4 * Kernel internal timers, kernel timekeeping, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/tick.h>
38 #include <linux/kallsyms.h>
40 #include <asm/uaccess.h>
41 #include <asm/unistd.h>
42 #include <asm/div64.h>
43 #include <asm/timex.h>
46 u64 jiffies_64 __cacheline_aligned_in_smp
= INITIAL_JIFFIES
;
48 EXPORT_SYMBOL(jiffies_64
);
51 * per-CPU timer vector definitions:
53 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
54 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
55 #define TVN_SIZE (1 << TVN_BITS)
56 #define TVR_SIZE (1 << TVR_BITS)
57 #define TVN_MASK (TVN_SIZE - 1)
58 #define TVR_MASK (TVR_SIZE - 1)
60 typedef struct tvec_s
{
61 struct list_head vec
[TVN_SIZE
];
64 typedef struct tvec_root_s
{
65 struct list_head vec
[TVR_SIZE
];
68 struct tvec_t_base_s
{
70 struct timer_list
*running_timer
;
71 unsigned long timer_jiffies
;
77 } ____cacheline_aligned_in_smp
;
79 typedef struct tvec_t_base_s tvec_base_t
;
81 tvec_base_t boot_tvec_bases
;
82 EXPORT_SYMBOL(boot_tvec_bases
);
83 static DEFINE_PER_CPU(tvec_base_t
*, tvec_bases
) = &boot_tvec_bases
;
86 * __round_jiffies - function to round jiffies to a full second
87 * @j: the time in (absolute) jiffies that should be rounded
88 * @cpu: the processor number on which the timeout will happen
90 * __round_jiffies() rounds an absolute time in the future (in jiffies)
91 * up or down to (approximately) full seconds. This is useful for timers
92 * for which the exact time they fire does not matter too much, as long as
93 * they fire approximately every X seconds.
95 * By rounding these timers to whole seconds, all such timers will fire
96 * at the same time, rather than at various times spread out. The goal
97 * of this is to have the CPU wake up less, which saves power.
99 * The exact rounding is skewed for each processor to avoid all
100 * processors firing at the exact same time, which could lead
101 * to lock contention or spurious cache line bouncing.
103 * The return value is the rounded version of the @j parameter.
105 unsigned long __round_jiffies(unsigned long j
, int cpu
)
108 unsigned long original
= j
;
111 * We don't want all cpus firing their timers at once hitting the
112 * same lock or cachelines, so we skew each extra cpu with an extra
113 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
115 * The skew is done by adding 3*cpunr, then round, then subtract this
116 * extra offset again.
123 * If the target jiffie is just after a whole second (which can happen
124 * due to delays of the timer irq, long irq off times etc etc) then
125 * we should round down to the whole second, not up. Use 1/4th second
126 * as cutoff for this rounding as an extreme upper bound for this.
128 if (rem
< HZ
/4) /* round down */
133 /* now that we have rounded, subtract the extra skew again */
136 if (j
<= jiffies
) /* rounding ate our timeout entirely; */
140 EXPORT_SYMBOL_GPL(__round_jiffies
);
143 * __round_jiffies_relative - function to round jiffies to a full second
144 * @j: the time in (relative) jiffies that should be rounded
145 * @cpu: the processor number on which the timeout will happen
147 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
148 * up or down to (approximately) full seconds. This is useful for timers
149 * for which the exact time they fire does not matter too much, as long as
150 * they fire approximately every X seconds.
152 * By rounding these timers to whole seconds, all such timers will fire
153 * at the same time, rather than at various times spread out. The goal
154 * of this is to have the CPU wake up less, which saves power.
156 * The exact rounding is skewed for each processor to avoid all
157 * processors firing at the exact same time, which could lead
158 * to lock contention or spurious cache line bouncing.
160 * The return value is the rounded version of the @j parameter.
162 unsigned long __round_jiffies_relative(unsigned long j
, int cpu
)
165 * In theory the following code can skip a jiffy in case jiffies
166 * increments right between the addition and the later subtraction.
167 * However since the entire point of this function is to use approximate
168 * timeouts, it's entirely ok to not handle that.
170 return __round_jiffies(j
+ jiffies
, cpu
) - jiffies
;
172 EXPORT_SYMBOL_GPL(__round_jiffies_relative
);
175 * round_jiffies - function to round jiffies to a full second
176 * @j: the time in (absolute) jiffies that should be rounded
178 * round_jiffies() rounds an absolute time in the future (in jiffies)
179 * up or down to (approximately) full seconds. This is useful for timers
180 * for which the exact time they fire does not matter too much, as long as
181 * they fire approximately every X seconds.
183 * By rounding these timers to whole seconds, all such timers will fire
184 * at the same time, rather than at various times spread out. The goal
185 * of this is to have the CPU wake up less, which saves power.
187 * The return value is the rounded version of the @j parameter.
189 unsigned long round_jiffies(unsigned long j
)
191 return __round_jiffies(j
, raw_smp_processor_id());
193 EXPORT_SYMBOL_GPL(round_jiffies
);
196 * round_jiffies_relative - function to round jiffies to a full second
197 * @j: the time in (relative) jiffies that should be rounded
199 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
200 * up or down to (approximately) full seconds. This is useful for timers
201 * for which the exact time they fire does not matter too much, as long as
202 * they fire approximately every X seconds.
204 * By rounding these timers to whole seconds, all such timers will fire
205 * at the same time, rather than at various times spread out. The goal
206 * of this is to have the CPU wake up less, which saves power.
208 * The return value is the rounded version of the @j parameter.
