Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[wrt350n-kernel.git] / mm / rmap.c
blob4fbd774cb69a2abd51b6ef8d73214eaf572b84f4
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
51 #include <linux/memcontrol.h>
53 #include <asm/tlbflush.h>
55 struct kmem_cache *anon_vma_cachep;
57 /* This must be called under the mmap_sem. */
58 int anon_vma_prepare(struct vm_area_struct *vma)
60 struct anon_vma *anon_vma = vma->anon_vma;
62 might_sleep();
63 if (unlikely(!anon_vma)) {
64 struct mm_struct *mm = vma->vm_mm;
65 struct anon_vma *allocated, *locked;
67 anon_vma = find_mergeable_anon_vma(vma);
68 if (anon_vma) {
69 allocated = NULL;
70 locked = anon_vma;
71 spin_lock(&locked->lock);
72 } else {
73 anon_vma = anon_vma_alloc();
74 if (unlikely(!anon_vma))
75 return -ENOMEM;
76 allocated = anon_vma;
77 locked = NULL;
80 /* page_table_lock to protect against threads */
81 spin_lock(&mm->page_table_lock);
82 if (likely(!vma->anon_vma)) {
83 vma->anon_vma = anon_vma;
84 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
85 allocated = NULL;
87 spin_unlock(&mm->page_table_lock);
89 if (locked)
90 spin_unlock(&locked->lock);
91 if (unlikely(allocated))
92 anon_vma_free(allocated);
94 return 0;
97 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
99 BUG_ON(vma->anon_vma != next->anon_vma);
100 list_del(&next->anon_vma_node);
103 void __anon_vma_link(struct vm_area_struct *vma)
105 struct anon_vma *anon_vma = vma->anon_vma;
107 if (anon_vma)
108 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
111 void anon_vma_link(struct vm_area_struct *vma)
113 struct anon_vma *anon_vma = vma->anon_vma;
115 if (anon_vma) {
116 spin_lock(&anon_vma->lock);
117 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
118 spin_unlock(&anon_vma->lock);
122 void anon_vma_unlink(struct vm_area_struct *vma)
124 struct anon_vma *anon_vma = vma->anon_vma;
125 int empty;
127 if (!anon_vma)
128 return;
130 spin_lock(&anon_vma->lock);
131 list_del(&vma->anon_vma_node);
133 /* We must garbage collect the anon_vma if it's empty */
134 empty = list_empty(&anon_vma->head);
135 spin_unlock(&anon_vma->lock);
137 if (empty)
138 anon_vma_free(anon_vma);
141 static void anon_vma_ctor(struct kmem_cache *cachep, void *data)
143 struct anon_vma *anon_vma = data;
145 spin_lock_init(&anon_vma->lock);
146 INIT_LIST_HEAD(&anon_vma->head);
149 void __init anon_vma_init(void)
151 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
152 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
156 * Getting a lock on a stable anon_vma from a page off the LRU is
157 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
159 static struct anon_vma *page_lock_anon_vma(struct page *page)
161 struct anon_vma *anon_vma;
162 unsigned long anon_mapping;
164 rcu_read_lock();
165 anon_mapping = (unsigned long) page->mapping;
166 if (!(anon_mapping & PAGE_MAPPING_ANON))
167 goto out;
168 if (!page_mapped(page))
169 goto out;
171 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
172 spin_lock(&anon_vma->lock);
173 return anon_vma;
174 out:
175 rcu_read_unlock();
176 return NULL;
179 static void page_unlock_anon_vma(struct anon_vma *anon_vma)
181 spin_unlock(&anon_vma->lock);
182 rcu_read_unlock();
186 * At what user virtual address is page expected in @vma?
187 * Returns virtual address or -EFAULT if page's index/offset is not
188 * within the range mapped the @vma.
