4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/rmap.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
60 #include <linux/kmod.h>
64 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
65 int suid_dumpable
= 0;
67 /* The maximal length of core_pattern is also specified in sysctl.c */
69 static LIST_HEAD(formats
);
70 static DEFINE_RWLOCK(binfmt_lock
);
72 int register_binfmt(struct linux_binfmt
* fmt
)
76 write_lock(&binfmt_lock
);
77 list_add(&fmt
->lh
, &formats
);
78 write_unlock(&binfmt_lock
);
82 EXPORT_SYMBOL(register_binfmt
);
84 void unregister_binfmt(struct linux_binfmt
* fmt
)
86 write_lock(&binfmt_lock
);
88 write_unlock(&binfmt_lock
);
91 EXPORT_SYMBOL(unregister_binfmt
);
93 static inline void put_binfmt(struct linux_binfmt
* fmt
)
95 module_put(fmt
->module
);
99 * Note that a shared library must be both readable and executable due to
102 * Also note that we take the address to load from from the file itself.
104 asmlinkage
long sys_uselib(const char __user
* library
)
110 error
= __user_path_lookup_open(library
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
|FMODE_EXEC
);
115 if (!S_ISREG(nd
.path
.dentry
->d_inode
->i_mode
))
118 error
= vfs_permission(&nd
, MAY_READ
| MAY_EXEC
);
122 file
= nameidata_to_filp(&nd
, O_RDONLY
|O_LARGEFILE
);
123 error
= PTR_ERR(file
);
129 struct linux_binfmt
* fmt
;
131 read_lock(&binfmt_lock
);
132 list_for_each_entry(fmt
, &formats
, lh
) {
133 if (!fmt
->load_shlib
)
135 if (!try_module_get(fmt
->module
))
137 read_unlock(&binfmt_lock
);
138 error
= fmt
->load_shlib(file
);
139 read_lock(&binfmt_lock
);
141 if (error
!= -ENOEXEC
)
144 read_unlock(&binfmt_lock
);
150 release_open_intent(&nd
);
157 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
163 #ifdef CONFIG_STACK_GROWSUP
165 ret
= expand_stack_downwards(bprm
->vma
, pos
);
170 ret
= get_user_pages(current
, bprm
->mm
, pos
,
171 1, write
, 1, &page
, NULL
);
176 <<<<<<< HEAD
:fs
/exec
.c
177 struct rlimit
*rlim
= current
->signal
->rlim
;
179 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:fs
/exec
.c
180 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
181 <<<<<<< HEAD
:fs
/exec
.c
186 * We've historically supported up to 32 pages (ARG_MAX)
187 * of argument strings even with small stacks
191 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:fs
/exec
.c
194 * Limit to 1/4-th the stack size for the argv+env strings.
196 * - the remaining binfmt code will not run out of stack space,
197 * - the program will have a reasonable amount of stack left
200 <<<<<<< HEAD
:fs
/exec
.c
202 rlim
= current
->signal
->rlim
;
203 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:fs
/exec
.c
204 if (size
> rlim
[RLIMIT_STACK
].rlim_cur
/ 4) {
213 static void put_arg_page(struct page
*page
)
218 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
222 static void free_arg_pages(struct linux_binprm
*bprm
)
226 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
229 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
232 static int __bprm_mm_init(struct linux_binprm
*bprm
)
235 struct vm_area_struct
*vma
= NULL
;
236 struct mm_struct
*mm
= bprm
->mm
;
238 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
242 down_write(&mm
->mmap_sem
);
246 * Place the stack at the largest stack address the architecture
247 * supports. Later, we'll move this to an appropriate place. We don't
248 * use STACK_TOP because that can depend on attributes which aren't
251 vma
->vm_end
= STACK_TOP_MAX
;
252 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
254 vma
->vm_flags
= VM_STACK_FLAGS
;
255 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
256 err
= insert_vm_struct(mm
, vma
);
258 up_write(&mm
->mmap_sem
);
262 mm
->stack_vm
= mm
->total_vm
= 1;
263 up_write(&mm
->mmap_sem
);
265 bprm
->p
= vma
->vm_end
- sizeof(void *);
272 kmem_cache_free(vm_area_cachep
, vma
);
278 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
280 return len
<= MAX_ARG_STRLEN
;
285 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
290 page
= bprm
->page
[pos
/ PAGE_SIZE
];
291 if (!page
&& write
) {
292 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
295 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
301 static void put_arg_page(struct page
*page
)
305 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
308 __free_page(bprm
->page
[i
]);
309 bprm
->page
[i
] = NULL
;
313 static void free_arg_pages(struct linux_binprm
*bprm
)
317 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
318 free_arg_page(bprm
, i
);
321 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
326 static int __bprm_mm_init(struct linux_binprm
*bprm
)
328 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
332 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
334 return len
<= bprm
->p
;
337 #endif /* CONFIG_MMU */
340 * Create a new mm_struct and populate it with a temporary stack
341 * vm_area_struct. We don't have enough context at this point to set the stack
342 * flags, permissions, and offset, so we use temporary values. We'll update
343 * them later in setup_arg_pages().
