Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[wrt350n-kernel.git] / drivers / net / wireless / rt2x00 / rt2500usb.c
blobd44c506be4f894da3544911c408952ae44b7219a
1 /*
2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2500usb
23 Abstract: rt2500usb device specific routines.
24 Supported chipsets: RT2570.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/usb.h>
34 #include "rt2x00.h"
35 #include "rt2x00usb.h"
36 #include "rt2500usb.h"
39 * Register access.
40 * All access to the CSR registers will go through the methods
41 * rt2500usb_register_read and rt2500usb_register_write.
42 * BBP and RF register require indirect register access,
43 * and use the CSR registers BBPCSR and RFCSR to achieve this.
44 * These indirect registers work with busy bits,
45 * and we will try maximal REGISTER_BUSY_COUNT times to access
46 * the register while taking a REGISTER_BUSY_DELAY us delay
47 * between each attampt. When the busy bit is still set at that time,
48 * the access attempt is considered to have failed,
49 * and we will print an error.
50 * If the usb_cache_mutex is already held then the _lock variants must
51 * be used instead.
53 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
54 const unsigned int offset,
55 u16 *value)
57 __le16 reg;
58 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
59 USB_VENDOR_REQUEST_IN, offset,
60 &reg, sizeof(u16), REGISTER_TIMEOUT);
61 *value = le16_to_cpu(reg);
64 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
65 const unsigned int offset,
66 u16 *value)
68 __le16 reg;
69 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
70 USB_VENDOR_REQUEST_IN, offset,
71 &reg, sizeof(u16), REGISTER_TIMEOUT);
72 *value = le16_to_cpu(reg);
75 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
76 const unsigned int offset,
77 void *value, const u16 length)
79 int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
80 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
81 USB_VENDOR_REQUEST_IN, offset,
82 value, length, timeout);
85 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
86 const unsigned int offset,
87 u16 value)
89 __le16 reg = cpu_to_le16(value);
90 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
91 USB_VENDOR_REQUEST_OUT, offset,
92 &reg, sizeof(u16), REGISTER_TIMEOUT);
95 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
96 const unsigned int offset,
97 u16 value)
99 __le16 reg = cpu_to_le16(value);
100 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
101 USB_VENDOR_REQUEST_OUT, offset,
102 &reg, sizeof(u16), REGISTER_TIMEOUT);
105 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
106 const unsigned int offset,
107 void *value, const u16 length)
109 int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
110 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
111 USB_VENDOR_REQUEST_OUT, offset,
112 value, length, timeout);
115 static u16 rt2500usb_bbp_check(struct rt2x00_dev *rt2x00dev)
117 u16 reg;
118 unsigned int i;
120 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
121 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR8, &reg);
122 if (!rt2x00_get_field16(reg, PHY_CSR8_BUSY))
123 break;
124 udelay(REGISTER_BUSY_DELAY);
127 return reg;
130 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
131 const unsigned int word, const u8 value)
133 u16 reg;
135 mutex_lock(&rt2x00dev->usb_cache_mutex);
138 * Wait until the BBP becomes ready.
140 reg = rt2500usb_bbp_check(rt2x00dev);
141 if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
142 ERROR(rt2x00dev, "PHY_CSR8 register busy. Write failed.\n");
143 mutex_unlock(&rt2x00dev->usb_cache_mutex);
144 return;
148 * Write the data into the BBP.
150 reg = 0;
151 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
152 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
153 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
155 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
157 mutex_unlock(&rt2x00dev->usb_cache_mutex);
160 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
161 const unsigned int word, u8 *value)
163 u16 reg;
165 mutex_lock(&rt2x00dev->usb_cache_mutex);
168 * Wait until the BBP becomes ready.
170 reg = rt2500usb_bbp_check(rt2x00dev);
171 if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
172 ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
173 return;
177 * Write the request into the BBP.
179 reg = 0;
180 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
181 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
183 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
186 * Wait until the BBP becomes ready.
188 reg = rt2500usb_bbp_check(rt2x00dev);
189 if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
190 ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
191 *value = 0xff;
192 mutex_unlock(&rt2x00dev->usb_cache_mutex);
193 return;
196 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
197 *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
199 mutex_unlock(&rt2x00dev->usb_cache_mutex);
202 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
203 const unsigned int word, const u32 value)
205 u16 reg;
206 unsigned int i;
208 if (!word)
209 return;
211 mutex_lock(&rt2x00dev->usb_cache_mutex);
213 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
214 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR10, &reg);
215 if (!rt2x00_get_field16(reg, PHY_CSR10_RF_BUSY))
216 goto rf_write;
217 udelay(REGISTER_BUSY_DELAY);
220 mutex_unlock(&rt2x00dev->usb_cache_mutex);
221 ERROR(rt2x00dev, "PHY_CSR10 register busy. Write failed.\n");
222 return;
224 rf_write:
225 reg = 0;
226 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
227 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
229 reg = 0;
230 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
231 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
232 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
233 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
235 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
236 rt2x00_rf_write(rt2x00dev, word, value);
238 mutex_unlock(&rt2x00dev->usb_cache_mutex);
241 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
242 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u16)) )
244 static void rt2500usb_read_csr(struct rt2x00_dev *rt2x00dev,
245 const unsigned int word, u32 *data)
247 rt2500usb_register_read(rt2x00dev, CSR_OFFSET(word), (u16 *) data);
250 static void rt2500usb_write_csr(struct rt2x00_dev *rt2x00dev,
251 const unsigned int word, u32 data)
253 rt2500usb_register_write(rt2x00dev, CSR_OFFSET(word), data);
256 static const struct rt2x00debug rt2500usb_rt2x00debug = {
257 .owner = THIS_MODULE,
258 .csr = {
259 .read = rt2500usb_read_csr,
260 .write = rt2500usb_write_csr,
261 .word_size = sizeof(u16),
262 .word_count = CSR_REG_SIZE / sizeof(u16),
264 .eeprom = {
265 .read = rt2x00_eeprom_read,
266 .write = rt2x00_eeprom_write,
267 .word_size = sizeof(u16),
268 .word_count = EEPROM_SIZE / sizeof(u16),
270 .bbp = {
271 .read = rt2500usb_bbp_read,
272 .write = rt2500usb_bbp_write,
273 .word_size = sizeof(u8),
274 .word_count = BBP_SIZE / sizeof(u8),
276 .rf = {
277 .read = rt2x00_rf_read,
278 .write = rt2500usb_rf_write,
279 .word_size = sizeof(u32),
280 .word_count = RF_SIZE / sizeof(u32),
283 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
286 * Configuration handlers.
