4 #include <linux/errno.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
20 struct writeback_control
;
22 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
23 extern unsigned long max_mapnr
;
26 extern unsigned long num_physpages
;
27 extern void * high_memory
;
28 extern int page_cluster
;
31 extern int sysctl_legacy_va_layout
;
33 #define sysctl_legacy_va_layout 0
36 extern unsigned long mmap_min_addr
;
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
42 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
45 * Linux kernel virtual memory manager primitives.
46 * The idea being to have a "virtual" mm in the same way
47 * we have a virtual fs - giving a cleaner interface to the
48 * mm details, and allowing different kinds of memory mappings
49 * (from shared memory to executable loading to arbitrary
53 extern struct kmem_cache
*vm_area_cachep
;
56 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
57 * disabled, then there's a single shared list of VMAs maintained by the
58 * system, and mm's subscribe to these individually
60 struct vm_list_struct
{
61 struct vm_list_struct
*next
;
62 struct vm_area_struct
*vma
;
66 extern struct rb_root nommu_vma_tree
;
67 extern struct rw_semaphore nommu_vma_sem
;
69 extern unsigned int kobjsize(const void *objp
);
75 #define VM_READ 0x00000001 /* currently active flags */
76 #define VM_WRITE 0x00000002
77 #define VM_EXEC 0x00000004
78 #define VM_SHARED 0x00000008
80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
81 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
82 #define VM_MAYWRITE 0x00000020
83 #define VM_MAYEXEC 0x00000040
84 #define VM_MAYSHARE 0x00000080
86 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
87 #define VM_GROWSUP 0x00000200
88 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
89 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
91 #define VM_EXECUTABLE 0x00001000
92 #define VM_LOCKED 0x00002000
93 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
95 /* Used by sys_madvise() */
96 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
97 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
99 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
100 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
101 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
102 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
103 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
104 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
105 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
106 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
107 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
109 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
111 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
112 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
115 #ifdef CONFIG_STACK_GROWSUP
116 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
118 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
121 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
122 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
123 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
124 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
125 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
128 * mapping from the currently active vm_flags protection bits (the
129 * low four bits) to a page protection mask..
131 extern pgprot_t protection_map
[16];
133 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
134 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
138 * vm_fault is filled by the the pagefault handler and passed to the vma's
139 * ->fault function. The vma's ->fault is responsible for returning a bitmask
140 * of VM_FAULT_xxx flags that give details about how the fault was handled.
142 * pgoff should be used in favour of virtual_address, if possible. If pgoff
143 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
147 unsigned int flags
; /* FAULT_FLAG_xxx flags */
148 pgoff_t pgoff
; /* Logical page offset based on vma */
149 void __user
*virtual_address
; /* Faulting virtual address */
151 struct page
*page
; /* ->fault handlers should return a
152 * page here, unless VM_FAULT_NOPAGE
153 * is set (which is also implied by
159 * These are the virtual MM functions - opening of an area, closing and
160 * unmapping it (needed to keep files on disk up-to-date etc), pointer
161 * to the functions called when a no-page or a wp-page exception occurs.
163 struct vm_operations_struct
{
164 void (*open
)(struct vm_area_struct
* area
);
165 void (*close
)(struct vm_area_struct
* area
);
166 int (*fault
)(struct vm_area_struct
*vma
, struct vm_fault
*vmf
);
167 struct page
*(*nopage
)(struct vm_area_struct
*area
,
168 unsigned long address
, int *type
);
169 unsigned long (*nopfn
)(struct vm_area_struct
*area
,
170 unsigned long address
);
172 /* notification that a previously read-only page is about to become
173 * writable, if an error is returned it will cause a SIGBUS */
174 int (*page_mkwrite
)(struct vm_area_struct
*vma
, struct page
*page
);
176 int (*set_policy
)(struct vm_area_struct
*vma
, struct mempolicy
*new);
177 struct mempolicy
*(*get_policy
)(struct vm_area_struct
*vma
,
179 int (*migrate
)(struct vm_area_struct
*vma
, const nodemask_t
*from
,
180 const nodemask_t
*to
, unsigned long flags
);
187 #define page_private(page) ((page)->private)
188 #define set_page_private(page, v) ((page)->private = (v))
191 * FIXME: take this include out, include page-flags.h in
192 * files which need it (119 of them)
194 #include <linux/page-flags.h>
196 #ifdef CONFIG_DEBUG_VM
197 #define VM_BUG_ON(cond) BUG_ON(cond)
199 #define VM_BUG_ON(condition) do { } while(0)
203 * Methods to modify the page usage count.
205 * What counts for a page usage:
206 * - cache mapping (page->mapping)
207 * - private data (page->private)
208 * - page mapped in a task's page tables, each mapping
209 * is counted separately
211 * Also, many kernel routines increase the page count before a critical
212 * routine so they can be sure the page doesn't go away from under them.