210 unsigned long round_jiffies_relative(unsigned long j
)
212 return __round_jiffies_relative(j
, raw_smp_processor_id());
214 EXPORT_SYMBOL_GPL(round_jiffies_relative
);
217 static inline void set_running_timer(tvec_base_t
*base
,
218 struct timer_list
*timer
)
221 base
->running_timer
= timer
;
225 static void internal_add_timer(tvec_base_t
*base
, struct timer_list
*timer
)
227 unsigned long expires
= timer
->expires
;
228 unsigned long idx
= expires
- base
->timer_jiffies
;
229 struct list_head
*vec
;
231 if (idx
< TVR_SIZE
) {
232 int i
= expires
& TVR_MASK
;
233 vec
= base
->tv1
.vec
+ i
;
234 } else if (idx
< 1 << (TVR_BITS
+ TVN_BITS
)) {
235 int i
= (expires
>> TVR_BITS
) & TVN_MASK
;
236 vec
= base
->tv2
.vec
+ i
;
237 } else if (idx
< 1 << (TVR_BITS
+ 2 * TVN_BITS
)) {
238 int i
= (expires
>> (TVR_BITS
+ TVN_BITS
)) & TVN_MASK
;
239 vec
= base
->tv3
.vec
+ i
;
240 } else if (idx
< 1 << (TVR_BITS
+ 3 * TVN_BITS
)) {
241 int i
= (expires
>> (TVR_BITS
+ 2 * TVN_BITS
)) & TVN_MASK
;
242 vec
= base
->tv4
.vec
+ i
;
243 } else if ((signed long) idx
< 0) {
245 * Can happen if you add a timer with expires == jiffies,
246 * or you set a timer to go off in the past
248 vec
= base
->tv1
.vec
+ (base
->timer_jiffies
& TVR_MASK
);
251 /* If the timeout is larger than 0xffffffff on 64-bit
252 * architectures then we use the maximum timeout:
254 if (idx
> 0xffffffffUL
) {
256 expires
= idx
+ base
->timer_jiffies
;
258 i
= (expires
>> (TVR_BITS
+ 3 * TVN_BITS
)) & TVN_MASK
;
259 vec
= base
->tv5
.vec
+ i
;
264 list_add_tail(&timer
->entry
, vec
);
267 #ifdef CONFIG_TIMER_STATS
268 void __timer_stats_timer_set_start_info(struct timer_list
*timer
, void *addr
)
270 if (timer
->start_site
)
273 timer
->start_site
= addr
;
274 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
275 timer
->start_pid
= current
->pid
;
280 * init_timer - initialize a timer.
281 * @timer: the timer to be initialized
283 * init_timer() must be done to a timer prior calling *any* of the
284 * other timer functions.
286 void fastcall
init_timer(struct timer_list
*timer
)
288 timer
->entry
.next
= NULL
;
289 timer
->base
= __raw_get_cpu_var(tvec_bases
);
290 #ifdef CONFIG_TIMER_STATS
291 timer
->start_site
= NULL
;
292 timer
->start_pid
= -1;
293 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
296 EXPORT_SYMBOL(init_timer
);
298 static inline void detach_timer(struct timer_list
*timer
,
301 struct list_head
*entry
= &timer
->entry
;
303 __list_del(entry
->prev
, entry
->next
);
306 entry
->prev
= LIST_POISON2
;
310 * We are using hashed locking: holding per_cpu(tvec_bases).lock
311 * means that all timers which are tied to this base via timer->base are
312 * locked, and the base itself is locked too.
314 * So __run_timers/migrate_timers can safely modify all timers which could
315 * be found on ->tvX lists.
317 * When the timer's base is locked, and the timer removed from list, it is
318 * possible to set timer->base = NULL and drop the lock: the timer remains
321 static tvec_base_t
*lock_timer_base(struct timer_list
*timer
,
322 unsigned long *flags
)
323 __acquires(timer
->base
->lock
)
329 if (likely(base
!= NULL
)) {
330 spin_lock_irqsave(&base
->lock
, *flags
);
331 if (likely(base
== timer
->base
))
333 /* The timer has migrated to another CPU */
334 spin_unlock_irqrestore(&base
->lock
, *flags
);
340 int __mod_timer(struct timer_list
*timer
, unsigned long expires
)
342 tvec_base_t
*base
, *new_base
;
346 timer_stats_timer_set_start_info(timer
);
347 BUG_ON(!timer
->function
);
349 base
= lock_timer_base(timer
, &flags
);
351 if (timer_pending(timer
)) {
352 detach_timer(timer
, 0);
356 new_base
= __get_cpu_var(tvec_bases
);
358 if (base
!= new_base
) {
360 * We are trying to schedule the timer on the local CPU.
361 * However we can't change timer's base while it is running,
362 * otherwise del_timer_sync() can't detect that the timer's
363 * handler yet has not finished. This also guarantees that
364 * the timer is serialized wrt itself.
366 if (likely(base
->running_timer
!= timer
)) {
367 /* See the comment in lock_timer_base() */
369 spin_unlock(&base
->lock
);
371 spin_lock(&base
->lock
);
376 timer
->expires
= expires
;
377 internal_add_timer(base
, timer
);
378 spin_unlock_irqrestore(&base
->lock
, flags
);
383 EXPORT_SYMBOL(__mod_timer
);
386 * add_timer_on - start a timer on a particular CPU
387 * @timer: the timer to be added
388 * @cpu: the CPU to start it on
390 * This is not very scalable on SMP. Double adds are not possible.
392 void add_timer_on(struct timer_list
*timer
, int cpu
)
394 tvec_base_t
*base
= per_cpu(tvec_bases
, cpu
);
397 timer_stats_timer_set_start_info(timer
);
398 BUG_ON(timer_pending(timer
) || !timer
->function
);
399 spin_lock_irqsave(&base
->lock
, flags
);
401 internal_add_timer(base
, timer
);
402 spin_unlock_irqrestore(&base
->lock
, flags
);
407 * mod_timer - modify a timer's timeout
408 * @timer: the timer to be modified
409 * @expires: new timeout in jiffies
411 * mod_timer() is a more efficient way to update the expire field of an
412 * active timer (if the timer is inactive it will be activated)
414 * mod_timer(timer, expires) is equivalent to:
416 * del_timer(timer); timer->expires = expires; add_timer(timer);
418 * Note that if there are multiple unserialized concurrent users of the
419 * same timer, then mod_timer() is the only safe way to modify the timeout,
420 * since add_timer() cannot modify an already running timer.
422 * The function returns whether it has modified a pending timer or not.
423 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
424 * active timer returns 1.)
426 int mod_timer(struct timer_list
*timer
, unsigned long expires
)
428 BUG_ON(!timer
->function
);
430 timer_stats_timer_set_start_info(timer
);
432 * This is a common optimization triggered by the
433 * networking code - if the timer is re-modified
434 * to be the same thing then just return:
436 if (timer
->expires
== expires
&& timer_pending(timer
))
439 return __mod_timer(timer
, expires
);
442 EXPORT_SYMBOL(mod_timer
);
445 * del_timer - deactive a timer.
446 * @timer: the timer to be deactivated
448 * del_timer() deactivates a timer - this works on both active and inactive
451 * The function returns whether it has deactivated a pending timer or not.
452 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
453 * active timer returns 1.)
455 int del_timer(struct timer_list
*timer
)
461 timer_stats_timer_clear_start_info(timer
);
462 if (timer_pending(timer
)) {
463 base
= lock_timer_base(timer
, &flags
);
464 if (timer_pending(timer
)) {
465 detach_timer(timer
, 1);
468 spin_unlock_irqrestore(&base
->lock
, flags
);
474 EXPORT_SYMBOL(del_timer
);
478 * try_to_del_timer_sync - Try to deactivate a timer
479 * @timer: timer do del
481 * This function tries to deactivate a timer. Upon successful (ret >= 0)
482 * exit the timer is not queued and the handler is not running on any CPU.
484 * It must not be called from interrupt contexts.