288 static void rt2500usb_config_mac_addr(struct rt2x00_dev *rt2x00dev,
289 __le32 *mac)
291 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, mac,
292 (3 * sizeof(__le16)));
295 static void rt2500usb_config_bssid(struct rt2x00_dev *rt2x00dev,
296 __le32 *bssid)
298 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, bssid,
299 (3 * sizeof(__le16)));
302 static void rt2500usb_config_type(struct rt2x00_dev *rt2x00dev, const int type,
303 const int tsf_sync)
305 u16 reg;
307 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
310 * Enable beacon config
312 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
313 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET,
314 (PREAMBLE + get_duration(IEEE80211_HEADER, 20)) >> 6);
315 if (type == IEEE80211_IF_TYPE_STA)
316 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW, 0);
317 else
318 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW, 2);
319 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
322 * Enable synchronisation.
324 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
325 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
326 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
328 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
329 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
330 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN,
331 (tsf_sync == TSF_SYNC_BEACON));
332 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
333 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, tsf_sync);
334 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
337 static void rt2500usb_config_preamble(struct rt2x00_dev *rt2x00dev,
338 const int short_preamble,
339 const int ack_timeout,
340 const int ack_consume_time)
342 u16 reg;
345 * When in atomic context, reschedule and let rt2x00lib
346 * call this function again.
348 if (in_atomic()) {
349 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->config_work);
350 return;
353 rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
354 rt2x00_set_field16(&reg, TXRX_CSR1_ACK_TIMEOUT, ack_timeout);
355 rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
357 rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
358 rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
359 !!short_preamble);
360 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
363 static void rt2500usb_config_phymode(struct rt2x00_dev *rt2x00dev,
364 const int phymode,
365 const int basic_rate_mask)
367 rt2500usb_register_write(rt2x00dev, TXRX_CSR11, basic_rate_mask);
369 if (phymode == HWMODE_B) {
370 rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x000b);
371 rt2500usb_register_write(rt2x00dev, MAC_CSR12, 0x0040);
372 } else {
373 rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0005);
374 rt2500usb_register_write(rt2x00dev, MAC_CSR12, 0x016c);
378 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
379 struct rf_channel *rf, const int txpower)
382 * Set TXpower.
384 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
387 * For RT2525E we should first set the channel to half band higher.
389 if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
390 static const u32 vals[] = {
391 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
392 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
393 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
394 0x00000902, 0x00000906
397 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
398 if (rf->rf4)
399 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
402 rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
403 rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
404 rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
405 if (rf->rf4)
406 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
409 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
410 const int txpower)
412 u32 rf3;
414 rt2x00_rf_read(rt2x00dev, 3, &rf3);
415 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
416 rt2500usb_rf_write(rt2x00dev, 3, rf3);
419 static void rt2500usb_config_antenna(struct rt2x00_dev *rt2x00dev,
420 struct antenna_setup *ant)
422 u8 r2;
423 u8 r14;
424 u16 csr5;
425 u16 csr6;
427 rt2500usb_bbp_read(rt2x00dev, 2, &r2);
428 rt2500usb_bbp_read(rt2x00dev, 14, &r14);
429 rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
430 rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
433 * Configure the TX antenna.
435 switch (ant->tx) {
436 case ANTENNA_HW_DIVERSITY:
437 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
438 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
439 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
440 break;
441 case ANTENNA_A:
442 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
443 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
444 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
445 break;
446 case ANTENNA_SW_DIVERSITY:
448 * NOTE: We should never come here because rt2x00lib is
449 * supposed to catch this and send us the correct antenna
450 * explicitely. However we are nog going to bug about this.
451 * Instead, just default to antenna B.
453 case ANTENNA_B:
454 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
455 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
456 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
457 break;
461 * Configure the RX antenna.
463 switch (ant->rx) {
464 case ANTENNA_HW_DIVERSITY:
465 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
466 break;
467 case ANTENNA_A:
468 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
469 break;
470 case ANTENNA_SW_DIVERSITY:
472 * NOTE: We should never come here because rt2x00lib is
473 * supposed to catch this and send us the correct antenna
474 * explicitely. However we are nog going to bug about this.