216 * Drop a ref, return true if the refcount fell to zero (the page has no users)
218 static inline int put_page_testzero(struct page
*page
)
220 VM_BUG_ON(atomic_read(&page
->_count
) == 0);
221 return atomic_dec_and_test(&page
->_count
);
225 * Try to grab a ref unless the page has a refcount of zero, return false if
228 static inline int get_page_unless_zero(struct page
*page
)
230 VM_BUG_ON(PageTail(page
));
231 return atomic_inc_not_zero(&page
->_count
);
234 /* Support for virtually mapped pages */
235 struct page
*vmalloc_to_page(const void *addr
);
236 unsigned long vmalloc_to_pfn(const void *addr
);
238 <<<<<<< HEAD
:include
/linux
/mm
.h
239 /* Determine if an address is within the vmalloc range */
242 * Determine if an address is within the vmalloc range
244 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
245 * is no special casing required.
247 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:include
/linux
/mm
.h
248 static inline int is_vmalloc_addr(const void *x
)
250 <<<<<<< HEAD
:include
/linux
/mm
.h
253 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:include
/linux
/mm
.h
254 unsigned long addr
= (unsigned long)x
;
256 return addr
>= VMALLOC_START
&& addr
< VMALLOC_END
;
257 <<<<<<< HEAD
:include
/linux
/mm
.h
262 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:include
/linux
/mm
.h
265 static inline struct page
*compound_head(struct page
*page
)
267 if (unlikely(PageTail(page
)))
268 return page
->first_page
;
272 static inline int page_count(struct page
*page
)
274 return atomic_read(&compound_head(page
)->_count
);
277 static inline void get_page(struct page
*page
)
279 page
= compound_head(page
);
280 VM_BUG_ON(atomic_read(&page
->_count
) == 0);
281 atomic_inc(&page
->_count
);
284 static inline struct page
*virt_to_head_page(const void *x
)
286 struct page
*page
= virt_to_page(x
);
287 return compound_head(page
);
291 * Setup the page count before being freed into the page allocator for
292 * the first time (boot or memory hotplug)
294 static inline void init_page_count(struct page
*page
)
296 atomic_set(&page
->_count
, 1);
299 void put_page(struct page
*page
);
300 void put_pages_list(struct list_head
*pages
);
302 void split_page(struct page
*page
, unsigned int order
);
305 * Compound pages have a destructor function. Provide a
306 * prototype for that function and accessor functions.
307 * These are _only_ valid on the head of a PG_compound page.
309 typedef void compound_page_dtor(struct page
*);
311 static inline void set_compound_page_dtor(struct page
*page
,
312 compound_page_dtor
*dtor
)
314 page
[1].lru
.next
= (void *)dtor
;
317 static inline compound_page_dtor
*get_compound_page_dtor(struct page
*page
)
319 return (compound_page_dtor
*)page
[1].lru
.next
;
322 static inline int compound_order(struct page
*page
)
326 return (unsigned long)page
[1].lru
.prev
;
329 static inline void set_compound_order(struct page
*page
, unsigned long order
)
331 page
[1].lru
.prev
= (void *)order
;
335 * Multiple processes may "see" the same page. E.g. for untouched
336 * mappings of /dev/null, all processes see the same page full of
337 * zeroes, and text pages of executables and shared libraries have
338 * only one copy in memory, at most, normally.
340 * For the non-reserved pages, page_count(page) denotes a reference count.
341 * page_count() == 0 means the page is free. page->lru is then used for
342 * freelist management in the buddy allocator.
343 * page_count() > 0 means the page has been allocated.
345 * Pages are allocated by the slab allocator in order to provide memory
346 * to kmalloc and kmem_cache_alloc. In this case, the management of the
347 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
348 * unless a particular usage is carefully commented. (the responsibility of
349 * freeing the kmalloc memory is the caller's, of course).
351 * A page may be used by anyone else who does a __get_free_page().
352 * In this case, page_count still tracks the references, and should only
353 * be used through the normal accessor functions. The top bits of page->flags
354 * and page->virtual store page management information, but all other fields
355 * are unused and could be used privately, carefully. The management of this
356 * page is the responsibility of the one who allocated it, and those who have
357 * subsequently been given references to it.
359 * The other pages (we may call them "pagecache pages") are completely
360 * managed by the Linux memory manager: I/O, buffers, swapping etc.
361 * The following discussion applies only to them.
363 * A pagecache page contains an opaque `private' member, which belongs to the
364 * page's address_space. Usually, this is the address of a circular list of
365 * the page's disk buffers. PG_private must be set to tell the VM to call
366 * into the filesystem to release these pages.
368 * A page may belong to an inode's memory mapping. In this case, page->mapping
369 * is the pointer to the inode, and page->index is the file offset of the page,
370 * in units of PAGE_CACHE_SIZE.
372 * If pagecache pages are not associated with an inode, they are said to be
373 * anonymous pages. These may become associated with the swapcache, and in that
374 * case PG_swapcache is set, and page->private is an offset into the swapcache.
376 * In either case (swapcache or inode backed), the pagecache itself holds one
377 * reference to the page. Setting PG_private should also increment the
378 * refcount. The each user mapping also has a reference to the page.
