Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[wrt350n-kernel.git] / fs / exec.c
blob548729ab88397e6a38974f91a6fac0167fa95563
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/rmap.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 #include <asm/tlb.h>
59 #ifdef CONFIG_KMOD
60 #include <linux/kmod.h>
61 #endif
63 int core_uses_pid;
64 char core_pattern[CORENAME_MAX_SIZE] = "core";
65 int suid_dumpable = 0;
67 /* The maximal length of core_pattern is also specified in sysctl.c */
69 static LIST_HEAD(formats);
70 static DEFINE_RWLOCK(binfmt_lock);
72 int register_binfmt(struct linux_binfmt * fmt)
74 if (!fmt)
75 return -EINVAL;
76 write_lock(&binfmt_lock);
77 list_add(&fmt->lh, &formats);
78 write_unlock(&binfmt_lock);
79 return 0;
82 EXPORT_SYMBOL(register_binfmt);
84 void unregister_binfmt(struct linux_binfmt * fmt)
86 write_lock(&binfmt_lock);
87 list_del(&fmt->lh);
88 write_unlock(&binfmt_lock);
91 EXPORT_SYMBOL(unregister_binfmt);
93 static inline void put_binfmt(struct linux_binfmt * fmt)
95 module_put(fmt->module);
99 * Note that a shared library must be both readable and executable due to
100 * security reasons.
102 * Also note that we take the address to load from from the file itself.
104 asmlinkage long sys_uselib(const char __user * library)
106 struct file * file;
107 struct nameidata nd;
108 int error;
110 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
111 if (error)
112 goto out;
114 error = -EINVAL;
115 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
116 goto exit;
118 error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
119 if (error)
120 goto exit;
122 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
123 error = PTR_ERR(file);
124 if (IS_ERR(file))
125 goto out;
127 error = -ENOEXEC;
128 if(file->f_op) {
129 struct linux_binfmt * fmt;
131 read_lock(&binfmt_lock);
132 list_for_each_entry(fmt, &formats, lh) {
133 if (!fmt->load_shlib)
134 continue;
135 if (!try_module_get(fmt->module))
136 continue;
137 read_unlock(&binfmt_lock);
138 error = fmt->load_shlib(file);
139 read_lock(&binfmt_lock);
140 put_binfmt(fmt);
141 if (error != -ENOEXEC)
142 break;
144 read_unlock(&binfmt_lock);
146 fput(file);
147 out:
148 return error;
149 exit:
150 release_open_intent(&nd);
151 path_put(&nd.path);
152 goto out;
155 #ifdef CONFIG_MMU
157 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
158 int write)
160 struct page *page;
161 int ret;
163 #ifdef CONFIG_STACK_GROWSUP
164 if (write) {
165 ret = expand_stack_downwards(bprm->vma, pos);
166 if (ret < 0)
167 return NULL;
169 #endif
170 ret = get_user_pages(current, bprm->mm, pos,
171 1, write, 1, &page, NULL);
172 if (ret <= 0)
173 return NULL;
175 if (write) {
176 <<<<<<< HEAD:fs/exec.c
177 struct rlimit *rlim = current->signal->rlim;
178 =======
179 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:fs/exec.c
180 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
181 <<<<<<< HEAD:fs/exec.c
182 =======
183 struct rlimit *rlim;
186 * We've historically supported up to 32 pages (ARG_MAX)
187 * of argument strings even with small stacks
189 if (size <= ARG_MAX)
190 return page;
191 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:fs/exec.c
194 * Limit to 1/4-th the stack size for the argv+env strings.
195 * This ensures that:
196 * - the remaining binfmt code will not run out of stack space,
197 * - the program will have a reasonable amount of stack left
198 * to work from.
200 <<<<<<< HEAD:fs/exec.c
201 =======
202 rlim = current->signal->rlim;
203 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:fs/exec.c
204 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
205 put_page(page);
206 return NULL;
210 return page;
213 static void put_arg_page(struct page *page)
215 put_page(page);
218 static void free_arg_page(struct linux_binprm *bprm, int i)
222 static void free_arg_pages(struct linux_binprm *bprm)
226 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
227 struct page *page)
229 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
232 static int __bprm_mm_init(struct linux_binprm *bprm)
234 int err = -ENOMEM;
235 struct vm_area_struct *vma = NULL;
236 struct mm_struct *mm = bprm->mm;
238 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
239 if (!vma)
240 goto err;
242 down_write(&mm->mmap_sem);
243 vma->vm_mm = mm;
246 * Place the stack at the largest stack address the architecture
247 * supports. Later, we'll move this to an appropriate place. We don't
248 * use STACK_TOP because that can depend on attributes which aren't
249 * configured yet.
251 vma->vm_end = STACK_TOP_MAX;
252 vma->vm_start = vma->vm_end - PAGE_SIZE;
254 vma->vm_flags = VM_STACK_FLAGS;
255 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
256 err = insert_vm_struct(mm, vma);
257 if (err) {
258 up_write(&mm->mmap_sem);
259 goto err;
262 mm->stack_vm = mm->total_vm = 1;
263 up_write(&mm->mmap_sem);
265 bprm->p = vma->vm_end - sizeof(void *);
267 return 0;
269 err:
270 if (vma) {
271 bprm->vma = NULL;
272 kmem_cache_free(vm_area_cachep, vma);
275 return err;
278 static bool valid_arg_len(struct linux_binprm *bprm, long len)
280 return len <= MAX_ARG_STRLEN;
283 #else
285 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
286 int write)
288 struct page *page;
290 page = bprm->page[pos / PAGE_SIZE];
291 if (!page && write) {
292 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
293 if (!page)
294 return NULL;
295 bprm->page[pos / PAGE_SIZE] = page;
298 return page;
301 static void put_arg_page(struct page *page)
305 static void free_arg_page(struct linux_binprm *bprm, int i)
307 if (bprm->page[i]) {
308 __free_page(bprm->page[i]);
309 bprm->page[i] = NULL;
313 static void free_arg_pages(struct linux_binprm *bprm)
315 int i;
317 for (i = 0; i < MAX_ARG_PAGES; i++)
318 free_arg_page(bprm, i);
321 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
322 struct page *page)
326 static int __bprm_mm_init(struct linux_binprm *bprm)
328 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
329 return 0;
332 static bool valid_arg_len(struct linux_binprm *bprm, long len)
334 return len <= bprm->p;
337 #endif /* CONFIG_MMU */
340 * Create a new mm_struct and populate it with a temporary stack
341 * vm_area_struct. We don't have enough context at this point to set the stack
342 * flags, permissions, and offset, so we use temporary values. We'll update
343 * them later in setup_arg_pages().