345 int bprm_mm_init(struct linux_binprm
*bprm
)
348 struct mm_struct
*mm
= NULL
;
350 bprm
->mm
= mm
= mm_alloc();
355 err
= init_new_context(current
, mm
);
359 err
= __bprm_mm_init(bprm
);
375 * count() counts the number of strings in array ARGV.
377 static int count(char __user
* __user
* argv
, int max
)
385 if (get_user(p
, argv
))
399 * 'copy_strings()' copies argument/environment strings from the old
400 * processes's memory to the new process's stack. The call to get_user_pages()
401 * ensures the destination page is created and not swapped out.
403 static int copy_strings(int argc
, char __user
* __user
* argv
,
404 struct linux_binprm
*bprm
)
406 struct page
*kmapped_page
= NULL
;
408 unsigned long kpos
= 0;
416 if (get_user(str
, argv
+argc
) ||
417 !(len
= strnlen_user(str
, MAX_ARG_STRLEN
))) {
422 if (!valid_arg_len(bprm
, len
)) {
427 /* We're going to work our way backwords. */
433 int offset
, bytes_to_copy
;
435 offset
= pos
% PAGE_SIZE
;
439 bytes_to_copy
= offset
;
440 if (bytes_to_copy
> len
)
443 offset
-= bytes_to_copy
;
444 pos
-= bytes_to_copy
;
445 str
-= bytes_to_copy
;
446 len
-= bytes_to_copy
;
448 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
451 page
= get_arg_page(bprm
, pos
, 1);
458 flush_kernel_dcache_page(kmapped_page
);
459 kunmap(kmapped_page
);
460 put_arg_page(kmapped_page
);
463 kaddr
= kmap(kmapped_page
);
464 kpos
= pos
& PAGE_MASK
;
465 flush_arg_page(bprm
, kpos
, kmapped_page
);
467 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
476 flush_kernel_dcache_page(kmapped_page
);
477 kunmap(kmapped_page
);
478 put_arg_page(kmapped_page
);
484 * Like copy_strings, but get argv and its values from kernel memory.
486 int copy_strings_kernel(int argc
,char ** argv
, struct linux_binprm
*bprm
)
489 mm_segment_t oldfs
= get_fs();
491 r
= copy_strings(argc
, (char __user
* __user
*)argv
, bprm
);
495 EXPORT_SYMBOL(copy_strings_kernel
);
500 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
501 * the binfmt code determines where the new stack should reside, we shift it to
502 * its final location. The process proceeds as follows:
504 * 1) Use shift to calculate the new vma endpoints.
505 * 2) Extend vma to cover both the old and new ranges. This ensures the
506 * arguments passed to subsequent functions are consistent.
507 * 3) Move vma's page tables to the new range.
508 * 4) Free up any cleared pgd range.
509 * 5) Shrink the vma to cover only the new range.
511 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
513 struct mm_struct
*mm
= vma
->vm_mm
;
514 unsigned long old_start
= vma
->vm_start
;
515 unsigned long old_end
= vma
->vm_end
;
516 unsigned long length
= old_end
- old_start
;
517 unsigned long new_start
= old_start
- shift
;
518 unsigned long new_end
= old_end
- shift
;
519 struct mmu_gather
*tlb
;
521 BUG_ON(new_start
> new_end
);
524 * ensure there are no vmas between where we want to go
527 if (vma
!= find_vma(mm
, new_start
))
531 * cover the whole range: [new_start, old_end)
533 vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
);
536 * move the page tables downwards, on failure we rely on
537 * process cleanup to remove whatever mess we made.
539 if (length
!= move_page_tables(vma
, old_start
,
540 vma
, new_start
, length
))
544 tlb
= tlb_gather_mmu(mm
, 0);
545 if (new_end
> old_start
) {
547 * when the old and new regions overlap clear from new_end.
549 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
550 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
553 * otherwise, clean from old_start; this is done to not touch
554 * the address space in [new_end, old_start) some architectures
555 * have constraints on va-space that make this illegal (IA64) -
556 * for the others its just a little faster.
558 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
559 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
561 tlb_finish_mmu(tlb
, new_end
, old_end
);
564 * shrink the vma to just the new range.
566 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
571 #define EXTRA_STACK_VM_PAGES 20 /* random */
574 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
575 * the stack is optionally relocated, and some extra space is added.