380 * The pagecache pages are stored in a per-mapping radix tree, which is
381 * rooted at mapping->page_tree, and indexed by offset.
382 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
383 * lists, we instead now tag pages as dirty/writeback in the radix tree.
385 * All pagecache pages may be subject to I/O:
386 * - inode pages may need to be read from disk,
387 * - inode pages which have been modified and are MAP_SHARED may need
388 * to be written back to the inode on disk,
389 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
390 * modified may need to be swapped out to swap space and (later) to be read
395 * The zone field is never updated after free_area_init_core()
396 * sets it, so none of the operations on it need to be atomic.
401 * page->flags layout:
403 * There are three possibilities for how page->flags get
404 * laid out. The first is for the normal case, without
405 * sparsemem. The second is for sparsemem when there is
406 * plenty of space for node and section. The last is when
407 * we have run out of space and have to fall back to an
408 * alternate (slower) way of determining the node.
410 * No sparsemem: | NODE | ZONE | ... | FLAGS |
411 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
412 * no space for node: | SECTION | ZONE | ... | FLAGS |
414 #ifdef CONFIG_SPARSEMEM
415 #define SECTIONS_WIDTH SECTIONS_SHIFT
417 #define SECTIONS_WIDTH 0
420 #define ZONES_WIDTH ZONES_SHIFT
422 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
423 #define NODES_WIDTH NODES_SHIFT
425 #define NODES_WIDTH 0
428 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
429 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
430 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
431 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
434 * We are going to use the flags for the page to node mapping if its in
435 * there. This includes the case where there is no node, so it is implicit.
437 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
438 #define NODE_NOT_IN_PAGE_FLAGS
441 #ifndef PFN_SECTION_SHIFT
442 #define PFN_SECTION_SHIFT 0
446 * Define the bit shifts to access each section. For non-existant
447 * sections we define the shift as 0; that plus a 0 mask ensures
448 * the compiler will optimise away reference to them.
450 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
451 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
452 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
454 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
455 #ifdef NODE_NOT_IN_PAGEFLAGS
456 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
457 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
458 SECTIONS_PGOFF : ZONES_PGOFF)
460 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
461 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
462 NODES_PGOFF : ZONES_PGOFF)
465 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
467 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
468 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
471 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
472 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
473 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
474 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
476 static inline enum zone_type
page_zonenum(struct page
*page
)
478 return (page
->flags
>> ZONES_PGSHIFT
) & ZONES_MASK
;
482 * The identification function is only used by the buddy allocator for
483 * determining if two pages could be buddies. We are not really
484 * identifying a zone since we could be using a the section number
485 * id if we have not node id available in page flags.
486 * We guarantee only that it will return the same value for two
487 * combinable pages in a zone.
489 static inline int page_zone_id(struct page
*page
)
491 return (page
->flags
>> ZONEID_PGSHIFT
) & ZONEID_MASK
;
494 static inline int zone_to_nid(struct zone
*zone
)
503 #ifdef NODE_NOT_IN_PAGE_FLAGS
504 extern int page_to_nid(struct page
*page
);
506 static inline int page_to_nid(struct page
*page
)
508 return (page
->flags
>> NODES_PGSHIFT
) & NODES_MASK
;
512 static inline struct zone
*page_zone(struct page
*page
)
514 return &NODE_DATA(page_to_nid(page
))->node_zones
[page_zonenum(page
)];
517 static inline unsigned long page_to_section(struct page
*page
)
519 return (page
->flags
>> SECTIONS_PGSHIFT
) & SECTIONS_MASK
;
522 static inline void set_page_zone(struct page
*page
, enum zone_type zone
)
524 page
->flags
&= ~(ZONES_MASK
<< ZONES_PGSHIFT
);
525 page
->flags
|= (zone
& ZONES_MASK
) << ZONES_PGSHIFT
;
528 static inline void set_page_node(struct page
*page
, unsigned long node
)
530 page
->flags
&= ~(NODES_MASK
<< NODES_PGSHIFT
);
531 page
->flags
|= (node
& NODES_MASK
) << NODES_PGSHIFT
;
534 static inline void set_page_section(struct page
*page
, unsigned long section
)
536 page
->flags
&= ~(SECTIONS_MASK
<< SECTIONS_PGSHIFT
);
537 page
->flags
|= (section
& SECTIONS_MASK
) << SECTIONS_PGSHIFT
;
540 static inline void set_page_links(struct page
*page
, enum zone_type zone
,
541 unsigned long node
, unsigned long pfn
)
543 set_page_zone(page
, zone
);
544 set_page_node(page
, node
);
545 set_page_section(page
, pfn_to_section_nr(pfn
));
549 * If a hint addr is less than mmap_min_addr change hint to be as
550 * low as possible but still greater than mmap_min_addr
552 static inline unsigned long round_hint_to_min(unsigned long hint
)
554 #ifdef CONFIG_SECURITY
556 if (((void *)hint
!= NULL
) &&
557 (hint
< mmap_min_addr
))
558 return PAGE_ALIGN(mmap_min_addr
);
564 * Some inline functions in vmstat.h depend on page_zone()
566 #include <linux/vmstat.h>
568 static __always_inline
void *lowmem_page_address(struct page
*page
)
570 return __va(page_to_pfn(page
) << PAGE_SHIFT
);
573 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
574 #define HASHED_PAGE_VIRTUAL
577 #if defined(WANT_PAGE_VIRTUAL)
578 #define page_address(page) ((page)->virtual)
579 #define set_page_address(page, address) \
581 (page)->virtual = (address); \
583 #define page_address_init() do { } while(0)
586 #if defined(HASHED_PAGE_VIRTUAL)
587 void *page_address(struct page
*page
);
588 void set_page_address(struct page
*page
, void *virtual);
589 void page_address_init(void);
592 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
593 #define page_address(page) lowmem_page_address(page)
594 #define set_page_address(page, address) do { } while(0)
595 #define page_address_init() do { } while(0)
599 * On an anonymous page mapped into a user virtual memory area,
600 * page->mapping points to its anon_vma, not to a struct address_space;
601 * with the PAGE_MAPPING_ANON bit set to distinguish it.