345 int bprm_mm_init(struct linux_binprm *bprm)
347 int err;
348 struct mm_struct *mm = NULL;
350 bprm->mm = mm = mm_alloc();
351 err = -ENOMEM;
352 if (!mm)
353 goto err;
355 err = init_new_context(current, mm);
356 if (err)
357 goto err;
359 err = __bprm_mm_init(bprm);
360 if (err)
361 goto err;
363 return 0;
365 err:
366 if (mm) {
367 bprm->mm = NULL;
368 mmdrop(mm);
371 return err;
375 * count() counts the number of strings in array ARGV.
377 static int count(char __user * __user * argv, int max)
379 int i = 0;
381 if (argv != NULL) {
382 for (;;) {
383 char __user * p;
385 if (get_user(p, argv))
386 return -EFAULT;
387 if (!p)
388 break;
389 argv++;
390 if(++i > max)
391 return -E2BIG;
392 cond_resched();
395 return i;
399 * 'copy_strings()' copies argument/environment strings from the old
400 * processes's memory to the new process's stack. The call to get_user_pages()
401 * ensures the destination page is created and not swapped out.
403 static int copy_strings(int argc, char __user * __user * argv,
404 struct linux_binprm *bprm)
406 struct page *kmapped_page = NULL;
407 char *kaddr = NULL;
408 unsigned long kpos = 0;
409 int ret;
411 while (argc-- > 0) {
412 char __user *str;
413 int len;
414 unsigned long pos;
416 if (get_user(str, argv+argc) ||
417 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
418 ret = -EFAULT;
419 goto out;
422 if (!valid_arg_len(bprm, len)) {
423 ret = -E2BIG;
424 goto out;
427 /* We're going to work our way backwords. */
428 pos = bprm->p;
429 str += len;
430 bprm->p -= len;
432 while (len > 0) {
433 int offset, bytes_to_copy;
435 offset = pos % PAGE_SIZE;
436 if (offset == 0)
437 offset = PAGE_SIZE;
439 bytes_to_copy = offset;
440 if (bytes_to_copy > len)
441 bytes_to_copy = len;
443 offset -= bytes_to_copy;
444 pos -= bytes_to_copy;
445 str -= bytes_to_copy;
446 len -= bytes_to_copy;
448 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
449 struct page *page;
451 page = get_arg_page(bprm, pos, 1);
452 if (!page) {
453 ret = -E2BIG;
454 goto out;
457 if (kmapped_page) {
458 flush_kernel_dcache_page(kmapped_page);
459 kunmap(kmapped_page);
460 put_arg_page(kmapped_page);
462 kmapped_page = page;
463 kaddr = kmap(kmapped_page);
464 kpos = pos & PAGE_MASK;
465 flush_arg_page(bprm, kpos, kmapped_page);
467 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
468 ret = -EFAULT;
469 goto out;
473 ret = 0;
474 out:
475 if (kmapped_page) {
476 flush_kernel_dcache_page(kmapped_page);
477 kunmap(kmapped_page);
478 put_arg_page(kmapped_page);
480 return ret;
484 * Like copy_strings, but get argv and its values from kernel memory.
486 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
488 int r;
489 mm_segment_t oldfs = get_fs();
490 set_fs(KERNEL_DS);
491 r = copy_strings(argc, (char __user * __user *)argv, bprm);
492 set_fs(oldfs);
493 return r;
495 EXPORT_SYMBOL(copy_strings_kernel);
497 #ifdef CONFIG_MMU
500 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
501 * the binfmt code determines where the new stack should reside, we shift it to
502 * its final location. The process proceeds as follows:
504 * 1) Use shift to calculate the new vma endpoints.
505 * 2) Extend vma to cover both the old and new ranges. This ensures the
506 * arguments passed to subsequent functions are consistent.
507 * 3) Move vma's page tables to the new range.
508 * 4) Free up any cleared pgd range.
509 * 5) Shrink the vma to cover only the new range.
511 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
513 struct mm_struct *mm = vma->vm_mm;
514 unsigned long old_start = vma->vm_start;
515 unsigned long old_end = vma->vm_end;
516 unsigned long length = old_end - old_start;
517 unsigned long new_start = old_start - shift;
518 unsigned long new_end = old_end - shift;
519 struct mmu_gather *tlb;
521 BUG_ON(new_start > new_end);
524 * ensure there are no vmas between where we want to go
525 * and where we are
527 if (vma != find_vma(mm, new_start))
528 return -EFAULT;
531 * cover the whole range: [new_start, old_end)
533 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
536 * move the page tables downwards, on failure we rely on
537 * process cleanup to remove whatever mess we made.
539 if (length != move_page_tables(vma, old_start,
540 vma, new_start, length))
541 return -ENOMEM;
543 lru_add_drain();
544 tlb = tlb_gather_mmu(mm, 0);
545 if (new_end > old_start) {
547 * when the old and new regions overlap clear from new_end.
549 free_pgd_range(&tlb, new_end, old_end, new_end,
550 vma->vm_next ? vma->vm_next->vm_start : 0);
551 } else {
553 * otherwise, clean from old_start; this is done to not touch
554 * the address space in [new_end, old_start) some architectures
555 * have constraints on va-space that make this illegal (IA64) -
556 * for the others its just a little faster.