190 static inline unsigned long
191 vma_address(struct page *page, struct vm_area_struct *vma)
193 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
194 unsigned long address;
196 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
197 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
198 /* page should be within @vma mapping range */
199 return -EFAULT;
201 return address;
205 * At what user virtual address is page expected in vma? checking that the
206 * page matches the vma: currently only used on anon pages, by unuse_vma;
208 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
210 if (PageAnon(page)) {
211 if ((void *)vma->anon_vma !=
212 (void *)page->mapping - PAGE_MAPPING_ANON)
213 return -EFAULT;
214 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
215 if (!vma->vm_file ||
216 vma->vm_file->f_mapping != page->mapping)
217 return -EFAULT;
218 } else
219 return -EFAULT;
220 return vma_address(page, vma);
224 * Check that @page is mapped at @address into @mm.
226 * On success returns with pte mapped and locked.
228 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
229 unsigned long address, spinlock_t **ptlp)
231 pgd_t *pgd;
232 pud_t *pud;
233 pmd_t *pmd;
234 pte_t *pte;
235 spinlock_t *ptl;
237 pgd = pgd_offset(mm, address);
238 if (!pgd_present(*pgd))
239 return NULL;
241 pud = pud_offset(pgd, address);
242 if (!pud_present(*pud))
243 return NULL;
245 pmd = pmd_offset(pud, address);
246 if (!pmd_present(*pmd))
247 return NULL;
249 pte = pte_offset_map(pmd, address);
250 /* Make a quick check before getting the lock */
251 if (!pte_present(*pte)) {
252 pte_unmap(pte);
253 return NULL;
256 ptl = pte_lockptr(mm, pmd);
257 spin_lock(ptl);
258 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
259 *ptlp = ptl;
260 return pte;
262 pte_unmap_unlock(pte, ptl);
263 return NULL;
267 * Subfunctions of page_referenced: page_referenced_one called
268 * repeatedly from either page_referenced_anon or page_referenced_file.
270 static int page_referenced_one(struct page *page,
271 struct vm_area_struct *vma, unsigned int *mapcount)
273 struct mm_struct *mm = vma->vm_mm;
274 unsigned long address;
275 pte_t *pte;
276 spinlock_t *ptl;
277 int referenced = 0;
279 address = vma_address(page, vma);
280 if (address == -EFAULT)
281 goto out;
283 pte = page_check_address(page, mm, address, &ptl);
284 if (!pte)
285 goto out;
287 if (vma->vm_flags & VM_LOCKED) {
288 referenced++;
289 *mapcount = 1; /* break early from loop */
290 } else if (ptep_clear_flush_young(vma, address, pte))
291 referenced++;
293 /* Pretend the page is referenced if the task has the
294 swap token and is in the middle of a page fault. */
295 if (mm != current->mm && has_swap_token(mm) &&
296 rwsem_is_locked(&mm->mmap_sem))
297 referenced++;
299 (*mapcount)--;
300 pte_unmap_unlock(pte, ptl);
301 out:
302 return referenced;
305 static int page_referenced_anon(struct page *page,
306 struct mem_cgroup *mem_cont)
308 unsigned int mapcount;
309 struct anon_vma *anon_vma;
310 struct vm_area_struct *vma;
311 int referenced = 0;
313 anon_vma = page_lock_anon_vma(page);
314 if (!anon_vma)
315 return referenced;
317 mapcount = page_mapcount(page);
318 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
320 * If we are reclaiming on behalf of a cgroup, skip
321 * counting on behalf of references from different
322 * cgroups
324 <<<<<<< HEAD:mm/rmap.c
325 if (mem_cont && !vm_match_cgroup(vma->vm_mm, mem_cont))
326 =======
327 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
328 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/rmap.c
329 continue;
330 referenced += page_referenced_one(page, vma, &mapcount);
331 if (!mapcount)
332 break;
335 page_unlock_anon_vma(anon_vma);
336 return referenced;
340 * page_referenced_file - referenced check for object-based rmap
341 * @page: the page we're checking references on.
343 * For an object-based mapped page, find all the places it is mapped and
344 * check/clear the referenced flag. This is done by following the page->mapping
345 * pointer, then walking the chain of vmas it holds. It returns the number
346 * of references it found.
