1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
33 #include "ixgbe_common.h"
34 #include "ixgbe_phy.h"
36 static s32
ixgbe_clear_hw_cntrs(struct ixgbe_hw
*hw
);
38 static s32
ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw
*hw
);
39 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
);
41 static u16
ixgbe_calc_eeprom_checksum(struct ixgbe_hw
*hw
);
43 static s32
ixgbe_clear_vfta(struct ixgbe_hw
*hw
);
44 static s32
ixgbe_init_rx_addrs(struct ixgbe_hw
*hw
);
45 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
);
46 static void ixgbe_add_mc_addr(struct ixgbe_hw
*hw
, u8
*mc_addr
);
49 * ixgbe_start_hw - Prepare hardware for TX/RX
50 * @hw: pointer to hardware structure
52 * Starts the hardware by filling the bus info structure and media type, clears
53 * all on chip counters, initializes receive address registers, multicast
54 * table, VLAN filter table, calls routine to set up link and flow control
55 * settings, and leaves transmit and receive units disabled and uninitialized
57 s32
ixgbe_start_hw(struct ixgbe_hw
*hw
)
61 /* Set the media type */
62 hw
->phy
.media_type
= hw
->mac
.ops
.get_media_type(hw
);
64 /* Identify the PHY */
65 ixgbe_identify_phy(hw
);
68 * Store MAC address from RAR0, clear receive address registers, and
69 * clear the multicast table
71 ixgbe_init_rx_addrs(hw
);
73 /* Clear the VLAN filter table */
77 hw
->mac
.ops
.setup_link(hw
);
79 /* Clear statistics registers */
80 ixgbe_clear_hw_cntrs(hw
);
82 /* Set No Snoop Disable */
83 ctrl_ext
= IXGBE_READ_REG(hw
, IXGBE_CTRL_EXT
);
84 ctrl_ext
|= IXGBE_CTRL_EXT_NS_DIS
;
85 IXGBE_WRITE_REG(hw
, IXGBE_CTRL_EXT
, ctrl_ext
);
86 IXGBE_WRITE_FLUSH(hw
);
88 /* Clear adapter stopped flag */
89 hw
->adapter_stopped
= false;
95 * ixgbe_init_hw - Generic hardware initialization
96 * @hw: pointer to hardware structure
98 * Initialize the hardware by reseting the hardware, filling the bus info
99 * structure and media type, clears all on chip counters, initializes receive
100 * address registers, multicast table, VLAN filter table, calls routine to set
101 * up link and flow control settings, and leaves transmit and receive units
102 * disabled and uninitialized
104 s32
ixgbe_init_hw(struct ixgbe_hw
*hw
)
106 /* Reset the hardware */
107 hw
->mac
.ops
.reset(hw
);
116 * ixgbe_clear_hw_cntrs - Generic clear hardware counters
117 * @hw: pointer to hardware structure
119 * Clears all hardware statistics counters by reading them from the hardware
120 * Statistics counters are clear on read.
122 static s32
ixgbe_clear_hw_cntrs(struct ixgbe_hw
*hw
)
126 IXGBE_READ_REG(hw
, IXGBE_CRCERRS
);
127 IXGBE_READ_REG(hw
, IXGBE_ILLERRC
);
128 IXGBE_READ_REG(hw
, IXGBE_ERRBC
);
129 IXGBE_READ_REG(hw
, IXGBE_MSPDC
);
130 for (i
= 0; i
< 8; i
++)
131 IXGBE_READ_REG(hw
, IXGBE_MPC(i
));
133 IXGBE_READ_REG(hw
, IXGBE_MLFC
);
134 IXGBE_READ_REG(hw
, IXGBE_MRFC
);
135 IXGBE_READ_REG(hw
, IXGBE_RLEC
);
136 IXGBE_READ_REG(hw
, IXGBE_LXONTXC
);
137 IXGBE_READ_REG(hw
, IXGBE_LXONRXC
);
138 IXGBE_READ_REG(hw
, IXGBE_LXOFFTXC
);
139 IXGBE_READ_REG(hw
, IXGBE_LXOFFRXC
);
141 for (i
= 0; i
< 8; i
++) {
142 IXGBE_READ_REG(hw
, IXGBE_PXONTXC(i
));
143 IXGBE_READ_REG(hw
, IXGBE_PXONRXC(i
));
144 IXGBE_READ_REG(hw
, IXGBE_PXOFFTXC(i
));
145 IXGBE_READ_REG(hw
, IXGBE_PXOFFRXC(i
));
148 IXGBE_READ_REG(hw
, IXGBE_PRC64
);
149 IXGBE_READ_REG(hw
, IXGBE_PRC127
);
150 IXGBE_READ_REG(hw
, IXGBE_PRC255
);
151 IXGBE_READ_REG(hw
, IXGBE_PRC511
);
152 IXGBE_READ_REG(hw
, IXGBE_PRC1023
);
153 IXGBE_READ_REG(hw
, IXGBE_PRC1522
);
154 IXGBE_READ_REG(hw
, IXGBE_GPRC
);