558 free_pgd_range(&tlb, old_start, old_end, new_end,
559 vma->vm_next ? vma->vm_next->vm_start : 0);
561 tlb_finish_mmu(tlb, new_end, old_end);
564 * shrink the vma to just the new range.
566 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
568 return 0;
571 #define EXTRA_STACK_VM_PAGES 20 /* random */
574 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
575 * the stack is optionally relocated, and some extra space is added.
577 int setup_arg_pages(struct linux_binprm *bprm,
578 unsigned long stack_top,
579 int executable_stack)
581 unsigned long ret;
582 unsigned long stack_shift;
583 struct mm_struct *mm = current->mm;
584 struct vm_area_struct *vma = bprm->vma;
585 struct vm_area_struct *prev = NULL;
586 unsigned long vm_flags;
587 unsigned long stack_base;
589 #ifdef CONFIG_STACK_GROWSUP
590 /* Limit stack size to 1GB */
591 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
592 if (stack_base > (1 << 30))
593 stack_base = 1 << 30;
595 /* Make sure we didn't let the argument array grow too large. */
596 if (vma->vm_end - vma->vm_start > stack_base)
597 return -ENOMEM;
599 stack_base = PAGE_ALIGN(stack_top - stack_base);
601 stack_shift = vma->vm_start - stack_base;
602 mm->arg_start = bprm->p - stack_shift;
603 bprm->p = vma->vm_end - stack_shift;
604 #else
605 stack_top = arch_align_stack(stack_top);
606 stack_top = PAGE_ALIGN(stack_top);
607 stack_shift = vma->vm_end - stack_top;
609 bprm->p -= stack_shift;
610 mm->arg_start = bprm->p;
611 #endif
613 if (bprm->loader)
614 bprm->loader -= stack_shift;
615 bprm->exec -= stack_shift;
617 down_write(&mm->mmap_sem);
618 vm_flags = vma->vm_flags;
621 * Adjust stack execute permissions; explicitly enable for
622 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
623 * (arch default) otherwise.
625 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
626 vm_flags |= VM_EXEC;
627 else if (executable_stack == EXSTACK_DISABLE_X)
628 vm_flags &= ~VM_EXEC;
629 vm_flags |= mm->def_flags;
631 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
632 vm_flags);
633 if (ret)
634 goto out_unlock;
635 BUG_ON(prev != vma);
637 /* Move stack pages down in memory. */
638 if (stack_shift) {
639 ret = shift_arg_pages(vma, stack_shift);
640 if (ret) {
641 up_write(&mm->mmap_sem);
642 return ret;
646 #ifdef CONFIG_STACK_GROWSUP
647 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
648 #else
649 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
650 #endif
651 ret = expand_stack(vma, stack_base);
652 if (ret)
653 ret = -EFAULT;
655 out_unlock:
656 up_write(&mm->mmap_sem);
657 return 0;
659 EXPORT_SYMBOL(setup_arg_pages);
661 #endif /* CONFIG_MMU */
663 struct file *open_exec(const char *name)
665 struct nameidata nd;
666 int err;
667 struct file *file;
669 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
670 file = ERR_PTR(err);
672 if (!err) {
673 struct inode *inode = nd.path.dentry->d_inode;
674 file = ERR_PTR(-EACCES);
675 if (S_ISREG(inode->i_mode)) {
676 int err = vfs_permission(&nd, MAY_EXEC);
677 file = ERR_PTR(err);
678 if (!err) {
679 file = nameidata_to_filp(&nd,
680 O_RDONLY|O_LARGEFILE);
681 if (!IS_ERR(file)) {
682 err = deny_write_access(file);
683 if (err) {
684 fput(file);
685 file = ERR_PTR(err);
688 out:
689 return file;
692 release_open_intent(&nd);
693 path_put(&nd.path);
695 goto out;
698 EXPORT_SYMBOL(open_exec);
700 int kernel_read(struct file *file, unsigned long offset,
701 char *addr, unsigned long count)
703 mm_segment_t old_fs;
704 loff_t pos = offset;
705 int result;
707 old_fs = get_fs();
708 set_fs(get_ds());
709 /* The cast to a user pointer is valid due to the set_fs() */
710 result = vfs_read(file, (void __user *)addr, count, &pos);
711 set_fs(old_fs);
712 return result;
715 EXPORT_SYMBOL(kernel_read);
717 static int exec_mmap(struct mm_struct *mm)
719 struct task_struct *tsk;
720 struct mm_struct * old_mm, *active_mm;
722 /* Notify parent that we're no longer interested in the old VM */
723 tsk = current;
724 old_mm = current->mm;
725 mm_release(tsk, old_mm);
727 if (old_mm) {
729 * Make sure that if there is a core dump in progress
730 * for the old mm, we get out and die instead of going
731 * through with the exec. We must hold mmap_sem around
732 * checking core_waiters and changing tsk->mm. The
733 * core-inducing thread will increment core_waiters for
734 * each thread whose ->mm == old_mm.
736 down_read(&old_mm->mmap_sem);
737 if (unlikely(old_mm->core_waiters)) {
738 up_read(&old_mm->mmap_sem);
739 return -EINTR;
742 task_lock(tsk);
743 active_mm = tsk->active_mm;
744 tsk->mm = mm;
745 tsk->active_mm = mm;
746 activate_mm(active_mm, mm);
747 task_unlock(tsk);
748 arch_pick_mmap_layout(mm);
749 if (old_mm) {
750 up_read(&old_mm->mmap_sem);
751 BUG_ON(active_mm != old_mm);
752 mmput(old_mm);
753 return 0;
755 mmdrop(active_mm);
756 return 0;
760 * This function makes sure the current process has its own signal table,
761 * so that flush_signal_handlers can later reset the handlers without
762 * disturbing other processes. (Other processes might share the signal
763 * table via the CLONE_SIGHAND option to clone().)