486 int try_to_del_timer_sync(struct timer_list
*timer
)
492 base
= lock_timer_base(timer
, &flags
);
494 if (base
->running_timer
== timer
)
498 if (timer_pending(timer
)) {
499 detach_timer(timer
, 1);
503 spin_unlock_irqrestore(&base
->lock
, flags
);
509 * del_timer_sync - deactivate a timer and wait for the handler to finish.
510 * @timer: the timer to be deactivated
512 * This function only differs from del_timer() on SMP: besides deactivating
513 * the timer it also makes sure the handler has finished executing on other
516 * Synchronization rules: Callers must prevent restarting of the timer,
517 * otherwise this function is meaningless. It must not be called from
518 * interrupt contexts. The caller must not hold locks which would prevent
519 * completion of the timer's handler. The timer's handler must not call
520 * add_timer_on(). Upon exit the timer is not queued and the handler is
521 * not running on any CPU.
523 * The function returns whether it has deactivated a pending timer or not.
525 int del_timer_sync(struct timer_list
*timer
)
528 int ret
= try_to_del_timer_sync(timer
);
535 EXPORT_SYMBOL(del_timer_sync
);
538 static int cascade(tvec_base_t
*base
, tvec_t
*tv
, int index
)
540 /* cascade all the timers from tv up one level */
541 struct timer_list
*timer
, *tmp
;
542 struct list_head tv_list
;
544 list_replace_init(tv
->vec
+ index
, &tv_list
);
547 * We are removing _all_ timers from the list, so we
548 * don't have to detach them individually.
550 list_for_each_entry_safe(timer
, tmp
, &tv_list
, entry
) {
551 BUG_ON(timer
->base
!= base
);
552 internal_add_timer(base
, timer
);
558 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
561 * __run_timers - run all expired timers (if any) on this CPU.
562 * @base: the timer vector to be processed.
564 * This function cascades all vectors and executes all expired timer
567 static inline void __run_timers(tvec_base_t
*base
)
569 struct timer_list
*timer
;
571 spin_lock_irq(&base
->lock
);
572 while (time_after_eq(jiffies
, base
->timer_jiffies
)) {
573 struct list_head work_list
;
574 struct list_head
*head
= &work_list
;
575 int index
= base
->timer_jiffies
& TVR_MASK
;
581 (!cascade(base
, &base
->tv2
, INDEX(0))) &&
582 (!cascade(base
, &base
->tv3
, INDEX(1))) &&
583 !cascade(base
, &base
->tv4
, INDEX(2)))
584 cascade(base
, &base
->tv5
, INDEX(3));
585 ++base
->timer_jiffies
;
586 list_replace_init(base
->tv1
.vec
+ index
, &work_list
);
587 while (!list_empty(head
)) {
588 void (*fn
)(unsigned long);
591 timer
= list_entry(head
->next
,struct timer_list
,entry
);
592 fn
= timer
->function
;
595 timer_stats_account_timer(timer
);
597 set_running_timer(base
, timer
);
598 detach_timer(timer
, 1);
599 spin_unlock_irq(&base
->lock
);
601 int preempt_count
= preempt_count();
603 if (preempt_count
!= preempt_count()) {
604 printk(KERN_WARNING
"huh, entered %p "
605 "with preempt_count %08x, exited"
612 spin_lock_irq(&base
->lock
);
615 set_running_timer(base
, NULL
);
616 spin_unlock_irq(&base
->lock
);
619 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
621 * Find out when the next timer event is due to happen. This
622 * is used on S/390 to stop all activity when a cpus is idle.
623 * This functions needs to be called disabled.
625 static unsigned long __next_timer_interrupt(tvec_base_t
*base
)
627 unsigned long timer_jiffies
= base
->timer_jiffies
;
628 unsigned long expires
= timer_jiffies
+ (LONG_MAX
>> 1);
629 int index
, slot
, array
, found
= 0;
630 struct timer_list
*nte
;
633 /* Look for timer events in tv1. */
634 index
= slot
= timer_jiffies
& TVR_MASK
;
636 list_for_each_entry(nte
, base
->tv1
.vec
+ slot
, entry
) {
638 expires
= nte
->expires
;
639 /* Look at the cascade bucket(s)? */
640 if (!index
|| slot
< index
)
644 slot
= (slot
+ 1) & TVR_MASK
;
645 } while (slot
!= index
);
648 /* Calculate the next cascade event */
650 timer_jiffies
+= TVR_SIZE
- index
;
651 timer_jiffies
>>= TVR_BITS
;
654 varray
[0] = &base
->tv2
;
655 varray
[1] = &base
->tv3
;
656 varray
[2] = &base
->tv4
;
657 varray
[3] = &base
->tv5
;
659 for (array
= 0; array
< 4; array
++) {
660 tvec_t
*varp
= varray
[array
];
662 index
= slot
= timer_jiffies
& TVN_MASK
;
664 list_for_each_entry(nte
, varp
->vec
+ slot
, entry
) {
666 if (time_before(nte
->expires
, expires
))
667 expires
= nte
->expires
;
670 * Do we still search for the first timer or are
671 * we looking up the cascade buckets ?
674 /* Look at the cascade bucket(s)? */
675 if (!index
|| slot
< index
)
679 slot
= (slot
+ 1) & TVN_MASK
;
680 } while (slot
!= index
);
683 timer_jiffies
+= TVN_SIZE
- index
;
684 timer_jiffies
>>= TVN_BITS
;
690 * Check, if the next hrtimer event is before the next timer wheel
693 static unsigned long cmp_next_hrtimer_event(unsigned long now
,
694 unsigned long expires
)
696 ktime_t hr_delta
= hrtimer_get_next_event();
697 struct timespec tsdelta
;
699 if (hr_delta
.tv64
== KTIME_MAX
)
702 if (hr_delta
.tv64
<= TICK_NSEC
)
705 tsdelta
= ktime_to_timespec(hr_delta
);
706 now
+= timespec_to_jiffies(&tsdelta
);
707 if (time_before(now
, expires
))
713 * next_timer_interrupt - return the jiffy of the next pending timer
714 * @now: current time (in jiffies)
716 unsigned long get_next_timer_interrupt(unsigned long now
)
718 tvec_base_t
*base
= __get_cpu_var(tvec_bases
);
719 unsigned long expires
;
721 spin_lock(&base
->lock
);
722 expires
= __next_timer_interrupt(base
);
723 spin_unlock(&base
->lock
);
725 if (time_before_eq(expires
, now
))
728 return cmp_next_hrtimer_event(now
, expires
);
731 #ifdef CONFIG_NO_IDLE_HZ
732 unsigned long next_timer_interrupt(void)
734 return get_next_timer_interrupt(jiffies
);
740 /******************************************************************/
744 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
745 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
746 * at zero at system boot time, so wall_to_monotonic will be negative,
747 * however, we will ALWAYS keep the tv_nsec part positive so we can use
748 * the usual normalization.