603 * Please note that, confusingly, "page_mapping" refers to the inode
604 * address_space which maps the page from disk; whereas "page_mapped"
605 * refers to user virtual address space into which the page is mapped.
607 #define PAGE_MAPPING_ANON 1
609 extern struct address_space swapper_space
;
610 static inline struct address_space
*page_mapping(struct page
*page
)
612 struct address_space
*mapping
= page
->mapping
;
614 VM_BUG_ON(PageSlab(page
));
615 if (unlikely(PageSwapCache(page
)))
616 mapping
= &swapper_space
;
617 else if (unlikely((unsigned long)mapping
& PAGE_MAPPING_ANON
))
622 static inline int PageAnon(struct page
*page
)
624 return ((unsigned long)page
->mapping
& PAGE_MAPPING_ANON
) != 0;
628 * Return the pagecache index of the passed page. Regular pagecache pages
629 * use ->index whereas swapcache pages use ->private
631 static inline pgoff_t
page_index(struct page
*page
)
633 if (unlikely(PageSwapCache(page
)))
634 return page_private(page
);
639 * The atomic page->_mapcount, like _count, starts from -1:
640 * so that transitions both from it and to it can be tracked,
641 * using atomic_inc_and_test and atomic_add_negative(-1).
643 static inline void reset_page_mapcount(struct page
*page
)
645 atomic_set(&(page
)->_mapcount
, -1);
648 static inline int page_mapcount(struct page
*page
)
650 return atomic_read(&(page
)->_mapcount
) + 1;
654 * Return true if this page is mapped into pagetables.
656 static inline int page_mapped(struct page
*page
)
658 return atomic_read(&(page
)->_mapcount
) >= 0;
662 * Error return values for the *_nopage functions
664 #define NOPAGE_SIGBUS (NULL)
665 #define NOPAGE_OOM ((struct page *) (-1))
668 * Error return values for the *_nopfn functions
670 #define NOPFN_SIGBUS ((unsigned long) -1)
671 #define NOPFN_OOM ((unsigned long) -2)
672 #define NOPFN_REFAULT ((unsigned long) -3)
675 * Different kinds of faults, as returned by handle_mm_fault().
676 * Used to decide whether a process gets delivered SIGBUS or
677 * just gets major/minor fault counters bumped up.
680 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
682 #define VM_FAULT_OOM 0x0001
683 #define VM_FAULT_SIGBUS 0x0002
684 #define VM_FAULT_MAJOR 0x0004
685 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
687 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
688 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
690 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS)
692 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
694 extern void show_free_areas(void);
697 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
);
699 static inline int shmem_lock(struct file
*file
, int lock
,
700 struct user_struct
*user
)
705 struct file
*shmem_file_setup(char *name
, loff_t size
, unsigned long flags
);
707 int shmem_zero_setup(struct vm_area_struct
*);
710 extern unsigned long shmem_get_unmapped_area(struct file
*file
,
714 unsigned long flags
);
717 extern int can_do_mlock(void);
718 extern int user_shm_lock(size_t, struct user_struct
*);
719 extern void user_shm_unlock(size_t, struct user_struct
*);
722 * Parameter block passed down to zap_pte_range in exceptional cases.