475 * Instead, just default to antenna B.
477 case ANTENNA_B:
478 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
479 break;
483 * RT2525E and RT5222 need to flip TX I/Q
485 if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
486 rt2x00_rf(&rt2x00dev->chip, RF5222)) {
487 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
488 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
489 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
492 * RT2525E does not need RX I/Q Flip.
494 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
495 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
496 } else {
497 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
498 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
501 rt2500usb_bbp_write(rt2x00dev, 2, r2);
502 rt2500usb_bbp_write(rt2x00dev, 14, r14);
503 rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
504 rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
507 static void rt2500usb_config_duration(struct rt2x00_dev *rt2x00dev,
508 struct rt2x00lib_conf *libconf)
510 u16 reg;
512 rt2500usb_register_write(rt2x00dev, MAC_CSR10, libconf->slot_time);
514 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
515 rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
516 libconf->conf->beacon_int * 4);
517 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
520 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
521 const unsigned int flags,
522 struct rt2x00lib_conf *libconf)
524 if (flags & CONFIG_UPDATE_PHYMODE)
525 rt2500usb_config_phymode(rt2x00dev, libconf->phymode,
526 libconf->basic_rates);
527 if (flags & CONFIG_UPDATE_CHANNEL)
528 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
529 libconf->conf->power_level);
530 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
531 rt2500usb_config_txpower(rt2x00dev,
532 libconf->conf->power_level);
533 if (flags & CONFIG_UPDATE_ANTENNA)
534 rt2500usb_config_antenna(rt2x00dev, &libconf->ant);
535 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
536 rt2500usb_config_duration(rt2x00dev, libconf);
540 * LED functions.
542 static void rt2500usb_enable_led(struct rt2x00_dev *rt2x00dev)
544 u16 reg;
546 rt2500usb_register_read(rt2x00dev, MAC_CSR21, &reg);
547 rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, 70);
548 rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, 30);
549 rt2500usb_register_write(rt2x00dev, MAC_CSR21, reg);
551 rt2500usb_register_read(rt2x00dev, MAC_CSR20, &reg);
552 rt2x00_set_field16(&reg, MAC_CSR20_LINK,
553 (rt2x00dev->led_mode != LED_MODE_ASUS));
554 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY,
555 (rt2x00dev->led_mode != LED_MODE_TXRX_ACTIVITY));
556 rt2500usb_register_write(rt2x00dev, MAC_CSR20, reg);
559 static void rt2500usb_disable_led(struct rt2x00_dev *rt2x00dev)
561 u16 reg;
563 rt2500usb_register_read(rt2x00dev, MAC_CSR20, &reg);
564 rt2x00_set_field16(&reg, MAC_CSR20_LINK, 0);
565 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, 0);
566 rt2500usb_register_write(rt2x00dev, MAC_CSR20, reg);
570 * Link tuning
572 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
573 struct link_qual *qual)
575 u16 reg;
578 * Update FCS error count from register.
580 rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
581 qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
584 * Update False CCA count from register.
586 rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
587 qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
590 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
592 u16 eeprom;
593 u16 value;
595 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
596 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
597 rt2500usb_bbp_write(rt2x00dev, 24, value);
599 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
600 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
601 rt2500usb_bbp_write(rt2x00dev, 25, value);
603 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
604 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
605 rt2500usb_bbp_write(rt2x00dev, 61, value);
607 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
608 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
609 rt2500usb_bbp_write(rt2x00dev, 17, value);
611 rt2x00dev->link.vgc_level = value;
614 static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
616 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
617 u16 bbp_thresh;
618 u16 vgc_bound;
619 u16 sens;
620 u16 r24;
621 u16 r25;
622 u16 r61;
623 u16 r17_sens;
624 u8 r17;
625 u8 up_bound;
626 u8 low_bound;
629 * Determine the BBP tuning threshold and correctly
630 * set BBP 24, 25 and 61.
632 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
633 bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
635 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
636 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
637 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
639 if ((rssi + bbp_thresh) > 0) {
640 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
641 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
642 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
643 } else {
644 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
645 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
646 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
649 rt2500usb_bbp_write(rt2x00dev, 24, r24);
650 rt2500usb_bbp_write(rt2x00dev, 25, r25);
651 rt2500usb_bbp_write(rt2x00dev, 61, r61);
654 * Read current r17 value, as well as the sensitivity values
655 * for the r17 register.
657 rt2500usb_bbp_read(rt2x00dev, 17, &r17);
658 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
661 * A too low RSSI will cause too much false CCA which will
662 * then corrupt the R17 tuning. To remidy this the tuning should
663 * be stopped (While making sure the R17 value will not exceed limits)
665 if (rssi >= -40) {
666 if (r17 != 0x60)
667 rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
668 return;
672 * Special big-R17 for short distance
674 if (rssi >= -58) {
675 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
676 if (r17 != sens)
677 rt2500usb_bbp_write(rt2x00dev, 17, sens);
678 return;
682 * Special mid-R17 for middle distance
684 if (rssi >= -74) {
685 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
686 if (r17 != sens)
687 rt2500usb_bbp_write(rt2x00dev, 17, sens);
688 return;
692 * Leave short or middle distance condition, restore r17
693 * to the dynamic tuning range.
