2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/vmalloc.h>
31 #include <linux/sysctl.h>
32 #include <linux/list.h>
33 #include <linux/file.h>
34 #include <linux/poll.h>
35 #include <linux/vfs.h>
36 #include <linux/smp.h>
37 #include <linux/pagemap.h>
38 #include <linux/mount.h>
39 #include <linux/bitops.h>
40 #include <linux/capability.h>
41 #include <linux/rcupdate.h>
42 #include <linux/completion.h>
44 #include <asm/errno.h>
45 #include <asm/intrinsics.h>
47 #include <asm/perfmon.h>
48 #include <asm/processor.h>
49 #include <asm/signal.h>
50 #include <asm/system.h>
51 #include <asm/uaccess.h>
52 #include <asm/delay.h>
56 * perfmon context state
58 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
59 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
60 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
61 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
63 #define PFM_INVALID_ACTIVATION (~0UL)
65 #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
66 #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
69 * depth of message queue
71 #define PFM_MAX_MSGS 32
72 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
75 * type of a PMU register (bitmask).
77 * bit0 : register implemented
80 * bit4 : pmc has pmc.pm
81 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
82 * bit6-7 : register type
85 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
86 #define PFM_REG_IMPL 0x1 /* register implemented */
87 #define PFM_REG_END 0x2 /* end marker */
88 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
89 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
90 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
91 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
92 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
94 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
95 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
97 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
99 /* i assumed unsigned */
100 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
101 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
103 /* XXX: these assume that register i is implemented */
104 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
105 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
106 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
107 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
109 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
110 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
111 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
112 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
114 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
115 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
117 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
118 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
119 #define PFM_CTX_TASK(h) (h)->ctx_task
121 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
123 /* XXX: does not support more than 64 PMDs */
124 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
125 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
127 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
129 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
130 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
131 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
132 #define PFM_CODE_RR 0 /* requesting code range restriction */
133 #define PFM_DATA_RR 1 /* requestion data range restriction */
135 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
136 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
137 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
139 #define RDEP(x) (1UL<<(x))
142 * context protection macros
144 * - we need to protect against CPU concurrency (spin_lock)
145 * - we need to protect against PMU overflow interrupts (local_irq_disable)
147 * - we need to protect against PMU overflow interrupts (local_irq_disable)
149 * spin_lock_irqsave()/spin_unlock_irqrestore():
150 * in SMP: local_irq_disable + spin_lock
151 * in UP : local_irq_disable
153 * spin_lock()/spin_lock():
154 * in UP : removed automatically
155 * in SMP: protect against context accesses from other CPU. interrupts