577 int setup_arg_pages(struct linux_binprm
*bprm
,
578 unsigned long stack_top
,
579 int executable_stack
)
582 unsigned long stack_shift
;
583 struct mm_struct
*mm
= current
->mm
;
584 struct vm_area_struct
*vma
= bprm
->vma
;
585 struct vm_area_struct
*prev
= NULL
;
586 unsigned long vm_flags
;
587 unsigned long stack_base
;
589 #ifdef CONFIG_STACK_GROWSUP
590 /* Limit stack size to 1GB */
591 stack_base
= current
->signal
->rlim
[RLIMIT_STACK
].rlim_max
;
592 if (stack_base
> (1 << 30))
593 stack_base
= 1 << 30;
595 /* Make sure we didn't let the argument array grow too large. */
596 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
599 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
601 stack_shift
= vma
->vm_start
- stack_base
;
602 mm
->arg_start
= bprm
->p
- stack_shift
;
603 bprm
->p
= vma
->vm_end
- stack_shift
;
605 stack_top
= arch_align_stack(stack_top
);
606 stack_top
= PAGE_ALIGN(stack_top
);
607 stack_shift
= vma
->vm_end
- stack_top
;
609 bprm
->p
-= stack_shift
;
610 mm
->arg_start
= bprm
->p
;
614 bprm
->loader
-= stack_shift
;
615 bprm
->exec
-= stack_shift
;
617 down_write(&mm
->mmap_sem
);
618 vm_flags
= vma
->vm_flags
;
621 * Adjust stack execute permissions; explicitly enable for
622 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
623 * (arch default) otherwise.
625 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
627 else if (executable_stack
== EXSTACK_DISABLE_X
)
628 vm_flags
&= ~VM_EXEC
;
629 vm_flags
|= mm
->def_flags
;
631 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
637 /* Move stack pages down in memory. */
639 ret
= shift_arg_pages(vma
, stack_shift
);
641 up_write(&mm
->mmap_sem
);
646 #ifdef CONFIG_STACK_GROWSUP
647 stack_base
= vma
->vm_end
+ EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
649 stack_base
= vma
->vm_start
- EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
651 ret
= expand_stack(vma
, stack_base
);
656 up_write(&mm
->mmap_sem
);
659 EXPORT_SYMBOL(setup_arg_pages
);
661 #endif /* CONFIG_MMU */
663 struct file
*open_exec(const char *name
)
669 err
= path_lookup_open(AT_FDCWD
, name
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
|FMODE_EXEC
);
673 struct inode
*inode
= nd
.path
.dentry
->d_inode
;
674 file
= ERR_PTR(-EACCES
);
675 if (S_ISREG(inode
->i_mode
)) {
676 int err
= vfs_permission(&nd
, MAY_EXEC
);
679 file
= nameidata_to_filp(&nd
,
680 O_RDONLY
|O_LARGEFILE
);
682 err
= deny_write_access(file
);
692 release_open_intent(&nd
);
698 EXPORT_SYMBOL(open_exec
);
700 int kernel_read(struct file
*file
, unsigned long offset
,
701 char *addr
, unsigned long count
)
709 /* The cast to a user pointer is valid due to the set_fs() */
710 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
715 EXPORT_SYMBOL(kernel_read
);
717 static int exec_mmap(struct mm_struct
*mm
)
719 struct task_struct
*tsk
;
720 struct mm_struct
* old_mm
, *active_mm
;
722 /* Notify parent that we're no longer interested in the old VM */
724 old_mm
= current
->mm
;
725 mm_release(tsk
, old_mm
);
729 * Make sure that if there is a core dump in progress
730 * for the old mm, we get out and die instead of going
731 * through with the exec. We must hold mmap_sem around
732 * checking core_waiters and changing tsk->mm. The
733 * core-inducing thread will increment core_waiters for
734 * each thread whose ->mm == old_mm.
736 down_read(&old_mm
->mmap_sem
);
737 if (unlikely(old_mm
->core_waiters
)) {
738 up_read(&old_mm
->mmap_sem
);
743 active_mm
= tsk
->active_mm
;
746 activate_mm(active_mm
, mm
);
748 arch_pick_mmap_layout(mm
);
750 up_read(&old_mm
->mmap_sem
);
751 BUG_ON(active_mm
!= old_mm
);
760 * This function makes sure the current process has its own signal table,
761 * so that flush_signal_handlers can later reset the handlers without
762 * disturbing other processes. (Other processes might share the signal
763 * table via the CLONE_SIGHAND option to clone().)
765 static int de_thread(struct task_struct
*tsk
)
767 struct signal_struct
*sig
= tsk
->signal
;
768 struct sighand_struct
*oldsighand
= tsk
->sighand
;
769 spinlock_t
*lock
= &oldsighand
->siglock
;
770 struct task_struct
*leader
= NULL
;
773 if (thread_group_empty(tsk
))
774 goto no_thread_group
;
777 * Kill all other threads in the thread group.