695 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
696 vgc_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
698 low_bound = 0x32;
699 if (rssi >= -77)
700 up_bound = vgc_bound;
701 else
702 up_bound = vgc_bound - (-77 - rssi);
704 if (up_bound < low_bound)
705 up_bound = low_bound;
707 if (r17 > up_bound) {
708 rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
709 rt2x00dev->link.vgc_level = up_bound;
710 } else if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
711 rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
712 rt2x00dev->link.vgc_level = r17;
713 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
714 rt2500usb_bbp_write(rt2x00dev, 17, --r17);
715 rt2x00dev->link.vgc_level = r17;
720 * Initialization functions.
722 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
724 u16 reg;
726 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
727 USB_MODE_TEST, REGISTER_TIMEOUT);
728 rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
729 0x00f0, REGISTER_TIMEOUT);
731 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
732 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
733 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
735 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
736 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
738 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
739 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
740 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
741 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
742 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
744 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
745 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
746 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
747 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
748 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
750 rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
751 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
752 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
753 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
754 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
755 rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
757 rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
758 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
759 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
760 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
761 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
762 rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
764 rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
765 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
766 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
767 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
768 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
769 rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
771 rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
772 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
773 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
774 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
775 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
776 rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
778 rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
779 rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
781 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
782 return -EBUSY;
784 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
785 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
786 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
787 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
788 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
790 if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
791 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
792 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
793 } else {
794 reg = 0;
795 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
796 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
798 rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
800 rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
801 rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
802 rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
803 rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
805 rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
806 rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
807 rt2x00dev->rx->data_size);
808 rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
810 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
811 rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
812 rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0xff);
813 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
815 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
816 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
817 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
819 rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
820 rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
821 rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
823 rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
824 rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
825 rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
827 return 0;
830 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
832 unsigned int i;
833 u16 eeprom;
834 u8 value;
835 u8 reg_id;
837 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
838 rt2500usb_bbp_read(rt2x00dev, 0, &value);
839 if ((value != 0xff) && (value != 0x00))
840 goto continue_csr_init;
841 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
842 udelay(REGISTER_BUSY_DELAY);
845 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
846 return -EACCES;
848 continue_csr_init:
849 rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
850 rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
851 rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
852 rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
853 rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
854 rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
855 rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
856 rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
857 rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
858 rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
859 rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
860 rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
861 rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
862 rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
863 rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
864 rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
865 rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
866 rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
867 rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
868 rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
869 rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
870 rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
871 rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
872 rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
873 rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
874 rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
875 rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
876 rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
877 rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
878 rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
879 rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
881 DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
882 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
883 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
885 if (eeprom != 0xffff && eeprom != 0x0000) {
886 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
887 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
888 DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
889 reg_id, value);
890 rt2500usb_bbp_write(rt2x00dev, reg_id, value);
893 DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
895 return 0;
899 * Device state switch handlers.
901 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
902 enum dev_state state)
904 u16 reg;
906 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
907 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
908 state == STATE_RADIO_RX_OFF);
909 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
912 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
915 * Initialize all registers.
917 if (rt2500usb_init_registers(rt2x00dev) ||
918 rt2500usb_init_bbp(rt2x00dev)) {
919 ERROR(rt2x00dev, "Register initialization failed.\n");
920 return -EIO;
924 * Enable LED
926 rt2500usb_enable_led(rt2x00dev);
928 return 0;
931 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
934 * Disable LED
936 rt2500usb_disable_led(rt2x00dev);
938 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
939 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
942 * Disable synchronisation.
944 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
946 rt2x00usb_disable_radio(rt2x00dev);
949 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
950 enum dev_state state)
952 u16 reg;
953 u16 reg2;
954 unsigned int i;
955 char put_to_sleep;
956 char bbp_state;
957 char rf_state;
959 put_to_sleep = (state != STATE_AWAKE);
961 reg = 0;
962 rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
963 rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
964 rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
965 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
966 rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
967 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
970 * Device is not guaranteed to be in the requested state yet.
971 * We must wait until the register indicates that the
972 * device has entered the correct state.
974 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
975 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
976 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
977 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
978 if (bbp_state == state && rf_state == state)
979 return 0;
980 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
981 msleep(30);
984 NOTICE(rt2x00dev, "Device failed to enter state %d, "
985 "current device state: bbp %d and rf %d.\n",
986 state, bbp_state, rf_state);
988 return -EBUSY;
991 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
992 enum dev_state state)
994 int retval = 0;
996 switch (state) {
997 case STATE_RADIO_ON:
998 retval = rt2500usb_enable_radio(rt2x00dev);
999 break;
1000 case STATE_RADIO_OFF:
1001 rt2500usb_disable_radio(rt2x00dev);
1002 break;
1003 case STATE_RADIO_RX_ON:
1004 <<<<<<< HEAD:drivers/net/wireless/rt2x00/rt2500usb.c
1005 =======
1006 case STATE_RADIO_RX_ON_LINK:
1007 rt2500usb_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
1008 break;
1009 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/net/wireless/rt2x00/rt2500usb.c
1010 case STATE_RADIO_RX_OFF:
1011 <<<<<<< HEAD:drivers/net/wireless/rt2x00/rt2500usb.c
1012 rt2500usb_toggle_rx(rt2x00dev, state);
1013 =======
1014 case STATE_RADIO_RX_OFF_LINK:
1015 rt2500usb_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
1016 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/net/wireless/rt2x00/rt2500usb.c
1017 break;
1018 case STATE_DEEP_SLEEP:
1019 case STATE_SLEEP:
1020 case STATE_STANDBY:
1021 case STATE_AWAKE:
1022 retval = rt2500usb_set_state(rt2x00dev, state);
1023 break;
1024 default:
1025 retval = -ENOTSUPP;
1026 break;
1029 return retval;
1033 * TX descriptor initialization
1035 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1036 struct sk_buff *skb,
1037 struct txdata_entry_desc *desc,
1038 struct ieee80211_tx_control *control)
1040 struct skb_desc *skbdesc = get_skb_desc(skb);
1041 __le32 *txd = skbdesc->desc;
1042 u32 word;
1045 * Start writing the descriptor words.