348 * This function is only called from page_referenced for object-based pages.
350 static int page_referenced_file(struct page *page,
351 struct mem_cgroup *mem_cont)
353 unsigned int mapcount;
354 struct address_space *mapping = page->mapping;
355 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
356 struct vm_area_struct *vma;
357 struct prio_tree_iter iter;
358 int referenced = 0;
361 * The caller's checks on page->mapping and !PageAnon have made
362 * sure that this is a file page: the check for page->mapping
363 * excludes the case just before it gets set on an anon page.
365 BUG_ON(PageAnon(page));
368 * The page lock not only makes sure that page->mapping cannot
369 * suddenly be NULLified by truncation, it makes sure that the
370 * structure at mapping cannot be freed and reused yet,
371 * so we can safely take mapping->i_mmap_lock.
373 BUG_ON(!PageLocked(page));
375 spin_lock(&mapping->i_mmap_lock);
378 * i_mmap_lock does not stabilize mapcount at all, but mapcount
379 * is more likely to be accurate if we note it after spinning.
381 mapcount = page_mapcount(page);
383 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
385 * If we are reclaiming on behalf of a cgroup, skip
386 * counting on behalf of references from different
387 * cgroups
389 <<<<<<< HEAD:mm/rmap.c
390 if (mem_cont && !vm_match_cgroup(vma->vm_mm, mem_cont))
391 =======
392 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
393 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/rmap.c
394 continue;
395 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
396 == (VM_LOCKED|VM_MAYSHARE)) {
397 referenced++;
398 break;
400 referenced += page_referenced_one(page, vma, &mapcount);
401 if (!mapcount)
402 break;
405 spin_unlock(&mapping->i_mmap_lock);
406 return referenced;
410 * page_referenced - test if the page was referenced
411 * @page: the page to test
412 * @is_locked: caller holds lock on the page
414 * Quick test_and_clear_referenced for all mappings to a page,
415 * returns the number of ptes which referenced the page.
417 int page_referenced(struct page *page, int is_locked,
418 struct mem_cgroup *mem_cont)
420 int referenced = 0;
422 if (page_test_and_clear_young(page))
423 referenced++;
425 if (TestClearPageReferenced(page))
426 referenced++;
428 if (page_mapped(page) && page->mapping) {
429 if (PageAnon(page))
430 referenced += page_referenced_anon(page, mem_cont);
431 else if (is_locked)
432 referenced += page_referenced_file(page, mem_cont);
433 else if (TestSetPageLocked(page))
434 referenced++;
435 else {
436 if (page->mapping)
437 referenced +=
438 page_referenced_file(page, mem_cont);
439 unlock_page(page);
442 return referenced;
445 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
447 struct mm_struct *mm = vma->vm_mm;
448 unsigned long address;
449 pte_t *pte;
450 spinlock_t *ptl;
451 int ret = 0;
453 address = vma_address(page, vma);
454 if (address == -EFAULT)
455 goto out;
457 pte = page_check_address(page, mm, address, &ptl);
458 if (!pte)
459 goto out;
461 if (pte_dirty(*pte) || pte_write(*pte)) {
462 pte_t entry;
464 flush_cache_page(vma, address, pte_pfn(*pte));
465 entry = ptep_clear_flush(vma, address, pte);
466 entry = pte_wrprotect(entry);
467 entry = pte_mkclean(entry);
468 set_pte_at(mm, address, pte, entry);
469 ret = 1;
472 pte_unmap_unlock(pte, ptl);
473 out:
474 return ret;
477 static int page_mkclean_file(struct address_space *mapping, struct page *page)
479 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
480 struct vm_area_struct *vma;
481 struct prio_tree_iter iter;
482 int ret = 0;
484 BUG_ON(PageAnon(page));
486 spin_lock(&mapping->i_mmap_lock);
487 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
488 if (vma->vm_flags & VM_SHARED)
489 ret += page_mkclean_one(page, vma);
491 spin_unlock(&mapping->i_mmap_lock);
492 return ret;
495 int page_mkclean(struct page *page)
497 int ret = 0;
499 BUG_ON(!PageLocked(page));
501 if (page_mapped(page)) {
502 struct address_space *mapping = page_mapping(page);
503 if (mapping) {
504 ret = page_mkclean_file(mapping, page);
505 if (page_test_dirty(page)) {
506 page_clear_dirty(page);
507 ret = 1;
512 return ret;
514 EXPORT_SYMBOL_GPL(page_mkclean);
517 * page_set_anon_rmap - setup new anonymous rmap
518 * @page: the page to add the mapping to
519 * @vma: the vm area in which the mapping is added
520 * @address: the user virtual address mapped
522 static void __page_set_anon_rmap(struct page *page,
523 struct vm_area_struct *vma, unsigned long address)
525 struct anon_vma *anon_vma = vma->anon_vma;
527 BUG_ON(!anon_vma);
528 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
529 page->mapping = (struct address_space *) anon_vma;
531 page->index = linear_page_index(vma, address);
534 * nr_mapped state can be updated without turning off
535 * interrupts because it is not modified via interrupt.