750 struct timespec xtime
__attribute__ ((aligned (16)));
751 struct timespec wall_to_monotonic
__attribute__ ((aligned (16)));
753 EXPORT_SYMBOL(xtime
);
756 /* XXX - all of this timekeeping code should be later moved to time.c */
757 #include <linux/clocksource.h>
758 static struct clocksource
*clock
; /* pointer to current clocksource */
760 #ifdef CONFIG_GENERIC_TIME
762 * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook
764 * private function, must hold xtime_lock lock when being
765 * called. Returns the number of nanoseconds since the
766 * last call to update_wall_time() (adjusted by NTP scaling)
768 static inline s64
__get_nsec_offset(void)
770 cycle_t cycle_now
, cycle_delta
;
773 /* read clocksource: */
774 cycle_now
= clocksource_read(clock
);
776 /* calculate the delta since the last update_wall_time: */
777 cycle_delta
= (cycle_now
- clock
->cycle_last
) & clock
->mask
;
779 /* convert to nanoseconds: */
780 ns_offset
= cyc2ns(clock
, cycle_delta
);
786 * __get_realtime_clock_ts - Returns the time of day in a timespec
787 * @ts: pointer to the timespec to be set
789 * Returns the time of day in a timespec. Used by
790 * do_gettimeofday() and get_realtime_clock_ts().
792 static inline void __get_realtime_clock_ts(struct timespec
*ts
)
798 seq
= read_seqbegin(&xtime_lock
);
801 nsecs
= __get_nsec_offset();
803 } while (read_seqretry(&xtime_lock
, seq
));
805 timespec_add_ns(ts
, nsecs
);
809 * getnstimeofday - Returns the time of day in a timespec
810 * @ts: pointer to the timespec to be set
812 * Returns the time of day in a timespec.
814 void getnstimeofday(struct timespec
*ts
)
816 __get_realtime_clock_ts(ts
);
819 EXPORT_SYMBOL(getnstimeofday
);
822 * do_gettimeofday - Returns the time of day in a timeval
823 * @tv: pointer to the timeval to be set
825 * NOTE: Users should be converted to using get_realtime_clock_ts()
827 void do_gettimeofday(struct timeval
*tv
)
831 __get_realtime_clock_ts(&now
);
832 tv
->tv_sec
= now
.tv_sec
;
833 tv
->tv_usec
= now
.tv_nsec
/1000;
836 EXPORT_SYMBOL(do_gettimeofday
);
838 * do_settimeofday - Sets the time of day
839 * @tv: pointer to the timespec variable containing the new time
841 * Sets the time of day to the new time and update NTP and notify hrtimers
843 int do_settimeofday(struct timespec
*tv
)
846 time_t wtm_sec
, sec
= tv
->tv_sec
;
847 long wtm_nsec
, nsec
= tv
->tv_nsec
;
849 if ((unsigned long)tv
->tv_nsec
>= NSEC_PER_SEC
)
852 write_seqlock_irqsave(&xtime_lock
, flags
);
854 nsec
-= __get_nsec_offset();
856 wtm_sec
= wall_to_monotonic
.tv_sec
+ (xtime
.tv_sec
- sec
);
857 wtm_nsec
= wall_to_monotonic
.tv_nsec
+ (xtime
.tv_nsec
- nsec
);
859 set_normalized_timespec(&xtime
, sec
, nsec
);
860 set_normalized_timespec(&wall_to_monotonic
, wtm_sec
, wtm_nsec
);
865 write_sequnlock_irqrestore(&xtime_lock
, flags
);
867 /* signal hrtimers about time change */
873 EXPORT_SYMBOL(do_settimeofday
);
876 * change_clocksource - Swaps clocksources if a new one is available
878 * Accumulates current time interval and initializes new clocksource
880 static void change_clocksource(void)
882 struct clocksource
*new;
886 new = clocksource_get_next();
891 now
= clocksource_read(new);
892 nsec
= __get_nsec_offset();
893 timespec_add_ns(&xtime
, nsec
);
896 clock
->cycle_last
= now
;
899 clock
->xtime_nsec
= 0;
900 clocksource_calculate_interval(clock
, NTP_INTERVAL_LENGTH
);
904 printk(KERN_INFO
"Time: %s clocksource has been installed.\n",
908 static inline void change_clocksource(void) { }
912 * timekeeping_is_continuous - check to see if timekeeping is free running
914 int timekeeping_is_continuous(void)
920 seq
= read_seqbegin(&xtime_lock
);
922 ret
= clock
->flags
& CLOCK_SOURCE_VALID_FOR_HRES
;
924 } while (read_seqretry(&xtime_lock
, seq
));
930 * read_persistent_clock - Return time in seconds from the persistent clock.
932 * Weak dummy function for arches that do not yet support it.
933 * Returns seconds from epoch using the battery backed persistent clock.
934 * Returns zero if unsupported.
936 * XXX - Do be sure to remove it once all arches implement it.
938 unsigned long __attribute__((weak
)) read_persistent_clock(void)
944 * timekeeping_init - Initializes the clocksource and common timekeeping values
946 void __init
timekeeping_init(void)
949 unsigned long sec
= read_persistent_clock();
951 write_seqlock_irqsave(&xtime_lock
, flags
);
955 clock
= clocksource_get_next();
956 clocksource_calculate_interval(clock
, NTP_INTERVAL_LENGTH
);
957 clock
->cycle_last
= clocksource_read(clock
);
961 set_normalized_timespec(&wall_to_monotonic
,
962 -xtime
.tv_sec
, -xtime
.tv_nsec
);
964 write_sequnlock_irqrestore(&xtime_lock
, flags
);
967 /* flag for if timekeeping is suspended */
968 static int timekeeping_suspended
;
969 /* time in seconds when suspend began */
970 static unsigned long timekeeping_suspend_time
;
973 * timekeeping_resume - Resumes the generic timekeeping subsystem.
976 * This is for the generic clocksource timekeeping.
977 * xtime/wall_to_monotonic/jiffies/etc are
978 * still managed by arch specific suspend/resume code.