156 * are not masked. This is useful for the PMU interrupt handler
157 * because we know we will not get PMU concurrency in that code.
159 #define PROTECT_CTX(c, f) \
161 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
162 spin_lock_irqsave(&(c)->ctx_lock, f); \
163 DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
166 #define UNPROTECT_CTX(c, f) \
168 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
169 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
172 #define PROTECT_CTX_NOPRINT(c, f) \
174 spin_lock_irqsave(&(c)->ctx_lock, f); \
178 #define UNPROTECT_CTX_NOPRINT(c, f) \
180 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
184 #define PROTECT_CTX_NOIRQ(c) \
186 spin_lock(&(c)->ctx_lock); \
189 #define UNPROTECT_CTX_NOIRQ(c) \
191 spin_unlock(&(c)->ctx_lock); \
197 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
198 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
199 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
201 #else /* !CONFIG_SMP */
202 #define SET_ACTIVATION(t) do {} while(0)
203 #define GET_ACTIVATION(t) do {} while(0)
204 #define INC_ACTIVATION(t) do {} while(0)
205 #endif /* CONFIG_SMP */
207 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
208 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
209 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
211 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
212 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
214 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
217 * cmp0 must be the value of pmc0
219 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
221 #define PFMFS_MAGIC 0xa0b4d889
226 #define PFM_DEBUGGING 1
230 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
233 #define DPRINT_ovfl(a) \
235 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
240 * 64-bit software counter structure
242 * the next_reset_type is applied to the next call to pfm_reset_regs()
245 unsigned long val
; /* virtual 64bit counter value */
246 unsigned long lval
; /* last reset value */
247 unsigned long long_reset
; /* reset value on sampling overflow */
248 unsigned long short_reset
; /* reset value on overflow */
249 unsigned long reset_pmds
[4]; /* which other pmds to reset when this counter overflows */
250 unsigned long smpl_pmds
[4]; /* which pmds are accessed when counter overflow */
251 unsigned long seed
; /* seed for random-number generator */
252 unsigned long mask
; /* mask for random-number generator */
253 unsigned int flags
; /* notify/do not notify */
254 unsigned long eventid
; /* overflow event identifier */
261 unsigned int block
:1; /* when 1, task will blocked on user notifications */
262 unsigned int system
:1; /* do system wide monitoring */
263 unsigned int using_dbreg
:1; /* using range restrictions (debug registers) */
264 unsigned int is_sampling
:1; /* true if using a custom format */
265 unsigned int excl_idle
:1; /* exclude idle task in system wide session */
266 unsigned int going_zombie
:1; /* context is zombie (MASKED+blocking) */
267 unsigned int trap_reason
:2; /* reason for going into pfm_handle_work() */
268 unsigned int no_msg
:1; /* no message sent on overflow */
269 unsigned int can_restart
:1; /* allowed to issue a PFM_RESTART */
270 unsigned int reserved
:22;
271 } pfm_context_flags_t
;
273 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
274 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
275 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
279 * perfmon context: encapsulates all the state of a monitoring session
282 typedef struct pfm_context
{
283 spinlock_t ctx_lock
; /* context protection */
285 pfm_context_flags_t ctx_flags
; /* bitmask of flags (block reason incl.) */
286 unsigned int ctx_state
; /* state: active/inactive (no bitfield) */
288 struct task_struct
*ctx_task
; /* task to which context is attached */
290 unsigned long ctx_ovfl_regs
[4]; /* which registers overflowed (notification) */
292 struct completion ctx_restart_done
; /* use for blocking notification mode */
294 unsigned long ctx_used_pmds
[4]; /* bitmask of PMD used */
295 unsigned long ctx_all_pmds
[4]; /* bitmask of all accessible PMDs */
296 unsigned long ctx_reload_pmds