155 IXGBE_READ_REG(hw
, IXGBE_BPRC
);
156 IXGBE_READ_REG(hw
, IXGBE_MPRC
);
157 IXGBE_READ_REG(hw
, IXGBE_GPTC
);
158 IXGBE_READ_REG(hw
, IXGBE_GORCL
);
159 IXGBE_READ_REG(hw
, IXGBE_GORCH
);
160 IXGBE_READ_REG(hw
, IXGBE_GOTCL
);
161 IXGBE_READ_REG(hw
, IXGBE_GOTCH
);
162 for (i
= 0; i
< 8; i
++)
163 IXGBE_READ_REG(hw
, IXGBE_RNBC(i
));
164 IXGBE_READ_REG(hw
, IXGBE_RUC
);
165 IXGBE_READ_REG(hw
, IXGBE_RFC
);
166 IXGBE_READ_REG(hw
, IXGBE_ROC
);
167 IXGBE_READ_REG(hw
, IXGBE_RJC
);
168 IXGBE_READ_REG(hw
, IXGBE_MNGPRC
);
169 IXGBE_READ_REG(hw
, IXGBE_MNGPDC
);
170 IXGBE_READ_REG(hw
, IXGBE_MNGPTC
);
171 IXGBE_READ_REG(hw
, IXGBE_TORL
);
172 IXGBE_READ_REG(hw
, IXGBE_TORH
);
173 IXGBE_READ_REG(hw
, IXGBE_TPR
);
174 IXGBE_READ_REG(hw
, IXGBE_TPT
);
175 IXGBE_READ_REG(hw
, IXGBE_PTC64
);
176 IXGBE_READ_REG(hw
, IXGBE_PTC127
);
177 IXGBE_READ_REG(hw
, IXGBE_PTC255
);
178 IXGBE_READ_REG(hw
, IXGBE_PTC511
);
179 IXGBE_READ_REG(hw
, IXGBE_PTC1023
);
180 IXGBE_READ_REG(hw
, IXGBE_PTC1522
);
181 IXGBE_READ_REG(hw
, IXGBE_MPTC
);
182 IXGBE_READ_REG(hw
, IXGBE_BPTC
);
183 for (i
= 0; i
< 16; i
++) {
184 IXGBE_READ_REG(hw
, IXGBE_QPRC(i
));
185 IXGBE_READ_REG(hw
, IXGBE_QBRC(i
));
186 IXGBE_READ_REG(hw
, IXGBE_QPTC(i
));
187 IXGBE_READ_REG(hw
, IXGBE_QBTC(i
));
194 * ixgbe_get_mac_addr - Generic get MAC address
195 * @hw: pointer to hardware structure
196 * @mac_addr: Adapter MAC address
198 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
199 * A reset of the adapter must be performed prior to calling this function
200 * in order for the MAC address to have been loaded from the EEPROM into RAR0
202 s32
ixgbe_get_mac_addr(struct ixgbe_hw
*hw
, u8
*mac_addr
)
208 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(0));
209 rar_low
= IXGBE_READ_REG(hw
, IXGBE_RAL(0));
211 for (i
= 0; i
< 4; i
++)
212 mac_addr
[i
] = (u8
)(rar_low
>> (i
*8));
214 for (i
= 0; i
< 2; i
++)
215 mac_addr
[i
+4] = (u8
)(rar_high
>> (i
*8));
220 s32
ixgbe_read_part_num(struct ixgbe_hw
*hw
, u32
*part_num
)
225 ret_val
= ixgbe_read_eeprom(hw
, IXGBE_PBANUM0_PTR
, &data
);
227 hw_dbg(hw
, "NVM Read Error\n");
230 *part_num
= (u32
)(data
<< 16);
232 ret_val
= ixgbe_read_eeprom(hw
, IXGBE_PBANUM1_PTR
, &data
);
234 hw_dbg(hw
, "NVM Read Error\n");
243 * ixgbe_stop_adapter - Generic stop TX/RX units
244 * @hw: pointer to hardware structure
246 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
247 * disables transmit and receive units. The adapter_stopped flag is used by
248 * the shared code and drivers to determine if the adapter is in a stopped
249 * state and should not touch the hardware.
251 s32
ixgbe_stop_adapter(struct ixgbe_hw
*hw
)
253 u32 number_of_queues
;
258 * Set the adapter_stopped flag so other driver functions stop touching
261 hw
->adapter_stopped
= true;
263 /* Disable the receive unit */
264 reg_val
= IXGBE_READ_REG(hw
, IXGBE_RXCTRL
);
265 reg_val
&= ~(IXGBE_RXCTRL_RXEN
);
266 IXGBE_WRITE_REG(hw
, IXGBE_RXCTRL
, reg_val
);
269 /* Clear interrupt mask to stop from interrupts being generated */
270 IXGBE_WRITE_REG(hw
, IXGBE_EIMC
, IXGBE_IRQ_CLEAR_MASK
);
272 /* Clear any pending interrupts */
273 IXGBE_READ_REG(hw
, IXGBE_EICR
);
275 /* Disable the transmit unit. Each queue must be disabled. */
276 number_of_queues
= hw
->mac
.num_tx_queues
;
277 for (i
= 0; i
< number_of_queues
; i
++) {
278 reg_val
= IXGBE_READ_REG(hw
, IXGBE_TXDCTL(i
));
279 if (reg_val
& IXGBE_TXDCTL_ENABLE
) {
280 reg_val
&= ~IXGBE_TXDCTL_ENABLE
;
281 IXGBE_WRITE_REG(hw
, IXGBE_TXDCTL(i
), reg_val
);
289 * ixgbe_led_on - Turns on the software controllable LEDs.
