
2272 if (cam->state == S_SPECREAD)
2273 cam->state = S_IDLE; /* Don't bother restarting */
2274 else if (cam->state == S_SINGLEREAD || cam->state == S_STREAMING)
2275 ret = cafe_read_setup(cam, cam->state);
2276 return ret;
2279 #endif /* CONFIG_PM */
2282 static struct pci_device_id cafe_ids[] = {
2283 { PCI_DEVICE(0x11ab, 0x4100) }, /* Eventual real ID */
2284 { PCI_DEVICE(0x11ab, 0x4102) }, /* Really eventual real ID */
2285 { 0, }
2288 MODULE_DEVICE_TABLE(pci, cafe_ids);
2290 static struct pci_driver cafe_pci_driver = {
2291 .name = "cafe1000-ccic",
2292 .id_table = cafe_ids,
2293 .probe = cafe_pci_probe,
2294 .remove = cafe_pci_remove,
2295 #ifdef CONFIG_PM
2296 .suspend = cafe_pci_suspend,
2297 .resume = cafe_pci_resume,
2298 #endif
2304 static int __init cafe_init(void)
2306 int ret;
2308 printk(KERN_NOTICE "Marvell M88ALP01 'CAFE' Camera Controller version %d\n",
2309 CAFE_VERSION);
2310 cafe_dfs_setup();
2311 ret = pci_register_driver(&cafe_pci_driver);
2312 if (ret) {
2313 printk(KERN_ERR "Unable to register cafe_ccic driver\n");
2314 goto out;
2316 request_module("ov7670"); /* FIXME want something more general */
2317 ret = 0;
2319 out:
2320 return ret;
2324 static void __exit cafe_exit(void)
2326 pci_unregister_driver(&cafe_pci_driver);
2327 cafe_dfs_shutdown();
2330 module_init(cafe_init);
2331 module_exit(cafe_exit);