2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/ext4_jbd2.h>
29 #include <linux/jbd2.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
43 * Test whether an inode is a fast symlink.
45 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
47 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
48 (inode
->i_sb
->s_blocksize
>> 9) : 0;
50 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
54 * The ext4 forget function must perform a revoke if we are freeing data
55 * which has been journaled. Metadata (eg. indirect blocks) must be
56 * revoked in all cases.
58 * "bh" may be NULL: a metadata block may have been freed from memory
59 * but there may still be a record of it in the journal, and that record
60 * still needs to be revoked.
62 int ext4_forget(handle_t
*handle
, int is_metadata
, struct inode
*inode
,
63 struct buffer_head
*bh
, ext4_fsblk_t blocknr
)
69 BUFFER_TRACE(bh
, "enter");
71 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
73 bh
, is_metadata
, inode
->i_mode
,
74 test_opt(inode
->i_sb
, DATA_FLAGS
));
76 /* Never use the revoke function if we are doing full data
77 * journaling: there is no need to, and a V1 superblock won't
78 * support it. Otherwise, only skip the revoke on un-journaled
81 if (test_opt(inode
->i_sb
, DATA_FLAGS
) == EXT4_MOUNT_JOURNAL_DATA
||
82 (!is_metadata
&& !ext4_should_journal_data(inode
))) {
84 BUFFER_TRACE(bh
, "call jbd2_journal_forget");
85 return ext4_journal_forget(handle
, bh
);
91 * data!=journal && (is_metadata || should_journal_data(inode))
93 BUFFER_TRACE(bh
, "call ext4_journal_revoke");
94 err
= ext4_journal_revoke(handle
, blocknr
, bh
);
96 ext4_abort(inode
->i_sb
, __FUNCTION__
,
97 "error %d when attempting revoke", err
);
98 BUFFER_TRACE(bh
, "exit");
103 * Work out how many blocks we need to proceed with the next chunk of a
104 * truncate transaction.
106 static unsigned long blocks_for_truncate(struct inode
*inode
)
110 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
112 /* Give ourselves just enough room to cope with inodes in which
113 * i_blocks is corrupt: we've seen disk corruptions in the past
114 * which resulted in random data in an inode which looked enough
115 * like a regular file for ext4 to try to delete it. Things
116 * will go a bit crazy if that happens, but at least we should
117 * try not to panic the whole kernel. */
121 /* But we need to bound the transaction so we don't overflow the
123 if (needed
> EXT4_MAX_TRANS_DATA
)
124 needed
= EXT4_MAX_TRANS_DATA
;
126 return EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
130 * Truncate transactions can be complex and absolutely huge. So we need to
131 * be able to restart the transaction at a conventient checkpoint to make
132 * sure we don't overflow the journal.
134 * start_transaction gets us a new handle for a truncate transaction,
135 * and extend_transaction tries to extend the existing one a bit. If
136 * extend fails, we need to propagate the failure up and restart the
137 * transaction in the top-level truncate loop. --sct
139 static handle_t
*start_transaction(struct inode
*inode
)
143 result
= ext4_journal_start(inode
, blocks_for_truncate(inode
));
147 ext4_std_error(inode
->i_sb
, PTR_ERR(result
));
152 * Try to extend this transaction for the purposes of truncation.
154 * Returns 0 if we managed to create more room. If we can't create more
155 * room, and the transaction must be restarted we return 1.
157 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
159 if (handle
->h_buffer_credits
> EXT4_RESERVE_TRANS_BLOCKS
)
161 if (!ext4_journal_extend(handle
, blocks_for_truncate(inode
)))
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
171 static int ext4_journal_test_restart(handle_t
*handle
, struct inode
*inode
)
173 jbd_debug(2, "restarting handle %p\n", handle
);
174 return ext4_journal_restart(handle
, blocks_for_truncate(inode
));
178 * Called at the last iput() if i_nlink is zero.
180 void ext4_delete_inode (struct inode
* inode
)
184 truncate_inode_pages(&inode
->i_data
, 0);
186 if (is_bad_inode(inode
))
189 handle
= start_transaction(inode
);
190 if (IS_ERR(handle
)) {
192 * If we're going to skip the normal cleanup, we still need to
193 * make sure that the in-core orphan linked list is properly
196 ext4_orphan_del(NULL
, inode
);
204 ext4_truncate(inode
);
206 * Kill off the orphan record which ext4_truncate created.
207 * AKPM: I think this can be inside the above `if'.
208 * Note that ext4_orphan_del() has to be able to cope with the
209 * deletion of a non-existent orphan - this is because we don't
210 * know if ext4_truncate() actually created an orphan record.
211 * (Well, we could do this if we need to, but heck - it works)
213 ext4_orphan_del(handle
, inode
);
214 EXT4_I(inode
)->i_dtime
= get_seconds();
217 * One subtle ordering requirement: if anything has gone wrong
218 * (transaction abort, IO errors, whatever), then we can still
219 * do these next steps (the fs will already have been marked as
220 * having errors), but we can't free the inode if the mark_dirty
223 if (ext4_mark_inode_dirty(handle
, inode
))
224 /* If that failed, just do the required in-core inode clear. */
227 ext4_free_inode(handle
, inode
);
228 ext4_journal_stop(handle
);
231 clear_inode(inode
); /* We must guarantee clearing of inode... */
237 struct buffer_head
*bh
;
240 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
242 p
->key
= *(p
->p
= v
);
247 * ext4_block_to_path - parse the block number into array of offsets
248 * @inode: inode in question (we are only interested in its superblock)
249 * @i_block: block number to be parsed
250 * @offsets: array to store the offsets in
251 * @boundary: set this non-zero if the referred-to block is likely to be
252 * followed (on disk) by an indirect block.
254 * To store the locations of file's data ext4 uses a data structure common
255 * for UNIX filesystems - tree of pointers anchored in the inode, with
256 * data blocks at leaves and indirect blocks in intermediate nodes.
257 * This function translates the block number into path in that tree -
258 * return value is the path length and @offsets[n] is the offset of
259 * pointer to (n+1)th node in the nth one. If @block is out of range
260 * (negative or too large) warning is printed and zero returned.
262 * Note: function doesn't find node addresses, so no IO is needed. All
263 * we need to know is the capacity of indirect blocks (taken from the
268 * Portability note: the last comparison (check that we fit into triple
269 * indirect block) is spelled differently, because otherwise on an
270 * architecture with 32-bit longs and 8Kb pages we might get into trouble
271 * if our filesystem had 8Kb blocks. We might use long long, but that would
272 * kill us on x86. Oh, well, at least the sign propagation does not matter -
273 * i_block would have to be negative in the very beginning, so we would not
277 static int ext4_block_to_path(struct inode
*inode
,
279 ext4_lblk_t offsets
[4], int *boundary
)
281 int ptrs
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
282 int ptrs_bits
= EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
283 const long direct_blocks
= EXT4_NDIR_BLOCKS
,
284 indirect_blocks
= ptrs
,
285 double_blocks
= (1 << (ptrs_bits
* 2));
290 ext4_warning (inode
->i_sb
, "ext4_block_to_path", "block < 0");
291 } else if (i_block
< direct_blocks
) {
292 offsets
[n
++] = i_block
;
293 final
= direct_blocks
;
294 } else if ( (i_block
-= direct_blocks
) < indirect_blocks
) {
295 offsets
[n
++] = EXT4_IND_BLOCK
;
296 offsets
[n
++] = i_block
;
298 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
299 offsets
[n
++] = EXT4_DIND_BLOCK
;
300 offsets
[n
++] = i_block
>> ptrs_bits
;
301 offsets
[n
++] = i_block
& (ptrs
- 1);
303 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
304 offsets
[n
++] = EXT4_TIND_BLOCK
;
305 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
306 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
307 offsets
[n
++] = i_block
& (ptrs
- 1);
310 ext4_warning(inode
->i_sb
, "ext4_block_to_path",
312 i_block
+ direct_blocks
+
313 indirect_blocks
+ double_blocks
);
316 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
321 * ext4_get_branch - read the chain of indirect blocks leading to data
322 * @inode: inode in question
323 * @depth: depth of the chain (1 - direct pointer, etc.)
324 * @offsets: offsets of pointers in inode/indirect blocks
325 * @chain: place to store the result
326 * @err: here we store the error value
328 * Function fills the array of triples <key, p, bh> and returns %NULL
329 * if everything went OK or the pointer to the last filled triple
330 * (incomplete one) otherwise. Upon the return chain[i].key contains
331 * the number of (i+1)-th block in the chain (as it is stored in memory,
332 * i.e. little-endian 32-bit), chain[i].p contains the address of that
333 * number (it points into struct inode for i==0 and into the bh->b_data
334 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
335 * block for i>0 and NULL for i==0. In other words, it holds the block
336 * numbers of the chain, addresses they were taken from (and where we can
337 * verify that chain did not change) and buffer_heads hosting these
340 * Function stops when it stumbles upon zero pointer (absent block)
341 * (pointer to last triple returned, *@err == 0)
342 * or when it gets an IO error reading an indirect block
343 * (ditto, *@err == -EIO)
344 * or when it reads all @depth-1 indirect blocks successfully and finds
345 * the whole chain, all way to the data (returns %NULL, *err == 0).
347 * Need to be called with
348 * down_read(&EXT4_I(inode)->i_data_sem)
350 static Indirect
*ext4_get_branch(struct inode
*inode
, int depth
,
351 ext4_lblk_t
*offsets
,
352 Indirect chain
[4], int *err
)
354 struct super_block
*sb
= inode
->i_sb
;
356 struct buffer_head
*bh
;
359 /* i_data is not going away, no lock needed */
360 add_chain (chain
, NULL
, EXT4_I(inode
)->i_data
+ *offsets
);
364 bh
= sb_bread(sb
, le32_to_cpu(p
->key
));
367 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
381 * ext4_find_near - find a place for allocation with sufficient locality
383 * @ind: descriptor of indirect block.
385 * This function returns the prefered place for block allocation.
386 * It is used when heuristic for sequential allocation fails.
388 * + if there is a block to the left of our position - allocate near it.
389 * + if pointer will live in indirect block - allocate near that block.
390 * + if pointer will live in inode - allocate in the same
393 * In the latter case we colour the starting block by the callers PID to
394 * prevent it from clashing with concurrent allocations for a different inode
395 * in the same block group. The PID is used here so that functionally related
396 * files will be close-by on-disk.
398 * Caller must make sure that @ind is valid and will stay that way.
400 static ext4_fsblk_t
ext4_find_near(struct inode
*inode
, Indirect
*ind
)
402 struct ext4_inode_info
*ei
= EXT4_I(inode
);
403 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
405 ext4_fsblk_t bg_start
;
406 <<<<<<< HEAD
:fs
/ext4
/inode
.c
408 ext4_fsblk_t last_block
;
409 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:fs
/ext4
/inode
.c
410 ext4_grpblk_t colour
;
412 /* Try to find previous block */
413 for (p
= ind
->p
- 1; p
>= start
; p
--) {
415 return le32_to_cpu(*p
);
418 /* No such thing, so let's try location of indirect block */
420 return ind
->bh
->b_blocknr
;
423 * It is going to be referred to from the inode itself? OK, just put it
424 * into the same cylinder group then.
426 bg_start
= ext4_group_first_block_no(inode
->i_sb
, ei
->i_block_group
);
427 <<<<<<< HEAD
:fs
/ext4
/inode
.c
428 colour
= (current
->pid
% 16) *
430 last_block
= ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
) - 1;
432 if (bg_start
+ EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) <= last_block
)
433 colour
= (current
->pid
% 16) *
434 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:fs
/ext4
/inode
.c
435 (EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
436 <<<<<<< HEAD
:fs
/ext4
/inode
.c
439 colour
= (current
->pid
% 16) * ((last_block
- bg_start
) / 16);
440 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:fs
/ext4
/inode
.c
441 return bg_start
+ colour
;
445 * ext4_find_goal - find a prefered place for allocation.
447 * @block: block we want
448 * @partial: pointer to the last triple within a chain
450 * Normally this function find the prefered place for block allocation,
453 static ext4_fsblk_t
ext4_find_goal(struct inode
*inode
, ext4_lblk_t block
,
456 struct ext4_block_alloc_info
*block_i
;
458 block_i
= EXT4_I(inode
)->i_block_alloc_info
;
461 * try the heuristic for sequential allocation,
462 * failing that at least try to get decent locality.