290 * @hw: pointer to hardware structure
291 * @index: led number to turn on
293 s32
ixgbe_led_on(struct ixgbe_hw
*hw
, u32 index
)
295 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
297 /* To turn on the LED, set mode to ON. */
298 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
299 led_reg
|= IXGBE_LED_ON
<< IXGBE_LED_MODE_SHIFT(index
);
300 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
301 IXGBE_WRITE_FLUSH(hw
);
307 * ixgbe_led_off - Turns off the software controllable LEDs.
308 * @hw: pointer to hardware structure
309 * @index: led number to turn off
311 s32
ixgbe_led_off(struct ixgbe_hw
*hw
, u32 index
)
313 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
315 /* To turn off the LED, set mode to OFF. */
316 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
317 led_reg
|= IXGBE_LED_OFF
<< IXGBE_LED_MODE_SHIFT(index
);
318 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
319 IXGBE_WRITE_FLUSH(hw
);
326 * ixgbe_init_eeprom - Initialize EEPROM params
327 * @hw: pointer to hardware structure
329 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
330 * ixgbe_hw struct in order to set up EEPROM access.
332 s32
ixgbe_init_eeprom(struct ixgbe_hw
*hw
)
334 struct ixgbe_eeprom_info
*eeprom
= &hw
->eeprom
;
338 if (eeprom
->type
== ixgbe_eeprom_uninitialized
) {
339 eeprom
->type
= ixgbe_eeprom_none
;
342 * Check for EEPROM present first.
343 * If not present leave as none
345 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
346 if (eec
& IXGBE_EEC_PRES
) {
347 eeprom
->type
= ixgbe_eeprom_spi
;
350 * SPI EEPROM is assumed here. This code would need to
351 * change if a future EEPROM is not SPI.
353 eeprom_size
= (u16
)((eec
& IXGBE_EEC_SIZE
) >>
354 IXGBE_EEC_SIZE_SHIFT
);
355 eeprom
->word_size
= 1 << (eeprom_size
+
356 IXGBE_EEPROM_WORD_SIZE_SHIFT
);
359 if (eec
& IXGBE_EEC_ADDR_SIZE
)
360 eeprom
->address_bits
= 16;
362 eeprom
->address_bits
= 8;
363 hw_dbg(hw
, "Eeprom params: type = %d, size = %d, address bits: "
364 "%d\n", eeprom
->type
, eeprom
->word_size
,
365 eeprom
->address_bits
);
372 * ixgbe_read_eeprom - Read EEPROM word using EERD
373 * @hw: pointer to hardware structure
374 * @offset: offset of word in the EEPROM to read
375 * @data: word read from the EEPROM
377 * Reads a 16 bit word from the EEPROM using the EERD register.
379 s32
ixgbe_read_eeprom(struct ixgbe_hw
*hw
, u16 offset
, u16
*data
)
384 eerd
= (offset
<< IXGBE_EEPROM_READ_ADDR_SHIFT
) +
385 IXGBE_EEPROM_READ_REG_START
;
387 IXGBE_WRITE_REG(hw
, IXGBE_EERD
, eerd
);
388 status
= ixgbe_poll_eeprom_eerd_done(hw
);
391 *data
= (IXGBE_READ_REG(hw
, IXGBE_EERD
) >>
392 IXGBE_EEPROM_READ_REG_DATA
);
394 hw_dbg(hw
, "Eeprom read timed out\n");
400 * ixgbe_poll_eeprom_eerd_done - Poll EERD status
401 * @hw: pointer to hardware structure
403 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
405 static s32
ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw
*hw
)
409 s32 status
= IXGBE_ERR_EEPROM
;
411 for (i
= 0; i
< IXGBE_EERD_ATTEMPTS
; i
++) {
412 reg
= IXGBE_READ_REG(hw
, IXGBE_EERD
);
413 if (reg
& IXGBE_EEPROM_READ_REG_DONE
) {
423 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
424 * @hw: pointer to hardware structure
426 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
428 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
)
430 s32 status
= IXGBE_ERR_EEPROM
;
435 /* Set timeout value based on size of EEPROM */
436 timeout
= hw
->eeprom
.word_size
+ 1;
438 /* Get SMBI software semaphore between device drivers first */
439 for (i
= 0; i
< timeout
; i
++) {
441 * If the SMBI bit is 0 when we read it, then the bit will be
442 * set and we have the semaphore
444 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
445 if (!(swsm
& IXGBE_SWSM_SMBI
)) {
452 /* Now get the semaphore between SW/FW through the SWESMBI bit */
454 for (i
= 0; i
< timeout
; i
++) {
455 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
457 /* Set the SW EEPROM semaphore bit to request access */
458 swsm
|= IXGBE_SWSM_SWESMBI
;
459 IXGBE_WRITE_REG(hw
, IXGBE_SWSM
, swsm
);
462 * If we set the bit successfully then we got the
465 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
466 if (swsm
& IXGBE_SWSM_SWESMBI
)
473 * Release semaphores and return error if SW EEPROM semaphore
474 * was not granted because we don't have access to the EEPROM
477 hw_dbg(hw
, "Driver can't access the Eeprom - Semaphore "
479 ixgbe_release_eeprom_semaphore(hw
);
480 status
= IXGBE_ERR_EEPROM
;
488 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
489 * @hw: pointer to hardware structure
491 * This function clears hardware semaphore bits.