765 static int de_thread(struct task_struct *tsk)
767 struct signal_struct *sig = tsk->signal;
768 struct sighand_struct *oldsighand = tsk->sighand;
769 spinlock_t *lock = &oldsighand->siglock;
770 struct task_struct *leader = NULL;
771 int count;
773 if (thread_group_empty(tsk))
774 goto no_thread_group;
777 * Kill all other threads in the thread group.
778 * We must hold tasklist_lock to call zap_other_threads.
780 read_lock(&tasklist_lock);
781 spin_lock_irq(lock);
782 if (signal_group_exit(sig)) {
784 * Another group action in progress, just
785 * return so that the signal is processed.
787 spin_unlock_irq(lock);
788 read_unlock(&tasklist_lock);
789 return -EAGAIN;
793 * child_reaper ignores SIGKILL, change it now.
794 * Reparenting needs write_lock on tasklist_lock,
795 * so it is safe to do it under read_lock.
797 if (unlikely(tsk->group_leader == task_child_reaper(tsk)))
798 task_active_pid_ns(tsk)->child_reaper = tsk;
800 sig->group_exit_task = tsk;
801 zap_other_threads(tsk);
802 read_unlock(&tasklist_lock);
804 /* Account for the thread group leader hanging around: */
805 count = thread_group_leader(tsk) ? 1 : 2;
806 sig->notify_count = count;
807 while (atomic_read(&sig->count) > count) {
808 __set_current_state(TASK_UNINTERRUPTIBLE);
809 spin_unlock_irq(lock);
810 schedule();
811 spin_lock_irq(lock);
813 spin_unlock_irq(lock);
816 * At this point all other threads have exited, all we have to
817 * do is to wait for the thread group leader to become inactive,
818 * and to assume its PID:
820 if (!thread_group_leader(tsk)) {
821 leader = tsk->group_leader;
823 sig->notify_count = -1;
824 for (;;) {
825 write_lock_irq(&tasklist_lock);
826 if (likely(leader->exit_state))
827 break;
828 __set_current_state(TASK_UNINTERRUPTIBLE);
829 write_unlock_irq(&tasklist_lock);
830 schedule();
834 * The only record we have of the real-time age of a
835 * process, regardless of execs it's done, is start_time.
836 * All the past CPU time is accumulated in signal_struct
837 * from sister threads now dead. But in this non-leader
838 * exec, nothing survives from the original leader thread,
839 * whose birth marks the true age of this process now.
840 * When we take on its identity by switching to its PID, we
841 * also take its birthdate (always earlier than our own).
843 tsk->start_time = leader->start_time;
845 BUG_ON(!same_thread_group(leader, tsk));
846 BUG_ON(has_group_leader_pid(tsk));
848 * An exec() starts a new thread group with the
849 * TGID of the previous thread group. Rehash the
850 * two threads with a switched PID, and release
851 * the former thread group leader:
854 /* Become a process group leader with the old leader's pid.
855 * The old leader becomes a thread of the this thread group.
856 * Note: The old leader also uses this pid until release_task
857 * is called. Odd but simple and correct.
859 detach_pid(tsk, PIDTYPE_PID);
860 tsk->pid = leader->pid;
861 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
862 transfer_pid(leader, tsk, PIDTYPE_PGID);
863 transfer_pid(leader, tsk, PIDTYPE_SID);
864 list_replace_rcu(&leader->tasks, &tsk->tasks);
866 tsk->group_leader = tsk;
867 leader->group_leader = tsk;
869 tsk->exit_signal = SIGCHLD;
871 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
872 leader->exit_state = EXIT_DEAD;
874 write_unlock_irq(&tasklist_lock);
877 sig->group_exit_task = NULL;
878 sig->notify_count = 0;
880 no_thread_group:
881 exit_itimers(sig);
882 if (leader)
883 release_task(leader);
885 if (atomic_read(&oldsighand->count) != 1) {
886 struct sighand_struct *newsighand;
888 * This ->sighand is shared with the CLONE_SIGHAND
889 * but not CLONE_THREAD task, switch to the new one.
891 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
892 if (!newsighand)
893 return -ENOMEM;
895 atomic_set(&newsighand->count, 1);
896 memcpy(newsighand->action, oldsighand->action,
897 sizeof(newsighand->action));
899 write_lock_irq(&tasklist_lock);
900 spin_lock(&oldsighand->siglock);
901 rcu_assign_pointer(tsk->sighand, newsighand);
902 spin_unlock(&oldsighand->siglock);
903 write_unlock_irq(&tasklist_lock);
905 __cleanup_sighand(oldsighand);
908 BUG_ON(!thread_group_leader(tsk));
909 return 0;
913 * These functions flushes out all traces of the currently running executable
914 * so that a new one can be started
916 static void flush_old_files(struct files_struct * files)
918 long j = -1;
919 struct fdtable *fdt;
921 spin_lock(&files->file_lock);
922 for (;;) {
923 unsigned long set, i;
925 j++;
926 i = j * __NFDBITS;
927 fdt = files_fdtable(files);
928 if (i >= fdt->max_fds)
929 break;
930 set = fdt->close_on_exec->fds_bits[j];
931 if (!set)
932 continue;
933 fdt->close_on_exec->fds_bits[j] = 0;
934 spin_unlock(&files->file_lock);
935 for ( ; set ; i++,set >>= 1) {
936 if (set & 1) {
937 sys_close(i);
940 spin_lock(&files->file_lock);
943 spin_unlock(&files->file_lock);
946 char *get_task_comm(char *buf, struct task_struct *tsk)
948 /* buf must be at least sizeof(tsk->comm) in size */
949 task_lock(tsk);
950 strncpy(buf, tsk->comm, sizeof(tsk->comm));
951 task_unlock(tsk);
952 return buf;
955 void set_task_comm(struct task_struct *tsk, char *buf)
957 task_lock(tsk);
958 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
959 task_unlock(tsk);
962 int flush_old_exec(struct linux_binprm * bprm)
964 char * name;
965 int i, ch, retval;
966 struct files_struct *files;
967 char tcomm[sizeof(current->comm)];
970 * Make sure we have a private signal table and that
971 * we are unassociated from the previous thread group.