464 if (block_i
&& (block
== block_i
->last_alloc_logical_block
+ 1)
465 && (block_i
->last_alloc_physical_block
!= 0)) {
466 return block_i
->last_alloc_physical_block
+ 1;
469 return ext4_find_near(inode
, partial
);
473 * ext4_blks_to_allocate: Look up the block map and count the number
474 * of direct blocks need to be allocated for the given branch.
476 * @branch: chain of indirect blocks
477 * @k: number of blocks need for indirect blocks
478 * @blks: number of data blocks to be mapped.
479 * @blocks_to_boundary: the offset in the indirect block
481 * return the total number of blocks to be allocate, including the
482 * direct and indirect blocks.
484 static int ext4_blks_to_allocate(Indirect
*branch
, int k
, unsigned long blks
,
485 int blocks_to_boundary
)
487 unsigned long count
= 0;
490 * Simple case, [t,d]Indirect block(s) has not allocated yet
491 * then it's clear blocks on that path have not allocated
494 /* right now we don't handle cross boundary allocation */
495 if (blks
< blocks_to_boundary
+ 1)
498 count
+= blocks_to_boundary
+ 1;
503 while (count
< blks
&& count
<= blocks_to_boundary
&&
504 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
511 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
512 * @indirect_blks: the number of blocks need to allocate for indirect
515 * @new_blocks: on return it will store the new block numbers for
516 * the indirect blocks(if needed) and the first direct block,
517 * @blks: on return it will store the total number of allocated
520 static int ext4_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
521 ext4_fsblk_t goal
, int indirect_blks
, int blks
,
522 ext4_fsblk_t new_blocks
[4], int *err
)
525 unsigned long count
= 0;
527 ext4_fsblk_t current_block
= 0;
531 * Here we try to allocate the requested multiple blocks at once,
532 * on a best-effort basis.
533 * To build a branch, we should allocate blocks for
534 * the indirect blocks(if not allocated yet), and at least
535 * the first direct block of this branch. That's the
536 * minimum number of blocks need to allocate(required)
538 target
= blks
+ indirect_blks
;
542 /* allocating blocks for indirect blocks and direct blocks */
543 current_block
= ext4_new_blocks(handle
,inode
,goal
,&count
,err
);
548 /* allocate blocks for indirect blocks */
549 while (index
< indirect_blks
&& count
) {
550 new_blocks
[index
++] = current_block
++;
558 /* save the new block number for the first direct block */
559 new_blocks
[index
] = current_block
;
561 /* total number of blocks allocated for direct blocks */
566 for (i
= 0; i
<index
; i
++)
567 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1, 0);
572 * ext4_alloc_branch - allocate and set up a chain of blocks.
574 * @indirect_blks: number of allocated indirect blocks
575 * @blks: number of allocated direct blocks
576 * @offsets: offsets (in the blocks) to store the pointers to next.
577 * @branch: place to store the chain in.
579 * This function allocates blocks, zeroes out all but the last one,
580 * links them into chain and (if we are synchronous) writes them to disk.
581 * In other words, it prepares a branch that can be spliced onto the
582 * inode. It stores the information about that chain in the branch[], in
583 * the same format as ext4_get_branch() would do. We are calling it after
584 * we had read the existing part of chain and partial points to the last
585 * triple of that (one with zero ->key). Upon the exit we have the same
586 * picture as after the successful ext4_get_block(), except that in one
587 * place chain is disconnected - *branch->p is still zero (we did not
588 * set the last link), but branch->key contains the number that should
589 * be placed into *branch->p to fill that gap.
591 * If allocation fails we free all blocks we've allocated (and forget
592 * their buffer_heads) and return the error value the from failed
593 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
594 * as described above and return 0.
596 static int ext4_alloc_branch(handle_t
*handle
, struct inode
*inode
,
597 int indirect_blks
, int *blks
, ext4_fsblk_t goal
,
598 ext4_lblk_t
*offsets
, Indirect
*branch
)
600 int blocksize
= inode
->i_sb
->s_blocksize
;
603 struct buffer_head
*bh
;
605 ext4_fsblk_t new_blocks
[4];
606 ext4_fsblk_t current_block
;
608 num
= ext4_alloc_blocks(handle
, inode
, goal
, indirect_blks
,
609 *blks
, new_blocks
, &err
);
613 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
615 * metadata blocks and data blocks are allocated.
617 for (n
= 1; n
<= indirect_blks
; n
++) {
619 * Get buffer_head for parent block, zero it out
620 * and set the pointer to new one, then send
623 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
626 BUFFER_TRACE(bh
, "call get_create_access");
627 err
= ext4_journal_get_create_access(handle
, bh
);
634 memset(bh
->b_data
, 0, blocksize
);
635 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
636 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
637 *branch
[n
].p
= branch
[n
].key
;
638 if ( n
== indirect_blks
) {
639 current_block
= new_blocks
[n
];
641 * End of chain, update the last new metablock of
642 * the chain to point to the new allocated
643 * data blocks numbers
645 for (i
=1; i
< num
; i
++)
646 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
648 BUFFER_TRACE(bh
, "marking uptodate");
649 set_buffer_uptodate(bh
);
652 BUFFER_TRACE(bh
, "call ext4_journal_dirty_metadata");
653 err
= ext4_journal_dirty_metadata(handle
, bh
);
660 /* Allocation failed, free what we already allocated */
661 for (i
= 1; i
<= n
; i
++) {
662 BUFFER_TRACE(branch
[i
].bh
, "call jbd2_journal_forget");
663 ext4_journal_forget(handle
, branch
[i
].bh
);
665 for (i
= 0; i
<indirect_blks
; i
++)
666 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1, 0);
668 ext4_free_blocks(handle
, inode
, new_blocks
[i
], num
, 0);
674 * ext4_splice_branch - splice the allocated branch onto inode.
676 * @block: (logical) number of block we are adding
677 * @chain: chain of indirect blocks (with a missing link - see
679 * @where: location of missing link
680 * @num: number of indirect blocks we are adding
681 * @blks: number of direct blocks we are adding
683 * This function fills the missing link and does all housekeeping needed in
684 * inode (->i_blocks, etc.). In case of success we end up with the full
685 * chain to new block and return 0.
687 static int ext4_splice_branch(handle_t
*handle
, struct inode
*inode
,
688 ext4_lblk_t block
, Indirect
*where
, int num
, int blks
)
692 struct ext4_block_alloc_info
*block_i
;
693 ext4_fsblk_t current_block
;
695 block_i
= EXT4_I(inode
)->i_block_alloc_info
;
697 * If we're splicing into a [td]indirect block (as opposed to the
698 * inode) then we need to get write access to the [td]indirect block
702 BUFFER_TRACE(where
->bh
, "get_write_access");
703 err
= ext4_journal_get_write_access(handle
, where
->bh
);
709 *where
->p
= where
->key
;
712 * Update the host buffer_head or inode to point to more just allocated
713 * direct blocks blocks
715 if (num
== 0 && blks
> 1) {
716 current_block
= le32_to_cpu(where
->key
) + 1;
717 for (i
= 1; i
< blks
; i
++)
718 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
722 * update the most recently allocated logical & physical block
723 * in i_block_alloc_info, to assist find the proper goal block for next
727 block_i
->last_alloc_logical_block
= block
+ blks
- 1;
728 block_i
->last_alloc_physical_block
=
729 le32_to_cpu(where
[num
].key
) + blks
- 1;
732 /* We are done with atomic stuff, now do the rest of housekeeping */
734 inode
->i_ctime
= ext4_current_time(inode
);
735 ext4_mark_inode_dirty(handle
, inode
);
737 /* had we spliced it onto indirect block? */
740 * If we spliced it onto an indirect block, we haven't
741 * altered the inode. Note however that if it is being spliced
742 * onto an indirect block at the very end of the file (the
743 * file is growing) then we *will* alter the inode to reflect
744 * the new i_size. But that is not done here - it is done in
745 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
747 jbd_debug(5, "splicing indirect only\n");
748 BUFFER_TRACE(where
->bh
, "call ext4_journal_dirty_metadata");
749 err
= ext4_journal_dirty_metadata(handle
, where
->bh
);
754 * OK, we spliced it into the inode itself on a direct block.
755 * Inode was dirtied above.
757 jbd_debug(5, "splicing direct\n");
762 for (i
= 1; i
<= num
; i
++) {
763 BUFFER_TRACE(where
[i
].bh
, "call jbd2_journal_forget");
764 ext4_journal_forget(handle
, where
[i
].bh
);
765 ext4_free_blocks(handle
, inode
,
766 le32_to_cpu(where
[i
-1].key
), 1, 0);
768 ext4_free_blocks(handle
, inode
, le32_to_cpu(where
[num
].key
), blks
, 0);
774 * Allocation strategy is simple: if we have to allocate something, we will
775 * have to go the whole way to leaf. So let's do it before attaching anything
776 * to tree, set linkage between the newborn blocks, write them if sync is
777 * required, recheck the path, free and repeat if check fails, otherwise
778 * set the last missing link (that will protect us from any truncate-generated
779 * removals - all blocks on the path are immune now) and possibly force the
780 * write on the parent block.
781 * That has a nice additional property: no special recovery from the failed
782 * allocations is needed - we simply release blocks and do not touch anything
783 * reachable from inode.
785 * `handle' can be NULL if create == 0.
787 <<<<<<< HEAD:fs/ext4/inode.c
788 * The BKL may not be held on entry here. Be sure to take it early.
790 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:fs/ext4/inode.c
791 * return > 0, # of blocks mapped or allocated.
792 * return = 0, if plain lookup failed.
793 * return < 0, error case.
796 * Need to be called with
797 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
798 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
800 int ext4_get_blocks_handle(handle_t
*handle
, struct inode
*inode
,
801 ext4_lblk_t iblock
, unsigned long maxblocks
,
802 struct buffer_head
*bh_result
,
803 int create
, int extend_disksize
)
806 ext4_lblk_t offsets
[4];
811 int blocks_to_boundary
= 0;
813 struct ext4_inode_info
*ei
= EXT4_I(inode
);
815 ext4_fsblk_t first_block
= 0;
818 J_ASSERT(!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
));
819 J_ASSERT(handle
!= NULL
|| create
== 0);
820 depth
= ext4_block_to_path(inode
, iblock
, offsets
,
821 &blocks_to_boundary
);
826 partial
= ext4_get_branch(inode
, depth
, offsets
, chain
, &err
);
828 /* Simplest case - block found, no allocation needed */
830 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
831 clear_buffer_new(bh_result
);
834 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
837 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
839 if (blk
== first_block
+ count
)
847 /* Next simple case - plain lookup or failed read of indirect block */
848 if (!create
|| err
== -EIO
)
852 * Okay, we need to do block allocation. Lazily initialize the block
853 * allocation info here if necessary
855 if (S_ISREG(inode
->i_mode
) && (!ei
->i_block_alloc_info
))
856 ext4_init_block_alloc_info(inode
);
858 goal
= ext4_find_goal(inode
, iblock
, partial
);
860 /* the number of blocks need to allocate for [d,t]indirect blocks */
861 indirect_blks
= (chain
+ depth
) - partial
- 1;
864 * Next look up the indirect map to count the totoal number of
865 * direct blocks to allocate for this branch.