[4]; /* bitmask of force reload PMD on ctxsw in */
298 unsigned long ctx_all_pmcs
[4]; /* bitmask of all accessible PMCs */
299 unsigned long ctx_reload_pmcs
[4]; /* bitmask of force reload PMC on ctxsw in */
300 unsigned long ctx_used_monitors
[4]; /* bitmask of monitor PMC being used */
302 unsigned long ctx_pmcs
[PFM_NUM_PMC_REGS
]; /* saved copies of PMC values */
304 unsigned int ctx_used_ibrs
[1]; /* bitmask of used IBR (speedup ctxsw in) */
305 unsigned int ctx_used_dbrs
[1]; /* bitmask of used DBR (speedup ctxsw in) */
306 unsigned long ctx_dbrs
[IA64_NUM_DBG_REGS
]; /* DBR values (cache) when not loaded */
307 unsigned long ctx_ibrs
[IA64_NUM_DBG_REGS
]; /* IBR values (cache) when not loaded */
309 pfm_counter_t ctx_pmds
[PFM_NUM_PMD_REGS
]; /* software state for PMDS */
311 unsigned long th_pmcs
[PFM_NUM_PMC_REGS
]; /* PMC thread save state */
312 unsigned long th_pmds
[PFM_NUM_PMD_REGS
]; /* PMD thread save state */
314 u64 ctx_saved_psr_up
; /* only contains psr.up value */
316 unsigned long ctx_last_activation
; /* context last activation number for last_cpu */
317 unsigned int ctx_last_cpu
; /* CPU id of current or last CPU used (SMP only) */
318 unsigned int ctx_cpu
; /* cpu to which perfmon is applied (system wide) */
320 int ctx_fd
; /* file descriptor used my this context */
321 pfm_ovfl_arg_t ctx_ovfl_arg
; /* argument to custom buffer format handler */
323 pfm_buffer_fmt_t
*ctx_buf_fmt
; /* buffer format callbacks */
324 void *ctx_smpl_hdr
; /* points to sampling buffer header kernel vaddr */
325 unsigned long ctx_smpl_size
; /* size of sampling buffer */
326 void *ctx_smpl_vaddr
; /* user level virtual address of smpl buffer */
328 wait_queue_head_t ctx_msgq_wait
;
329 pfm_msg_t ctx_msgq
[PFM_MAX_MSGS
];
332 struct fasync_struct
*ctx_async_queue
;
334 wait_queue_head_t ctx_zombieq
; /* termination cleanup wait queue */
338 * magic number used to verify that structure is really
341 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
343 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
346 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
347 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
349 #define SET_LAST_CPU(ctx, v) do {} while(0)
350 #define GET_LAST_CPU(ctx) do {} while(0)
354 #define ctx_fl_block ctx_flags.block
355 #define ctx_fl_system ctx_flags.system
356 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
357 #define ctx_fl_is_sampling ctx_flags.is_sampling
358 #define ctx_fl_excl_idle ctx_flags.excl_idle
359 #define ctx_fl_going_zombie ctx_flags.going_zombie
360 #define ctx_fl_trap_reason ctx_flags.trap_reason
361 #define ctx_fl_no_msg ctx_flags.no_msg
362 #define ctx_fl_can_restart ctx_flags.can_restart
364 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
365 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
368 * global information about all sessions
369 * mostly used to synchronize between system wide and per-process
372 spinlock_t pfs_lock
; /* lock the structure */
374 unsigned int pfs_task_sessions
; /* number of per task sessions */
375 unsigned int pfs_sys_sessions
; /* number of per system wide sessions */
376 unsigned int pfs_sys_use_dbregs
; /* incremented when a system wide session uses debug regs */
377 unsigned int pfs_ptrace_use_dbregs
; /* incremented when a process uses debug regs */
378 struct task_struct
*pfs_sys_session
[NR_CPUS
]; /* point to task owning a system-wide session */
382 * information about a PMC or PMD.
383 * dep_pmd[]: a bitmask of dependent PMD registers
384 * dep_pmc[]: a bitmask of dependent PMC registers
386 typedef int (*pfm_reg_check_t
)(struct task_struct
*task
, pfm_context_t
*ctx
, unsigned int cnum
, unsigned long *val
, struct pt_regs
*regs
);
390 unsigned long default_value
; /* power-on default value */
391 unsigned long reserved_mask
; /* bitmask of reserved bits */
392 pfm_reg_check_t read_check
;
393 pfm_reg_check_t write_check
;
394 unsigned long dep_pmd
[4];
395 unsigned long dep_pmc
[4];
398 /* assume cnum is a valid monitor */
399 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
402 * This structure is initialized at boot time and contains
403 * a description of the PMU main characteristics.