537 __inc_zone_page_state(page, NR_ANON_PAGES);
541 * page_set_anon_rmap - sanity check anonymous rmap addition
542 * @page: the page to add the mapping to
543 * @vma: the vm area in which the mapping is added
544 * @address: the user virtual address mapped
546 static void __page_check_anon_rmap(struct page *page,
547 struct vm_area_struct *vma, unsigned long address)
549 #ifdef CONFIG_DEBUG_VM
551 * The page's anon-rmap details (mapping and index) are guaranteed to
552 * be set up correctly at this point.
554 * We have exclusion against page_add_anon_rmap because the caller
555 * always holds the page locked, except if called from page_dup_rmap,
556 * in which case the page is already known to be setup.
558 * We have exclusion against page_add_new_anon_rmap because those pages
559 * are initially only visible via the pagetables, and the pte is locked
560 * over the call to page_add_new_anon_rmap.
562 struct anon_vma *anon_vma = vma->anon_vma;
563 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
564 BUG_ON(page->mapping != (struct address_space *)anon_vma);
565 BUG_ON(page->index != linear_page_index(vma, address));
566 #endif
570 * page_add_anon_rmap - add pte mapping to an anonymous page
571 * @page: the page to add the mapping to
572 * @vma: the vm area in which the mapping is added
573 * @address: the user virtual address mapped
575 * The caller needs to hold the pte lock and the page must be locked.
577 void page_add_anon_rmap(struct page *page,
578 struct vm_area_struct *vma, unsigned long address)
580 VM_BUG_ON(!PageLocked(page));
581 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
582 if (atomic_inc_and_test(&page->_mapcount))
583 __page_set_anon_rmap(page, vma, address);
584 else {
585 __page_check_anon_rmap(page, vma, address);
587 * We unconditionally charged during prepare, we uncharge here
588 * This takes care of balancing the reference counts
590 mem_cgroup_uncharge_page(page);
595 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
596 * @page: the page to add the mapping to
597 * @vma: the vm area in which the mapping is added
598 * @address: the user virtual address mapped
600 * Same as page_add_anon_rmap but must only be called on *new* pages.
601 * This means the inc-and-test can be bypassed.
602 * Page does not have to be locked.
604 void page_add_new_anon_rmap(struct page *page,
605 struct vm_area_struct *vma, unsigned long address)
607 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
608 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
609 __page_set_anon_rmap(page, vma, address);
613 * page_add_file_rmap - add pte mapping to a file page
614 * @page: the page to add the mapping to
616 * The caller needs to hold the pte lock.