867 count
= ext4_blks_to_allocate(partial
, indirect_blks
,
868 maxblocks
, blocks_to_boundary
);
870 * Block out ext4_truncate while we alter the tree
872 err
= ext4_alloc_branch(handle
, inode
, indirect_blks
, &count
, goal
,
873 offsets
+ (partial
- chain
), partial
);
876 * The ext4_splice_branch call will free and forget any buffers
877 * on the new chain if there is a failure, but that risks using
878 * up transaction credits, especially for bitmaps where the
879 * credits cannot be returned. Can we handle this somehow? We
880 * may need to return -EAGAIN upwards in the worst case. --sct
883 err
= ext4_splice_branch(handle
, inode
, iblock
,
884 partial
, indirect_blks
, count
);
886 * i_disksize growing is protected by i_data_sem. Don't forget to
887 * protect it if you're about to implement concurrent
888 * ext4_get_block() -bzzz
890 if (!err
&& extend_disksize
&& inode
->i_size
> ei
->i_disksize
)
891 ei
->i_disksize
= inode
->i_size
;
895 set_buffer_new(bh_result
);
897 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
898 if (count
> blocks_to_boundary
)
899 set_buffer_boundary(bh_result
);
901 /* Clean up and exit */
902 partial
= chain
+ depth
- 1; /* the whole chain */
904 while (partial
> chain
) {
905 BUFFER_TRACE(partial
->bh
, "call brelse");
909 BUFFER_TRACE(bh_result
, "returned");
914 /* Maximum number of blocks we map for direct IO at once. */
915 #define DIO_MAX_BLOCKS 4096
917 * Number of credits we need for writing DIO_MAX_BLOCKS:
918 * We need sb + group descriptor + bitmap + inode -> 4
919 * For B blocks with A block pointers per block we need:
920 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
921 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
923 #define DIO_CREDITS 25
925 <<<<<<< HEAD
:fs
/ext4
/inode
.c
931 * ext4_ext4 get_block() wrapper function
932 * It will do a look up first, and returns if the blocks already mapped.
933 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
934 * and store the allocated blocks in the result buffer head and mark it
937 * If file type is extents based, it will call ext4_ext_get_blocks(),
938 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
941 * On success, it returns the number of blocks being mapped or allocate.
942 * if create==0 and the blocks are pre-allocated and uninitialized block,
943 * the result buffer head is unmapped. If the create ==1, it will make sure
944 * the buffer head is mapped.
946 * It returns 0 if plain look up failed (blocks have not been allocated), in
947 * that casem, buffer head is unmapped
949 * It returns the error in case of allocation failure.
951 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:fs
/ext4
/inode
.c
952 int ext4_get_blocks_wrap(handle_t
*handle
, struct inode
*inode
, sector_t block
,
953 unsigned long max_blocks
, struct buffer_head
*bh
,
954 int create
, int extend_disksize
)
957 <<<<<<< HEAD
:fs
/ext4
/inode
.c
960 clear_buffer_mapped(bh
);
962 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:fs
/ext4
/inode
.c
964 * Try to see if we can get the block without requesting
965 * for new file system block.
967 down_read((&EXT4_I(inode
)->i_data_sem
));
968 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
969 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
972 retval
= ext4_get_blocks_handle(handle
,
973 inode
, block
, max_blocks
, bh
, 0, 0);
975 up_read((&EXT4_I(inode
)->i_data_sem
));
976 <<<<<<< HEAD
:fs
/ext4
/inode
.c
977 if (!create
|| (retval
> 0))
980 /* If it is only a block(s) look up */
985 * Returns if the blocks have already allocated
987 * Note that if blocks have been preallocated
988 * ext4_ext_get_block() returns th create = 0
989 * with buffer head unmapped.
991 if (retval
> 0 && buffer_mapped(bh
))
992 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:fs
/ext4
/inode
.c
996 <<<<<<< HEAD:fs/ext4/inode.c
997 * We need to allocate new blocks which will result
1000 * New blocks allocate and/or writing to uninitialized extent
1001 * will possibly result in updating i_data, so we take
1002 * the write lock of i_data_sem, and call get_blocks()
1003 * with create == 1 flag.
1004 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:fs/ext4/inode.c
1006 down_write((&EXT4_I(inode
)->i_data_sem
));
1008 * We need to check for EXT4 here because migrate
1009 * could have changed the inode type in between
1011 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
1012 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
1013 bh
, create
, extend_disksize
);
1015 retval
= ext4_get_blocks_handle(handle
, inode
, block
,
1016 max_blocks
, bh
, create
, extend_disksize
);
1018 up_write((&EXT4_I(inode
)->i_data_sem
));
1022 static int ext4_get_block(struct inode
*inode
, sector_t iblock
,
1023 struct buffer_head
*bh_result
, int create
)
1025 handle_t
*handle
= ext4_journal_current_handle();
1026 int ret
= 0, started
= 0;
1027 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
1029 if (create
&& !handle
) {
1030 /* Direct IO write... */
1031 if (max_blocks
> DIO_MAX_BLOCKS
)
1032 max_blocks
= DIO_MAX_BLOCKS
;
1033 handle
= ext4_journal_start(inode
, DIO_CREDITS
+
1034 2 * EXT4_QUOTA_TRANS_BLOCKS(inode
->i_sb
));
1035 if (IS_ERR(handle
)) {
1036 ret
= PTR_ERR(handle
);
1042 ret
= ext4_get_blocks_wrap(handle
, inode
, iblock
,
1043 max_blocks
, bh_result
, create
, 0);
1045 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
1049 ext4_journal_stop(handle
);
1055 * `handle' can be NULL if create is zero
1057 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
1058 ext4_lblk_t block
, int create
, int *errp
)
1060 struct buffer_head dummy
;
1063 J_ASSERT(handle
!= NULL
|| create
== 0);
1066 dummy
.b_blocknr
= -1000;
1067 buffer_trace_init(&dummy
.b_history
);
1068 err
= ext4_get_blocks_wrap(handle
, inode
, block
, 1,
1071 * ext4_get_blocks_handle() returns number of blocks
1072 * mapped. 0 in case of a HOLE.
1080 if (!err
&& buffer_mapped(&dummy
)) {
1081 struct buffer_head
*bh
;
1082 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
1087 if (buffer_new(&dummy
)) {
1088 J_ASSERT(create
!= 0);
1089 J_ASSERT(handle
!= NULL
);
1092 * Now that we do not always journal data, we should
1093 * keep in mind whether this should always journal the
1094 * new buffer as metadata. For now, regular file
1095 * writes use ext4_get_block instead, so it's not a
1099 BUFFER_TRACE(bh
, "call get_create_access");
1100 fatal
= ext4_journal_get_create_access(handle
, bh
);
1101 if (!fatal
&& !buffer_uptodate(bh
)) {
1102 memset(bh
->b_data
,0,inode
->i_sb
->s_blocksize
);
1103 set_buffer_uptodate(bh
);
1106 BUFFER_TRACE(bh
, "call ext4_journal_dirty_metadata");
1107 err
= ext4_journal_dirty_metadata(handle
, bh
);
1111 BUFFER_TRACE(bh
, "not a new buffer");
1124 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
1125 ext4_lblk_t block
, int create
, int *err
)
1127 struct buffer_head
* bh
;
1129 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
1132 if (buffer_uptodate(bh
))
1134 ll_rw_block(READ_META
, 1, &bh
);
1136 if (buffer_uptodate(bh
))
1143 static int walk_page_buffers( handle_t
*handle
,
1144 struct buffer_head
*head
,
1148 int (*fn
)( handle_t
*handle
,
1149 struct buffer_head
*bh
))
1151 struct buffer_head
*bh
;
1152 unsigned block_start
, block_end
;
1153 unsigned blocksize
= head
->b_size
;
1155 struct buffer_head
*next
;
1157 for ( bh
= head
, block_start
= 0;
1158 ret
== 0 && (bh
!= head
|| !block_start
);
1159 block_start
= block_end
, bh
= next
)
1161 next
= bh
->b_this_page
;
1162 block_end
= block_start
+ blocksize
;
1163 if (block_end
<= from
|| block_start
>= to
) {
1164 if (partial
&& !buffer_uptodate(bh
))
1168 err
= (*fn
)(handle
, bh
);
1176 * To preserve ordering, it is essential that the hole instantiation and
1177 * the data write be encapsulated in a single transaction. We cannot
1178 * close off a transaction and start a new one between the ext4_get_block()
1179 * and the commit_write(). So doing the jbd2_journal_start at the start of
1180 * prepare_write() is the right place.
1182 * Also, this function can nest inside ext4_writepage() ->
1183 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1184 * has generated enough buffer credits to do the whole page. So we won't
1185 * block on the journal in that case, which is good, because the caller may
1188 * By accident, ext4 can be reentered when a transaction is open via
1189 * quota file writes. If we were to commit the transaction while thus
1190 * reentered, there can be a deadlock - we would be holding a quota
1191 * lock, and the commit would never complete if another thread had a
1192 * transaction open and was blocking on the quota lock - a ranking
1195 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1196 * will _not_ run commit under these circumstances because handle->h_ref
1197 * is elevated. We'll still have enough credits for the tiny quotafile
1200 static int do_journal_get_write_access(handle_t
*handle
,
1201 struct buffer_head
*bh
)
1203 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1205 return ext4_journal_get_write_access(handle
, bh
);
1208 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
1209 loff_t pos
, unsigned len
, unsigned flags
,
1210 struct page
**pagep
, void **fsdata
)
1212 struct inode
*inode
= mapping
->host
;
1213 int ret
, needed_blocks
= ext4_writepage_trans_blocks(inode
);
1220 index
= pos
>> PAGE_CACHE_SHIFT
;
1221 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1225 page
= __grab_cache_page(mapping
, index
);
1230 handle
= ext4_journal_start(inode
, needed_blocks
);
1231 if (IS_ERR(handle
)) {
1233 page_cache_release(page
);
1234 ret
= PTR_ERR(handle
);
1238 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
1241 if (!ret
&& ext4_should_journal_data(inode
)) {
1242 ret
= walk_page_buffers(handle
, page_buffers(page
),
1243 from
, to
, NULL
, do_journal_get_write_access
);
1247 ext4_journal_stop(handle
);
1249 page_cache_release(page
);
1252 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1258 int ext4_journal_dirty_data(handle_t
*handle
, struct buffer_head
*bh
)
1260 int err
= jbd2_journal_dirty_data(handle
, bh
);
1262 ext4_journal_abort_handle(__FUNCTION__
, __FUNCTION__
,
1267 /* For write_end() in data=journal mode */
1268 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1270 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1272 set_buffer_uptodate(bh
);
1273 return ext4_journal_dirty_metadata(handle
, bh
);
1277 * Generic write_end handler for ordered and writeback ext4 journal modes.
1278 * We can't use generic_write_end, because that unlocks the page and we need to
1279 * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
1280 * after block_write_end.
1282 static int ext4_generic_write_end(struct file
*file
,
1283 struct address_space
*mapping
,
1284 loff_t pos
, unsigned len
, unsigned copied
,
1285 struct page
*page
, void *fsdata
)
1287 struct inode
*inode
= file
->f_mapping
->host
;
1289 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1291 if (pos
+copied
> inode
->i_size
) {
1292 i_size_write(inode
, pos
+copied
);
1293 mark_inode_dirty(inode
);
1300 * We need to pick up the new inode size which generic_commit_write gave us
1301 * `file' can be NULL - eg, when called from page_symlink().
1303 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1304 * buffers are managed internally.
1306 static int ext4_ordered_write_end(struct file
*file
,
1307 struct address_space
*mapping
,
1308 loff_t pos
, unsigned len
, unsigned copied
,
1309 struct page
*page
, void *fsdata
)
1311 handle_t
*handle
= ext4_journal_current_handle();
1312 struct inode
*inode
= file
->f_mapping
->host
;
1316 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1319 ret
= walk_page_buffers(handle
, page_buffers(page
),
1320 from
, to
, NULL
, ext4_journal_dirty_data
);
1324 * generic_write_end() will run mark_inode_dirty() if i_size
1325 * changes. So let's piggyback the i_disksize mark_inode_dirty
1330 new_i_size
= pos
+ copied
;
1331 if (new_i_size
> EXT4_I(inode
)->i_disksize
)
1332 EXT4_I(inode
)->i_disksize
= new_i_size
;
1333 copied
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1338 ret2
= ext4_journal_stop(handle
);
1342 page_cache_release(page
);
1344 return ret
? ret
: copied
;
1347 static int ext4_writeback_write_end(struct file
*file
,
1348 struct address_space
*mapping
,
1349 loff_t pos
, unsigned len
, unsigned copied
,
1350 struct page
*page
, void *fsdata
)
1352 handle_t
*handle
= ext4_journal_current_handle();
1353 struct inode
*inode
= file
->f_mapping
->host
;
1357 new_i_size
= pos
+ copied
;
1358 if (new_i_size
> EXT4_I(inode
)->i_disksize
)
1359 EXT4_I(inode
)->i_disksize
= new_i_size
;
1361 copied
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1366 ret2
= ext4_journal_stop(handle
);
1370 page_cache_release(page
);
1372 return ret
? ret
: copied
;
1375 static int ext4_journalled_write_end(struct file
*file
,
1376 struct address_space
*mapping
,
1377 loff_t pos
, unsigned len
, unsigned copied
,
1378 struct page
*page
, void *fsdata
)
1380 handle_t
*handle
= ext4_journal_current_handle();
1381 struct inode
*inode
= mapping
->host
;
1386 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1390 if (!PageUptodate(page
))
1392 page_zero_new_buffers(page
, from
+copied
, to
);
1395 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1396 to
, &partial
, write_end_fn
);
1398 SetPageUptodate(page
);
1399 if (pos
+copied
> inode
->i_size
)
1400 i_size_write(inode
, pos
+copied
);
1401 EXT4_I(inode
)->i_state
|= EXT4_STATE_JDATA
;
1402 if (inode
->i_size
> EXT4_I(inode
)->i_disksize
) {
1403 EXT4_I(inode
)->i_disksize
= inode
->i_size
;
1404 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1409 ret2
= ext4_journal_stop(handle
);
1413 page_cache_release(page
);
1415 return ret
? ret
: copied
;
1419 * bmap() is special. It gets used by applications such as lilo and by
1420 * the swapper to find the on-disk block of a specific piece of data.