725 struct vm_area_struct
*nonlinear_vma
; /* Check page->index if set */
726 struct address_space
*check_mapping
; /* Check page->mapping if set */
727 pgoff_t first_index
; /* Lowest page->index to unmap */
728 pgoff_t last_index
; /* Highest page->index to unmap */
729 spinlock_t
*i_mmap_lock
; /* For unmap_mapping_range: */
730 unsigned long truncate_count
; /* Compare vm_truncate_count */
733 struct page
*vm_normal_page(struct vm_area_struct
*, unsigned long, pte_t
);
734 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
735 unsigned long size
, struct zap_details
*);
736 unsigned long unmap_vmas(struct mmu_gather
**tlb
,
737 struct vm_area_struct
*start_vma
, unsigned long start_addr
,
738 unsigned long end_addr
, unsigned long *nr_accounted
,
739 struct zap_details
*);
742 * mm_walk - callbacks for walk_page_range
743 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
744 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
745 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
746 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
747 * @pte_hole: if set, called for each hole at all levels
749 * (see walk_page_range for more details)
752 int (*pgd_entry
)(pgd_t
*, unsigned long, unsigned long, void *);
753 int (*pud_entry
)(pud_t
*, unsigned long, unsigned long, void *);
754 int (*pmd_entry
)(pmd_t
*, unsigned long, unsigned long, void *);
755 int (*pte_entry
)(pte_t
*, unsigned long, unsigned long, void *);
756 int (*pte_hole
)(unsigned long, unsigned long, void *);
759 int walk_page_range(const struct mm_struct
*, unsigned long addr
,
760 unsigned long end
, const struct mm_walk
*walk
,
762 void free_pgd_range(struct mmu_gather
**tlb
, unsigned long addr
,
763 unsigned long end
, unsigned long floor
, unsigned long ceiling
);
764 void free_pgtables(struct mmu_gather
**tlb
, struct vm_area_struct
*start_vma
,
765 unsigned long floor
, unsigned long ceiling
);
766 int copy_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
767 struct vm_area_struct
*vma
);
768 void unmap_mapping_range(struct address_space
*mapping
,
769 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
);
771 static inline void unmap_shared_mapping_range(struct address_space
*mapping
,
772 loff_t
const holebegin
, loff_t
const holelen
)
774 unmap_mapping_range(mapping
, holebegin
, holelen
, 0);
777 extern int vmtruncate(struct inode
* inode
, loff_t offset
);
778 extern int vmtruncate_range(struct inode
* inode
, loff_t offset
, loff_t end
);
781 extern int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
782 unsigned long address
, int write_access
);
784 static inline int handle_mm_fault(struct mm_struct
*mm
,
785 struct vm_area_struct
*vma
, unsigned long address
,
788 /* should never happen if there's no MMU */
790 return VM_FAULT_SIGBUS
;
794 extern int make_pages_present(unsigned long addr
, unsigned long end
);
795 extern int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
);
797 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
, unsigned long start
,
798 int len
, int write
, int force
, struct page
**pages
, struct vm_area_struct
**vmas
);
799 void print_bad_pte(struct vm_area_struct
*, pte_t
, unsigned long);
801 extern int try_to_release_page(struct page
* page
, gfp_t gfp_mask
);
802 extern void do_invalidatepage(struct page
*page
, unsigned long offset
);
804 int __set_page_dirty_nobuffers(struct page
*page
);
805 int __set_page_dirty_no_writeback(struct page
*page
);
806 int redirty_page_for_writepage(struct writeback_control
*wbc
,
808 int set_page_dirty(struct page
*page
);
809 int set_page_dirty_lock(struct page
*page
);
810 int clear_page_dirty_for_io(struct page
*page
);
812 extern unsigned long move_page_tables(struct vm_area_struct
*vma
,
813 unsigned long old_addr
, struct vm_area_struct
*new_vma
,
814 unsigned long new_addr
, unsigned long len
);
815 extern unsigned long do_mremap(unsigned long addr
,
816 unsigned long old_len
, unsigned long new_len
,
817 unsigned long flags
, unsigned long new_addr
);
818 extern int mprotect_fixup(struct vm_area_struct
*vma
,
819 struct vm_area_struct
**pprev
, unsigned long start
,
820 unsigned long end
, unsigned long newflags
);
823 * A callback you can register to apply pressure to ageable caches.
825 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
826 * look through the least-recently-used 'nr_to_scan' entries and
827 * attempt to free them up. It should return the number of objects
828 * which remain in the cache. If it returns -1, it means it cannot do
829 * any scanning at this time (eg. there is a risk of deadlock).
831 * The 'gfpmask' refers to the allocation we are currently trying to
834 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
835 * querying the cache size, so a fastpath for that case is appropriate.
838 int (*shrink
)(int nr_to_scan
, gfp_t gfp_mask
);
839 int seeks
; /* seeks to recreate an obj */
841 /* These are for internal use */
842 struct list_head list
;
843 long nr
; /* objs pending delete */
845 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
846 extern void register_shrinker(struct shrinker
*);
847 extern void unregister_shrinker(struct shrinker
*);
849 int vma_wants_writenotify(struct vm_area_struct
*vma
);
851 extern pte_t
*get_locked_pte(struct mm_struct
*mm
, unsigned long addr
, spinlock_t
**ptl
);
853 #ifdef __PAGETABLE_PUD_FOLDED
854 static inline int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
,
855 unsigned long address
)
860 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
);
863 #ifdef __PAGETABLE_PMD_FOLDED
864 static inline int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
,
865 unsigned long address
)
870 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
);
873 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
);
874 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
);
877 * The following ifdef needed to get the 4level-fixup.h header to work.