405 * If the probe function is defined, detection is based
406 * on its return value:
407 * - 0 means recognized PMU
408 * - anything else means not supported
409 * When the probe function is not defined, then the pmu_family field
410 * is used and it must match the host CPU family such that:
411 * - cpu->family & config->pmu_family != 0
414 unsigned long ovfl_val
; /* overflow value for counters */
416 pfm_reg_desc_t
*pmc_desc
; /* detailed PMC register dependencies descriptions */
417 pfm_reg_desc_t
*pmd_desc
; /* detailed PMD register dependencies descriptions */
419 unsigned int num_pmcs
; /* number of PMCS: computed at init time */
420 unsigned int num_pmds
; /* number of PMDS: computed at init time */
421 unsigned long impl_pmcs
[4]; /* bitmask of implemented PMCS */
422 unsigned long impl_pmds
[4]; /* bitmask of implemented PMDS */
424 char *pmu_name
; /* PMU family name */
425 unsigned int pmu_family
; /* cpuid family pattern used to identify pmu */
426 unsigned int flags
; /* pmu specific flags */
427 unsigned int num_ibrs
; /* number of IBRS: computed at init time */
428 unsigned int num_dbrs
; /* number of DBRS: computed at init time */
429 unsigned int num_counters
; /* PMC/PMD counting pairs : computed at init time */
430 int (*probe
)(void); /* customized probe routine */
431 unsigned int use_rr_dbregs
:1; /* set if debug registers used for range restriction */
436 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
439 * debug register related type definitions
442 unsigned long ibr_mask
:56;
443 unsigned long ibr_plm
:4;
444 unsigned long ibr_ig
:3;
445 unsigned long ibr_x
:1;
449 unsigned long dbr_mask
:56;
450 unsigned long dbr_plm
:4;
451 unsigned long dbr_ig
:2;
452 unsigned long dbr_w
:1;
453 unsigned long dbr_r
:1;
464 * perfmon command descriptions
467 int (*cmd_func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
470 unsigned int cmd_narg
;
472 int (*cmd_getsize
)(void *arg
, size_t *sz
);
475 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
476 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
477 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
478 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
481 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
482 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
483 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
484 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
485 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
487 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
490 unsigned long pfm_spurious_ovfl_intr_count
; /* keep track of spurious ovfl interrupts */
491 unsigned long pfm_replay_ovfl_intr_count
; /* keep track of replayed ovfl interrupts */
492 unsigned long pfm_ovfl_intr_count
; /* keep track of ovfl interrupts */
493 unsigned long pfm_ovfl_intr_cycles
; /* cycles spent processing ovfl interrupts */
494 unsigned long pfm_ovfl_intr_cycles_min
; /* min cycles spent processing ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles_max
; /* max cycles spent processing ovfl interrupts */
496 unsigned long pfm_smpl_handler_calls
;
497 unsigned long pfm_smpl_handler_cycles
;
498 char pad
[SMP_CACHE_BYTES
] ____cacheline_aligned
;
502 * perfmon internal variables
504 static pfm_stats_t pfm_stats
[NR_CPUS
];
505 static pfm_session_t pfm_sessions
; /* global sessions information */
507 static DEFINE_SPINLOCK(pfm_alt_install_check
);
508 static pfm_intr_handler_desc_t
*pfm_alt_intr_handler
;
510 static struct proc_dir_entry
*perfmon_dir
;
511 static pfm_uuid_t pfm_null_uuid
= {0,};
513 static spinlock_t pfm_buffer_fmt_lock
;
514 static LIST_HEAD(pfm_buffer_fmt_list
);
516 static pmu_config_t
*pmu_conf
;
518 /* sysctl() controls */
519 pfm_sysctl_t pfm_sysctl
;
520 EXPORT_SYMBOL(pfm_sysctl
);
522 static ctl_table pfm_ctl_table
[]={
524 .ctl_name
= CTL_UNNUMBERED
,
526 .data
= &pfm_sysctl
.debug
,
527 .maxlen
= sizeof(int),
529 .proc_handler
= &proc_dointvec
,
532 .ctl_name
= CTL_UNNUMBERED
,
533 .procname