1422 * Naturally, this is dangerous if the block concerned is still in the
1423 * journal. If somebody makes a swapfile on an ext4 data-journaling
1424 * filesystem and enables swap, then they may get a nasty shock when the
1425 * data getting swapped to that swapfile suddenly gets overwritten by
1426 * the original zero's written out previously to the journal and
1427 * awaiting writeback in the kernel's buffer cache.
1429 * So, if we see any bmap calls here on a modified, data-journaled file,
1430 * take extra steps to flush any blocks which might be in the cache.
1432 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
1434 struct inode
*inode
= mapping
->host
;
1438 if (EXT4_I(inode
)->i_state
& EXT4_STATE_JDATA
) {
1440 * This is a REALLY heavyweight approach, but the use of
1441 * bmap on dirty files is expected to be extremely rare:
1442 * only if we run lilo or swapon on a freshly made file
1443 * do we expect this to happen.
1445 * (bmap requires CAP_SYS_RAWIO so this does not
1446 * represent an unprivileged user DOS attack --- we'd be
1447 * in trouble if mortal users could trigger this path at
1450 * NB. EXT4_STATE_JDATA is not set on files other than
1451 * regular files. If somebody wants to bmap a directory
1452 * or symlink and gets confused because the buffer
1453 * hasn't yet been flushed to disk, they deserve
1454 * everything they get.
1457 EXT4_I(inode
)->i_state
&= ~EXT4_STATE_JDATA
;
1458 journal
= EXT4_JOURNAL(inode
);
1459 jbd2_journal_lock_updates(journal
);
1460 err
= jbd2_journal_flush(journal
);
1461 jbd2_journal_unlock_updates(journal
);
1467 return generic_block_bmap(mapping
,block
,ext4_get_block
);
1470 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1476 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1482 static int jbd2_journal_dirty_data_fn(handle_t
*handle
, struct buffer_head
*bh
)
1484 if (buffer_mapped(bh
))
1485 return ext4_journal_dirty_data(handle
, bh
);
1490 * Note that we always start a transaction even if we're not journalling
1491 * data. This is to preserve ordering: any hole instantiation within
1492 * __block_write_full_page -> ext4_get_block() should be journalled
1493 * along with the data so we don't crash and then get metadata which
1494 * refers to old data.
1496 * In all journalling modes block_write_full_page() will start the I/O.
1500 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1505 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1507 * Same applies to ext4_get_block(). We will deadlock on various things like
1508 * lock_journal and i_data_sem
1510 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1513 * 16May01: If we're reentered then journal_current_handle() will be
1514 * non-zero. We simply *return*.
1516 * 1 July 2001: @@@ FIXME:
1517 * In journalled data mode, a data buffer may be metadata against the
1518 * current transaction. But the same file is part of a shared mapping
1519 * and someone does a writepage() on it.
1521 * We will move the buffer onto the async_data list, but *after* it has
1522 * been dirtied. So there's a small window where we have dirty data on
1525 * Note that this only applies to the last partial page in the file. The
1526 * bit which block_write_full_page() uses prepare/commit for. (That's
1527 * broken code anyway: it's wrong for msync()).
1529 * It's a rare case: affects the final partial page, for journalled data
1530 * where the file is subject to bith write() and writepage() in the same
1531 * transction. To fix it we'll need a custom block_write_full_page().
1532 * We'll probably need that anyway for journalling writepage() output.
1534 * We don't honour synchronous mounts for writepage(). That would be
1535 * disastrous. Any write() or metadata operation will sync the fs for
1538 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1539 * we don't need to open a transaction here.
1541 static int ext4_ordered_writepage(struct page
*page
,
1542 struct writeback_control
*wbc
)
1544 struct inode
*inode
= page
->mapping
->host
;
1545 struct buffer_head
*page_bufs
;
1546 handle_t
*handle
= NULL
;
1550 J_ASSERT(PageLocked(page
));
1553 * We give up here if we're reentered, because it might be for a
1554 * different filesystem.
1556 if (ext4_journal_current_handle())
1559 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
1561 if (IS_ERR(handle
)) {
1562 ret
= PTR_ERR(handle
);
1566 if (!page_has_buffers(page
)) {
1567 create_empty_buffers(page
, inode
->i_sb
->s_blocksize
,
1568 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1570 page_bufs
= page_buffers(page
);
1571 walk_page_buffers(handle
, page_bufs
, 0,
1572 PAGE_CACHE_SIZE
, NULL
, bget_one
);
1574 ret
= block_write_full_page(page
, ext4_get_block
, wbc
);
1577 * The page can become unlocked at any point now, and
1578 * truncate can then come in and change things. So we
1579 * can't touch *page from now on. But *page_bufs is
1580 * safe due to elevated refcount.
1584 * And attach them to the current transaction. But only if
1585 * block_write_full_page() succeeded. Otherwise they are unmapped,
1586 * and generally junk.
1589 err
= walk_page_buffers(handle
, page_bufs
, 0, PAGE_CACHE_SIZE
,
1590 NULL
, jbd2_journal_dirty_data_fn
);
1594 walk_page_buffers(handle
, page_bufs
, 0,
1595 PAGE_CACHE_SIZE
, NULL
, bput_one
);
1596 err
= ext4_journal_stop(handle
);
1602 redirty_page_for_writepage(wbc
, page
);
1607 static int ext4_writeback_writepage(struct page
*page
,
1608 struct writeback_control
*wbc
)
1610 struct inode
*inode
= page
->mapping
->host
;
1611 handle_t
*handle
= NULL
;
1615 if (ext4_journal_current_handle())
1618 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
1619 if (IS_ERR(handle
)) {
1620 ret
= PTR_ERR(handle
);
1624 if (test_opt(inode
->i_sb
, NOBH
) && ext4_should_writeback_data(inode
))
1625 ret
= nobh_writepage(page
, ext4_get_block
, wbc
);
1627 ret
= block_write_full_page(page
, ext4_get_block
, wbc
);
1629 err
= ext4_journal_stop(handle
);
1635 redirty_page_for_writepage(wbc
, page
);
1640 static int ext4_journalled_writepage(struct page
*page
,
1641 struct writeback_control
*wbc
)
1643 struct inode
*inode
= page
->mapping
->host
;
1644 handle_t
*handle
= NULL
;
1648 if (ext4_journal_current_handle())
1651 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
1652 if (IS_ERR(handle
)) {
1653 ret
= PTR_ERR(handle
);
1657 if (!page_has_buffers(page
) || PageChecked(page
)) {
1659 * It's mmapped pagecache. Add buffers and journal it. There
1660 * doesn't seem much point in redirtying the page here.
1662 ClearPageChecked(page
);
1663 ret
= block_prepare_write(page
, 0, PAGE_CACHE_SIZE
,
1666 ext4_journal_stop(handle
);
1669 ret
= walk_page_buffers(handle
, page_buffers(page
), 0,
1670 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
);
1672 err
= walk_page_buffers(handle
, page_buffers(page
), 0,
1673 PAGE_CACHE_SIZE
, NULL
, write_end_fn
);
1676 EXT4_I(inode
)->i_state
|= EXT4_STATE_JDATA
;
1680 * It may be a page full of checkpoint-mode buffers. We don't
1681 * really know unless we go poke around in the buffer_heads.
1682 * But block_write_full_page will do the right thing.
1684 ret
= block_write_full_page(page
, ext4_get_block
, wbc
);
1686 err
= ext4_journal_stop(handle
);
1693 redirty_page_for_writepage(wbc
, page
);
1699 static int ext4_readpage(struct file
*file
, struct page
*page
)
1701 return mpage_readpage(page
, ext4_get_block
);
1705 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
1706 struct list_head
*pages
, unsigned nr_pages
)
1708 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
1711 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
1713 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
1716 * If it's a full truncate we just forget about the pending dirtying
1719 ClearPageChecked(page
);
1721 jbd2_journal_invalidatepage(journal
, page
, offset
);
1724 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
1726 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
1728 WARN_ON(PageChecked(page
));
1729 if (!page_has_buffers(page
))
1731 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
1735 * If the O_DIRECT write will extend the file then add this inode to the
1736 * orphan list. So recovery will truncate it back to the original size
1737 * if the machine crashes during the write.
1739 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1740 * crashes then stale disk data _may_ be exposed inside the file. But current
1741 * VFS code falls back into buffered path in that case so we are safe.
1743 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
1744 const struct iovec
*iov
, loff_t offset
,
1745 unsigned long nr_segs
)
1747 struct file
*file
= iocb
->ki_filp
;
1748 struct inode
*inode
= file
->f_mapping
->host
;
1749 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1753 size_t count
= iov_length(iov
, nr_segs
);
1756 loff_t final_size
= offset
+ count
;
1758 if (final_size
> inode
->i_size
) {
1759 /* Credits for sb + inode write */
1760 handle
= ext4_journal_start(inode
, 2);
1761 if (IS_ERR(handle
)) {
1762 ret
= PTR_ERR(handle
);
1765 ret
= ext4_orphan_add(handle
, inode
);
1767 ext4_journal_stop(handle
);
1771 ei
->i_disksize
= inode
->i_size
;
1772 ext4_journal_stop(handle
);
1776 ret
= blockdev_direct_IO(rw
, iocb
, inode
, inode
->i_sb
->s_bdev
, iov
,
1778 ext4_get_block
, NULL
);
1783 /* Credits for sb + inode write */
1784 handle
= ext4_journal_start(inode
, 2);
1785 if (IS_ERR(handle
)) {
1786 /* This is really bad luck. We've written the data
1787 * but cannot extend i_size. Bail out and pretend
1788 * the write failed... */
1789 ret
= PTR_ERR(handle
);
1793 ext4_orphan_del(handle
, inode
);
1795 loff_t end
= offset
+ ret
;
1796 if (end
> inode
->i_size
) {
1797 ei
->i_disksize
= end
;
1798 i_size_write(inode
, end
);
1800 * We're going to return a positive `ret'
1801 * here due to non-zero-length I/O, so there's
1802 * no way of reporting error returns from
1803 * ext4_mark_inode_dirty() to userspace. So
1806 ext4_mark_inode_dirty(handle
, inode
);
1809 err
= ext4_journal_stop(handle
);
1818 * Pages can be marked dirty completely asynchronously from ext4's journalling
1819 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1820 * much here because ->set_page_dirty is called under VFS locks. The page is
1821 * not necessarily locked.
1823 * We cannot just dirty the page and leave attached buffers clean, because the
1824 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1825 * or jbddirty because all the journalling code will explode.
1827 * So what we do is to mark the page "pending dirty" and next time writepage
1828 * is called, propagate that into the buffers appropriately.