878 * Remove it when 4level-fixup.h has been removed.
880 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
881 static inline pud_t
*pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
883 return (unlikely(pgd_none(*pgd
)) && __pud_alloc(mm
, pgd
, address
))?
884 NULL
: pud_offset(pgd
, address
);
887 static inline pmd_t
*pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
889 return (unlikely(pud_none(*pud
)) && __pmd_alloc(mm
, pud
, address
))?
890 NULL
: pmd_offset(pud
, address
);
892 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
894 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
896 * We tuck a spinlock to guard each pagetable page into its struct page,
897 * at page->private, with BUILD_BUG_ON to make sure that this will not
898 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
899 * When freeing, reset page->mapping so free_pages_check won't complain.
901 #define __pte_lockptr(page) &((page)->ptl)
902 #define pte_lock_init(_page) do { \
903 spin_lock_init(__pte_lockptr(_page)); \
905 #define pte_lock_deinit(page) ((page)->mapping = NULL)
906 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
909 * We use mm->page_table_lock to guard all pagetable pages of the mm.
911 #define pte_lock_init(page) do {} while (0)
912 #define pte_lock_deinit(page) do {} while (0)
913 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
914 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
916 static inline void pgtable_page_ctor(struct page
*page
)
919 inc_zone_page_state(page
, NR_PAGETABLE
);
922 static inline void pgtable_page_dtor(struct page
*page
)
924 pte_lock_deinit(page
);
925 dec_zone_page_state(page
, NR_PAGETABLE
);
928 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
930 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
931 pte_t *__pte = pte_offset_map(pmd, address); \
937 #define pte_unmap_unlock(pte, ptl) do { \
942 #define pte_alloc_map(mm, pmd, address) \
943 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
944 NULL: pte_offset_map(pmd, address))
946 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
947 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
948 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
950 #define pte_alloc_kernel(pmd, address) \
951 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
952 NULL: pte_offset_kernel(pmd, address))
954 extern void free_area_init(unsigned long * zones_size
);
955 extern void free_area_init_node(int nid
, pg_data_t
*pgdat
,
956 unsigned long * zones_size
, unsigned long zone_start_pfn
,
957 unsigned long *zholes_size
);
958 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
960 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
961 * zones, allocate the backing mem_map and account for memory holes in a more
962 * architecture independent manner. This is a substitute for creating the
963 * zone_sizes[] and zholes_size[] arrays and passing them to
964 * free_area_init_node()
966 * An architecture is expected to register range of page frames backed by
967 * physical memory with add_active_range() before calling
968 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
969 * usage, an architecture is expected to do something like
971 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
973 * for_each_valid_physical_page_range()
974 * add_active_range(node_id, start_pfn, end_pfn)
975 * free_area_init_nodes(max_zone_pfns);
977 * If the architecture guarantees that there are no holes in the ranges
978 * registered with add_active_range(), free_bootmem_active_regions()
979 * will call free_bootmem_node() for each registered physical page range.
980 * Similarly sparse_memory_present_with_active_regions() calls
981 * memory_present() for each range when SPARSEMEM is enabled.
983 * See mm/page_alloc.c for more information on each function exposed by
984 * CONFIG_ARCH_POPULATES_NODE_MAP
986 extern void free_area_init_nodes(unsigned long *max_zone_pfn
);
987 extern void add_active_range(unsigned int nid
, unsigned long start_pfn
,
988 unsigned long end_pfn
);
989 extern void shrink_active_range(unsigned int nid
, unsigned long old_end_pfn
,
990 unsigned long new_end_pfn
);
991 extern void push_node_boundaries(unsigned int nid
, unsigned long start_pfn
,
992 unsigned long end_pfn
);
993 extern void remove_all_active_ranges(void);
994 extern unsigned long absent_pages_in_range(unsigned long start_pfn
,
995 unsigned long end_pfn
);
996 extern void get_pfn_range_for_nid(unsigned int nid
,
997 unsigned long *start_pfn
, unsigned long *end_pfn
);
998 extern unsigned long find_min_pfn_with_active_regions(void);
999 extern unsigned long find_max_pfn_with_active_regions(void);
1000 extern void free_bootmem_with_active_regions(int nid
,
1001 unsigned long max_low_pfn
);
1002 extern void sparse_memory_present_with_active_regions(int nid
);