618 void page_add_file_rmap(struct page *page)
620 if (atomic_inc_and_test(&page->_mapcount))
621 __inc_zone_page_state(page, NR_FILE_MAPPED);
622 else
624 * We unconditionally charged during prepare, we uncharge here
625 * This takes care of balancing the reference counts
627 mem_cgroup_uncharge_page(page);
630 #ifdef CONFIG_DEBUG_VM
632 * page_dup_rmap - duplicate pte mapping to a page
633 * @page: the page to add the mapping to
635 * For copy_page_range only: minimal extract from page_add_file_rmap /
636 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
637 * quicker.
639 * The caller needs to hold the pte lock.
641 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
643 BUG_ON(page_mapcount(page) == 0);
644 if (PageAnon(page))
645 __page_check_anon_rmap(page, vma, address);
646 atomic_inc(&page->_mapcount);
648 #endif
651 * page_remove_rmap - take down pte mapping from a page
652 * @page: page to remove mapping from
654 * The caller needs to hold the pte lock.
656 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
658 if (atomic_add_negative(-1, &page->_mapcount)) {
659 if (unlikely(page_mapcount(page) < 0)) {
660 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
661 printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
662 printk (KERN_EMERG " page->flags = %lx\n", page->flags);
663 printk (KERN_EMERG " page->count = %x\n", page_count(page));
664 printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
665 print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
666 if (vma->vm_ops) {
667 print_symbol (KERN_EMERG " vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
668 print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
670 if (vma->vm_file && vma->vm_file->f_op)
671 print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
672 BUG();
676 * It would be tidy to reset the PageAnon mapping here,
677 * but that might overwrite a racing page_add_anon_rmap
678 * which increments mapcount after us but sets mapping
679 * before us: so leave the reset to free_hot_cold_page,
680 * and remember that it's only reliable while mapped.
681 * Leaving it set also helps swapoff to reinstate ptes
682 * faster for those pages still in swapcache.
684 if (page_test_dirty(page)) {
685 page_clear_dirty(page);
686 set_page_dirty(page);
688 mem_cgroup_uncharge_page(page);
690 __dec_zone_page_state(page,
691 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
696 * Subfunctions of try_to_unmap: try_to_unmap_one called
697 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
699 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
700 int migration)
702 struct mm_struct *mm = vma->vm_mm;
703 unsigned long address;
704 pte_t *pte;
705 pte_t pteval;
706 spinlock_t *ptl;
707 int ret = SWAP_AGAIN;
709 address = vma_address(page, vma);
710 if (address == -EFAULT)
711 goto out;
713 pte = page_check_address(page, mm, address, &ptl);
714 if (!pte)
715 goto out;
718 * If the page is mlock()d, we cannot swap it out.
719 * If it's recently referenced (perhaps page_referenced
720 * skipped over this mm) then we should reactivate it.
722 if (!migration && ((vma->vm_flags & VM_LOCKED) ||
723 (ptep_clear_flush_young(vma, address, pte)))) {
724 ret = SWAP_FAIL;
725 goto out_unmap;
728 /* Nuke the page table entry. */
729 flush_cache_page(vma, address, page_to_pfn(page));
730 pteval = ptep_clear_flush(vma, address, pte);
732 /* Move the dirty bit to the physical page now the pte is gone. */
733 if (pte_dirty(pteval))
734 set_page_dirty(page);
736 /* Update high watermark before we lower rss */
737 update_hiwater_rss(mm);
739 if (PageAnon(page)) {
740 swp_entry_t entry = { .val = page_private(page) };
742 if (PageSwapCache(page)) {
744 * Store the swap location in the pte.
745 * See handle_pte_fault() ...
747 swap_duplicate(entry);
748 if (list_empty(&mm->mmlist)) {
749 spin_lock(&mmlist_lock);
750 if (list_empty(&mm->mmlist))
751 list_add(&mm->mmlist, &init_mm.mmlist);
752 spin_unlock(&mmlist_lock);
754 dec_mm_counter(mm, anon_rss);
755 #ifdef CONFIG_MIGRATION
756 } else {
758 * Store the pfn of the page in a special migration
759 * pte. do_swap_page() will wait until the migration
760 * pte is removed and then restart fault handling.