1830 static int ext4_journalled_set_page_dirty(struct page
*page
)
1832 SetPageChecked(page
);
1833 return __set_page_dirty_nobuffers(page
);
1836 static const struct address_space_operations ext4_ordered_aops
= {
1837 .readpage
= ext4_readpage
,
1838 .readpages
= ext4_readpages
,
1839 .writepage
= ext4_ordered_writepage
,
1840 .sync_page
= block_sync_page
,
1841 .write_begin
= ext4_write_begin
,
1842 .write_end
= ext4_ordered_write_end
,
1844 .invalidatepage
= ext4_invalidatepage
,
1845 .releasepage
= ext4_releasepage
,
1846 .direct_IO
= ext4_direct_IO
,
1847 .migratepage
= buffer_migrate_page
,
1850 static const struct address_space_operations ext4_writeback_aops
= {
1851 .readpage
= ext4_readpage
,
1852 .readpages
= ext4_readpages
,
1853 .writepage
= ext4_writeback_writepage
,
1854 .sync_page
= block_sync_page
,
1855 .write_begin
= ext4_write_begin
,
1856 .write_end
= ext4_writeback_write_end
,
1858 .invalidatepage
= ext4_invalidatepage
,
1859 .releasepage
= ext4_releasepage
,
1860 .direct_IO
= ext4_direct_IO
,
1861 .migratepage
= buffer_migrate_page
,
1864 static const struct address_space_operations ext4_journalled_aops
= {
1865 .readpage
= ext4_readpage
,
1866 .readpages
= ext4_readpages
,
1867 .writepage
= ext4_journalled_writepage
,
1868 .sync_page
= block_sync_page
,
1869 .write_begin
= ext4_write_begin
,
1870 .write_end
= ext4_journalled_write_end
,
1871 .set_page_dirty
= ext4_journalled_set_page_dirty
,
1873 .invalidatepage
= ext4_invalidatepage
,
1874 .releasepage
= ext4_releasepage
,
1877 void ext4_set_aops(struct inode
*inode
)
1879 if (ext4_should_order_data(inode
))
1880 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
1881 else if (ext4_should_writeback_data(inode
))
1882 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
1884 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
1888 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1889 * up to the end of the block which corresponds to `from'.
1890 * This required during truncate. We need to physically zero the tail end
1891 * of that block so it doesn't yield old data if the file is later grown.
1893 int ext4_block_truncate_page(handle_t
*handle
, struct page
*page
,
1894 struct address_space
*mapping
, loff_t from
)
1896 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
1897 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
1898 unsigned blocksize
, length
, pos
;
1900 struct inode
*inode
= mapping
->host
;
1901 struct buffer_head
*bh
;
1904 blocksize
= inode
->i_sb
->s_blocksize
;
1905 length
= blocksize
- (offset
& (blocksize
- 1));
1906 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
1909 * For "nobh" option, we can only work if we don't need to
1910 * read-in the page - otherwise we create buffers to do the IO.
1912 if (!page_has_buffers(page
) && test_opt(inode
->i_sb
, NOBH
) &&
1913 ext4_should_writeback_data(inode
) && PageUptodate(page
)) {
1914 zero_user(page
, offset
, length
);
1915 set_page_dirty(page
);
1919 if (!page_has_buffers(page
))
1920 create_empty_buffers(page
, blocksize
, 0);
1922 /* Find the buffer that contains "offset" */
1923 bh
= page_buffers(page
);
1925 while (offset
>= pos
) {
1926 bh
= bh
->b_this_page
;
1932 if (buffer_freed(bh
)) {
1933 BUFFER_TRACE(bh
, "freed: skip");
1937 if (!buffer_mapped(bh
)) {
1938 BUFFER_TRACE(bh
, "unmapped");
1939 ext4_get_block(inode
, iblock
, bh
, 0);
1940 /* unmapped? It's a hole - nothing to do */
1941 if (!buffer_mapped(bh
)) {
1942 BUFFER_TRACE(bh
, "still unmapped");
1947 /* Ok, it's mapped. Make sure it's up-to-date */
1948 if (PageUptodate(page
))
1949 set_buffer_uptodate(bh
);
1951 if (!buffer_uptodate(bh
)) {
1953 ll_rw_block(READ
, 1, &bh
);
1955 /* Uhhuh. Read error. Complain and punt. */
1956 if (!buffer_uptodate(bh
))
1960 if (ext4_should_journal_data(inode
)) {
1961 BUFFER_TRACE(bh
, "get write access");
1962 err
= ext4_journal_get_write_access(handle
, bh
);
1967 zero_user(page
, offset
, length
);
1969 BUFFER_TRACE(bh
, "zeroed end of block");
1972 if (ext4_should_journal_data(inode
)) {
1973 err
= ext4_journal_dirty_metadata(handle
, bh
);
1975 if (ext4_should_order_data(inode
))
1976 err
= ext4_journal_dirty_data(handle
, bh
);
1977 mark_buffer_dirty(bh
);
1982 page_cache_release(page
);
1987 * Probably it should be a library function... search for first non-zero word
1988 * or memcmp with zero_page, whatever is better for particular architecture.
1991 static inline int all_zeroes(__le32
*p
, __le32
*q
)
2000 * ext4_find_shared - find the indirect blocks for partial truncation.
2001 * @inode: inode in question
2002 * @depth: depth of the affected branch
2003 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
2004 * @chain: place to store the pointers to partial indirect blocks
2005 * @top: place to the (detached) top of branch
2007 * This is a helper function used by ext4_truncate().
2009 * When we do truncate() we may have to clean the ends of several
2010 * indirect blocks but leave the blocks themselves alive. Block is
2011 * partially truncated if some data below the new i_size is refered
2012 * from it (and it is on the path to the first completely truncated
2013 * data block, indeed). We have to free the top of that path along
2014 * with everything to the right of the path. Since no allocation
2015 * past the truncation point is possible until ext4_truncate()
2016 * finishes, we may safely do the latter, but top of branch may
2017 * require special attention - pageout below the truncation point
2018 * might try to populate it.
2020 * We atomically detach the top of branch from the tree, store the
2021 * block number of its root in *@top, pointers to buffer_heads of
2022 * partially truncated blocks - in @chain[].bh and pointers to
2023 * their last elements that should not be removed - in
2024 * @chain[].p. Return value is the pointer to last filled element
2027 * The work left to caller to do the actual freeing of subtrees:
2028 * a) free the subtree starting from *@top
2029 * b) free the subtrees whose roots are stored in
2030 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2031 * c) free the subtrees growing from the inode past the @chain[0].
2032 * (no partially truncated stuff there). */
2034 static Indirect
*ext4_find_shared(struct inode
*inode
, int depth
,
2035 ext4_lblk_t offsets
[4], Indirect chain
[4], __le32
*top
)
2037 Indirect
*partial
, *p
;
2041 /* Make k index the deepest non-null offest + 1 */
2042 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
2044 partial
= ext4_get_branch(inode
, k
, offsets
, chain
, &err
);
2045 /* Writer: pointers */
2047 partial
= chain
+ k
-1;
2049 * If the branch acquired continuation since we've looked at it -
2050 * fine, it should all survive and (new) top doesn't belong to us.
2052 if (!partial
->key
&& *partial
->p
)
2055 for (p
=partial
; p
>chain
&& all_zeroes((__le32
*)p
->bh
->b_data
,p
->p
); p
--)
2058 * OK, we've found the last block that must survive. The rest of our
2059 * branch should be detached before unlocking. However, if that rest
2060 * of branch is all ours and does not grow immediately from the inode
2061 * it's easier to cheat and just decrement partial->p.
2063 if (p
== chain
+ k
- 1 && p
> chain
) {
2067 /* Nope, don't do this in ext4. Must leave the tree intact */
2074 while(partial
> p
) {
2075 brelse(partial
->bh
);
2083 * Zero a number of block pointers in either an inode or an indirect block.
2084 * If we restart the transaction we must again get write access to the
2085 * indirect block for further modification.
2087 * We release `count' blocks on disk, but (last - first) may be greater
2088 * than `count' because there can be holes in there.
2090 static void ext4_clear_blocks(handle_t
*handle
, struct inode
*inode
,
2091 struct buffer_head
*bh
, ext4_fsblk_t block_to_free
,
2092 unsigned long count
, __le32
*first
, __le32
*last
)
2095 if (try_to_extend_transaction(handle
, inode
)) {
2097 BUFFER_TRACE(bh
, "call ext4_journal_dirty_metadata");
2098 ext4_journal_dirty_metadata(handle
, bh
);
2100 ext4_mark_inode_dirty(handle
, inode
);
2101 ext4_journal_test_restart(handle
, inode
);
2103 BUFFER_TRACE(bh
, "retaking write access");
2104 ext4_journal_get_write_access(handle
, bh
);
2109 * Any buffers which are on the journal will be in memory. We find
2110 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2111 * on them. We've already detached each block from the file, so
2112 * bforget() in jbd2_journal_forget() should be safe.
2114 * AKPM: turn on bforget in jbd2_journal_forget()!!!
2116 for (p
= first
; p
< last
; p
++) {
2117 u32 nr
= le32_to_cpu(*p
);
2119 struct buffer_head
*tbh
;
2122 tbh
= sb_find_get_block(inode
->i_sb
, nr
);
2123 ext4_forget(handle
, 0, inode
, tbh
, nr
);
2127 ext4_free_blocks(handle
, inode
, block_to_free
, count
, 0);
2131 * ext4_free_data - free a list of data blocks
2132 * @handle: handle for this transaction
2133 * @inode: inode we are dealing with
2134 * @this_bh: indirect buffer_head which contains *@first and *@last
2135 * @first: array of block numbers
2136 * @last: points immediately past the end of array
2138 * We are freeing all blocks refered from that array (numbers are stored as
2139 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2141 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2142 * blocks are contiguous then releasing them at one time will only affect one
2143 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2144 * actually use a lot of journal space.
2146 * @this_bh will be %NULL if @first and @last point into the inode's direct
2149 static void ext4_free_data(handle_t
*handle
, struct inode
*inode
,
2150 struct buffer_head
*this_bh
,
2151 __le32
*first
, __le32
*last
)
2153 ext4_fsblk_t block_to_free
= 0; /* Starting block # of a run */
2154 unsigned long count
= 0; /* Number of blocks in the run */
2155 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
2158 ext4_fsblk_t nr
; /* Current block # */
2159 __le32
*p
; /* Pointer into inode/ind
2160 for current block */
2163 if (this_bh
) { /* For indirect block */
2164 BUFFER_TRACE(this_bh
, "get_write_access");
2165 err
= ext4_journal_get_write_access(handle
, this_bh
);
2166 /* Important: if we can't update the indirect pointers
2167 * to the blocks, we can't free them. */
2172 for (p
= first
; p
< last
; p
++) {
2173 nr
= le32_to_cpu(*p
);
2175 /* accumulate blocks to free if they're contiguous */
2178 block_to_free_p
= p
;
2180 } else if (nr
== block_to_free
+ count
) {
2183 ext4_clear_blocks(handle
, inode
, this_bh
,
2185 count
, block_to_free_p
, p
);
2187 block_to_free_p
= p
;
2194 ext4_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
2195 count
, block_to_free_p
, p
);
2198 BUFFER_TRACE(this_bh
, "call ext4_journal_dirty_metadata");
2199 ext4_journal_dirty_metadata(handle
, this_bh
);
2204 * ext4_free_branches - free an array of branches
2205 * @handle: JBD handle for this transaction
2206 * @inode: inode we are dealing with
2207 * @parent_bh: the buffer_head which contains *@first and *@last
2208 * @first: array of block numbers
2209 * @last: pointer immediately past the end of array
2210 * @depth: depth of the branches to free
2212 * We are freeing all blocks refered from these branches (numbers are
2213 * stored as little-endian 32-bit) and updating @inode->i_blocks
2216 static void ext4_free_branches(handle_t
*handle
, struct inode
*inode
,
2217 struct buffer_head
*parent_bh
,
2218 __le32
*first
, __le32
*last
, int depth
)
2223 if (is_handle_aborted(handle
))
2227 struct buffer_head
*bh
;
2228 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
2230 while (--p
>= first
) {
2231 nr
= le32_to_cpu(*p
);
2233 continue; /* A hole */
2235 /* Go read the buffer for the next level down */
2236 bh
= sb_bread(inode
->i_sb
, nr
);
2239 * A read failure? Report error and clear slot
2243 ext4_error(inode
->i_sb
, "ext4_free_branches",
2244 "Read failure, inode=%lu, block=%llu",
2249 /* This zaps the entire block. Bottom up. */
2250 BUFFER_TRACE(bh
, "free child branches");
2251 ext4_free_branches(handle
, inode
, bh
,
2252 (__le32
*)bh
->b_data
,
2253 (__le32
*)bh
->b_data
+ addr_per_block
,
2257 * We've probably journalled the indirect block several
2258 * times during the truncate. But it's no longer
2259 * needed and we now drop it from the transaction via
2260 * jbd2_journal_revoke().