973 retval = de_thread(current);
974 if (retval)
975 goto out;
978 * Make sure we have private file handles. Ask the
979 * fork helper to do the work for us and the exit
980 * helper to do the cleanup of the old one.
982 files = current->files; /* refcounted so safe to hold */
983 retval = unshare_files();
984 if (retval)
985 goto out;
987 * Release all of the old mmap stuff
989 retval = exec_mmap(bprm->mm);
990 if (retval)
991 goto mmap_failed;
993 bprm->mm = NULL; /* We're using it now */
995 /* This is the point of no return */
996 put_files_struct(files);
998 current->sas_ss_sp = current->sas_ss_size = 0;
1000 if (current->euid == current->uid && current->egid == current->gid)
1001 set_dumpable(current->mm, 1);
1002 else
1003 set_dumpable(current->mm, suid_dumpable);
1005 name = bprm->filename;
1007 /* Copies the binary name from after last slash */
1008 for (i=0; (ch = *(name++)) != '\0';) {
1009 if (ch == '/')
1010 i = 0; /* overwrite what we wrote */
1011 else
1012 if (i < (sizeof(tcomm) - 1))
1013 tcomm[i++] = ch;
1015 tcomm[i] = '\0';
1016 set_task_comm(current, tcomm);
1018 current->flags &= ~PF_RANDOMIZE;
1019 flush_thread();
1021 /* Set the new mm task size. We have to do that late because it may
1022 * depend on TIF_32BIT which is only updated in flush_thread() on
1023 * some architectures like powerpc
1025 current->mm->task_size = TASK_SIZE;
1027 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1028 suid_keys(current);
1029 set_dumpable(current->mm, suid_dumpable);
1030 current->pdeath_signal = 0;
1031 } else if (file_permission(bprm->file, MAY_READ) ||
1032 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1033 suid_keys(current);
1034 set_dumpable(current->mm, suid_dumpable);
1037 /* An exec changes our domain. We are no longer part of the thread
1038 group */
1040 current->self_exec_id++;
1042 flush_signal_handlers(current, 0);
1043 flush_old_files(current->files);
1045 return 0;
1047 mmap_failed:
1048 reset_files_struct(current, files);
1049 out:
1050 return retval;
1053 EXPORT_SYMBOL(flush_old_exec);
1056 * Fill the binprm structure from the inode.
1057 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1059 int prepare_binprm(struct linux_binprm *bprm)
1061 int mode;
1062 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1063 int retval;
1065 mode = inode->i_mode;
1066 if (bprm->file->f_op == NULL)
1067 return -EACCES;
1069 bprm->e_uid = current->euid;
1070 bprm->e_gid = current->egid;
1072 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1073 /* Set-uid? */
1074 if (mode & S_ISUID) {
1075 current->personality &= ~PER_CLEAR_ON_SETID;
1076 bprm->e_uid = inode->i_uid;
1079 /* Set-gid? */
1081 * If setgid is set but no group execute bit then this
1082 * is a candidate for mandatory locking, not a setgid
1083 * executable.
1085 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1086 current->personality &= ~PER_CLEAR_ON_SETID;
1087 bprm->e_gid = inode->i_gid;
1091 /* fill in binprm security blob */
1092 retval = security_bprm_set(bprm);
1093 if (retval)
1094 return retval;
1096 memset(bprm->buf,0,BINPRM_BUF_SIZE);
1097 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1100 EXPORT_SYMBOL(prepare_binprm);
1102 static int unsafe_exec(struct task_struct *p)
1104 int unsafe = 0;
1105 if (p->ptrace & PT_PTRACED) {
1106 if (p->ptrace & PT_PTRACE_CAP)
1107 unsafe |= LSM_UNSAFE_PTRACE_CAP;
1108 else
1109 unsafe |= LSM_UNSAFE_PTRACE;
1111 if (atomic_read(&p->fs->count) > 1 ||
1112 atomic_read(&p->files->count) > 1 ||
1113 atomic_read(&p->sighand->count) > 1)
1114 unsafe |= LSM_UNSAFE_SHARE;
1116 return unsafe;
1119 void compute_creds(struct linux_binprm *bprm)
1121 int unsafe;
1123 if (bprm->e_uid != current->uid) {
1124 suid_keys(current);
1125 current->pdeath_signal = 0;
1127 exec_keys(current);
1129 task_lock(current);
1130 unsafe = unsafe_exec(current);
1131 security_bprm_apply_creds(bprm, unsafe);
1132 task_unlock(current);
1133 security_bprm_post_apply_creds(bprm);
1135 EXPORT_SYMBOL(compute_creds);
1138 * Arguments are '\0' separated strings found at the location bprm->p
1139 * points to; chop off the first by relocating brpm->p to right after
1140 * the first '\0' encountered.