1003 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1004 extern int early_pfn_to_nid(unsigned long pfn
);
1005 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1006 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1007 extern void set_dma_reserve(unsigned long new_dma_reserve
);
1008 extern void memmap_init_zone(unsigned long, int, unsigned long,
1009 unsigned long, enum memmap_context
);
1010 extern void setup_per_zone_pages_min(void);
1011 extern void mem_init(void);
1012 extern void show_mem(void);
1013 extern void si_meminfo(struct sysinfo
* val
);
1014 extern void si_meminfo_node(struct sysinfo
*val
, int nid
);
1017 extern void setup_per_cpu_pageset(void);
1019 static inline void setup_per_cpu_pageset(void) {}
1023 void vma_prio_tree_add(struct vm_area_struct
*, struct vm_area_struct
*old
);
1024 void vma_prio_tree_insert(struct vm_area_struct
*, struct prio_tree_root
*);
1025 void vma_prio_tree_remove(struct vm_area_struct
*, struct prio_tree_root
*);
1026 struct vm_area_struct
*vma_prio_tree_next(struct vm_area_struct
*vma
,
1027 struct prio_tree_iter
*iter
);
1029 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1030 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1031 (vma = vma_prio_tree_next(vma, iter)); )
1033 static inline void vma_nonlinear_insert(struct vm_area_struct
*vma
,
1034 struct list_head
*list
)
1036 vma
->shared
.vm_set
.parent
= NULL
;
1037 list_add_tail(&vma
->shared
.vm_set
.list
, list
);
1041 extern int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
);
1042 extern void vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
1043 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
);
1044 extern struct vm_area_struct
*vma_merge(struct mm_struct
*,
1045 struct vm_area_struct
*prev
, unsigned long addr
, unsigned long end
,
1046 unsigned long vm_flags
, struct anon_vma
*, struct file
*, pgoff_t
,
1047 struct mempolicy
*);
1048 extern struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*);
1049 extern int split_vma(struct mm_struct
*,
1050 struct vm_area_struct
*, unsigned long addr
, int new_below
);
1051 extern int insert_vm_struct(struct mm_struct
*, struct vm_area_struct
*);
1052 extern void __vma_link_rb(struct mm_struct
*, struct vm_area_struct
*,
1053 struct rb_node
**, struct rb_node
*);
1054 extern void unlink_file_vma(struct vm_area_struct
*);
1055 extern struct vm_area_struct
*copy_vma(struct vm_area_struct
**,
1056 unsigned long addr
, unsigned long len
, pgoff_t pgoff
);
1057 extern void exit_mmap(struct mm_struct
*);
1058 extern int may_expand_vm(struct mm_struct
*mm
, unsigned long npages
);
1059 extern int install_special_mapping(struct mm_struct
*mm
,
1060 unsigned long addr
, unsigned long len
,
1061 unsigned long flags
, struct page
**pages
);
1063 extern unsigned long get_unmapped_area(struct file
*, unsigned long, unsigned long, unsigned long, unsigned long);
1065 extern unsigned long do_mmap_pgoff(struct file
*file
, unsigned long addr
,
1066 unsigned long len
, unsigned long prot
,
1067 unsigned long flag
, unsigned long pgoff
);
1068 extern unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1069 unsigned long len
, unsigned long flags
,
1070 unsigned int vm_flags
, unsigned long pgoff
,
1073 static inline unsigned long do_mmap(struct file
*file
, unsigned long addr
,
1074 unsigned long len
, unsigned long prot
,
1075 unsigned long flag
, unsigned long offset
)
1077 unsigned long ret
= -EINVAL
;
1078 if ((offset
+ PAGE_ALIGN(len
)) < offset
)
1080 if (!(offset
& ~PAGE_MASK
))
1081 ret
= do_mmap_pgoff(file
, addr
, len
, prot
, flag
, offset
>> PAGE_SHIFT
);
1086 extern int do_munmap(struct mm_struct
*, unsigned long, size_t);
1088 extern unsigned long do_brk(unsigned long, unsigned long);
1091 extern unsigned long page_unuse(struct page
*);
1092 extern void truncate_inode_pages(struct address_space
*, loff_t
);
1093 extern void truncate_inode_pages_range(struct address_space
*,
1094 loff_t lstart
, loff_t lend
);
1096 /* generic vm_area_ops exported for stackable file systems */
1097 extern int filemap_fault(struct vm_area_struct
*, struct vm_fault
*);
1099 /* mm/page-writeback.c */
1100 int write_one_page(struct page
*page
, int wait
);
1103 #define VM_MAX_READAHEAD 128 /* kbytes */
1104 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1106 int do_page_cache_readahead(struct address_space
*mapping
, struct file
*filp
,
1107 pgoff_t offset
, unsigned long nr_to_read
);
1108 int force_page_cache_readahead(struct address_space
*mapping
, struct file
*filp
,
1109 pgoff_t offset
, unsigned long nr_to_read
);
1111 void page_cache_sync_readahead(struct address_space
*mapping
,
1112 struct file_ra_state
*ra
,
1115 unsigned long size
);
1117 void page_cache_async_readahead(struct address_space
*mapping
,
1118 struct file_ra_state
*ra
,
1122 unsigned long size
);