493 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
)
497 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
499 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
500 swsm
&= ~(IXGBE_SWSM_SWESMBI
| IXGBE_SWSM_SMBI
);
501 IXGBE_WRITE_REG(hw
, IXGBE_SWSM
, swsm
);
502 IXGBE_WRITE_FLUSH(hw
);
506 * ixgbe_calc_eeprom_checksum - Calculates and returns the checksum
507 * @hw: pointer to hardware structure
509 static u16
ixgbe_calc_eeprom_checksum(struct ixgbe_hw
*hw
)
518 /* Include 0x0-0x3F in the checksum */
519 for (i
= 0; i
< IXGBE_EEPROM_CHECKSUM
; i
++) {
520 if (ixgbe_read_eeprom(hw
, i
, &word
) != 0) {
521 hw_dbg(hw
, "EEPROM read failed\n");
527 /* Include all data from pointers except for the fw pointer */
528 for (i
= IXGBE_PCIE_ANALOG_PTR
; i
< IXGBE_FW_PTR
; i
++) {
529 ixgbe_read_eeprom(hw
, i
, &pointer
);
531 /* Make sure the pointer seems valid */
532 if (pointer
!= 0xFFFF && pointer
!= 0) {
533 ixgbe_read_eeprom(hw
, pointer
, &length
);
535 if (length
!= 0xFFFF && length
!= 0) {
536 for (j
= pointer
+1; j
<= pointer
+length
; j
++) {
537 ixgbe_read_eeprom(hw
, j
, &word
);
544 checksum
= (u16
)IXGBE_EEPROM_SUM
- checksum
;
550 * ixgbe_validate_eeprom_checksum - Validate EEPROM checksum
551 * @hw: pointer to hardware structure
552 * @checksum_val: calculated checksum
554 * Performs checksum calculation and validates the EEPROM checksum. If the
555 * caller does not need checksum_val, the value can be NULL.
557 s32
ixgbe_validate_eeprom_checksum(struct ixgbe_hw
*hw
, u16
*checksum_val
)
561 u16 read_checksum
= 0;
564 * Read the first word from the EEPROM. If this times out or fails, do
565 * not continue or we could be in for a very long wait while every
568 status
= ixgbe_read_eeprom(hw
, 0, &checksum
);
571 checksum
= ixgbe_calc_eeprom_checksum(hw
);
573 ixgbe_read_eeprom(hw
, IXGBE_EEPROM_CHECKSUM
, &read_checksum
);
576 * Verify read checksum from EEPROM is the same as
577 * calculated checksum
579 if (read_checksum
!= checksum
)
580 status
= IXGBE_ERR_EEPROM_CHECKSUM
;
582 /* If the user cares, return the calculated checksum */
584 *checksum_val
= checksum
;
586 hw_dbg(hw
, "EEPROM read failed\n");
593 * ixgbe_validate_mac_addr - Validate MAC address
594 * @mac_addr: pointer to MAC address.
596 * Tests a MAC address to ensure it is a valid Individual Address
598 s32
ixgbe_validate_mac_addr(u8
*mac_addr
)
602 /* Make sure it is not a multicast address */
603 if (IXGBE_IS_MULTICAST(mac_addr
))
604 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
605 /* Not a broadcast address */
606 else if (IXGBE_IS_BROADCAST(mac_addr
))
607 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
608 /* Reject the zero address */
609 else if (mac_addr
[0] == 0 && mac_addr
[1] == 0 && mac_addr
[2] == 0 &&
610 mac_addr
[3] == 0 && mac_addr
[4] == 0 && mac_addr
[5] == 0)
611 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
617 * ixgbe_set_rar - Set RX address register
618 * @hw: pointer to hardware structure
619 * @addr: Address to put into receive address register
620 * @index: Receive address register to write
621 * @vind: Vind to set RAR to
622 * @enable_addr: set flag that address is active
624 * Puts an ethernet address into a receive address register.