1142 int remove_arg_zero(struct linux_binprm *bprm)
1144 int ret = 0;
1145 unsigned long offset;
1146 char *kaddr;
1147 struct page *page;
1149 if (!bprm->argc)
1150 return 0;
1152 do {
1153 offset = bprm->p & ~PAGE_MASK;
1154 page = get_arg_page(bprm, bprm->p, 0);
1155 if (!page) {
1156 ret = -EFAULT;
1157 goto out;
1159 kaddr = kmap_atomic(page, KM_USER0);
1161 for (; offset < PAGE_SIZE && kaddr[offset];
1162 offset++, bprm->p++)
1165 kunmap_atomic(kaddr, KM_USER0);
1166 put_arg_page(page);
1168 if (offset == PAGE_SIZE)
1169 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1170 } while (offset == PAGE_SIZE);
1172 bprm->p++;
1173 bprm->argc--;
1174 ret = 0;
1176 out:
1177 return ret;
1179 EXPORT_SYMBOL(remove_arg_zero);
1182 * cycle the list of binary formats handler, until one recognizes the image
1184 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1186 int try,retval;
1187 struct linux_binfmt *fmt;
1188 #if defined(__alpha__) && defined(CONFIG_ARCH_SUPPORTS_AOUT)
1189 /* handle /sbin/loader.. */
1191 struct exec * eh = (struct exec *) bprm->buf;
1193 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1194 (eh->fh.f_flags & 0x3000) == 0x3000)
1196 struct file * file;
1197 unsigned long loader;
1199 allow_write_access(bprm->file);
1200 fput(bprm->file);
1201 bprm->file = NULL;
1203 loader = bprm->vma->vm_end - sizeof(void *);
1205 file = open_exec("/sbin/loader");
1206 retval = PTR_ERR(file);
1207 if (IS_ERR(file))
1208 return retval;
1210 /* Remember if the application is TASO. */
1211 bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1213 bprm->file = file;
1214 bprm->loader = loader;
1215 retval = prepare_binprm(bprm);
1216 if (retval<0)
1217 return retval;
1218 /* should call search_binary_handler recursively here,
1219 but it does not matter */
1222 #endif
1223 retval = security_bprm_check(bprm);
1224 if (retval)
1225 return retval;
1227 /* kernel module loader fixup */
1228 /* so we don't try to load run modprobe in kernel space. */
1229 set_fs(USER_DS);
1231 retval = audit_bprm(bprm);
1232 if (retval)
1233 return retval;
1235 retval = -ENOENT;
1236 for (try=0; try<2; try++) {
1237 read_lock(&binfmt_lock);
1238 list_for_each_entry(fmt, &formats, lh) {
1239 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1240 if (!fn)
1241 continue;
1242 if (!try_module_get(fmt->module))
1243 continue;
1244 read_unlock(&binfmt_lock);
1245 retval = fn(bprm, regs);
1246 if (retval >= 0) {
1247 put_binfmt(fmt);
1248 allow_write_access(bprm->file);
1249 if (bprm->file)
1250 fput(bprm->file);
1251 bprm->file = NULL;
1252 current->did_exec = 1;
1253 proc_exec_connector(current);
1254 return retval;
1256 read_lock(&binfmt_lock);
1257 put_binfmt(fmt);
1258 if (retval != -ENOEXEC || bprm->mm == NULL)
1259 break;
1260 if (!bprm->file) {
1261 read_unlock(&binfmt_lock);
1262 return retval;
1265 read_unlock(&binfmt_lock);
1266 if (retval != -ENOEXEC || bprm->mm == NULL) {
1267 break;
1268 #ifdef CONFIG_KMOD
1269 }else{
1270 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1271 if (printable(bprm->buf[0]) &&
1272 printable(bprm->buf[1]) &&
1273 printable(bprm->buf[2]) &&
1274 printable(bprm->buf[3]))
1275 break; /* -ENOEXEC */
1276 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1277 #endif
1280 return retval;
1283 EXPORT_SYMBOL(search_binary_handler);
1286 * sys_execve() executes a new program.
1288 int do_execve(char * filename,
1289 char __user *__user *argv,
1290 char __user *__user *envp,
1291 struct pt_regs * regs)
1293 struct linux_binprm *bprm;
1294 struct file *file;
1295 unsigned long env_p;
1296 int retval;
1298 retval = -ENOMEM;
1299 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1300 if (!bprm)
1301 goto out_ret;
1303 file = open_exec(filename);
1304 retval = PTR_ERR(file);
1305 if (IS_ERR(file))
1306 goto out_kfree;
1308 sched_exec();
1310 bprm->file = file;
1311 bprm->filename = filename;
1312 bprm->interp = filename;
1314 retval = bprm_mm_init(bprm);
1315 if (retval)
1316 goto out_file;
1318 bprm->argc = count(argv, MAX_ARG_STRINGS);
1319 if ((retval = bprm->argc) < 0)
1320 goto out_mm;
1322 bprm->envc = count(envp, MAX_ARG_STRINGS);
1323 if ((retval = bprm->envc) < 0)
1324 goto out_mm;
1326 retval = security_bprm_alloc(bprm);
1327 if (retval)
1328 goto out;
1330 retval = prepare_binprm(bprm);
1331 if (retval < 0)
1332 goto out;
1334 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1335 if (retval < 0)
1336 goto out;
1338 bprm->exec = bprm->p;
1339 retval = copy_strings(bprm->envc, envp, bprm);
1340 if (retval < 0)
1341 goto out;
1343 env_p = bprm->p;
1344 retval = copy_strings(bprm->argc, argv, bprm);
1345 if (retval < 0)
1346 goto out;
1347 bprm->argv_len = env_p - bprm->p;
1349 retval = search_binary_handler(bprm,regs);
1350 if (retval >= 0) {
1351 /* execve success */
1352 free_arg_pages(bprm);
1353 security_bprm_free(bprm);
1354 acct_update_integrals(current);
1355 kfree(bprm);
1356 return retval;
1359 out:
1360 free_arg_pages(bprm);
1361 if (bprm->security)
1362 security_bprm_free(bprm);
1364 out_mm:
1365 if (bprm->mm)
1366 mmput (bprm->mm);
1368 out_file:
1369 if (bprm->file) {
1370 allow_write_access(bprm->file);
1371 fput(bprm->file);
1373 out_kfree:
1374 kfree(bprm);
1376 out_ret:
1377 return retval;
1380 int set_binfmt(struct linux_binfmt *new)
1382 struct linux_binfmt *old = current->binfmt;
1384 if (new) {
1385 if (!try_module_get(new->module))
1386 return -1;
1388 current->binfmt = new;
1389 if (old)
1390 module_put(old->module);
1391 return 0;
1394 EXPORT_SYMBOL(set_binfmt);
1396 /* format_corename will inspect the pattern parameter, and output a
1397 * name into corename, which must have space for at least