778 * We must hold tasklist_lock to call zap_other_threads.
780 read_lock(&tasklist_lock
);
782 if (signal_group_exit(sig
)) {
784 * Another group action in progress, just
785 * return so that the signal is processed.
787 spin_unlock_irq(lock
);
788 read_unlock(&tasklist_lock
);
793 * child_reaper ignores SIGKILL, change it now.
794 * Reparenting needs write_lock on tasklist_lock,
795 * so it is safe to do it under read_lock.
797 if (unlikely(tsk
->group_leader
== task_child_reaper(tsk
)))
798 task_active_pid_ns(tsk
)->child_reaper
= tsk
;
800 sig
->group_exit_task
= tsk
;
801 zap_other_threads(tsk
);
802 read_unlock(&tasklist_lock
);
804 /* Account for the thread group leader hanging around: */
805 count
= thread_group_leader(tsk
) ? 1 : 2;
806 sig
->notify_count
= count
;
807 while (atomic_read(&sig
->count
) > count
) {
808 __set_current_state(TASK_UNINTERRUPTIBLE
);
809 spin_unlock_irq(lock
);
813 spin_unlock_irq(lock
);
816 * At this point all other threads have exited, all we have to
817 * do is to wait for the thread group leader to become inactive,
818 * and to assume its PID:
820 if (!thread_group_leader(tsk
)) {
821 leader
= tsk
->group_leader
;
823 sig
->notify_count
= -1;
825 write_lock_irq(&tasklist_lock
);
826 if (likely(leader
->exit_state
))
828 __set_current_state(TASK_UNINTERRUPTIBLE
);
829 write_unlock_irq(&tasklist_lock
);
834 * The only record we have of the real-time age of a
835 * process, regardless of execs it's done, is start_time.
836 * All the past CPU time is accumulated in signal_struct
837 * from sister threads now dead. But in this non-leader
838 * exec, nothing survives from the original leader thread,
839 * whose birth marks the true age of this process now.
840 * When we take on its identity by switching to its PID, we
841 * also take its birthdate (always earlier than our own).
843 tsk
->start_time
= leader
->start_time
;
845 BUG_ON(!same_thread_group(leader
, tsk
));
846 BUG_ON(has_group_leader_pid(tsk
));
848 * An exec() starts a new thread group with the
849 * TGID of the previous thread group. Rehash the
850 * two threads with a switched PID, and release
851 * the former thread group leader:
854 /* Become a process group leader with the old leader's pid.
855 * The old leader becomes a thread of the this thread group.
856 * Note: The old leader also uses this pid until release_task
857 * is called. Odd but simple and correct.
859 detach_pid(tsk
, PIDTYPE_PID
);
860 tsk
->pid
= leader
->pid
;
861 attach_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
862 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
863 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
864 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
866 tsk
->group_leader
= tsk
;
867 leader
->group_leader
= tsk
;
869 tsk
->exit_signal
= SIGCHLD
;
871 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
872 leader
->exit_state
= EXIT_DEAD
;
874 write_unlock_irq(&tasklist_lock
);
877 sig
->group_exit_task
= NULL
;
878 sig
->notify_count
= 0;
883 release_task(leader
);
885 if (atomic_read(&oldsighand
->count
) != 1) {
886 struct sighand_struct
*newsighand
;
888 * This ->sighand is shared with the CLONE_SIGHAND
889 * but not CLONE_THREAD task, switch to the new one.
891 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
895 atomic_set(&newsighand
->count
, 1);
896 memcpy(newsighand
->action
, oldsighand
->action
,
897 sizeof(newsighand
->action
));
899 write_lock_irq(&tasklist_lock
);
900 spin_lock(&oldsighand
->siglock
);
901 rcu_assign_pointer(tsk
->sighand
, newsighand
);
902 spin_unlock(&oldsighand
->siglock
);
903 write_unlock_irq(&tasklist_lock
);
905 __cleanup_sighand(oldsighand
);
908 BUG_ON(!thread_group_leader(tsk
));
913 * These functions flushes out all traces of the currently running executable
914 * so that a new one can be started
916 static void flush_old_files(struct files_struct
* files
)
921 spin_lock(&files
->file_lock
);
923 unsigned long set
, i
;
927 fdt
= files_fdtable(files
);
928 if (i
>= fdt
->max_fds
)
930 set
= fdt
->close_on_exec
->fds_bits
[j
];
933 fdt
->close_on_exec
->fds_bits
[j
] = 0;
934 spin_unlock(&files
->file_lock
);
935 for ( ; set
; i
++,set
>>= 1) {
940 spin_lock(&files
->file_lock
);
943 spin_unlock(&files
->file_lock
);
946 char *get_task_comm(char *buf
, struct task_struct
*tsk
)
948 /* buf must be at least sizeof(tsk->comm) in size */
950 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
955 void set_task_comm(struct task_struct
*tsk
, char *buf
)
958 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
962 int flush_old_exec(struct linux_binprm
* bprm
)
966 struct files_struct
*files
;
967 char tcomm
[sizeof(current
->comm
)];
970 * Make sure we have a private signal table and that
971 * we are unassociated from the previous thread group.