762 BUG_ON(!migration);
763 entry = make_migration_entry(page, pte_write(pteval));
764 #endif
766 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
767 BUG_ON(pte_file(*pte));
768 } else
769 #ifdef CONFIG_MIGRATION
770 if (migration) {
771 /* Establish migration entry for a file page */
772 swp_entry_t entry;
773 entry = make_migration_entry(page, pte_write(pteval));
774 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
775 } else
776 #endif
777 dec_mm_counter(mm, file_rss);
780 page_remove_rmap(page, vma);
781 page_cache_release(page);
783 out_unmap:
784 pte_unmap_unlock(pte, ptl);
785 out:
786 return ret;
790 * objrmap doesn't work for nonlinear VMAs because the assumption that
791 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
792 * Consequently, given a particular page and its ->index, we cannot locate the
793 * ptes which are mapping that page without an exhaustive linear search.
795 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
796 * maps the file to which the target page belongs. The ->vm_private_data field
797 * holds the current cursor into that scan. Successive searches will circulate
798 * around the vma's virtual address space.
800 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
801 * more scanning pressure is placed against them as well. Eventually pages
802 * will become fully unmapped and are eligible for eviction.
804 * For very sparsely populated VMAs this is a little inefficient - chances are
805 * there there won't be many ptes located within the scan cluster. In this case
806 * maybe we could scan further - to the end of the pte page, perhaps.
808 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
809 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
811 static void try_to_unmap_cluster(unsigned long cursor,
812 unsigned int *mapcount, struct vm_area_struct *vma)
814 struct mm_struct *mm = vma->vm_mm;
815 pgd_t *pgd;
816 pud_t *pud;
817 pmd_t *pmd;
818 pte_t *pte;
819 pte_t pteval;
820 spinlock_t *ptl;
821 struct page *page;
822 unsigned long address;
823 unsigned long end;
825 address = (vma->vm_start + cursor) & CLUSTER_MASK;
826 end = address + CLUSTER_SIZE;
827 if (address < vma->vm_start)
828 address = vma->vm_start;
829 if (end > vma->vm_end)
830 end = vma->vm_end;
832 pgd = pgd_offset(mm, address);
833 if (!pgd_present(*pgd))
834 return;
836 pud = pud_offset(pgd, address);
837 if (!pud_present(*pud))
838 return;
840 pmd = pmd_offset(pud, address);
841 if (!pmd_present(*pmd))
842 return;
844 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
846 /* Update high watermark before we lower rss */
847 update_hiwater_rss(mm);
849 for (; address < end; pte++, address += PAGE_SIZE) {
850 if (!pte_present(*pte))
851 continue;
852 page = vm_normal_page(vma, address, *pte);
853 BUG_ON(!page || PageAnon(page));
855 if (ptep_clear_flush_young(vma, address, pte))
856 continue;
858 /* Nuke the page table entry. */
859 flush_cache_page(vma, address, pte_pfn(*pte));
860 pteval = ptep_clear_flush(vma, address, pte);
862 /* If nonlinear, store the file page offset in the pte. */
863 if (page->index != linear_page_index(vma, address))
864 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
866 /* Move the dirty bit to the physical page now the pte is gone. */
867 if (pte_dirty(pteval))
868 set_page_dirty(page);
870 page_remove_rmap(page, vma);
871 page_cache_release(page);
872 dec_mm_counter(mm, file_rss);
873 (*mapcount)--;
875 pte_unmap_unlock(pte - 1, ptl);
878 static int try_to_unmap_anon(struct page *page, int migration)
880 struct anon_vma *anon_vma;
881 struct vm_area_struct *vma;
882 int ret = SWAP_AGAIN;
884 anon_vma = page_lock_anon_vma(page);
885 if (!anon_vma)
886 return ret;
888 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
889 ret = try_to_unmap_one(page, vma, migration);
890 if (ret == SWAP_FAIL || !page_mapped(page))
891 break;
894 page_unlock_anon_vma(anon_vma);
895 return ret;
899 * try_to_unmap_file - unmap file page using the object-based rmap method
900 * @page: the page to unmap
902 * Find all the mappings of a page using the mapping pointer and the vma chains
903 * contained in the address_space struct it points to.