1398 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1400 static int format_corename(char *corename, const char *pattern, long signr)
1402 const char *pat_ptr = pattern;
1403 char *out_ptr = corename;
1404 char *const out_end = corename + CORENAME_MAX_SIZE;
1405 int rc;
1406 int pid_in_pattern = 0;
1407 int ispipe = 0;
1409 if (*pattern == '|')
1410 ispipe = 1;
1412 /* Repeat as long as we have more pattern to process and more output
1413 space */
1414 while (*pat_ptr) {
1415 if (*pat_ptr != '%') {
1416 if (out_ptr == out_end)
1417 goto out;
1418 *out_ptr++ = *pat_ptr++;
1419 } else {
1420 switch (*++pat_ptr) {
1421 case 0:
1422 goto out;
1423 /* Double percent, output one percent */
1424 case '%':
1425 if (out_ptr == out_end)
1426 goto out;
1427 *out_ptr++ = '%';
1428 break;
1429 /* pid */
1430 case 'p':
1431 pid_in_pattern = 1;
1432 rc = snprintf(out_ptr, out_end - out_ptr,
1433 "%d", task_tgid_vnr(current));
1434 if (rc > out_end - out_ptr)
1435 goto out;
1436 out_ptr += rc;
1437 break;
1438 /* uid */
1439 case 'u':
1440 rc = snprintf(out_ptr, out_end - out_ptr,
1441 "%d", current->uid);
1442 if (rc > out_end - out_ptr)
1443 goto out;
1444 out_ptr += rc;
1445 break;
1446 /* gid */
1447 case 'g':
1448 rc = snprintf(out_ptr, out_end - out_ptr,
1449 "%d", current->gid);
1450 if (rc > out_end - out_ptr)
1451 goto out;
1452 out_ptr += rc;
1453 break;
1454 /* signal that caused the coredump */
1455 case 's':
1456 rc = snprintf(out_ptr, out_end - out_ptr,
1457 "%ld", signr);
1458 if (rc > out_end - out_ptr)
1459 goto out;
1460 out_ptr += rc;
1461 break;
1462 /* UNIX time of coredump */
1463 case 't': {
1464 struct timeval tv;
1465 do_gettimeofday(&tv);
1466 rc = snprintf(out_ptr, out_end - out_ptr,
1467 "%lu", tv.tv_sec);
1468 if (rc > out_end - out_ptr)
1469 goto out;
1470 out_ptr += rc;
1471 break;
1473 /* hostname */
1474 case 'h':
1475 down_read(&uts_sem);
1476 rc = snprintf(out_ptr, out_end - out_ptr,
1477 "%s", utsname()->nodename);
1478 up_read(&uts_sem);
1479 if (rc > out_end - out_ptr)
1480 goto out;
1481 out_ptr += rc;
1482 break;
1483 /* executable */
1484 case 'e':
1485 rc = snprintf(out_ptr, out_end - out_ptr,
1486 "%s", current->comm);
1487 if (rc > out_end - out_ptr)
1488 goto out;
1489 out_ptr += rc;
1490 break;
1491 /* core limit size */
1492 case 'c':
1493 rc = snprintf(out_ptr, out_end - out_ptr,
1494 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1495 if (rc > out_end - out_ptr)
1496 goto out;
1497 out_ptr += rc;
1498 break;
1499 default:
1500 break;
1502 ++pat_ptr;
1505 /* Backward compatibility with core_uses_pid:
1507 * If core_pattern does not include a %p (as is the default)
1508 * and core_uses_pid is set, then .%pid will be appended to
1509 * the filename. Do not do this for piped commands. */
1510 if (!ispipe && !pid_in_pattern
1511 && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1512 rc = snprintf(out_ptr, out_end - out_ptr,
1513 ".%d", task_tgid_vnr(current));
1514 if (rc > out_end - out_ptr)
1515 goto out;
1516 out_ptr += rc;
1518 out:
1519 *out_ptr = 0;
1520 return ispipe;
1523 static void zap_process(struct task_struct *start)
1525 struct task_struct *t;
1527 start->signal->flags = SIGNAL_GROUP_EXIT;
1528 start->signal->group_stop_count = 0;
1530 t = start;
1531 do {
1532 if (t != current && t->mm) {
1533 t->mm->core_waiters++;
1534 sigaddset(&t->pending.signal, SIGKILL);
1535 signal_wake_up(t, 1);
1537 } while ((t = next_thread(t)) != start);
1540 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1541 int exit_code)
1543 struct task_struct *g, *p;
1544 unsigned long flags;
1545 int err = -EAGAIN;
1547 spin_lock_irq(&tsk->sighand->siglock);
1548 if (!signal_group_exit(tsk->signal)) {
1549 tsk->signal->group_exit_code = exit_code;
1550 zap_process(tsk);
1551 err = 0;
1553 spin_unlock_irq(&tsk->sighand->siglock);
1554 if (err)
1555 return err;
1557 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1558 goto done;
1560 rcu_read_lock();
1561 for_each_process(g) {
1562 if (g == tsk->group_leader)
1563 continue;
1565 p = g;
1566 do {
1567 if (p->mm) {
1568 if (p->mm == mm) {
1570 * p->sighand can't disappear, but
1571 * may be changed by de_thread()
1573 lock_task_sighand(p, &flags);
1574 zap_process(p);
1575 unlock_task_sighand(p, &flags);
1577 break;
1579 } while ((p = next_thread(p)) != g);
1581 rcu_read_unlock();
1582 done:
1583 return mm->core_waiters;
1586 static int coredump_wait(int exit_code)
1588 struct task_struct *tsk = current;
1589 struct mm_struct *mm = tsk->mm;
1590 struct completion startup_done;
1591 struct completion *vfork_done;
1592 int core_waiters;
1594 init_completion(&mm->core_done);
1595 init_completion(&startup_done);
1596 mm->core_startup_done = &startup_done;
1598 core_waiters = zap_threads(tsk, mm, exit_code);
1599 up_write(&mm->mmap_sem);
1601 if (unlikely(core_waiters < 0))
1602 goto fail;
1605 * Make sure nobody is waiting for us to release the VM,
1606 * otherwise we can deadlock when we wait on each other
1608 vfork_done = tsk->vfork_done;
1609 if (vfork_done) {
1610 tsk->vfork_done = NULL;
1611 complete(vfork_done);
1614 if (core_waiters)
1615 wait_for_completion(&startup_done);
1616 fail:
1617 BUG_ON(mm->core_waiters);
1618 return core_waiters;
1622 * set_dumpable converts traditional three-value dumpable to two flags and
1623 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1624 * these bits are not changed atomically. So get_dumpable can observe the
1625 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1626 * return either old dumpable or new one by paying attention to the order of
1627 * modifying the bits.