973 retval
= de_thread(current
);
978 * Make sure we have private file handles. Ask the
979 * fork helper to do the work for us and the exit
980 * helper to do the cleanup of the old one.
982 files
= current
->files
; /* refcounted so safe to hold */
983 retval
= unshare_files();
987 * Release all of the old mmap stuff
989 retval
= exec_mmap(bprm
->mm
);
993 bprm
->mm
= NULL
; /* We're using it now */
995 /* This is the point of no return */
996 put_files_struct(files
);
998 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
1000 if (current
->euid
== current
->uid
&& current
->egid
== current
->gid
)
1001 set_dumpable(current
->mm
, 1);
1003 set_dumpable(current
->mm
, suid_dumpable
);
1005 name
= bprm
->filename
;
1007 /* Copies the binary name from after last slash */
1008 for (i
=0; (ch
= *(name
++)) != '\0';) {
1010 i
= 0; /* overwrite what we wrote */
1012 if (i
< (sizeof(tcomm
) - 1))
1016 set_task_comm(current
, tcomm
);
1018 current
->flags
&= ~PF_RANDOMIZE
;
1021 /* Set the new mm task size. We have to do that late because it may
1022 * depend on TIF_32BIT which is only updated in flush_thread() on
1023 * some architectures like powerpc
1025 current
->mm
->task_size
= TASK_SIZE
;
1027 if (bprm
->e_uid
!= current
->euid
|| bprm
->e_gid
!= current
->egid
) {
1029 set_dumpable(current
->mm
, suid_dumpable
);
1030 current
->pdeath_signal
= 0;
1031 } else if (file_permission(bprm
->file
, MAY_READ
) ||
1032 (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
)) {
1034 set_dumpable(current
->mm
, suid_dumpable
);
1037 /* An exec changes our domain. We are no longer part of the thread
1040 current
->self_exec_id
++;
1042 flush_signal_handlers(current
, 0);
1043 flush_old_files(current
->files
);
1048 reset_files_struct(current
, files
);
1053 EXPORT_SYMBOL(flush_old_exec
);
1056 * Fill the binprm structure from the inode.
1057 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1059 int prepare_binprm(struct linux_binprm
*bprm
)
1062 struct inode
* inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1065 mode
= inode
->i_mode
;
1066 if (bprm
->file
->f_op
== NULL
)
1069 bprm
->e_uid
= current
->euid
;
1070 bprm
->e_gid
= current
->egid
;
1072 if(!(bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)) {
1074 if (mode
& S_ISUID
) {
1075 current
->personality
&= ~PER_CLEAR_ON_SETID
;
1076 bprm
->e_uid
= inode
->i_uid
;
1081 * If setgid is set but no group execute bit then this
1082 * is a candidate for mandatory locking, not a setgid
1085 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1086 current
->personality
&= ~PER_CLEAR_ON_SETID
;
1087 bprm
->e_gid
= inode
->i_gid
;
1091 /* fill in binprm security blob */
1092 retval
= security_bprm_set(bprm
);
1096 memset(bprm
->buf
,0,BINPRM_BUF_SIZE
);
1097 return kernel_read(bprm
->file
,0,bprm
->buf
,BINPRM_BUF_SIZE
);
1100 EXPORT_SYMBOL(prepare_binprm
);
1102 static int unsafe_exec(struct task_struct
*p
)
1105 if (p
->ptrace
& PT_PTRACED
) {
1106 if (p
->ptrace
& PT_PTRACE_CAP
)
1107 unsafe
|= LSM_UNSAFE_PTRACE_CAP
;
1109 unsafe
|= LSM_UNSAFE_PTRACE
;
1111 if (atomic_read(&p
->fs
->count
) > 1 ||
1112 atomic_read(&p
->files
->count
) > 1 ||
1113 atomic_read(&p
->sighand
->count
) > 1)
1114 unsafe
|= LSM_UNSAFE_SHARE
;
1119 void compute_creds(struct linux_binprm
*bprm
)
1123 if (bprm
->e_uid
!= current
->uid
) {
1125 current
->pdeath_signal
= 0;
1130 unsafe
= unsafe_exec(current
);
1131 security_bprm_apply_creds(bprm
, unsafe
);
1132 task_unlock(current
);
1133 security_bprm_post_apply_creds(bprm
);
1135 EXPORT_SYMBOL(compute_creds
);
1138 * Arguments are '\0' separated strings found at the location bprm->p
1139 * points to; chop off the first by relocating brpm->p to right after
1140 * the first '\0' encountered.