980 static int timekeeping_resume(struct sys_device
*dev
)
983 unsigned long now
= read_persistent_clock();
985 write_seqlock_irqsave(&xtime_lock
, flags
);
987 if (now
&& (now
> timekeeping_suspend_time
)) {
988 unsigned long sleep_length
= now
- timekeeping_suspend_time
;
990 xtime
.tv_sec
+= sleep_length
;
991 wall_to_monotonic
.tv_sec
-= sleep_length
;
993 /* re-base the last cycle value */
994 clock
->cycle_last
= clocksource_read(clock
);
996 timekeeping_suspended
= 0;
997 write_sequnlock_irqrestore(&xtime_lock
, flags
);
999 touch_softlockup_watchdog();
1000 /* Resume hrtimers */
1006 static int timekeeping_suspend(struct sys_device
*dev
, pm_message_t state
)
1008 unsigned long flags
;
1010 write_seqlock_irqsave(&xtime_lock
, flags
);
1011 timekeeping_suspended
= 1;
1012 timekeeping_suspend_time
= read_persistent_clock();
1013 write_sequnlock_irqrestore(&xtime_lock
, flags
);
1017 /* sysfs resume/suspend bits for timekeeping */
1018 static struct sysdev_class timekeeping_sysclass
= {
1019 .resume
= timekeeping_resume
,
1020 .suspend
= timekeeping_suspend
,
1021 set_kset_name("timekeeping"),
1024 static struct sys_device device_timer
= {
1026 .cls
= &timekeeping_sysclass
,
1029 static int __init
timekeeping_init_device(void)
1031 int error
= sysdev_class_register(&timekeeping_sysclass
);
1033 error
= sysdev_register(&device_timer
);
1037 device_initcall(timekeeping_init_device
);
1040 * If the error is already larger, we look ahead even further
1041 * to compensate for late or lost adjustments.
1043 static __always_inline
int clocksource_bigadjust(s64 error
, s64
*interval
,
1047 u32 look_ahead
, adj
;
1051 * Use the current error value to determine how much to look ahead.
1052 * The larger the error the slower we adjust for it to avoid problems
1053 * with losing too many ticks, otherwise we would overadjust and
1054 * produce an even larger error. The smaller the adjustment the
1055 * faster we try to adjust for it, as lost ticks can do less harm
1056 * here. This is tuned so that an error of about 1 msec is adusted
1057 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
1059 error2
= clock
->error
>> (TICK_LENGTH_SHIFT
+ 22 - 2 * SHIFT_HZ
);
1060 error2
= abs(error2
);
1061 for (look_ahead
= 0; error2
> 0; look_ahead
++)
1065 * Now calculate the error in (1 << look_ahead) ticks, but first
1066 * remove the single look ahead already included in the error.
1068 tick_error
= current_tick_length() >>
1069 (TICK_LENGTH_SHIFT
- clock
->shift
+ 1);
1070 tick_error
-= clock
->xtime_interval
>> 1;
1071 error
= ((error
- tick_error
) >> look_ahead
) + tick_error
;
1073 /* Finally calculate the adjustment shift value. */
1078 *interval
= -*interval
;
1082 for (adj
= 0; error
> i
; adj
++)
1091 * Adjust the multiplier to reduce the error value,
1092 * this is optimized for the most common adjustments of -1,0,1,
1093 * for other values we can do a bit more work.
1095 static void clocksource_adjust(struct clocksource
*clock
, s64 offset
)
1097 s64 error
, interval
= clock
->cycle_interval
;
1100 error
= clock
->error
>> (TICK_LENGTH_SHIFT
- clock
->shift
- 1);
1101 if (error
> interval
) {
1103 if (likely(error
<= interval
))
1106 adj
= clocksource_bigadjust(error
, &interval
, &offset
);
1107 } else if (error
< -interval
) {
1109 if (likely(error
>= -interval
)) {
1111 interval
= -interval
;
1114 adj
= clocksource_bigadjust(error
, &interval
, &offset
);
1119 clock
->xtime_interval
+= interval
;
1120 clock
->xtime_nsec
-= offset
;
1121 clock
->error
-= (interval
- offset
) <<
1122 (TICK_LENGTH_SHIFT
- clock
->shift
);
1126 * update_wall_time - Uses the current clocksource to increment the wall time
1128 * Called from the timer interrupt, must hold a write on xtime_lock.
1130 static void update_wall_time(void)
1134 /* Make sure we're fully resumed: */
1135 if (unlikely(timekeeping_suspended
))
1138 #ifdef CONFIG_GENERIC_TIME
1139 offset
= (clocksource_read(clock
) - clock
->cycle_last
) & clock
->mask
;
1141 offset
= clock
->cycle_interval
;
1143 clock
->xtime_nsec
+= (s64
)xtime
.tv_nsec
<< clock
->shift
;
1145 /* normally this loop will run just once, however in the
1146 * case of lost or late ticks, it will accumulate correctly.
1148 while (offset
>= clock
->cycle_interval
) {
1149 /* accumulate one interval */
1150 clock
->xtime_nsec
+= clock
->xtime_interval
;
1151 clock
->cycle_last
+= clock
->cycle_interval
;
1152 offset
-= clock
->cycle_interval
;
1154 if (clock
->xtime_nsec
>= (u64
)NSEC_PER_SEC
<< clock
->shift
) {
1155 clock
->xtime_nsec
-= (u64
)NSEC_PER_SEC
<< clock
->shift
;
1160 /* interpolator bits */
1161 time_interpolator_update(clock
->xtime_interval
1164 /* accumulate error between NTP and clock interval */
1165 clock
->error
+= current_tick_length();
1166 clock
->error
-= clock
->xtime_interval
<< (TICK_LENGTH_SHIFT
- clock
->shift
);
1169 /* correct the clock when NTP error is too big */
1170 clocksource_adjust(clock
, offset
);
1172 /* store full nanoseconds into xtime */
1173 xtime
.tv_nsec
= (s64
)clock
->xtime_nsec
>> clock
->shift
;
1174 clock
->xtime_nsec
-= (s64
)xtime
.tv_nsec
<< clock
->shift
;
1176 /* check to see if there is a new clocksource to use */
1177 change_clocksource();
1178 update_vsyscall(&xtime
, clock
);
1182 * Called from the timer interrupt handler to charge one tick to the current
1183 * process. user_tick is 1 if the tick is user time, 0 for system.
1185 void update_process_times(int user_tick
)
1187 struct task_struct
*p
= current
;
1188 int cpu
= smp_processor_id();
1190 /* Note: this timer irq context must be accounted for as well. */
1192 account_user_time(p
, jiffies_to_cputime(1));
1194 account_system_time(p
, HARDIRQ_OFFSET
, jiffies_to_cputime(1));
1196 if (rcu_pending(cpu
))
1197 rcu_check_callbacks(cpu
, user_tick
);
1199 run_posix_cpu_timers(p
);
1203 * Nr of active tasks - counted in fixed-point numbers
1205 static unsigned long count_active_tasks(void)
1207 return nr_active() * FIXED_1
;
1211 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
1212 * imply that avenrun[] is the standard name for this kind of thing.
1213 * Nothing else seems to be standardized: the fractional size etc
1214 * all seem to differ on different machines.
1216 * Requires xtime_lock to access.
1218 unsigned long avenrun
[3];
1220 EXPORT_SYMBOL(avenrun
);
1223 * calc_load - given tick count, update the avenrun load estimates.