2262 * That's easy if it's exclusively part of this
2263 * transaction. But if it's part of the committing
2264 * transaction then jbd2_journal_forget() will simply
2265 * brelse() it. That means that if the underlying
2266 * block is reallocated in ext4_get_block(),
2267 * unmap_underlying_metadata() will find this block
2268 * and will try to get rid of it. damn, damn.
2270 * If this block has already been committed to the
2271 * journal, a revoke record will be written. And
2272 * revoke records must be emitted *before* clearing
2273 * this block's bit in the bitmaps.
2275 ext4_forget(handle
, 1, inode
, bh
, bh
->b_blocknr
);
2278 * Everything below this this pointer has been
2279 * released. Now let this top-of-subtree go.
2281 * We want the freeing of this indirect block to be
2282 * atomic in the journal with the updating of the
2283 * bitmap block which owns it. So make some room in
2286 * We zero the parent pointer *after* freeing its
2287 * pointee in the bitmaps, so if extend_transaction()
2288 * for some reason fails to put the bitmap changes and
2289 * the release into the same transaction, recovery
2290 * will merely complain about releasing a free block,
2291 * rather than leaking blocks.
2293 if (is_handle_aborted(handle
))
2295 if (try_to_extend_transaction(handle
, inode
)) {
2296 ext4_mark_inode_dirty(handle
, inode
);
2297 ext4_journal_test_restart(handle
, inode
);
2300 ext4_free_blocks(handle
, inode
, nr
, 1, 1);
2304 * The block which we have just freed is
2305 * pointed to by an indirect block: journal it
2307 BUFFER_TRACE(parent_bh
, "get_write_access");
2308 if (!ext4_journal_get_write_access(handle
,
2311 BUFFER_TRACE(parent_bh
,
2312 "call ext4_journal_dirty_metadata");
2313 ext4_journal_dirty_metadata(handle
,
2319 /* We have reached the bottom of the tree. */
2320 BUFFER_TRACE(parent_bh
, "free data blocks");
2321 ext4_free_data(handle
, inode
, parent_bh
, first
, last
);
2328 * We block out ext4_get_block() block instantiations across the entire
2329 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2330 * simultaneously on behalf of the same inode.
2332 * As we work through the truncate and commmit bits of it to the journal there
2333 * is one core, guiding principle: the file's tree must always be consistent on
2334 * disk. We must be able to restart the truncate after a crash.
2336 * The file's tree may be transiently inconsistent in memory (although it
2337 * probably isn't), but whenever we close off and commit a journal transaction,
2338 * the contents of (the filesystem + the journal) must be consistent and
2339 * restartable. It's pretty simple, really: bottom up, right to left (although
2340 * left-to-right works OK too).
2342 * Note that at recovery time, journal replay occurs *before* the restart of
2343 * truncate against the orphan inode list.
2345 * The committed inode has the new, desired i_size (which is the same as
2346 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
2347 * that this inode's truncate did not complete and it will again call
2348 * ext4_truncate() to have another go. So there will be instantiated blocks
2349 * to the right of the truncation point in a crashed ext4 filesystem. But
2350 * that's fine - as long as they are linked from the inode, the post-crash
2351 * ext4_truncate() run will find them and release them.
2353 void ext4_truncate(struct inode
*inode
)
2356 struct ext4_inode_info
*ei
= EXT4_I(inode
);
2357 __le32
*i_data
= ei
->i_data
;
2358 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
2359 struct address_space
*mapping
= inode
->i_mapping
;
2360 ext4_lblk_t offsets
[4];
2365 ext4_lblk_t last_block
;
2366 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
2369 if (!(S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
2370 S_ISLNK(inode
->i_mode
)))
2372 if (ext4_inode_is_fast_symlink(inode
))
2374 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
2378 * We have to lock the EOF page here, because lock_page() nests
2379 * outside jbd2_journal_start().
2381 if ((inode
->i_size
& (blocksize
- 1)) == 0) {
2382 /* Block boundary? Nothing to do */
2385 page
= grab_cache_page(mapping
,
2386 inode
->i_size
>> PAGE_CACHE_SHIFT
);
2391 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
2392 ext4_ext_truncate(inode
, page
);
2396 handle
= start_transaction(inode
);
2397 if (IS_ERR(handle
)) {
2399 clear_highpage(page
);
2400 flush_dcache_page(page
);
2402 page_cache_release(page
);
2404 return; /* AKPM: return what? */
2407 last_block
= (inode
->i_size
+ blocksize
-1)
2408 >> EXT4_BLOCK_SIZE_BITS(inode
->i_sb
);
2411 ext4_block_truncate_page(handle
, page
, mapping
, inode
->i_size
);
2413 n
= ext4_block_to_path(inode
, last_block
, offsets
, NULL
);
2415 goto out_stop
; /* error */
2418 * OK. This truncate is going to happen. We add the inode to the
2419 * orphan list, so that if this truncate spans multiple transactions,
2420 * and we crash, we will resume the truncate when the filesystem
2421 * recovers. It also marks the inode dirty, to catch the new size.
2423 * Implication: the file must always be in a sane, consistent
2424 * truncatable state while each transaction commits.
2426 if (ext4_orphan_add(handle
, inode
))
2430 * The orphan list entry will now protect us from any crash which
2431 * occurs before the truncate completes, so it is now safe to propagate
2432 * the new, shorter inode size (held for now in i_size) into the
2433 * on-disk inode. We do this via i_disksize, which is the value which
2434 * ext4 *really* writes onto the disk inode.
2436 ei
->i_disksize
= inode
->i_size
;
2439 * From here we block out all ext4_get_block() callers who want to
2440 * modify the block allocation tree.
2442 down_write(&ei
->i_data_sem
);
2444 if (n
== 1) { /* direct blocks */
2445 ext4_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
2446 i_data
+ EXT4_NDIR_BLOCKS
);
2450 partial
= ext4_find_shared(inode
, n
, offsets
, chain
, &nr
);
2451 /* Kill the top of shared branch (not detached) */
2453 if (partial
== chain
) {
2454 /* Shared branch grows from the inode */
2455 ext4_free_branches(handle
, inode
, NULL
,
2456 &nr
, &nr
+1, (chain
+n
-1) - partial
);
2459 * We mark the inode dirty prior to restart,
2460 * and prior to stop. No need for it here.
2463 /* Shared branch grows from an indirect block */
2464 BUFFER_TRACE(partial
->bh
, "get_write_access");
2465 ext4_free_branches(handle
, inode
, partial
->bh
,
2467 partial
->p
+1, (chain
+n
-1) - partial
);
2470 /* Clear the ends of indirect blocks on the shared branch */
2471 while (partial
> chain
) {
2472 ext4_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
2473 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
2474 (chain
+n
-1) - partial
);
2475 BUFFER_TRACE(partial
->bh
, "call brelse");
2476 brelse (partial
->bh
);
2480 /* Kill the remaining (whole) subtrees */
2481 switch (offsets
[0]) {
2483 nr
= i_data
[EXT4_IND_BLOCK
];
2485 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
2486 i_data
[EXT4_IND_BLOCK
] = 0;
2488 case EXT4_IND_BLOCK
:
2489 nr
= i_data
[EXT4_DIND_BLOCK
];
2491 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
2492 i_data
[EXT4_DIND_BLOCK
] = 0;
2494 case EXT4_DIND_BLOCK
:
2495 nr
= i_data
[EXT4_TIND_BLOCK
];
2497 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
2498 i_data
[EXT4_TIND_BLOCK
] = 0;
2500 case EXT4_TIND_BLOCK
:
2504 ext4_discard_reservation(inode
);
2506 up_write(&ei
->i_data_sem
);
2507 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
2508 ext4_mark_inode_dirty(handle
, inode
);
2511 * In a multi-transaction truncate, we only make the final transaction
2518 * If this was a simple ftruncate(), and the file will remain alive
2519 * then we need to clear up the orphan record which we created above.
2520 * However, if this was a real unlink then we were called by
2521 * ext4_delete_inode(), and we allow that function to clean up the
2522 * orphan info for us.
2525 ext4_orphan_del(handle
, inode
);
2527 ext4_journal_stop(handle
);
2530 static ext4_fsblk_t
ext4_get_inode_block(struct super_block
*sb
,
2531 unsigned long ino
, struct ext4_iloc
*iloc
)
2533 unsigned long desc
, group_desc
;
2534 ext4_group_t block_group
;
2535 unsigned long offset
;
2537 struct buffer_head
*bh
;
2538 struct ext4_group_desc
* gdp
;
2540 if (!ext4_valid_inum(sb
, ino
)) {
2542 * This error is already checked for in namei.c unless we are
2543 * looking at an NFS filehandle, in which case no error
2549 block_group
= (ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
2550 if (block_group
>= EXT4_SB(sb
)->s_groups_count
) {
2551 ext4_error(sb
,"ext4_get_inode_block","group >= groups count");
2555 group_desc
= block_group
>> EXT4_DESC_PER_BLOCK_BITS(sb
);
2556 desc
= block_group
& (EXT4_DESC_PER_BLOCK(sb
) - 1);
2557 bh
= EXT4_SB(sb
)->s_group_desc
[group_desc
];
2559 ext4_error (sb
, "ext4_get_inode_block",
2560 "Descriptor not loaded");
2564 gdp
= (struct ext4_group_desc
*)((__u8
*)bh
->b_data
+
2565 desc
* EXT4_DESC_SIZE(sb
));
2567 * Figure out the offset within the block group inode table
2569 offset
= ((ino
- 1) % EXT4_INODES_PER_GROUP(sb
)) *
2570 EXT4_INODE_SIZE(sb
);
2571 block
= ext4_inode_table(sb
, gdp
) +
2572 (offset
>> EXT4_BLOCK_SIZE_BITS(sb
));
2574 iloc
->block_group
= block_group
;
2575 iloc
->offset
= offset
& (EXT4_BLOCK_SIZE(sb
) - 1);
2580 * ext4_get_inode_loc returns with an extra refcount against the inode's
2581 * underlying buffer_head on success. If 'in_mem' is true, we have all
2582 * data in memory that is needed to recreate the on-disk version of this
2585 static int __ext4_get_inode_loc(struct inode
*inode
,
2586 struct ext4_iloc
*iloc
, int in_mem
)
2589 struct buffer_head
*bh
;
2591 block
= ext4_get_inode_block(inode
->i_sb
, inode
->i_ino
, iloc
);
2595 bh
= sb_getblk(inode
->i_sb
, block
);
2597 ext4_error (inode
->i_sb
, "ext4_get_inode_loc",
2598 "unable to read inode block - "
2599 "inode=%lu, block=%llu",
2600 inode
->i_ino
, block
);
2603 if (!buffer_uptodate(bh
)) {
2605 if (buffer_uptodate(bh
)) {
2606 /* someone brought it uptodate while we waited */
2612 * If we have all information of the inode in memory and this
2613 * is the only valid inode in the block, we need not read the
2617 struct buffer_head
*bitmap_bh
;
2618 struct ext4_group_desc
*desc
;
2619 int inodes_per_buffer
;
2620 int inode_offset
, i
;
2621 ext4_group_t block_group
;
2624 block_group
= (inode
->i_ino
- 1) /
2625 EXT4_INODES_PER_GROUP(inode
->i_sb
);
2626 inodes_per_buffer
= bh
->b_size
/
2627 EXT4_INODE_SIZE(inode
->i_sb
);
2628 inode_offset
= ((inode
->i_ino
- 1) %
2629 EXT4_INODES_PER_GROUP(inode
->i_sb
));
2630 start
= inode_offset
& ~(inodes_per_buffer
- 1);
2632 /* Is the inode bitmap in cache? */
2633 desc
= ext4_get_group_desc(inode
->i_sb
,
2638 bitmap_bh
= sb_getblk(inode
->i_sb
,
2639 ext4_inode_bitmap(inode
->i_sb
, desc
));
2644 * If the inode bitmap isn't in cache then the
2645 * optimisation may end up performing two reads instead
2646 * of one, so skip it.