905 * This function is only called from try_to_unmap for object-based pages.
907 static int try_to_unmap_file(struct page *page, int migration)
909 struct address_space *mapping = page->mapping;
910 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
911 struct vm_area_struct *vma;
912 struct prio_tree_iter iter;
913 int ret = SWAP_AGAIN;
914 unsigned long cursor;
915 unsigned long max_nl_cursor = 0;
916 unsigned long max_nl_size = 0;
917 unsigned int mapcount;
919 spin_lock(&mapping->i_mmap_lock);
920 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
921 ret = try_to_unmap_one(page, vma, migration);
922 if (ret == SWAP_FAIL || !page_mapped(page))
923 goto out;
926 if (list_empty(&mapping->i_mmap_nonlinear))
927 goto out;
929 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
930 shared.vm_set.list) {
931 if ((vma->vm_flags & VM_LOCKED) && !migration)
932 continue;
933 cursor = (unsigned long) vma->vm_private_data;
934 if (cursor > max_nl_cursor)
935 max_nl_cursor = cursor;
936 cursor = vma->vm_end - vma->vm_start;
937 if (cursor > max_nl_size)
938 max_nl_size = cursor;
941 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
942 ret = SWAP_FAIL;
943 goto out;
947 * We don't try to search for this page in the nonlinear vmas,
948 * and page_referenced wouldn't have found it anyway. Instead
949 * just walk the nonlinear vmas trying to age and unmap some.
950 * The mapcount of the page we came in with is irrelevant,
951 * but even so use it as a guide to how hard we should try?
953 mapcount = page_mapcount(page);
954 if (!mapcount)
955 goto out;
956 cond_resched_lock(&mapping->i_mmap_lock);
958 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
959 if (max_nl_cursor == 0)
960 max_nl_cursor = CLUSTER_SIZE;
962 do {
963 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
964 shared.vm_set.list) {
965 if ((vma->vm_flags & VM_LOCKED) && !migration)
966 continue;
967 cursor = (unsigned long) vma->vm_private_data;
968 while ( cursor < max_nl_cursor &&
969 cursor < vma->vm_end - vma->vm_start) {
970 try_to_unmap_cluster(cursor, &mapcount, vma);
971 cursor += CLUSTER_SIZE;
972 vma->vm_private_data = (void *) cursor;
973 if ((int)mapcount <= 0)
974 goto out;
976 vma->vm_private_data = (void *) max_nl_cursor;
978 cond_resched_lock(&mapping->i_mmap_lock);
979 max_nl_cursor += CLUSTER_SIZE;
980 } while (max_nl_cursor <= max_nl_size);
983 * Don't loop forever (perhaps all the remaining pages are
984 * in locked vmas). Reset cursor on all unreserved nonlinear
985 * vmas, now forgetting on which ones it had fallen behind.
987 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
988 vma->vm_private_data = NULL;
989 out:
990 spin_unlock(&mapping->i_mmap_lock);
991 return ret;
995 * try_to_unmap - try to remove all page table mappings to a page
996 * @page: the page to get unmapped
998 * Tries to remove all the page table entries which are mapping this
999 * page, used in the pageout path. Caller must hold the page lock.
1000 * Return values are:
1002 * SWAP_SUCCESS - we succeeded in removing all mappings
1003 * SWAP_AGAIN - we missed a mapping, try again later
1004 * SWAP_FAIL - the page is unswappable
1006 int try_to_unmap(struct page *page, int migration)
1008 int ret;
1010 BUG_ON(!PageLocked(page));
1012 if (PageAnon(page))
1013 ret = try_to_unmap_anon(page, migration);
1014 else
1015 ret = try_to_unmap_file(page, migration);
1017 if (!page_mapped(page))
1018 ret = SWAP_SUCCESS;
1019 return ret;