1142 int remove_arg_zero(struct linux_binprm
*bprm
)
1145 unsigned long offset
;
1153 offset
= bprm
->p
& ~PAGE_MASK
;
1154 page
= get_arg_page(bprm
, bprm
->p
, 0);
1159 kaddr
= kmap_atomic(page
, KM_USER0
);
1161 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1162 offset
++, bprm
->p
++)
1165 kunmap_atomic(kaddr
, KM_USER0
);
1168 if (offset
== PAGE_SIZE
)
1169 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1170 } while (offset
== PAGE_SIZE
);
1179 EXPORT_SYMBOL(remove_arg_zero
);
1182 * cycle the list of binary formats handler, until one recognizes the image
1184 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1187 struct linux_binfmt
*fmt
;
1188 #if defined(__alpha__) && defined(CONFIG_ARCH_SUPPORTS_AOUT)
1189 /* handle /sbin/loader.. */
1191 struct exec
* eh
= (struct exec
*) bprm
->buf
;
1193 if (!bprm
->loader
&& eh
->fh
.f_magic
== 0x183 &&
1194 (eh
->fh
.f_flags
& 0x3000) == 0x3000)
1197 unsigned long loader
;
1199 allow_write_access(bprm
->file
);
1203 loader
= bprm
->vma
->vm_end
- sizeof(void *);
1205 file
= open_exec("/sbin/loader");
1206 retval
= PTR_ERR(file
);
1210 /* Remember if the application is TASO. */
1211 bprm
->sh_bang
= eh
->ah
.entry
< 0x100000000UL
;
1214 bprm
->loader
= loader
;
1215 retval
= prepare_binprm(bprm
);
1218 /* should call search_binary_handler recursively here,
1219 but it does not matter */
1223 retval
= security_bprm_check(bprm
);
1227 /* kernel module loader fixup */
1228 /* so we don't try to load run modprobe in kernel space. */
1231 retval
= audit_bprm(bprm
);
1236 for (try=0; try<2; try++) {
1237 read_lock(&binfmt_lock
);
1238 list_for_each_entry(fmt
, &formats
, lh
) {
1239 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1242 if (!try_module_get(fmt
->module
))
1244 read_unlock(&binfmt_lock
);
1245 retval
= fn(bprm
, regs
);
1248 allow_write_access(bprm
->file
);
1252 current
->did_exec
= 1;
1253 proc_exec_connector(current
);
1256 read_lock(&binfmt_lock
);
1258 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1261 read_unlock(&binfmt_lock
);
1265 read_unlock(&binfmt_lock
);
1266 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1270 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1271 if (printable(bprm
->buf
[0]) &&
1272 printable(bprm
->buf
[1]) &&
1273 printable(bprm
->buf
[2]) &&
1274 printable(bprm
->buf
[3]))
1275 break; /* -ENOEXEC */
1276 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1283 EXPORT_SYMBOL(search_binary_handler
);
1286 * sys_execve() executes a new program.