626 s32
ixgbe_set_rar(struct ixgbe_hw
*hw
, u32 index
, u8
*addr
, u32 vind
,
629 u32 rar_low
, rar_high
;
632 * HW expects these in little endian so we reverse the byte order from
633 * network order (big endian) to little endian
635 rar_low
= ((u32
)addr
[0] |
636 ((u32
)addr
[1] << 8) |
637 ((u32
)addr
[2] << 16) |
638 ((u32
)addr
[3] << 24));
640 rar_high
= ((u32
)addr
[4] |
641 ((u32
)addr
[5] << 8) |
642 ((vind
<< IXGBE_RAH_VIND_SHIFT
) & IXGBE_RAH_VIND_MASK
));
644 if (enable_addr
!= 0)
645 rar_high
|= IXGBE_RAH_AV
;
647 IXGBE_WRITE_REG(hw
, IXGBE_RAL(index
), rar_low
);
648 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
654 * ixgbe_init_rx_addrs - Initializes receive address filters.
655 * @hw: pointer to hardware structure
657 * Places the MAC address in receive address register 0 and clears the rest
658 * of the receive addresss registers. Clears the multicast table. Assumes
659 * the receiver is in reset when the routine is called.
661 static s32
ixgbe_init_rx_addrs(struct ixgbe_hw
*hw
)
664 u32 rar_entries
= hw
->mac
.num_rx_addrs
;
667 * If the current mac address is valid, assume it is a software override
668 * to the permanent address.
669 * Otherwise, use the permanent address from the eeprom.
671 if (ixgbe_validate_mac_addr(hw
->mac
.addr
) ==
672 IXGBE_ERR_INVALID_MAC_ADDR
) {
673 /* Get the MAC address from the RAR0 for later reference */
674 ixgbe_get_mac_addr(hw
, hw
->mac
.addr
);
676 hw_dbg(hw
, " Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
677 hw
->mac
.addr
[0], hw
->mac
.addr
[1],
679 hw_dbg(hw
, "%.2X %.2X %.2X\n", hw
->mac
.addr
[3],
680 hw
->mac
.addr
[4], hw
->mac
.addr
[5]);
682 /* Setup the receive address. */
683 hw_dbg(hw
, "Overriding MAC Address in RAR[0]\n");
684 hw_dbg(hw
, " New MAC Addr =%.2X %.2X %.2X ",
685 hw
->mac
.addr
[0], hw
->mac
.addr
[1],
687 hw_dbg(hw
, "%.2X %.2X %.2X\n", hw
->mac
.addr
[3],
688 hw
->mac
.addr
[4], hw
->mac
.addr
[5]);
690 ixgbe_set_rar(hw
, 0, hw
->mac
.addr
, 0, IXGBE_RAH_AV
);
693 hw
->addr_ctrl
.rar_used_count
= 1;
695 /* Zero out the other receive addresses. */
696 hw_dbg(hw
, "Clearing RAR[1-15]\n");
697 for (i
= 1; i
< rar_entries
; i
++) {
698 IXGBE_WRITE_REG(hw
, IXGBE_RAL(i
), 0);
699 IXGBE_WRITE_REG(hw
, IXGBE_RAH(i
), 0);
703 hw
->addr_ctrl
.mc_addr_in_rar_count
= 0;
704 hw
->addr_ctrl
.mta_in_use
= 0;
705 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, hw
->mac
.mc_filter_type
);
707 hw_dbg(hw
, " Clearing MTA\n");
708 for (i
= 0; i
< IXGBE_MC_TBL_SIZE
; i
++)
709 IXGBE_WRITE_REG(hw
, IXGBE_MTA(i
), 0);
715 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
716 * @hw: pointer to hardware structure
717 * @mc_addr: the multicast address
719 * Extracts the 12 bits, from a multicast address, to determine which
720 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
721 * incoming rx multicast addresses, to determine the bit-vector to check in
722 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
723 * by the MO field of the MCSTCTRL. The MO field is set during initalization
726 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
)
730 switch (hw
->mac
.mc_filter_type
) {
731 case 0: /* use bits [47:36] of the address */
732 vector
= ((mc_addr
[4] >> 4) | (((u16
)mc_addr
[5]) << 4));
734 case 1: /* use bits [46:35] of the address */
735 vector
= ((mc_addr
[4] >> 3) | (((u16
)mc_addr
[5]) << 5));
737 case 2: /* use bits [45:34] of the address */
738 vector
= ((mc_addr
[4] >> 2) | (((u16
)mc_addr
[5]) << 6));
740 case 3: /* use bits [43:32] of the address */
741 vector
= ((mc_addr
[4]) | (((u16
)mc_addr
[5]) << 8));
743 default: /* Invalid mc_filter_type */
744 hw_dbg(hw
, "MC filter type param set incorrectly\n");
748 /* vector can only be 12-bits or boundary will be exceeded */
754 * ixgbe_set_mta - Set bit-vector in multicast table
755 * @hw: pointer to hardware structure
756 * @hash_value: Multicast address hash value
758 * Sets the bit-vector in the multicast table.