1047 rt2x00_desc_read(txd, 1, &word);
1048 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
1049 rt2x00_set_field32(&word, TXD_W1_AIFS, desc->aifs);
1050 rt2x00_set_field32(&word, TXD_W1_CWMIN, desc->cw_min);
1051 rt2x00_set_field32(&word, TXD_W1_CWMAX, desc->cw_max);
1052 rt2x00_desc_write(txd, 1, word);
1054 rt2x00_desc_read(txd, 2, &word);
1055 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, desc->signal);
1056 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, desc->service);
1057 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, desc->length_low);
1058 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, desc->length_high);
1059 rt2x00_desc_write(txd, 2, word);
1061 rt2x00_desc_read(txd, 0, &word);
1062 rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, control->retry_limit);
1063 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1064 test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
1065 rt2x00_set_field32(&word, TXD_W0_ACK,
1066 test_bit(ENTRY_TXD_ACK, &desc->flags));
1067 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1068 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
1069 rt2x00_set_field32(&word, TXD_W0_OFDM,
1070 test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
1071 rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1072 !!(control->flags & IEEE80211_TXCTL_FIRST_FRAGMENT));
1073 rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
1074 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1075 rt2x00_set_field32(&word, TXD_W0_CIPHER, CIPHER_NONE);
1076 rt2x00_desc_write(txd, 0, word);
1079 static int rt2500usb_get_tx_data_len(struct rt2x00_dev *rt2x00dev,
1080 struct sk_buff *skb)
1082 int length;
1085 * The length _must_ be a multiple of 2,
1086 * but it must _not_ be a multiple of the USB packet size.
1088 length = roundup(skb->len, 2);
1089 length += (2 * !(length % rt2x00dev->usb_maxpacket));
1091 return length;
1095 * TX data initialization
1097 static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1098 unsigned int queue)
1100 u16 reg;
1102 if (queue != IEEE80211_TX_QUEUE_BEACON)
1103 return;
1105 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1106 if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
1107 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1109 * Beacon generation will fail initially.
1110 * To prevent this we need to register the TXRX_CSR19
1111 * register several times.
1113 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1114 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1115 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1116 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1117 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1122 * RX control handlers
1124 static void rt2500usb_fill_rxdone(struct data_entry *entry,
1125 struct rxdata_entry_desc *desc)
1127 struct skb_desc *skbdesc = get_skb_desc(entry->skb);
1128 struct urb *urb = entry->priv;
1129 __le32 *rxd = (__le32 *)(entry->skb->data +
1130 (urb->actual_length - entry->ring->desc_size));
1131 u32 word0;
1132 u32 word1;
1134 rt2x00_desc_read(rxd, 0, &word0);
1135 rt2x00_desc_read(rxd, 1, &word1);
1137 desc->flags = 0;
1138 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1139 desc->flags |= RX_FLAG_FAILED_FCS_CRC;
1140 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1141 desc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1144 * Obtain the status about this packet.
1146 desc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1147 desc->rssi = rt2x00_get_field32(word1, RXD_W1_RSSI) -
1148 entry->ring->rt2x00dev->rssi_offset;
1149 desc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1150 desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1151 desc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
1154 * Set descriptor and data pointer.
1156 skbdesc->desc = entry->skb->data + desc->size;
1157 skbdesc->desc_len = entry->ring->desc_size;
1158 skbdesc->data = entry->skb->data;
1159 skbdesc->data_len = desc->size;
1163 * Interrupt functions.
1165 static void rt2500usb_beacondone(struct urb *urb)
1167 struct data_entry *entry = (struct data_entry *)urb->context;
1168 struct data_ring *ring = entry->ring;
1170 if (!test_bit(DEVICE_ENABLED_RADIO, &ring->rt2x00dev->flags))
1171 return;
1174 * Check if this was the guardian beacon,
1175 * if that was the case we need to send the real beacon now.
1176 * Otherwise we should free the sk_buffer, the device
1177 * should be doing the rest of the work now.
1179 if (ring->index == 1) {
1180 rt2x00_ring_index_done_inc(ring);
1181 entry = rt2x00_get_data_entry(ring);
1182 usb_submit_urb(entry->priv, GFP_ATOMIC);
1183 rt2x00_ring_index_inc(ring);
1184 } else if (ring->index_done == 1) {
1185 entry = rt2x00_get_data_entry_done(ring);
1186 if (entry->skb) {
1187 dev_kfree_skb(entry->skb);
1188 entry->skb = NULL;
1190 rt2x00_ring_index_done_inc(ring);
1195 * Device probe functions.
1197 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1199 u16 word;
1200 u8 *mac;
1202 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1205 * Start validation of the data that has been read.