1224 * This is called while holding a write_lock on xtime_lock.
1226 static inline void calc_load(unsigned long ticks
)
1228 unsigned long active_tasks
; /* fixed-point */
1229 static int count
= LOAD_FREQ
;
1232 if (unlikely(count
< 0)) {
1233 active_tasks
= count_active_tasks();
1235 CALC_LOAD(avenrun
[0], EXP_1
, active_tasks
);
1236 CALC_LOAD(avenrun
[1], EXP_5
, active_tasks
);
1237 CALC_LOAD(avenrun
[2], EXP_15
, active_tasks
);
1239 } while (count
< 0);
1244 * This read-write spinlock protects us from races in SMP while
1245 * playing with xtime and avenrun.
1247 __attribute__((weak
)) __cacheline_aligned_in_smp
DEFINE_SEQLOCK(xtime_lock
);
1249 EXPORT_SYMBOL(xtime_lock
);
1252 * This function runs timers and the timer-tq in bottom half context.
1254 static void run_timer_softirq(struct softirq_action
*h
)
1256 tvec_base_t
*base
= __get_cpu_var(tvec_bases
);
1258 hrtimer_run_queues();
1260 if (time_after_eq(jiffies
, base
->timer_jiffies
))
1265 * Called by the local, per-CPU timer interrupt on SMP.
1267 void run_local_timers(void)
1269 raise_softirq(TIMER_SOFTIRQ
);
1274 * Called by the timer interrupt. xtime_lock must already be taken
1277 static inline void update_times(unsigned long ticks
)
1284 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1285 * without sampling the sequence number in xtime_lock.
1286 * jiffies is defined in the linker script...
1289 void do_timer(unsigned long ticks
)
1291 jiffies_64
+= ticks
;
1292 update_times(ticks
);
1295 #ifdef __ARCH_WANT_SYS_ALARM
1298 * For backwards compatibility? This can be done in libc so Alpha
1299 * and all newer ports shouldn't need it.
1301 asmlinkage
unsigned long sys_alarm(unsigned int seconds
)
1303 return alarm_setitimer(seconds
);
1311 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1312 * should be moved into arch/i386 instead?
1316 * sys_getpid - return the thread group id of the current process
1318 * Note, despite the name, this returns the tgid not the pid. The tgid and
1319 * the pid are identical unless CLONE_THREAD was specified on clone() in
1320 * which case the tgid is the same in all threads of the same group.
1322 * This is SMP safe as current->tgid does not change.
1324 asmlinkage
long sys_getpid(void)
1326 return current
->tgid
;
1330 * Accessing ->real_parent is not SMP-safe, it could
1331 * change from under us. However, we can use a stale
1332 * value of ->real_parent under rcu_read_lock(), see
1333 * release_task()->call_rcu(delayed_put_task_struct).
1335 asmlinkage
long sys_getppid(void)
1340 pid
= rcu_dereference(current
->real_parent
)->tgid
;
1346 asmlinkage
long sys_getuid(void)
1348 /* Only we change this so SMP safe */
1349 return current
->uid
;
1352 asmlinkage
long sys_geteuid(void)
1354 /* Only we change this so SMP safe */
1355 return current
->euid
;
1358 asmlinkage
long sys_getgid(void)
1360 /* Only we change this so SMP safe */
1361 return current
->gid
;
1364 asmlinkage
long sys_getegid(void)
1366 /* Only we change this so SMP safe */
1367 return current
->egid
;
1372 static void process_timeout(unsigned long __data
)
1374 wake_up_process((struct task_struct
*)__data
);
1378 * schedule_timeout - sleep until timeout
1379 * @timeout: timeout value in jiffies
1381 * Make the current task sleep until @timeout jiffies have
1382 * elapsed. The routine will return immediately unless
1383 * the current task state has been set (see set_current_state()).
1385 * You can set the task state as follows -
1387 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1388 * pass before the routine returns. The routine will return 0
1390 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1391 * delivered to the current task. In this case the remaining time
1392 * in jiffies will be returned, or 0 if the timer expired in time
1394 * The current task state is guaranteed to be TASK_RUNNING when this
1397 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1398 * the CPU away without a bound on the timeout. In this case the return
1399 * value will be %MAX_SCHEDULE_TIMEOUT.
1401 * In all cases the return value is guaranteed to be non-negative.
1403 fastcall
signed long __sched
schedule_timeout(signed long timeout
)
1405 struct timer_list timer
;
1406 unsigned long expire
;
1410 case MAX_SCHEDULE_TIMEOUT
:
1412 * These two special cases are useful to be comfortable
1413 * in the caller. Nothing more. We could take
1414 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1415 * but I' d like to return a valid offset (>=0) to allow
1416 * the caller to do everything it want with the retval.
1422 * Another bit of PARANOID. Note that the retval will be
1423 * 0 since no piece of kernel is supposed to do a check
1424 * for a negative retval of schedule_timeout() (since it
1425 * should never happens anyway). You just have the printk()
1426 * that will tell you if something is gone wrong and where.
1429 printk(KERN_ERR
"schedule_timeout: wrong timeout "
1430 "value %lx\n", timeout
);
1432 current
->state
= TASK_RUNNING
;
1437 expire
= timeout
+ jiffies
;
1439 setup_timer(&timer
, process_timeout
, (unsigned long)current
);
1440 __mod_timer(&timer
, expire
);
1442 del_singleshot_timer_sync(&timer
);
1444 timeout
= expire
- jiffies
;
1447 return timeout
< 0 ? 0 : timeout
;
1449 EXPORT_SYMBOL(schedule_timeout
);
1452 * We can use __set_current_state() here because schedule_timeout() calls
1453 * schedule() unconditionally.