760 static void ixgbe_set_mta(struct ixgbe_hw
*hw
, u8
*mc_addr
)
767 hw
->addr_ctrl
.mta_in_use
++;
769 vector
= ixgbe_mta_vector(hw
, mc_addr
);
770 hw_dbg(hw
, " bit-vector = 0x%03X\n", vector
);
773 * The MTA is a register array of 128 32-bit registers. It is treated
774 * like an array of 4096 bits. We want to set bit
775 * BitArray[vector_value]. So we figure out what register the bit is
776 * in, read it, OR in the new bit, then write back the new value. The
777 * register is determined by the upper 7 bits of the vector value and
778 * the bit within that register are determined by the lower 5 bits of
781 vector_reg
= (vector
>> 5) & 0x7F;
782 vector_bit
= vector
& 0x1F;
783 mta_reg
= IXGBE_READ_REG(hw
, IXGBE_MTA(vector_reg
));
784 mta_reg
|= (1 << vector_bit
);
785 IXGBE_WRITE_REG(hw
, IXGBE_MTA(vector_reg
), mta_reg
);
789 * ixgbe_add_mc_addr - Adds a multicast address.
790 * @hw: pointer to hardware structure
791 * @mc_addr: new multicast address
793 * Adds it to unused receive address register or to the multicast table.
795 static void ixgbe_add_mc_addr(struct ixgbe_hw
*hw
, u8
*mc_addr
)
797 u32 rar_entries
= hw
->mac
.num_rx_addrs
;
799 hw_dbg(hw
, " MC Addr =%.2X %.2X %.2X %.2X %.2X %.2X\n",
800 mc_addr
[0], mc_addr
[1], mc_addr
[2],
801 mc_addr
[3], mc_addr
[4], mc_addr
[5]);
804 * Place this multicast address in the RAR if there is room,
805 * else put it in the MTA
807 if (hw
->addr_ctrl
.rar_used_count
< rar_entries
) {
808 ixgbe_set_rar(hw
, hw
->addr_ctrl
.rar_used_count
,
809 mc_addr
, 0, IXGBE_RAH_AV
);
810 hw_dbg(hw
, "Added a multicast address to RAR[%d]\n",
811 hw
->addr_ctrl
.rar_used_count
);
812 hw
->addr_ctrl
.rar_used_count
++;
813 hw
->addr_ctrl
.mc_addr_in_rar_count
++;
815 ixgbe_set_mta(hw
, mc_addr
);
818 hw_dbg(hw
, "ixgbe_add_mc_addr Complete\n");
822 * ixgbe_update_mc_addr_list - Updates MAC list of multicast addresses
823 * @hw: pointer to hardware structure
824 * @mc_addr_list: the list of new multicast addresses
825 * @mc_addr_count: number of addresses
826 * @pad: number of bytes between addresses in the list
828 * The given list replaces any existing list. Clears the MC addrs from receive
829 * address registers and the multicast table. Uses unsed receive address
830 * registers for the first multicast addresses, and hashes the rest into the
833 s32
ixgbe_update_mc_addr_list(struct ixgbe_hw
*hw
, u8
*mc_addr_list
,
834 u32 mc_addr_count
, u32 pad
)
837 u32 rar_entries
= hw
->mac
.num_rx_addrs
;
840 * Set the new number of MC addresses that we are being requested to
843 hw
->addr_ctrl
.num_mc_addrs
= mc_addr_count
;
844 hw
->addr_ctrl
.rar_used_count
-= hw
->addr_ctrl
.mc_addr_in_rar_count
;
845 hw
->addr_ctrl
.mc_addr_in_rar_count
= 0;
846 hw
->addr_ctrl
.mta_in_use
= 0;
848 /* Zero out the other receive addresses. */
849 hw_dbg(hw
, "Clearing RAR[1-15]\n");
850 for (i
= hw
->addr_ctrl
.rar_used_count
; i
< rar_entries
; i
++) {
851 IXGBE_WRITE_REG(hw
, IXGBE_RAL(i
), 0);
852 IXGBE_WRITE_REG(hw
, IXGBE_RAH(i
), 0);
856 hw_dbg(hw
, " Clearing MTA\n");
857 for (i
= 0; i
< IXGBE_MC_TBL_SIZE
; i
++)
858 IXGBE_WRITE_REG(hw
, IXGBE_MTA(i
), 0);
860 /* Add the new addresses */
861 for (i
= 0; i
< mc_addr_count
; i
++) {
862 hw_dbg(hw
, " Adding the multicast addresses:\n");
863 ixgbe_add_mc_addr(hw
, mc_addr_list
+
864 (i
* (IXGBE_ETH_LENGTH_OF_ADDRESS
+ pad
)));
868 if (hw
->addr_ctrl
.mta_in_use
> 0)
869 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
,
870 IXGBE_MCSTCTRL_MFE
| hw
->mac
.mc_filter_type
);
872 hw_dbg(hw
, "ixgbe_update_mc_addr_list Complete\n");
877 * ixgbe_clear_vfta - Clear VLAN filter table
878 * @hw: pointer to hardware structure
880 * Clears the VLAN filer table, and the VMDq index associated with the filter
882 static s32
ixgbe_clear_vfta(struct ixgbe_hw
*hw
)
887 for (offset
= 0; offset
< IXGBE_VLAN_FILTER_TBL_SIZE
; offset
++)
888 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(offset
), 0);
890 for (vlanbyte
= 0; vlanbyte
< 4; vlanbyte
++)
891 for (offset
= 0; offset
< IXGBE_VLAN_FILTER_TBL_SIZE
; offset
++)
892 IXGBE_WRITE_REG(hw
, IXGBE_VFTAVIND(vlanbyte
, offset
),
899 * ixgbe_set_vfta - Set VLAN filter table
900 * @hw: pointer to hardware structure
901 * @vlan: VLAN id to write to VLAN filter
902 * @vind: VMDq output index that maps queue to VLAN id in VFTA
903 * @vlan_on: boolean flag to turn on/off VLAN in VFTA
905 * Turn on/off specified VLAN in the VLAN filter table.