1288 int do_execve(char * filename
,
1289 char __user
*__user
*argv
,
1290 char __user
*__user
*envp
,
1291 struct pt_regs
* regs
)
1293 struct linux_binprm
*bprm
;
1295 unsigned long env_p
;
1299 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1303 file
= open_exec(filename
);
1304 retval
= PTR_ERR(file
);
1311 bprm
->filename
= filename
;
1312 bprm
->interp
= filename
;
1314 retval
= bprm_mm_init(bprm
);
1318 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1319 if ((retval
= bprm
->argc
) < 0)
1322 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1323 if ((retval
= bprm
->envc
) < 0)
1326 retval
= security_bprm_alloc(bprm
);
1330 retval
= prepare_binprm(bprm
);
1334 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1338 bprm
->exec
= bprm
->p
;
1339 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1344 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1347 bprm
->argv_len
= env_p
- bprm
->p
;
1349 retval
= search_binary_handler(bprm
,regs
);
1351 /* execve success */
1352 free_arg_pages(bprm
);
1353 security_bprm_free(bprm
);
1354 acct_update_integrals(current
);
1360 free_arg_pages(bprm
);
1362 security_bprm_free(bprm
);
1370 allow_write_access(bprm
->file
);
1380 int set_binfmt(struct linux_binfmt
*new)
1382 struct linux_binfmt
*old
= current
->binfmt
;
1385 if (!try_module_get(new->module
))
1388 current
->binfmt
= new;
1390 module_put(old
->module
);
1394 EXPORT_SYMBOL(set_binfmt
);
1396 /* format_corename will inspect the pattern parameter, and output a
1397 * name into corename, which must have space for at least
1398 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1400 static int format_corename(char *corename
, const char *pattern
, long signr
)
1402 const char *pat_ptr
= pattern
;
1403 char *out_ptr
= corename
;
1404 char *const out_end
= corename
+ CORENAME_MAX_SIZE
;
1406 int pid_in_pattern
= 0;
1409 if (*pattern
== '|')
1412 /* Repeat as long as we have more pattern to process and more output
1415 if (*pat_ptr
!= '%') {
1416 if (out_ptr
== out_end
)
1418 *out_ptr
++ = *pat_ptr
++;
1420 switch (*++pat_ptr
) {
1423 /* Double percent, output one percent */
1425 if (out_ptr
== out_end
)
1432 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1433 "%d", task_tgid_vnr(current
));
1434 if (rc
> out_end
- out_ptr
)
1440 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1441 "%d", current
->uid
);
1442 if (rc
> out_end
- out_ptr
)
1448 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1449 "%d", current
->gid
);
1450 if (rc
> out_end
- out_ptr
)
1454 /* signal that caused the coredump */
1456 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1458 if (rc
> out_end
- out_ptr
)
1462 /* UNIX time of coredump */
1465 do_gettimeofday(&tv
);
1466 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1468 if (rc
> out_end
- out_ptr
)
1475 down_read(&uts_sem
);
1476 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1477 "%s", utsname()->nodename
);
1479 if (rc
> out_end
- out_ptr
)
1485 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1486 "%s", current
->comm
);
1487 if (rc
> out_end
- out_ptr
)
1491 /* core limit size */
1493 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1494 "%lu", current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
);
1495 if (rc
> out_end
- out_ptr
)
1505 /* Backward compatibility with core_uses_pid:
1507 * If core_pattern does not include a %p (as is the default)
1508 * and core_uses_pid is set, then .%pid will be appended to
1509 * the filename. Do not do this for piped commands. */
1510 if (!ispipe
&& !pid_in_pattern
1511 && (core_uses_pid
|| atomic_read(¤t
->mm
->mm_users
) != 1)) {
1512 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1513 ".%d", task_tgid_vnr(current
));
1514 if (rc
> out_end
- out_ptr
)
1523 static void zap_process(struct task_struct
*start
)
1525 struct task_struct
*t
;
1527 start
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1528 start
->signal
->group_stop_count
= 0;
1532 if (t
!= current
&& t
->mm
) {
1533 t
->mm
->core_waiters
++;
1534 sigaddset(&t
->pending
.signal
, SIGKILL
);
1535 signal_wake_up(t
, 1);
1537 } while ((t
= next_thread(t
)) != start
);
1540 static inline int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
1543 struct task_struct
*g
, *p
;
1544 unsigned long flags
;
1547 spin_lock_irq(&tsk
->sighand
->siglock
);
1548 if (!signal_group_exit(tsk
->signal
)) {
1549 tsk
->signal
->group_exit_code
= exit_code
;
1553 spin_unlock_irq(&tsk
->sighand
->siglock
);
1557 if (atomic_read(&mm
->mm_users
) == mm
->core_waiters
+ 1)
1561 for_each_process(g
) {
1562 if (g
== tsk
->group_leader
)
1570 * p->sighand can't disappear, but
1571 * may be changed by de_thread()
1573 lock_task_sighand(p
, &flags
);
1575 unlock_task_sighand(p
, &flags
);
1579 } while ((p
= next_thread(p
)) != g
);
1583 return mm
->core_waiters
;
1586 static int coredump_wait(int exit_code
)
1588 struct task_struct
*tsk
= current
;
1589 struct mm_struct
*mm
= tsk
->mm
;
1590 struct completion startup_done
;
1591 struct completion
*vfork_done
;
1594 init_completion(&mm
->core_done
);
1595 init_completion(&startup_done
);
1596 mm
->core_startup_done
= &startup_done
;
1598 core_waiters
= zap_threads(tsk
, mm
, exit_code
);
1599 up_write(&mm
->mmap_sem
);
1601 if (unlikely(core_waiters
< 0))
1605 * Make sure nobody is waiting for us to release the VM,
1606 * otherwise we can deadlock when we wait on each other
1608 vfork_done
= tsk
->vfork_done
;
1610 tsk
->vfork_done
= NULL
;
1611 complete(vfork_done
);
1615 wait_for_completion(&startup_done
);
1617 BUG_ON(mm
->core_waiters
);
1618 return core_waiters
;
1622 * set_dumpable converts traditional three-value dumpable to two flags and
1623 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1624 * these bits are not changed atomically. So get_dumpable can observe the
1625 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1626 * return either old dumpable or new one by paying attention to the order of
1627 * modifying the bits.