1455 signed long __sched
schedule_timeout_interruptible(signed long timeout
)
1457 __set_current_state(TASK_INTERRUPTIBLE
);
1458 return schedule_timeout(timeout
);
1460 EXPORT_SYMBOL(schedule_timeout_interruptible
);
1462 signed long __sched
schedule_timeout_uninterruptible(signed long timeout
)
1464 __set_current_state(TASK_UNINTERRUPTIBLE
);
1465 return schedule_timeout(timeout
);
1467 EXPORT_SYMBOL(schedule_timeout_uninterruptible
);
1469 /* Thread ID - the internal kernel "pid" */
1470 asmlinkage
long sys_gettid(void)
1472 return current
->pid
;
1476 * do_sysinfo - fill in sysinfo struct
1477 * @info: pointer to buffer to fill
1479 int do_sysinfo(struct sysinfo
*info
)
1481 unsigned long mem_total
, sav_total
;
1482 unsigned int mem_unit
, bitcount
;
1485 memset(info
, 0, sizeof(struct sysinfo
));
1489 seq
= read_seqbegin(&xtime_lock
);
1492 * This is annoying. The below is the same thing
1493 * posix_get_clock_monotonic() does, but it wants to
1494 * take the lock which we want to cover the loads stuff
1498 getnstimeofday(&tp
);
1499 tp
.tv_sec
+= wall_to_monotonic
.tv_sec
;
1500 tp
.tv_nsec
+= wall_to_monotonic
.tv_nsec
;
1501 if (tp
.tv_nsec
- NSEC_PER_SEC
>= 0) {
1502 tp
.tv_nsec
= tp
.tv_nsec
- NSEC_PER_SEC
;
1505 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
1507 info
->loads
[0] = avenrun
[0] << (SI_LOAD_SHIFT
- FSHIFT
);
1508 info
->loads
[1] = avenrun
[1] << (SI_LOAD_SHIFT
- FSHIFT
);
1509 info
->loads
[2] = avenrun
[2] << (SI_LOAD_SHIFT
- FSHIFT
);
1511 info
->procs
= nr_threads
;
1512 } while (read_seqretry(&xtime_lock
, seq
));
1518 * If the sum of all the available memory (i.e. ram + swap)
1519 * is less than can be stored in a 32 bit unsigned long then
1520 * we can be binary compatible with 2.2.x kernels. If not,
1521 * well, in that case 2.2.x was broken anyways...
1523 * -Erik Andersen <andersee@debian.org>
1526 mem_total
= info
->totalram
+ info
->totalswap
;
1527 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
1530 mem_unit
= info
->mem_unit
;
1531 while (mem_unit
> 1) {
1534 sav_total
= mem_total
;
1536 if (mem_total
< sav_total
)
1541 * If mem_total did not overflow, multiply all memory values by
1542 * info->mem_unit and set it to 1. This leaves things compatible
1543 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1548 info
->totalram
<<= bitcount
;
1549 info
->freeram
<<= bitcount
;
1550 info
->sharedram
<<= bitcount
;
1551 info
->bufferram
<<= bitcount
;
1552 info
->totalswap
<<= bitcount
;
1553 info
->freeswap
<<= bitcount
;
1554 info
->totalhigh
<<= bitcount
;
1555 info
->freehigh
<<= bitcount
;
1561 asmlinkage
long sys_sysinfo(struct sysinfo __user
*info
)
1567 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
1574 * lockdep: we want to track each per-CPU base as a separate lock-class,
1575 * but timer-bases are kmalloc()-ed, so we need to attach separate
1578 static struct lock_class_key base_lock_keys
[NR_CPUS
];
1580 static int __devinit
init_timers_cpu(int cpu
)
1584 static char __devinitdata tvec_base_done
[NR_CPUS
];
1586 if (!tvec_base_done
[cpu
]) {
1587 static char boot_done
;
1591 * The APs use this path later in boot
1593 base
= kmalloc_node(sizeof(*base
), GFP_KERNEL
,
1597 memset(base
, 0, sizeof(*base
));
1598 per_cpu(tvec_bases
, cpu
) = base
;
1601 * This is for the boot CPU - we use compile-time
1602 * static initialisation because per-cpu memory isn't
1603 * ready yet and because the memory allocators are not
1604 * initialised either.
1607 base
= &boot_tvec_bases
;
1609 tvec_base_done
[cpu
] = 1;
1611 base
= per_cpu(tvec_bases
, cpu
);
1614 spin_lock_init(&base
->lock
);
1615 lockdep_set_class(&base
->lock
, base_lock_keys
+ cpu
);
1617 for (j
= 0; j
< TVN_SIZE
; j
++) {
1618 INIT_LIST_HEAD(base
->tv5
.vec
+ j
);
1619 INIT_LIST_HEAD(base
->tv4
.vec
+ j
);
1620 INIT_LIST_HEAD(base
->tv3
.vec
+ j
);
1621 INIT_LIST_HEAD(base
->tv2
.vec
+ j
);
1623 for (j
= 0; j
< TVR_SIZE
; j
++)
1624 INIT_LIST_HEAD(base
->tv1
.vec
+ j
);
1626 base
->timer_jiffies
= jiffies
;
1630 #ifdef CONFIG_HOTPLUG_CPU
1631 static void migrate_timer_list(tvec_base_t
*new_base
, struct list_head
*head
)
1633 struct timer_list
*timer
;
1635 while (!list_empty(head
)) {
1636 timer
= list_entry(head
->next
, struct timer_list
, entry
);
1637 detach_timer(timer
, 0);
1638 timer
->base
= new_base
;
1639 internal_add_timer(new_base
, timer
);
1643 static void __devinit
migrate_timers(int cpu
)
1645 tvec_base_t
*old_base
;
1646 tvec_base_t
*new_base
;
1649 BUG_ON(cpu_online(cpu
));
1650 old_base
= per_cpu(tvec_bases
, cpu
);
1651 new_base
= get_cpu_var(tvec_bases
);
1653 local_irq_disable();
1654 spin_lock(&new_base
->lock
);
1655 spin_lock(&old_base
->lock
);
1657 BUG_ON(old_base
->running_timer
);
1659 for (i
= 0; i
< TVR_SIZE
; i
++)
1660 migrate_timer_list(new_base
, old_base
->tv1
.vec
+ i
);
1661 for (i
= 0; i
< TVN_SIZE
; i
++) {
1662 migrate_timer_list(new_base
, old_base
->tv2
.vec
+ i
);
1663 migrate_timer_list(new_base
, old_base
->tv3
.vec
+ i
);
1664 migrate_timer_list(new_base
, old_base
->tv4
.vec
+ i
);
1665 migrate_timer_list(new_base
, old_base
->tv5
.vec
+ i
);
1668 spin_unlock(&old_base
->lock
);
1669 spin_unlock(&new_base
->lock
);
1671 put_cpu_var(tvec_bases
);
1673 #endif /* CONFIG_HOTPLUG_CPU */
1675 static int __cpuinit
timer_cpu_notify(struct notifier_block
*self
,
1676 unsigned long action
, void *hcpu
)
1678 long cpu
= (long)hcpu
;
1680 case CPU_UP_PREPARE
:
1681 if (init_timers_cpu(cpu
) < 0)
1684 #ifdef CONFIG_HOTPLUG_CPU
1686 migrate_timers(cpu
);
1695 static struct notifier_block __cpuinitdata timers_nb
= {
1696 .notifier_call
= timer_cpu_notify
,
1700 void __init
init_timers(void)
1702 int err
= timer_cpu_notify(&timers_nb
, (unsigned long)CPU_UP_PREPARE
,
1703 (void *)(long)smp_processor_id());
1707 BUG_ON(err
== NOTIFY_BAD
);
1708 register_cpu_notifier(&timers_nb
);
1709 open_softirq(TIMER_SOFTIRQ
, run_timer_softirq
, NULL
);
1712 #ifdef CONFIG_TIME_INTERPOLATION
1714 struct time_interpolator
*time_interpolator __read_mostly
;
1715 static struct time_interpolator
*time_interpolator_list __read_mostly
;
1716 static DEFINE_SPINLOCK(time_interpolator_lock
);
1718 static inline cycles_t
time_interpolator_get_cycles(unsigned int src
)
1720 unsigned long (*x
)(void);
1724 case TIME_SOURCE_FUNCTION
:
1725 x
= time_interpolator
->addr
;
1728 case TIME_SOURCE_MMIO64
:
1729 return readq_relaxed((void __iomem
*)time_interpolator
->addr
);
1731 case TIME_SOURCE_MMIO32
:
1732 return readl_relaxed((void __iomem
*)time_interpolator
->addr
);
1734 default: return get_cycles();
1738 static inline u64
time_interpolator_get_counter(int writelock
)
1740 unsigned int src
= time_interpolator
->source
;
1742 if (time_interpolator
->jitter
)
1748 lcycle
= time_interpolator
->last_cycle
;
1749 now
= time_interpolator_get_cycles(src
);
1750 if (lcycle
&& time_after(lcycle
, now
))
1753 /* When holding the xtime write lock, there's no need
1754 * to add the overhead of the cmpxchg. Readers are
1755 * force to retry until the write lock is released.