1207 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1208 if (!is_valid_ether_addr(mac)) {
1209 DECLARE_MAC_BUF(macbuf);
1211 random_ether_addr(mac);
1212 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1215 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1216 if (word == 0xffff) {
1217 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1218 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1219 ANTENNA_SW_DIVERSITY);
1220 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1221 ANTENNA_SW_DIVERSITY);
1222 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1223 LED_MODE_DEFAULT);
1224 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1225 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1226 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1227 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1228 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1231 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1232 if (word == 0xffff) {
1233 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1234 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1235 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1236 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1237 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1240 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1241 if (word == 0xffff) {
1242 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1243 DEFAULT_RSSI_OFFSET);
1244 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1245 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1248 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1249 if (word == 0xffff) {
1250 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1251 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1252 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1255 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1256 if (word == 0xffff) {
1257 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1258 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1259 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1262 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1263 if (word == 0xffff) {
1264 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1265 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1266 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1267 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1270 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1271 if (word == 0xffff) {
1272 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1273 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1274 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1275 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1278 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1279 if (word == 0xffff) {
1280 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1281 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1282 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1283 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1286 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1287 if (word == 0xffff) {
1288 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1289 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1290 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1291 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1294 return 0;
1297 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1299 u16 reg;
1300 u16 value;
1301 u16 eeprom;
1304 * Read EEPROM word for configuration.
1306 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1309 * Identify RF chipset.
1311 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1312 rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1313 rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1315 if (!rt2x00_check_rev(&rt2x00dev->chip, 0)) {
1316 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1317 return -ENODEV;
1320 if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1321 !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1322 !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1323 !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1324 !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1325 !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1326 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1327 return -ENODEV;
1331 * Identify default antenna configuration.
1333 rt2x00dev->default_ant.tx =
1334 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1335 rt2x00dev->default_ant.rx =
1336 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1339 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1340 * I am not 100% sure about this, but the legacy drivers do not
1341 * indicate antenna swapping in software is required when
1342 * diversity is enabled.
1344 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1345 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1346 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1347 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1350 * Store led mode, for correct led behaviour.
1352 rt2x00dev->led_mode =
1353 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1356 * Check if the BBP tuning should be disabled.
1358 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1359 if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1360 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1363 * Read the RSSI <-> dBm offset information.
1365 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1366 rt2x00dev->rssi_offset =
1367 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1369 return 0;
1373 * RF value list for RF2522
1374 * Supports: 2.4 GHz
1376 static const struct rf_channel rf_vals_bg_2522[] = {
1377 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1378 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1379 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1380 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1381 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1382 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1383 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1384 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1385 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1386 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1387 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1388 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1389 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1390 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1394 * RF value list for RF2523
1395 * Supports: 2.4 GHz
1397 static const struct rf_channel rf_vals_bg_2523[] = {
1398 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1399 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1400 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1401 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1402 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1403 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1404 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1405 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1406 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1407 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1408 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1409 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1410 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1411 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1415 * RF value list for RF2524
1416 * Supports: 2.4 GHz
1418 static const struct rf_channel rf_vals_bg_2524[] = {
1419 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1420 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1421 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1422 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1423 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1424 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1425 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1426 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1427 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1428 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1429 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1430 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1431 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1432 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1436 * RF value list for RF2525
1437 * Supports: 2.4 GHz
1439 static const struct rf_channel rf_vals_bg_2525[] = {
1440 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1441 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1442 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1443 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1444 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1445 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1446 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1447 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1448 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1449 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1450 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1451 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1452 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1453 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1457 * RF value list for RF2525e
1458 * Supports: 2.4 GHz
1460 static const struct rf_channel rf_vals_bg_2525e[] = {
1461 { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1462 { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1463 { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1464 { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1465 { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1466 { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1467 { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1468 { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1469 { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1470 { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1471 { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1472 { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1473 { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1474 { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1478 * RF value list for RF5222
1479 * Supports: 2.4 GHz & 5.2 GHz
1481 static const struct rf_channel rf_vals_5222[] = {
1482 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1483 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1484 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1485 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1486 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1487 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1488 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1489 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1490 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1491 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1492 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1493 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1494 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1495 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1497 /* 802.11 UNI / HyperLan 2 */
1498 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1499 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1500 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1501 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1502 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1503 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1504 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1505 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1507 /* 802.11 HyperLan 2 */
1508 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1509 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1510 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1511 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1512 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1513 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1514 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1515 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1516 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1517 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1519 /* 802.11 UNII */
1520 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1521 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1522 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1523 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1524 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1527 static void rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1529 struct hw_mode_spec *spec = &rt2x00dev->spec;
1530 u8 *txpower;
1531 unsigned int i;
1534 * Initialize all hw fields.
1536 rt2x00dev->hw->flags =
1537 IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
1538 IEEE80211_HW_RX_INCLUDES_FCS |
1539 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1540 rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
1541 rt2x00dev->hw->max_signal = MAX_SIGNAL;
1542 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1543 rt2x00dev->hw->queues = 2;
1545 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_usb(rt2x00dev)->dev);
1546 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1547 rt2x00_eeprom_addr(rt2x00dev,
1548 EEPROM_MAC_ADDR_0));
1551 * Convert tx_power array in eeprom.
1553 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1554 for (i = 0; i < 14; i++)
1555 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1558 * Initialize hw_mode information.