1629 * dumpable | mm->flags (binary)
1630 * old new | initial interim final
1631 * ---------+-----------------------
1632 * 0 1 | 00 01 01
1633 * 0 2 | 00 10(*) 11
1634 * 1 0 | 01 00 00
1635 * 1 2 | 01 11 11
1636 * 2 0 | 11 10(*) 00
1637 * 2 1 | 11 11 01
1639 * (*) get_dumpable regards interim value of 10 as 11.
1641 void set_dumpable(struct mm_struct *mm, int value)
1643 switch (value) {
1644 case 0:
1645 clear_bit(MMF_DUMPABLE, &mm->flags);
1646 smp_wmb();
1647 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1648 break;
1649 case 1:
1650 set_bit(MMF_DUMPABLE, &mm->flags);
1651 smp_wmb();
1652 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1653 break;
1654 case 2:
1655 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1656 smp_wmb();
1657 set_bit(MMF_DUMPABLE, &mm->flags);
1658 break;
1662 int get_dumpable(struct mm_struct *mm)
1664 int ret;
1666 ret = mm->flags & 0x3;
1667 return (ret >= 2) ? 2 : ret;
1670 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1672 char corename[CORENAME_MAX_SIZE + 1];
1673 struct mm_struct *mm = current->mm;
1674 struct linux_binfmt * binfmt;
1675 struct inode * inode;
1676 struct file * file;
1677 int retval = 0;
1678 int fsuid = current->fsuid;
1679 int flag = 0;
1680 int ispipe = 0;
1681 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1682 char **helper_argv = NULL;
1683 int helper_argc = 0;
1684 char *delimit;
1686 audit_core_dumps(signr);
1688 binfmt = current->binfmt;
1689 if (!binfmt || !binfmt->core_dump)
1690 goto fail;
1691 down_write(&mm->mmap_sem);
1693 * If another thread got here first, or we are not dumpable, bail out.
1695 if (mm->core_waiters || !get_dumpable(mm)) {
1696 up_write(&mm->mmap_sem);
1697 goto fail;
1701 * We cannot trust fsuid as being the "true" uid of the
1702 * process nor do we know its entire history. We only know it
1703 * was tainted so we dump it as root in mode 2.
1705 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1706 flag = O_EXCL; /* Stop rewrite attacks */
1707 current->fsuid = 0; /* Dump root private */
1710 retval = coredump_wait(exit_code);
1711 if (retval < 0)
1712 goto fail;
1715 * Clear any false indication of pending signals that might
1716 * be seen by the filesystem code called to write the core file.
1718 clear_thread_flag(TIF_SIGPENDING);
1721 * lock_kernel() because format_corename() is controlled by sysctl, which
1722 * uses lock_kernel()
1724 lock_kernel();
1725 ispipe = format_corename(corename, core_pattern, signr);
1726 unlock_kernel();
1728 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1729 * to a pipe. Since we're not writing directly to the filesystem
1730 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1731 * created unless the pipe reader choses to write out the core file
1732 * at which point file size limits and permissions will be imposed
1733 * as it does with any other process
1735 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1736 goto fail_unlock;
1738 if (ispipe) {
1739 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1740 /* Terminate the string before the first option */
1741 delimit = strchr(corename, ' ');
1742 if (delimit)
1743 *delimit = '\0';
1744 delimit = strrchr(helper_argv[0], '/');
1745 if (delimit)
1746 delimit++;
1747 else
1748 delimit = helper_argv[0];
1749 if (!strcmp(delimit, current->comm)) {
1750 printk(KERN_NOTICE "Recursive core dump detected, "
1751 "aborting\n");
1752 goto fail_unlock;
1755 core_limit = RLIM_INFINITY;
1757 /* SIGPIPE can happen, but it's just never processed */
1758 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1759 &file)) {
1760 printk(KERN_INFO "Core dump to %s pipe failed\n",
1761 corename);
1762 goto fail_unlock;
1764 } else
1765 file = filp_open(corename,
1766 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1767 0600);
1768 if (IS_ERR(file))
1769 goto fail_unlock;
1770 inode = file->f_path.dentry->d_inode;
1771 if (inode->i_nlink > 1)
1772 goto close_fail; /* multiple links - don't dump */
1773 if (!ispipe && d_unhashed(file->f_path.dentry))
1774 goto close_fail;
1776 /* AK: actually i see no reason to not allow this for named pipes etc.,
1777 but keep the previous behaviour for now. */
1778 if (!ispipe && !S_ISREG(inode->i_mode))
1779 goto close_fail;
1781 * Dont allow local users get cute and trick others to coredump
1782 * into their pre-created files:
1784 if (inode->i_uid != current->fsuid)
1785 goto close_fail;
1786 if (!file->f_op)
1787 goto close_fail;
1788 if (!file->f_op->write)
1789 goto close_fail;
1790 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1791 goto close_fail;
1793 retval = binfmt->core_dump(signr, regs, file, core_limit);
1795 if (retval)
1796 current->signal->group_exit_code |= 0x80;
1797 close_fail:
1798 filp_close(file, NULL);
1799 fail_unlock:
1800 if (helper_argv)
1801 argv_free(helper_argv);
1803 current->fsuid = fsuid;
1804 complete_all(&mm->core_done);
1805 fail:
1806 return retval;