2648 if (!buffer_uptodate(bitmap_bh
)) {
2652 for (i
= start
; i
< start
+ inodes_per_buffer
; i
++) {
2653 if (i
== inode_offset
)
2655 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
2659 if (i
== start
+ inodes_per_buffer
) {
2660 /* all other inodes are free, so skip I/O */
2661 memset(bh
->b_data
, 0, bh
->b_size
);
2662 set_buffer_uptodate(bh
);
2670 * There are other valid inodes in the buffer, this inode
2671 * has in-inode xattrs, or we don't have this inode in memory.
2672 * Read the block from disk.
2675 bh
->b_end_io
= end_buffer_read_sync
;
2676 submit_bh(READ_META
, bh
);
2678 if (!buffer_uptodate(bh
)) {
2679 ext4_error(inode
->i_sb
, "ext4_get_inode_loc",
2680 "unable to read inode block - "
2681 "inode=%lu, block=%llu",
2682 inode
->i_ino
, block
);
2692 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
2694 /* We have all inode data except xattrs in memory here. */
2695 return __ext4_get_inode_loc(inode
, iloc
,
2696 !(EXT4_I(inode
)->i_state
& EXT4_STATE_XATTR
));
2699 void ext4_set_inode_flags(struct inode
*inode
)
2701 unsigned int flags
= EXT4_I(inode
)->i_flags
;
2703 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
2704 if (flags
& EXT4_SYNC_FL
)
2705 inode
->i_flags
|= S_SYNC
;
2706 if (flags
& EXT4_APPEND_FL
)
2707 inode
->i_flags
|= S_APPEND
;
2708 if (flags
& EXT4_IMMUTABLE_FL
)
2709 inode
->i_flags
|= S_IMMUTABLE
;
2710 if (flags
& EXT4_NOATIME_FL
)
2711 inode
->i_flags
|= S_NOATIME
;
2712 if (flags
& EXT4_DIRSYNC_FL
)
2713 inode
->i_flags
|= S_DIRSYNC
;
2716 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2717 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
2719 unsigned int flags
= ei
->vfs_inode
.i_flags
;
2721 ei
->i_flags
&= ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
2722 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|EXT4_DIRSYNC_FL
);
2724 ei
->i_flags
|= EXT4_SYNC_FL
;
2725 if (flags
& S_APPEND
)
2726 ei
->i_flags
|= EXT4_APPEND_FL
;
2727 if (flags
& S_IMMUTABLE
)
2728 ei
->i_flags
|= EXT4_IMMUTABLE_FL
;
2729 if (flags
& S_NOATIME
)
2730 ei
->i_flags
|= EXT4_NOATIME_FL
;
2731 if (flags
& S_DIRSYNC
)
2732 ei
->i_flags
|= EXT4_DIRSYNC_FL
;
2734 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
2735 struct ext4_inode_info
*ei
)
2738 struct inode
*inode
= &(ei
->vfs_inode
);
2739 struct super_block
*sb
= inode
->i_sb
;
2741 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
2742 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
2743 /* we are using combined 48 bit field */
2744 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
2745 le32_to_cpu(raw_inode
->i_blocks_lo
);
2746 if (ei
->i_flags
& EXT4_HUGE_FILE_FL
) {
2747 /* i_blocks represent file system block size */
2748 return i_blocks
<< (inode
->i_blkbits
- 9);
2753 return le32_to_cpu(raw_inode
->i_blocks_lo
);
2757 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
2759 struct ext4_iloc iloc
;
2760 struct ext4_inode
*raw_inode
;
2761 struct ext4_inode_info
*ei
;
2762 struct buffer_head
*bh
;
2763 struct inode
*inode
;
2767 inode
= iget_locked(sb
, ino
);
2769 return ERR_PTR(-ENOMEM
);
2770 if (!(inode
->i_state
& I_NEW
))
2774 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2775 ei
->i_acl
= EXT4_ACL_NOT_CACHED
;
2776 ei
->i_default_acl
= EXT4_ACL_NOT_CACHED
;
2778 ei
->i_block_alloc_info
= NULL
;
2780 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
2784 raw_inode
= ext4_raw_inode(&iloc
);
2785 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
2786 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
2787 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
2788 if(!(test_opt (inode
->i_sb
, NO_UID32
))) {
2789 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
2790 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
2792 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
2795 ei
->i_dir_start_lookup
= 0;
2796 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
2797 /* We now have enough fields to check if the inode was active or not.
2798 * This is needed because nfsd might try to access dead inodes
2799 * the test is that same one that e2fsck uses
2800 * NeilBrown 1999oct15
2802 if (inode
->i_nlink
== 0) {
2803 if (inode
->i_mode
== 0 ||
2804 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
2805 /* this inode is deleted */
2810 /* The only unlinked inodes we let through here have
2811 * valid i_mode and are being read by the orphan
2812 * recovery code: that's fine, we're about to complete
2813 * the process of deleting those. */
2815 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
2816 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
2817 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
2818 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
2819 cpu_to_le32(EXT4_OS_HURD
)) {
2821 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
2823 inode
->i_size
= ext4_isize(raw_inode
);
2824 ei
->i_disksize
= inode
->i_size
;
2825 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
2826 ei
->i_block_group
= iloc
.block_group
;
2828 * NOTE! The in-memory inode i_data array is in little-endian order
2829 * even on big-endian machines: we do NOT byteswap the block numbers!
2831 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
2832 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
2833 INIT_LIST_HEAD(&ei
->i_orphan
);
2835 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
2836 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
2837 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
2838 EXT4_INODE_SIZE(inode
->i_sb
)) {
2843 if (ei
->i_extra_isize
== 0) {
2844 /* The extra space is currently unused. Use it. */
2845 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
2846 EXT4_GOOD_OLD_INODE_SIZE
;
2848 __le32
*magic
= (void *)raw_inode
+
2849 EXT4_GOOD_OLD_INODE_SIZE
+
2851 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
))
2852 ei
->i_state
|= EXT4_STATE_XATTR
;
2855 ei
->i_extra_isize
= 0;
2857 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
2858 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
2859 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
2860 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
2862 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
2863 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
2864 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
2866 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
2869 if (S_ISREG(inode
->i_mode
)) {
2870 inode
->i_op
= &ext4_file_inode_operations
;
2871 inode
->i_fop
= &ext4_file_operations
;
2872 ext4_set_aops(inode
);
2873 } else if (S_ISDIR(inode
->i_mode
)) {
2874 inode
->i_op
= &ext4_dir_inode_operations
;
2875 inode
->i_fop
= &ext4_dir_operations
;
2876 } else if (S_ISLNK(inode
->i_mode
)) {
2877 if (ext4_inode_is_fast_symlink(inode
))
2878 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
2880 inode
->i_op
= &ext4_symlink_inode_operations
;
2881 ext4_set_aops(inode
);
2884 inode
->i_op
= &ext4_special_inode_operations
;
2885 if (raw_inode
->i_block
[0])
2886 init_special_inode(inode
, inode
->i_mode
,
2887 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
2889 init_special_inode(inode
, inode
->i_mode
,
2890 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
2893 ext4_set_inode_flags(inode
);
2894 unlock_new_inode(inode
);
2899 return ERR_PTR(ret
);
2902 static int ext4_inode_blocks_set(handle_t
*handle
,
2903 struct ext4_inode
*raw_inode
,
2904 struct ext4_inode_info
*ei
)
2906 struct inode
*inode
= &(ei
->vfs_inode
);
2907 u64 i_blocks
= inode
->i_blocks
;
2908 struct super_block
*sb
= inode
->i_sb
;
2911 if (i_blocks
<= ~0U) {
2913 * i_blocks can be represnted in a 32 bit variable
2914 * as multiple of 512 bytes
2916 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
2917 raw_inode
->i_blocks_high
= 0;
2918 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
2919 } else if (i_blocks
<= 0xffffffffffffULL
) {
2921 * i_blocks can be represented in a 48 bit variable
2922 * as multiple of 512 bytes
2924 err
= ext4_update_rocompat_feature(handle
, sb
,
2925 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
);
2928 /* i_block is stored in the split 48 bit fields */
2929 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
2930 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
2931 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
2934 * i_blocks should be represented in a 48 bit variable
2935 * as multiple of file system block size
2937 err
= ext4_update_rocompat_feature(handle
, sb
,
2938 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
);
2941 ei
->i_flags
|= EXT4_HUGE_FILE_FL
;
2942 /* i_block is stored in file system block size */
2943 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
2944 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
2945 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
2952 * Post the struct inode info into an on-disk inode location in the
2953 * buffer-cache. This gobbles the caller's reference to the
2954 * buffer_head in the inode location struct.
2956 * The caller must have write access to iloc->bh.
2958 static int ext4_do_update_inode(handle_t
*handle
,
2959 struct inode
*inode
,
2960 struct ext4_iloc
*iloc
)
2962 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
2963 struct ext4_inode_info
*ei
= EXT4_I(inode
);
2964 struct buffer_head
*bh
= iloc
->bh
;
2965 int err
= 0, rc
, block
;
2967 /* For fields not not tracking in the in-memory inode,
2968 * initialise them to zero for new inodes. */
2969 if (ei
->i_state
& EXT4_STATE_NEW
)
2970 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
2972 ext4_get_inode_flags(ei
);
2973 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
2974 if(!(test_opt(inode
->i_sb
, NO_UID32
))) {
2975 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
2976 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
2978 * Fix up interoperability with old kernels. Otherwise, old inodes get
2979 * re-used with the upper 16 bits of the uid/gid intact
2982 raw_inode
->i_uid_high
=
2983 cpu_to_le16(high_16_bits(inode
->i_uid
));
2984 raw_inode
->i_gid_high
=
2985 cpu_to_le16(high_16_bits(inode
->i_gid
));
2987 raw_inode
->i_uid_high
= 0;
2988 raw_inode
->i_gid_high
= 0;
2991 raw_inode
->i_uid_low
=
2992 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
2993 raw_inode
->i_gid_low
=
2994 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
2995 raw_inode
->i_uid_high
= 0;
2996 raw_inode
->i_gid_high
= 0;
2998 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
3000 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
3001 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
3002 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
3003 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
3005 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
3007 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
3008 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
3009 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
3010 cpu_to_le32(EXT4_OS_HURD
))
3011 raw_inode
->i_file_acl_high
=
3012 cpu_to_le16(ei
->i_file_acl
>> 32);
3013 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
3014 ext4_isize_set(raw_inode
, ei
->i_disksize
);
3015 if (ei
->i_disksize
> 0x7fffffffULL
) {
3016 struct super_block
*sb
= inode
->i_sb
;
3017 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3018 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
3019 EXT4_SB(sb
)->s_es
->s_rev_level
==
3020 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
3021 /* If this is the first large file
3022 * created, add a flag to the superblock.
3024 err
= ext4_journal_get_write_access(handle
,
3025 EXT4_SB(sb
)->s_sbh
);
3028 ext4_update_dynamic_rev(sb
);
3029 EXT4_SET_RO_COMPAT_FEATURE(sb
,
3030 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
3033 err
= ext4_journal_dirty_metadata(handle
,
3034 EXT4_SB(sb
)->s_sbh
);
3037 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
3038 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
3039 if (old_valid_dev(inode
->i_rdev
)) {
3040 raw_inode
->i_block
[0] =
3041 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
3042 raw_inode
->i_block
[1] = 0;
3044 raw_inode
->i_block
[0] = 0;
3045 raw_inode
->i_block
[1] =
3046 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
3047 raw_inode
->i_block
[2] = 0;
3049 } else for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
3050 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
3052 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
3053 if (ei
->i_extra_isize
) {
3054 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
3055 raw_inode
->i_version_hi
=
3056 cpu_to_le32(inode
->i_version
>> 32);
3057 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
3061 BUFFER_TRACE(bh
, "call ext4_journal_dirty_metadata");
3062 rc
= ext4_journal_dirty_metadata(handle
, bh
);
3065 ei
->i_state
&= ~EXT4_STATE_NEW
;
3069 ext4_std_error(inode
->i_sb
, err
);
3074 * ext4_write_inode()
3076 * We are called from a few places:
3078 * - Within generic_file_write() for O_SYNC files.