1560 spec->num_modes = 2;
1561 spec->num_rates = 12;
1562 spec->tx_power_a = NULL;
1563 spec->tx_power_bg = txpower;
1564 spec->tx_power_default = DEFAULT_TXPOWER;
1566 if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1567 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1568 spec->channels = rf_vals_bg_2522;
1569 } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1570 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1571 spec->channels = rf_vals_bg_2523;
1572 } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1573 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1574 spec->channels = rf_vals_bg_2524;
1575 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1576 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1577 spec->channels = rf_vals_bg_2525;
1578 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1579 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1580 spec->channels = rf_vals_bg_2525e;
1581 } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1582 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1583 spec->channels = rf_vals_5222;
1584 spec->num_modes = 3;
1588 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1590 int retval;
1593 * Allocate eeprom data.
1595 retval = rt2500usb_validate_eeprom(rt2x00dev);
1596 if (retval)
1597 return retval;
1599 retval = rt2500usb_init_eeprom(rt2x00dev);
1600 if (retval)
1601 return retval;
1604 * Initialize hw specifications.
1606 rt2500usb_probe_hw_mode(rt2x00dev);
1609 * This device requires the beacon ring
1611 __set_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
1614 * Set the rssi offset.
1616 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1618 return 0;
1622 * IEEE80211 stack callback functions.
1624 static void rt2500usb_configure_filter(struct ieee80211_hw *hw,
1625 unsigned int changed_flags,
1626 unsigned int *total_flags,
1627 int mc_count,
1628 struct dev_addr_list *mc_list)
1630 struct rt2x00_dev *rt2x00dev = hw->priv;
1631 u16 reg;
1634 * Mask off any flags we are going to ignore from
1635 * the total_flags field.
1637 *total_flags &=
1638 FIF_ALLMULTI |
1639 FIF_FCSFAIL |
1640 FIF_PLCPFAIL |
1641 FIF_CONTROL |
1642 FIF_OTHER_BSS |
1643 FIF_PROMISC_IN_BSS;
1646 * Apply some rules to the filters:
1647 * - Some filters imply different filters to be set.
1648 * - Some things we can't filter out at all.
1650 if (mc_count)
1651 *total_flags |= FIF_ALLMULTI;
1652 if (*total_flags & FIF_OTHER_BSS ||
1653 *total_flags & FIF_PROMISC_IN_BSS)
1654 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1657 * Check if there is any work left for us.
1659 if (rt2x00dev->packet_filter == *total_flags)
1660 return;
1661 rt2x00dev->packet_filter = *total_flags;
1664 * When in atomic context, reschedule and let rt2x00lib
1665 * call this function again.
1667 if (in_atomic()) {
1668 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->filter_work);
1669 return;
1673 * Start configuration steps.
1674 * Note that the version error will always be dropped
1675 * and broadcast frames will always be accepted since
1676 * there is no filter for it at this time.
1678 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1679 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
1680 !(*total_flags & FIF_FCSFAIL));
1681 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
1682 !(*total_flags & FIF_PLCPFAIL));
1683 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
1684 !(*total_flags & FIF_CONTROL));
1685 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
1686 !(*total_flags & FIF_PROMISC_IN_BSS));
1687 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
1688 !(*total_flags & FIF_PROMISC_IN_BSS));
1689 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
1690 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
1691 !(*total_flags & FIF_ALLMULTI));
1692 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
1693 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1696 static int rt2500usb_beacon_update(struct ieee80211_hw *hw,
1697 struct sk_buff *skb,
1698 struct ieee80211_tx_control *control)
1700 struct rt2x00_dev *rt2x00dev = hw->priv;
1701 struct usb_device *usb_dev =
1702 interface_to_usbdev(rt2x00dev_usb(rt2x00dev));
1703 struct skb_desc *desc;
1704 struct data_ring *ring;
1705 struct data_entry *beacon;
1706 struct data_entry *guardian;
1707 int pipe = usb_sndbulkpipe(usb_dev, 1);
1708 int length;
1711 * Just in case the ieee80211 doesn't set this,
1712 * but we need this queue set for the descriptor
1713 * initialization.
1715 control->queue = IEEE80211_TX_QUEUE_BEACON;
1716 ring = rt2x00lib_get_ring(rt2x00dev, control->queue);
1719 * Obtain 2 entries, one for the guardian byte,
1720 * the second for the actual beacon.
1722 guardian = rt2x00_get_data_entry(ring);
1723 rt2x00_ring_index_inc(ring);
1724 beacon = rt2x00_get_data_entry(ring);
1727 * Add the descriptor in front of the skb.
1729 skb_push(skb, ring->desc_size);
1730 memset(skb->data, 0, ring->desc_size);
1733 * Fill in skb descriptor
1735 desc = get_skb_desc(skb);
1736 desc->desc_len = ring->desc_size;
1737 desc->data_len = skb->len - ring->desc_size;
1738 desc->desc = skb->data;
1739 desc->data = skb->data + ring->desc_size;
1740 desc->ring = ring;
1741 desc->entry = beacon;
1743 rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
1746 * USB devices cannot blindly pass the skb->len as the
1747 * length of the data to usb_fill_bulk_urb. Pass the skb
1748 * to the driver to determine what the length should be.