1758 time_interpolator
->last_cycle
= now
;
1761 /* Keep track of the last timer value returned. The use of cmpxchg here
1762 * will cause contention in an SMP environment.
1764 } while (unlikely(cmpxchg(&time_interpolator
->last_cycle
, lcycle
, now
) != lcycle
));
1768 return time_interpolator_get_cycles(src
);
1771 void time_interpolator_reset(void)
1773 time_interpolator
->offset
= 0;
1774 time_interpolator
->last_counter
= time_interpolator_get_counter(1);
1777 #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1779 unsigned long time_interpolator_get_offset(void)
1781 /* If we do not have a time interpolator set up then just return zero */
1782 if (!time_interpolator
)
1785 return time_interpolator
->offset
+
1786 GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator
);
1789 #define INTERPOLATOR_ADJUST 65536
1790 #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1792 void time_interpolator_update(long delta_nsec
)
1795 unsigned long offset
;
1797 /* If there is no time interpolator set up then do nothing */
1798 if (!time_interpolator
)
1802 * The interpolator compensates for late ticks by accumulating the late
1803 * time in time_interpolator->offset. A tick earlier than expected will
1804 * lead to a reset of the offset and a corresponding jump of the clock
1805 * forward. Again this only works if the interpolator clock is running
1806 * slightly slower than the regular clock and the tuning logic insures
1810 counter
= time_interpolator_get_counter(1);
1811 offset
= time_interpolator
->offset
+
1812 GET_TI_NSECS(counter
, time_interpolator
);
1814 if (delta_nsec
< 0 || (unsigned long) delta_nsec
< offset
)
1815 time_interpolator
->offset
= offset
- delta_nsec
;
1817 time_interpolator
->skips
++;
1818 time_interpolator
->ns_skipped
+= delta_nsec
- offset
;
1819 time_interpolator
->offset
= 0;
1821 time_interpolator
->last_counter
= counter
;
1823 /* Tuning logic for time interpolator invoked every minute or so.
1824 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1825 * Increase interpolator clock speed if we skip too much time.
1827 if (jiffies
% INTERPOLATOR_ADJUST
== 0)
1829 if (time_interpolator
->skips
== 0 && time_interpolator
->offset
> tick_nsec
)
1830 time_interpolator
->nsec_per_cyc
--;
1831 if (time_interpolator
->ns_skipped
> INTERPOLATOR_MAX_SKIP
&& time_interpolator
->offset
== 0)
1832 time_interpolator
->nsec_per_cyc
++;
1833 time_interpolator
->skips
= 0;
1834 time_interpolator
->ns_skipped
= 0;
1839 is_better_time_interpolator(struct time_interpolator
*new)
1841 if (!time_interpolator
)
1843 return new->frequency
> 2*time_interpolator
->frequency
||
1844 (unsigned long)new->drift
< (unsigned long)time_interpolator
->drift
;
1848 register_time_interpolator(struct time_interpolator
*ti
)
1850 unsigned long flags
;
1853 BUG_ON(ti
->frequency
== 0 || ti
->mask
== 0);
1855 ti
->nsec_per_cyc
= ((u64
)NSEC_PER_SEC
<< ti
->shift
) / ti
->frequency
;
1856 spin_lock(&time_interpolator_lock
);
1857 write_seqlock_irqsave(&xtime_lock
, flags
);
1858 if (is_better_time_interpolator(ti
)) {
1859 time_interpolator
= ti
;
1860 time_interpolator_reset();
1862 write_sequnlock_irqrestore(&xtime_lock
, flags
);
1864 ti
->next
= time_interpolator_list
;
1865 time_interpolator_list
= ti
;
1866 spin_unlock(&time_interpolator_lock
);
1870 unregister_time_interpolator(struct time_interpolator
*ti
)
1872 struct time_interpolator
*curr
, **prev
;
1873 unsigned long flags
;
1875 spin_lock(&time_interpolator_lock
);
1876 prev
= &time_interpolator_list
;
1877 for (curr
= *prev
; curr
; curr
= curr
->next
) {
1885 write_seqlock_irqsave(&xtime_lock
, flags
);
1886 if (ti
== time_interpolator
) {
1887 /* we lost the best time-interpolator: */
1888 time_interpolator
= NULL
;
1889 /* find the next-best interpolator */
1890 for (curr
= time_interpolator_list
; curr
; curr
= curr
->next
)
1891 if (is_better_time_interpolator(curr
))
1892 time_interpolator
= curr
;
1893 time_interpolator_reset();
1895 write_sequnlock_irqrestore(&xtime_lock
, flags
);
1896 spin_unlock(&time_interpolator_lock
);
1898 #endif /* CONFIG_TIME_INTERPOLATION */
1901 * msleep - sleep safely even with waitqueue interruptions
1902 * @msecs: Time in milliseconds to sleep for
1904 void msleep(unsigned int msecs
)
1906 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1909 timeout
= schedule_timeout_uninterruptible(timeout
);
1912 EXPORT_SYMBOL(msleep
);
1915 * msleep_interruptible - sleep waiting for signals
1916 * @msecs: Time in milliseconds to sleep for
1918 unsigned long msleep_interruptible(unsigned int msecs
)
1920 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1922 while (timeout
&& !signal_pending(current
))
1923 timeout
= schedule_timeout_interruptible(timeout
);
1924 return jiffies_to_msecs(timeout
);
1927 EXPORT_SYMBOL(msleep_interruptible
);