907 s32
ixgbe_set_vfta(struct ixgbe_hw
*hw
, u32 vlan
, u32 vind
,
915 /* Determine 32-bit word position in array */
916 VftaIndex
= (vlan
>> 5) & 0x7F; /* upper seven bits */
918 /* Determine the location of the (VMD) queue index */
919 VftaByte
= ((vlan
>> 3) & 0x03); /* bits (4:3) indicating byte array */
920 BitOffset
= (vlan
& 0x7) << 2; /* lower 3 bits indicate nibble */
922 /* Set the nibble for VMD queue index */
923 VftaReg
= IXGBE_READ_REG(hw
, IXGBE_VFTAVIND(VftaByte
, VftaIndex
));
924 VftaReg
&= (~(0x0F << BitOffset
));
925 VftaReg
|= (vind
<< BitOffset
);
926 IXGBE_WRITE_REG(hw
, IXGBE_VFTAVIND(VftaByte
, VftaIndex
), VftaReg
);
928 /* Determine the location of the bit for this VLAN id */
929 BitOffset
= vlan
& 0x1F; /* lower five bits */
931 VftaReg
= IXGBE_READ_REG(hw
, IXGBE_VFTA(VftaIndex
));
933 /* Turn on this VLAN id */
934 VftaReg
|= (1 << BitOffset
);
936 /* Turn off this VLAN id */
937 VftaReg
&= ~(1 << BitOffset
);
938 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(VftaIndex
), VftaReg
);
944 * ixgbe_setup_fc - Configure flow control settings
945 * @hw: pointer to hardware structure
946 * @packetbuf_num: packet buffer number (0-7)
948 * Configures the flow control settings based on SW configuration.
949 * This function is used for 802.3x flow control configuration only.
951 s32
ixgbe_setup_fc(struct ixgbe_hw
*hw
, s32 packetbuf_num
)
956 if (packetbuf_num
< 0 || packetbuf_num
> 7)
957 hw_dbg(hw
, "Invalid packet buffer number [%d], expected range "
958 "is 0-7\n", packetbuf_num
);
960 frctl_reg
= IXGBE_READ_REG(hw
, IXGBE_FCTRL
);
961 frctl_reg
&= ~(IXGBE_FCTRL_RFCE
| IXGBE_FCTRL_RPFCE
);
963 rmcs_reg
= IXGBE_READ_REG(hw
, IXGBE_RMCS
);
964 rmcs_reg
&= ~(IXGBE_RMCS_TFCE_PRIORITY
| IXGBE_RMCS_TFCE_802_3X
);
967 * We want to save off the original Flow Control configuration just in
968 * case we get disconnected and then reconnected into a different hub
969 * or switch with different Flow Control capabilities.
971 hw
->fc
.type
= hw
->fc
.original_type
;
974 * The possible values of the "flow_control" parameter are:
975 * 0: Flow control is completely disabled
976 * 1: Rx flow control is enabled (we can receive pause frames but not
977 * send pause frames).
978 * 2: Tx flow control is enabled (we can send pause frames but we do not
979 * support receiving pause frames)
980 * 3: Both Rx and TX flow control (symmetric) are enabled.
983 switch (hw
->fc
.type
) {
986 case ixgbe_fc_rx_pause
:
988 * RX Flow control is enabled,
989 * and TX Flow control is disabled.
991 frctl_reg
|= IXGBE_FCTRL_RFCE
;
993 case ixgbe_fc_tx_pause
:
995 * TX Flow control is enabled, and RX Flow control is disabled,
996 * by a software over-ride.