1124 unsigned long max_sane_readahead(unsigned long nr
);
1126 /* Do stack extension */
1127 extern int expand_stack(struct vm_area_struct
*vma
, unsigned long address
);
1129 extern int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
);
1131 extern int expand_stack_downwards(struct vm_area_struct
*vma
,
1132 unsigned long address
);
1134 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1135 extern struct vm_area_struct
* find_vma(struct mm_struct
* mm
, unsigned long addr
);
1136 extern struct vm_area_struct
* find_vma_prev(struct mm_struct
* mm
, unsigned long addr
,
1137 struct vm_area_struct
**pprev
);
1139 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1140 NULL if none. Assume start_addr < end_addr. */
1141 static inline struct vm_area_struct
* find_vma_intersection(struct mm_struct
* mm
, unsigned long start_addr
, unsigned long end_addr
)
1143 struct vm_area_struct
* vma
= find_vma(mm
,start_addr
);
1145 if (vma
&& end_addr
<= vma
->vm_start
)
1150 static inline unsigned long vma_pages(struct vm_area_struct
*vma
)
1152 return (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
1155 pgprot_t
vm_get_page_prot(unsigned long vm_flags
);
1156 struct vm_area_struct
*find_extend_vma(struct mm_struct
*, unsigned long addr
);
1157 int remap_pfn_range(struct vm_area_struct
*, unsigned long addr
,
1158 unsigned long pfn
, unsigned long size
, pgprot_t
);
1159 int vm_insert_page(struct vm_area_struct
*, unsigned long addr
, struct page
*);
1160 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1163 struct page
*follow_page(struct vm_area_struct
*, unsigned long address
,
1164 unsigned int foll_flags
);
1165 #define FOLL_WRITE 0x01 /* check pte is writable */
1166 #define FOLL_TOUCH 0x02 /* mark page accessed */
1167 #define FOLL_GET 0x04 /* do get_page on page */
1168 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1170 typedef int (*pte_fn_t
)(pte_t
*pte
, pgtable_t token
, unsigned long addr
,
1172 extern int apply_to_page_range(struct mm_struct
*mm
, unsigned long address
,
1173 unsigned long size
, pte_fn_t fn
, void *data
);
1175 #ifdef CONFIG_PROC_FS
1176 void vm_stat_account(struct mm_struct
*, unsigned long, struct file
*, long);
1178 static inline void vm_stat_account(struct mm_struct
*mm
,
1179 unsigned long flags
, struct file
*file
, long pages
)
1182 #endif /* CONFIG_PROC_FS */
1184 #ifdef CONFIG_DEBUG_PAGEALLOC
1185 extern int debug_pagealloc_enabled
;
1187 extern void kernel_map_pages(struct page
*page
, int numpages
, int enable
);
1189 static inline void enable_debug_pagealloc(void)
1191 debug_pagealloc_enabled
= 1;
1193 <<<<<<< HEAD
:include
/linux
/mm
.h
1195 #ifdef CONFIG_HIBERNATION
1196 extern bool kernel_page_present(struct page
*page
);
1197 #endif /* CONFIG_HIBERNATION */
1198 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:include
/linux
/mm
.h
1201 kernel_map_pages(struct page
*page
, int numpages
, int enable
) {}
1202 static inline void enable_debug_pagealloc(void)
1205 <<<<<<< HEAD
:include
/linux
/mm
.h
1207 #ifdef CONFIG_HIBERNATION
1208 static inline bool kernel_page_present(struct page
*page
) { return true; }
1209 #endif /* CONFIG_HIBERNATION */
1210 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:include
/linux
/mm
.h
1213 extern struct vm_area_struct
*get_gate_vma(struct task_struct
*tsk
);
1214 #ifdef __HAVE_ARCH_GATE_AREA
1215 int in_gate_area_no_task(unsigned long addr
);
1216 int in_gate_area(struct task_struct
*task
, unsigned long addr
);
1218 int in_gate_area_no_task(unsigned long addr
);
1219 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1220 #endif /* __HAVE_ARCH_GATE_AREA */
1222 int drop_caches_sysctl_handler(struct ctl_table
*, int, struct file
*,
1223 void __user
*, size_t *, loff_t
*);
1224 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
1225 unsigned long lru_pages
);
1226 void drop_pagecache(void);
1227 void drop_slab(void);
1230 #define randomize_va_space 0
1232 extern int randomize_va_space
;
1235 const char * arch_vma_name(struct vm_area_struct
*vma
);
1236 void print_vma_addr(char *prefix
, unsigned long rip
);
1238 struct page
*sparse_mem_map_populate(unsigned long pnum
, int nid
);
1239 pgd_t
*vmemmap_pgd_populate(unsigned long addr
, int node
);
1240 pud_t
*vmemmap_pud_populate(pgd_t
*pgd
, unsigned long addr
, int node
);
1241 pmd_t
*vmemmap_pmd_populate(pud_t
*pud
, unsigned long addr
, int node
);
1242 pte_t
*vmemmap_pte_populate(pmd_t
*pmd
, unsigned long addr
, int node
);
1243 void *vmemmap_alloc_block(unsigned long size
, int node
);
1244 void vmemmap_verify(pte_t
*, int, unsigned long, unsigned long);
1245 int vmemmap_populate_basepages(struct page
*start_page
,
1246 unsigned long pages
, int node
);
1247 int vmemmap_populate(struct page
*start_page
, unsigned long pages
, int node
);
1249 #endif /* __KERNEL__ */
1250 #endif /* _LINUX_MM_H */