1629 * dumpable | mm->flags (binary)
1630 * old new | initial interim final
1631 * ---------+-----------------------
1639 * (*) get_dumpable regards interim value of 10 as 11.
1641 void set_dumpable(struct mm_struct
*mm
, int value
)
1645 clear_bit(MMF_DUMPABLE
, &mm
->flags
);
1647 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1650 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1652 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1655 set_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1657 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1662 int get_dumpable(struct mm_struct
*mm
)
1666 ret
= mm
->flags
& 0x3;
1667 return (ret
>= 2) ? 2 : ret
;
1670 int do_coredump(long signr
, int exit_code
, struct pt_regs
* regs
)
1672 char corename
[CORENAME_MAX_SIZE
+ 1];
1673 struct mm_struct
*mm
= current
->mm
;
1674 struct linux_binfmt
* binfmt
;
1675 struct inode
* inode
;
1678 int fsuid
= current
->fsuid
;
1681 unsigned long core_limit
= current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
;
1682 char **helper_argv
= NULL
;
1683 int helper_argc
= 0;
1686 audit_core_dumps(signr
);
1688 binfmt
= current
->binfmt
;
1689 if (!binfmt
|| !binfmt
->core_dump
)
1691 down_write(&mm
->mmap_sem
);
1693 * If another thread got here first, or we are not dumpable, bail out.
1695 if (mm
->core_waiters
|| !get_dumpable(mm
)) {
1696 up_write(&mm
->mmap_sem
);
1701 * We cannot trust fsuid as being the "true" uid of the
1702 * process nor do we know its entire history. We only know it
1703 * was tainted so we dump it as root in mode 2.
1705 if (get_dumpable(mm
) == 2) { /* Setuid core dump mode */
1706 flag
= O_EXCL
; /* Stop rewrite attacks */
1707 current
->fsuid
= 0; /* Dump root private */
1710 retval
= coredump_wait(exit_code
);
1715 * Clear any false indication of pending signals that might
1716 * be seen by the filesystem code called to write the core file.
1718 clear_thread_flag(TIF_SIGPENDING
);
1721 * lock_kernel() because format_corename() is controlled by sysctl, which
1722 * uses lock_kernel()
1725 ispipe
= format_corename(corename
, core_pattern
, signr
);
1728 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1729 * to a pipe. Since we're not writing directly to the filesystem
1730 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1731 * created unless the pipe reader choses to write out the core file
1732 * at which point file size limits and permissions will be imposed
1733 * as it does with any other process
1735 if ((!ispipe
) && (core_limit
< binfmt
->min_coredump
))
1739 helper_argv
= argv_split(GFP_KERNEL
, corename
+1, &helper_argc
);
1740 /* Terminate the string before the first option */
1741 delimit
= strchr(corename
, ' ');
1744 delimit
= strrchr(helper_argv
[0], '/');
1748 delimit
= helper_argv
[0];
1749 if (!strcmp(delimit
, current
->comm
)) {
1750 printk(KERN_NOTICE
"Recursive core dump detected, "
1755 core_limit
= RLIM_INFINITY
;
1757 /* SIGPIPE can happen, but it's just never processed */
1758 if (call_usermodehelper_pipe(corename
+1, helper_argv
, NULL
,
1760 printk(KERN_INFO
"Core dump to %s pipe failed\n",
1765 file
= filp_open(corename
,
1766 O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
,
1770 inode
= file
->f_path
.dentry
->d_inode
;
1771 if (inode
->i_nlink
> 1)
1772 goto close_fail
; /* multiple links - don't dump */
1773 if (!ispipe
&& d_unhashed(file
->f_path
.dentry
))
1776 /* AK: actually i see no reason to not allow this for named pipes etc.,
1777 but keep the previous behaviour for now. */
1778 if (!ispipe
&& !S_ISREG(inode
->i_mode
))
1781 * Dont allow local users get cute and trick others to coredump
1782 * into their pre-created files:
1784 if (inode
->i_uid
!= current
->fsuid
)
1788 if (!file
->f_op
->write
)
1790 if (!ispipe
&& do_truncate(file
->f_path
.dentry
, 0, 0, file
) != 0)
1793 retval
= binfmt
->core_dump(signr
, regs
, file
, core_limit
);
1796 current
->signal
->group_exit_code
|= 0x80;
1798 filp_close(file
, NULL
);
1801 argv_free(helper_argv
);
1803 current
->fsuid
= fsuid
;
1804 complete_all(&mm
->core_done
);