1750 length = rt2500usb_get_tx_data_len(rt2x00dev, skb);
1752 usb_fill_bulk_urb(beacon->priv, usb_dev, pipe,
1753 skb->data, length, rt2500usb_beacondone, beacon);
1756 * Second we need to create the guardian byte.
1757 * We only need a single byte, so lets recycle
1758 * the 'flags' field we are not using for beacons.
1760 guardian->flags = 0;
1761 usb_fill_bulk_urb(guardian->priv, usb_dev, pipe,
1762 &guardian->flags, 1, rt2500usb_beacondone, guardian);
1765 * Send out the guardian byte.
1767 usb_submit_urb(guardian->priv, GFP_ATOMIC);
1770 * Enable beacon generation.
1772 rt2500usb_kick_tx_queue(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
1774 return 0;
1777 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1778 .tx = rt2x00mac_tx,
1779 .start = rt2x00mac_start,
1780 .stop = rt2x00mac_stop,
1781 .add_interface = rt2x00mac_add_interface,
1782 .remove_interface = rt2x00mac_remove_interface,
1783 .config = rt2x00mac_config,
1784 .config_interface = rt2x00mac_config_interface,
1785 .configure_filter = rt2500usb_configure_filter,
1786 .get_stats = rt2x00mac_get_stats,
1787 .bss_info_changed = rt2x00mac_bss_info_changed,
1788 .conf_tx = rt2x00mac_conf_tx,
1789 .get_tx_stats = rt2x00mac_get_tx_stats,
1790 .beacon_update = rt2500usb_beacon_update,
1793 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1794 .probe_hw = rt2500usb_probe_hw,
1795 .initialize = rt2x00usb_initialize,
1796 .uninitialize = rt2x00usb_uninitialize,
1797 .init_rxentry = rt2x00usb_init_rxentry,
1798 .init_txentry = rt2x00usb_init_txentry,
1799 .set_device_state = rt2500usb_set_device_state,
1800 .link_stats = rt2500usb_link_stats,
1801 .reset_tuner = rt2500usb_reset_tuner,
1802 .link_tuner = rt2500usb_link_tuner,
1803 .write_tx_desc = rt2500usb_write_tx_desc,
1804 .write_tx_data = rt2x00usb_write_tx_data,
1805 .get_tx_data_len = rt2500usb_get_tx_data_len,
1806 .kick_tx_queue = rt2500usb_kick_tx_queue,
1807 .fill_rxdone = rt2500usb_fill_rxdone,
1808 .config_mac_addr = rt2500usb_config_mac_addr,
1809 .config_bssid = rt2500usb_config_bssid,
1810 .config_type = rt2500usb_config_type,
1811 .config_preamble = rt2500usb_config_preamble,
1812 .config = rt2500usb_config,
1815 static const struct rt2x00_ops rt2500usb_ops = {
1816 .name = KBUILD_MODNAME,
1817 .rxd_size = RXD_DESC_SIZE,
1818 .txd_size = TXD_DESC_SIZE,
1819 .eeprom_size = EEPROM_SIZE,
1820 .rf_size = RF_SIZE,
1821 .lib = &rt2500usb_rt2x00_ops,
1822 .hw = &rt2500usb_mac80211_ops,
1823 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1824 .debugfs = &rt2500usb_rt2x00debug,
1825 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1829 * rt2500usb module information.
1831 static struct usb_device_id rt2500usb_device_table[] = {
1832 /* ASUS */
1833 { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1834 { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1835 /* Belkin */
1836 { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1837 { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1838 { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1839 /* Cisco Systems */
1840 { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1841 { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1842 { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1843 /* Conceptronic */
1844 { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1845 /* D-LINK */
1846 { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1847 /* Gigabyte */
1848 { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1849 { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1850 /* Hercules */
1851 { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1852 /* Melco */
1853 <<<<<<< HEAD:drivers/net/wireless/rt2x00/rt2500usb.c
1854 =======
1855 { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1856 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/net/wireless/rt2x00/rt2500usb.c
1857 { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1858 { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1859 { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1860 { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1861 <<<<<<< HEAD:drivers/net/wireless/rt2x00/rt2500usb.c
1863 =======
1864 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/net/wireless/rt2x00/rt2500usb.c
1865 /* MSI */
1866 { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1867 { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1868 { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1869 /* Ralink */
1870 { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1871 { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1872 { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1873 { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1874 /* Siemens */
1875 { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1876 /* SMC */
1877 { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1878 /* Spairon */
1879 { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1880 /* Trust */
1881 { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1882 /* Zinwell */
1883 { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1884 { 0, }
1887 MODULE_AUTHOR(DRV_PROJECT);
1888 MODULE_VERSION(DRV_VERSION);
1889 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1890 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1891 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1892 MODULE_LICENSE("GPL");
1894 static struct usb_driver rt2500usb_driver = {
1895 .name = KBUILD_MODNAME,
1896 .id_table = rt2500usb_device_table,
1897 .probe = rt2x00usb_probe,
1898 .disconnect = rt2x00usb_disconnect,
1899 .suspend = rt2x00usb_suspend,
1900 .resume = rt2x00usb_resume,
1903 static int __init rt2500usb_init(void)
1905 return usb_register(&rt2500usb_driver);
1908 static void __exit rt2500usb_exit(void)
1910 usb_deregister(&rt2500usb_driver);
1913 module_init(rt2500usb_init);
1914 module_exit(rt2500usb_exit);