998 rmcs_reg
|= IXGBE_RMCS_TFCE_802_3X
;
1002 * Flow control (both RX and TX) is enabled by a software
1005 frctl_reg
|= IXGBE_FCTRL_RFCE
;
1006 rmcs_reg
|= IXGBE_RMCS_TFCE_802_3X
;
1009 /* We should never get here. The value should be 0-3. */
1010 hw_dbg(hw
, "Flow control param set incorrectly\n");
1014 /* Enable 802.3x based flow control settings. */
1015 IXGBE_WRITE_REG(hw
, IXGBE_FCTRL
, frctl_reg
);
1016 IXGBE_WRITE_REG(hw
, IXGBE_RMCS
, rmcs_reg
);
1019 * We need to set up the Receive Threshold high and low water
1020 * marks as well as (optionally) enabling the transmission of
1023 if (hw
->fc
.type
& ixgbe_fc_tx_pause
) {
1024 if (hw
->fc
.send_xon
) {
1025 IXGBE_WRITE_REG(hw
, IXGBE_FCRTL(packetbuf_num
),
1026 (hw
->fc
.low_water
| IXGBE_FCRTL_XONE
));
1028 IXGBE_WRITE_REG(hw
, IXGBE_FCRTL(packetbuf_num
),
1031 IXGBE_WRITE_REG(hw
, IXGBE_FCRTH(packetbuf_num
),
1032 (hw
->fc
.high_water
)|IXGBE_FCRTH_FCEN
);
1035 IXGBE_WRITE_REG(hw
, IXGBE_FCTTV(0), hw
->fc
.pause_time
);
1036 IXGBE_WRITE_REG(hw
, IXGBE_FCRTV
, (hw
->fc
.pause_time
>> 1));
1042 * ixgbe_disable_pcie_master - Disable PCI-express master access
1043 * @hw: pointer to hardware structure
1045 * Disables PCI-Express master access and verifies there are no pending
1046 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
1047 * bit hasn't caused the master requests to be disabled, else 0
1048 * is returned signifying master requests disabled.
1050 s32
ixgbe_disable_pcie_master(struct ixgbe_hw
*hw
)
1054 s32 status
= IXGBE_ERR_MASTER_REQUESTS_PENDING
;
1056 ctrl
= IXGBE_READ_REG(hw
, IXGBE_CTRL
);
1057 ctrl
|= IXGBE_CTRL_GIO_DIS
;
1058 IXGBE_WRITE_REG(hw
, IXGBE_CTRL
, ctrl
);
1060 for (i
= 0; i
< IXGBE_PCI_MASTER_DISABLE_TIMEOUT
; i
++) {
1061 if (!(IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_GIO
)) {
1073 * ixgbe_acquire_swfw_sync - Aquire SWFW semaphore
1074 * @hw: pointer to hardware structure
1075 * @mask: Mask to specify wich semaphore to acquire
1077 * Aquires the SWFW semaphore throught the GSSR register for the specified
1078 * function (CSR, PHY0, PHY1, EEPROM, Flash)
1080 s32
ixgbe_acquire_swfw_sync(struct ixgbe_hw
*hw
, u16 mask
)
1084 u32 fwmask
= mask
<< 5;
1088 if (ixgbe_get_eeprom_semaphore(hw
))
1089 return -IXGBE_ERR_SWFW_SYNC
;
1091 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
1092 if (!(gssr
& (fwmask
| swmask
)))
1096 * Firmware currently using resource (fwmask) or other software
1097 * thread currently using resource (swmask)
1099 ixgbe_release_eeprom_semaphore(hw
);
1105 hw_dbg(hw
, "Driver can't access resource, GSSR timeout.\n");
1106 return -IXGBE_ERR_SWFW_SYNC
;
1110 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
1112 ixgbe_release_eeprom_semaphore(hw
);
1117 * ixgbe_release_swfw_sync - Release SWFW semaphore
1118 * @hw: pointer to hardware structure
1119 * @mask: Mask to specify wich semaphore to release
1121 * Releases the SWFW semaphore throught the GSSR register for the specified
1122 * function (CSR, PHY0, PHY1, EEPROM, Flash)
1124 void ixgbe_release_swfw_sync(struct ixgbe_hw
*hw
, u16 mask
)
1129 ixgbe_get_eeprom_semaphore(hw
);
1131 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
1133 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
1135 ixgbe_release_eeprom_semaphore(hw
);
1139 * ixgbe_read_analog_reg8 - Reads 8 bit Atlas analog register
1140 * @hw: pointer to hardware structure
1141 * @reg: analog register to read
1144 * Performs write operation to analog register specified.
1146 s32
ixgbe_read_analog_reg8(struct ixgbe_hw
*hw
, u32 reg
, u8
*val
)
1150 IXGBE_WRITE_REG(hw
, IXGBE_ATLASCTL
,
1151 IXGBE_ATLASCTL_WRITE_CMD
| (reg
<< 8));
1152 IXGBE_WRITE_FLUSH(hw
);
1154 atlas_ctl
= IXGBE_READ_REG(hw
, IXGBE_ATLASCTL
);
1155 *val
= (u8
)atlas_ctl
;
1161 * ixgbe_write_analog_reg8 - Writes 8 bit Atlas analog register
1162 * @hw: pointer to hardware structure
1163 * @reg: atlas register to write
1164 * @val: value to write
1166 * Performs write operation to Atlas analog register specified.
1168 s32
ixgbe_write_analog_reg8(struct ixgbe_hw
*hw
, u32 reg
, u8 val
)
1172 atlas_ctl
= (reg
<< 8) | val
;
1173 IXGBE_WRITE_REG(hw
, IXGBE_ATLASCTL
, atlas_ctl
);
1174 IXGBE_WRITE_FLUSH(hw
);