3079 * Here, there will be no transaction running. We wait for any running
3080 * trasnaction to commit.
3082 * - Within sys_sync(), kupdate and such.
3083 * We wait on commit, if tol to.
3085 * - Within prune_icache() (PF_MEMALLOC == true)
3086 * Here we simply return. We can't afford to block kswapd on the
3089 * In all cases it is actually safe for us to return without doing anything,
3090 * because the inode has been copied into a raw inode buffer in
3091 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3094 * Note that we are absolutely dependent upon all inode dirtiers doing the
3095 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3096 * which we are interested.
3098 * It would be a bug for them to not do this. The code:
3100 * mark_inode_dirty(inode)
3102 * inode->i_size = expr;
3104 * is in error because a kswapd-driven write_inode() could occur while
3105 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3106 * will no longer be on the superblock's dirty inode list.
3108 int ext4_write_inode(struct inode
*inode
, int wait
)
3110 if (current
->flags
& PF_MEMALLOC
)
3113 if (ext4_journal_current_handle()) {
3114 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3122 return ext4_force_commit(inode
->i_sb
);
3128 * Called from notify_change.
3130 * We want to trap VFS attempts to truncate the file as soon as
3131 * possible. In particular, we want to make sure that when the VFS
3132 * shrinks i_size, we put the inode on the orphan list and modify
3133 * i_disksize immediately, so that during the subsequent flushing of
3134 * dirty pages and freeing of disk blocks, we can guarantee that any
3135 * commit will leave the blocks being flushed in an unused state on
3136 * disk. (On recovery, the inode will get truncated and the blocks will
3137 * be freed, so we have a strong guarantee that no future commit will
3138 * leave these blocks visible to the user.)
3140 * Called with inode->sem down.
3142 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3144 struct inode
*inode
= dentry
->d_inode
;
3146 const unsigned int ia_valid
= attr
->ia_valid
;
3148 error
= inode_change_ok(inode
, attr
);
3152 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
3153 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
3156 /* (user+group)*(old+new) structure, inode write (sb,
3157 * inode block, ? - but truncate inode update has it) */
3158 handle
= ext4_journal_start(inode
, 2*(EXT4_QUOTA_INIT_BLOCKS(inode
->i_sb
)+
3159 EXT4_QUOTA_DEL_BLOCKS(inode
->i_sb
))+3);
3160 if (IS_ERR(handle
)) {
3161 error
= PTR_ERR(handle
);
3164 error
= DQUOT_TRANSFER(inode
, attr
) ? -EDQUOT
: 0;
3166 ext4_journal_stop(handle
);
3169 /* Update corresponding info in inode so that everything is in
3170 * one transaction */
3171 if (attr
->ia_valid
& ATTR_UID
)
3172 inode
->i_uid
= attr
->ia_uid
;
3173 if (attr
->ia_valid
& ATTR_GID
)
3174 inode
->i_gid
= attr
->ia_gid
;
3175 error
= ext4_mark_inode_dirty(handle
, inode
);
3176 ext4_journal_stop(handle
);
3179 if (attr
->ia_valid
& ATTR_SIZE
) {
3180 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)) {
3181 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3183 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
) {
3190 if (S_ISREG(inode
->i_mode
) &&
3191 attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
< inode
->i_size
) {
3194 handle
= ext4_journal_start(inode
, 3);
3195 if (IS_ERR(handle
)) {
3196 error
= PTR_ERR(handle
);
3200 error
= ext4_orphan_add(handle
, inode
);
3201 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
3202 rc
= ext4_mark_inode_dirty(handle
, inode
);
3205 ext4_journal_stop(handle
);
3208 rc
= inode_setattr(inode
, attr
);
3210 /* If inode_setattr's call to ext4_truncate failed to get a
3211 * transaction handle at all, we need to clean up the in-core
3212 * orphan list manually. */
3214 ext4_orphan_del(NULL
, inode
);
3216 if (!rc
&& (ia_valid
& ATTR_MODE
))
3217 rc
= ext4_acl_chmod(inode
);
3220 ext4_std_error(inode
->i_sb
, error
);
3228 * How many blocks doth make a writepage()?
3230 * With N blocks per page, it may be:
3235 * N+5 bitmap blocks (from the above)
3236 * N+5 group descriptor summary blocks
3239 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3241 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3243 * With ordered or writeback data it's the same, less the N data blocks.
3245 * If the inode's direct blocks can hold an integral number of pages then a
3246 * page cannot straddle two indirect blocks, and we can only touch one indirect
3247 * and dindirect block, and the "5" above becomes "3".
3249 * This still overestimates under most circumstances. If we were to pass the
3250 * start and end offsets in here as well we could do block_to_path() on each
3251 * block and work out the exact number of indirects which are touched. Pah.
3254 int ext4_writepage_trans_blocks(struct inode
*inode
)
3256 int bpp
= ext4_journal_blocks_per_page(inode
);
3257 int indirects
= (EXT4_NDIR_BLOCKS
% bpp
) ? 5 : 3;
3260 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)
3261 return ext4_ext_writepage_trans_blocks(inode
, bpp
);
3263 if (ext4_should_journal_data(inode
))
3264 ret
= 3 * (bpp
+ indirects
) + 2;
3266 ret
= 2 * (bpp
+ indirects
) + 2;
3269 /* We know that structure was already allocated during DQUOT_INIT so
3270 * we will be updating only the data blocks + inodes */
3271 ret
+= 2*EXT4_QUOTA_TRANS_BLOCKS(inode
->i_sb
);
3278 * The caller must have previously called ext4_reserve_inode_write().
3279 * Give this, we know that the caller already has write access to iloc->bh.
3281 int ext4_mark_iloc_dirty(handle_t
*handle
,
3282 struct inode
*inode
, struct ext4_iloc
*iloc
)
3286 if (test_opt(inode
->i_sb
, I_VERSION
))
3287 inode_inc_iversion(inode
);
3289 /* the do_update_inode consumes one bh->b_count */
3292 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3293 err
= ext4_do_update_inode(handle
, inode
, iloc
);
3299 * On success, We end up with an outstanding reference count against
3300 * iloc->bh. This _must_ be cleaned up later.
3304 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
3305 struct ext4_iloc
*iloc
)
3309 err
= ext4_get_inode_loc(inode
, iloc
);
3311 BUFFER_TRACE(iloc
->bh
, "get_write_access");
3312 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
3319 ext4_std_error(inode
->i_sb
, err
);
3324 * Expand an inode by new_extra_isize bytes.
3325 * Returns 0 on success or negative error number on failure.
3327 static int ext4_expand_extra_isize(struct inode
*inode
,
3328 unsigned int new_extra_isize
,
3329 struct ext4_iloc iloc
,
3332 struct ext4_inode
*raw_inode
;
3333 struct ext4_xattr_ibody_header
*header
;
3334 struct ext4_xattr_entry
*entry
;
3336 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
3339 raw_inode
= ext4_raw_inode(&iloc
);
3341 header
= IHDR(inode
, raw_inode
);
3342 entry
= IFIRST(header
);
3344 /* No extended attributes present */
3345 if (!(EXT4_I(inode
)->i_state
& EXT4_STATE_XATTR
) ||
3346 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
3347 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
3349 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
3353 /* try to expand with EAs present */
3354 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
3359 * What we do here is to mark the in-core inode as clean with respect to inode
3360 * dirtiness (it may still be data-dirty).
3361 * This means that the in-core inode may be reaped by prune_icache
3362 * without having to perform any I/O. This is a very good thing,
3363 * because *any* task may call prune_icache - even ones which
3364 * have a transaction open against a different journal.
3366 * Is this cheating? Not really. Sure, we haven't written the
3367 * inode out, but prune_icache isn't a user-visible syncing function.
3368 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3369 * we start and wait on commits.
3371 * Is this efficient/effective? Well, we're being nice to the system
3372 * by cleaning up our inodes proactively so they can be reaped
3373 * without I/O. But we are potentially leaving up to five seconds'
3374 * worth of inodes floating about which prune_icache wants us to
3375 * write out. One way to fix that would be to get prune_icache()
3376 * to do a write_super() to free up some memory. It has the desired
3379 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
3381 struct ext4_iloc iloc
;
3382 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3383 static unsigned int mnt_count
;
3387 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
3388 if (EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
3389 !(EXT4_I(inode
)->i_state
& EXT4_STATE_NO_EXPAND
)) {
3391 * We need extra buffer credits since we may write into EA block
3392 * with this same handle. If journal_extend fails, then it will
3393 * only result in a minor loss of functionality for that inode.
3394 * If this is felt to be critical, then e2fsck should be run to
3395 * force a large enough s_min_extra_isize.
3397 if ((jbd2_journal_extend(handle
,
3398 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
3399 ret
= ext4_expand_extra_isize(inode
,
3400 sbi
->s_want_extra_isize
,
3403 EXT4_I(inode
)->i_state
|= EXT4_STATE_NO_EXPAND
;
3405 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
3406 ext4_warning(inode
->i_sb
, __FUNCTION__
,
3407 "Unable to expand inode %lu. Delete"
3408 " some EAs or run e2fsck.",
3411 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
3417 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
3422 * ext4_dirty_inode() is called from __mark_inode_dirty()
3424 * We're really interested in the case where a file is being extended.
3425 * i_size has been changed by generic_commit_write() and we thus need
3426 * to include the updated inode in the current transaction.
3428 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3429 * are allocated to the file.
3431 * If the inode is marked synchronous, we don't honour that here - doing
3432 * so would cause a commit on atime updates, which we don't bother doing.
3433 * We handle synchronous inodes at the highest possible level.
3435 void ext4_dirty_inode(struct inode
*inode
)
3437 handle_t
*current_handle
= ext4_journal_current_handle();
3440 handle
= ext4_journal_start(inode
, 2);
3443 if (current_handle
&&
3444 current_handle
->h_transaction
!= handle
->h_transaction
) {
3445 /* This task has a transaction open against a different fs */
3446 printk(KERN_EMERG
"%s: transactions do not match!\n",
3449 jbd_debug(5, "marking dirty. outer handle=%p\n",
3451 ext4_mark_inode_dirty(handle
, inode
);
3453 ext4_journal_stop(handle
);
3460 * Bind an inode's backing buffer_head into this transaction, to prevent
3461 * it from being flushed to disk early. Unlike
3462 * ext4_reserve_inode_write, this leaves behind no bh reference and
3463 * returns no iloc structure, so the caller needs to repeat the iloc
3464 * lookup to mark the inode dirty later.
3466 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
3468 struct ext4_iloc iloc
;
3472 err
= ext4_get_inode_loc(inode
, &iloc
);
3474 BUFFER_TRACE(iloc
.bh
, "get_write_access");
3475 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
3477 err
= ext4_journal_dirty_metadata(handle
,
3482 ext4_std_error(inode
->i_sb
, err
);
3487 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
3494 * We have to be very careful here: changing a data block's
3495 * journaling status dynamically is dangerous. If we write a
3496 * data block to the journal, change the status and then delete
3497 * that block, we risk forgetting to revoke the old log record
3498 * from the journal and so a subsequent replay can corrupt data.
3499 * So, first we make sure that the journal is empty and that
3500 * nobody is changing anything.
3503 journal
= EXT4_JOURNAL(inode
);
3504 if (is_journal_aborted(journal
))
3507 jbd2_journal_lock_updates(journal
);
3508 jbd2_journal_flush(journal
);
3511 * OK, there are no updates running now, and all cached data is
3512 * synced to disk. We are now in a completely consistent state
3513 * which doesn't have anything in the journal, and we know that
3514 * no filesystem updates are running, so it is safe to modify
3515 * the inode's in-core data-journaling state flag now.
3519 EXT4_I(inode
)->i_flags
|= EXT4_JOURNAL_DATA_FL
;
3521 EXT4_I(inode
)->i_flags
&= ~EXT4_JOURNAL_DATA_FL
;
3522 ext4_set_aops(inode
);
3524 jbd2_journal_unlock_updates(journal
);
3526 /* Finally we can mark the inode as dirty. */
3528 handle
= ext4_journal_start(inode
, 1);
3530 return PTR_ERR(handle
);
3532 err
= ext4_mark_inode_dirty(handle
, inode
);
3534 ext4_journal_stop(handle
);
3535 ext4_std_error(inode
->i_sb
, err
);