= "debug_ovfl",
534 .data
= &pfm_sysctl
.debug_ovfl
,
535 .maxlen
= sizeof(int),
537 .proc_handler
= &proc_dointvec
,
540 .ctl_name
= CTL_UNNUMBERED
,
541 .procname
= "fastctxsw",
542 .data
= &pfm_sysctl
.fastctxsw
,
543 .maxlen
= sizeof(int),
545 .proc_handler
= &proc_dointvec
,
548 .ctl_name
= CTL_UNNUMBERED
,
549 .procname
= "expert_mode",
550 .data
= &pfm_sysctl
.expert_mode
,
551 .maxlen
= sizeof(int),
553 .proc_handler
= &proc_dointvec
,
557 static ctl_table pfm_sysctl_dir
[] = {
559 .ctl_name
= CTL_UNNUMBERED
,
560 .procname
= "perfmon",
562 .child
= pfm_ctl_table
,
566 static ctl_table pfm_sysctl_root
[] = {
568 .ctl_name
= CTL_KERN
,
569 .procname
= "kernel",
571 .child
= pfm_sysctl_dir
,
575 static struct ctl_table_header
*pfm_sysctl_header
;
577 static int pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
579 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
580 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
583 pfm_put_task(struct task_struct
*task
)
585 if (task
!= current
) put_task_struct(task
);
589 pfm_set_task_notify(struct task_struct
*task
)
591 struct thread_info
*info
;
593 info
= (struct thread_info
*) ((char *) task
+ IA64_TASK_SIZE
);
594 set_bit(TIF_PERFMON_WORK
, &info
->flags
);
598 pfm_clear_task_notify(void)
600 clear_thread_flag(TIF_PERFMON_WORK
);
604 pfm_reserve_page(unsigned long a
)
606 SetPageReserved(vmalloc_to_page((void *)a
));
609 pfm_unreserve_page(unsigned long a
)
611 ClearPageReserved(vmalloc_to_page((void*)a
));
614 static inline unsigned long
615 pfm_protect_ctx_ctxsw(pfm_context_t
*x
)
617 spin_lock(&(x
)->ctx_lock
);
622 pfm_unprotect_ctx_ctxsw(pfm_context_t
*x
, unsigned long f
)
624 spin_unlock(&(x
)->ctx_lock
);
627 static inline unsigned int
628 pfm_do_munmap(struct mm_struct
*mm
, unsigned long addr
, size_t len
, int acct
)
630 return do_munmap(mm
, addr
, len
);
633 static inline unsigned long
634 pfm_get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
, unsigned long pgoff
, unsigned long flags
, unsigned long exec
)
636 return get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
641 pfmfs_get_sb(struct file_system_type
*fs_type
, int flags
, const char *dev_name
, void *data
,
642 struct vfsmount
*mnt
)
644 return get_sb_pseudo(fs_type
, "pfm:", NULL
, PFMFS_MAGIC
, mnt
);
647 static struct file_system_type pfm_fs_type
= {
649 .get_sb
= pfmfs_get_sb
,
650 .kill_sb
= kill_anon_super
,
653 DEFINE_PER_CPU(unsigned long, pfm_syst_info
);
654 DEFINE_PER_CPU(struct task_struct
*, pmu_owner
);
655 DEFINE_PER_CPU(pfm_context_t
*, pmu_ctx
);
656 DEFINE_PER_CPU(unsigned long, pmu_activation_number
);
657 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info
);
660 /* forward declaration */
661 static const struct file_operations pfm_file_ops
;
664 * forward declarations
667 static void pfm_lazy_save_regs (struct task_struct
*ta
);
670 void dump_pmu_state(const char *);
671 static int pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
673 #include "perfmon_itanium.h"
674 #include "perfmon_mckinley.h"
675 #include "perfmon_montecito.h"
676 #include "perfmon_generic.h"
678 static pmu_config_t
*pmu_confs
[]={
682 &pmu_conf_gen
, /* must be last */
687 static int pfm_end_notify_user(pfm_context_t
*ctx
);
690 pfm_clear_psr_pp(void)
692 ia64_rsm(IA64_PSR_PP
);
699 ia64_ssm(IA64_PSR_PP
);
704 pfm_clear_psr_up(void)
706 ia64_rsm(IA64_PSR_UP
);
713 ia64_ssm(IA64_PSR_UP
);
717 static inline unsigned long
721 tmp
= ia64_getreg(_IA64_REG_PSR
);
727 pfm_set_psr_l(unsigned long val
)
729 ia64_setreg(_IA64_REG_PSR_L
, val
);
741 pfm_unfreeze_pmu(void)
748 pfm_restore_ibrs(unsigned long *ibrs
, unsigned int nibrs
)
752 for (i
=0; i
< nibrs
; i
++) {
753 ia64_set_ibr(i
, ibrs
[i
]);
754 ia64_dv_serialize_instruction();
760 pfm_restore_dbrs(unsigned long *dbrs
, unsigned int ndbrs
)
764 for (i
=0; i
< ndbrs
; i
++) {
765 ia64_set_dbr(i
, dbrs
[i
]);
766 ia64_dv_serialize_data();
772 * PMD[i] must be a counter. no check is made
774 static inline unsigned long
775 pfm_read_soft_counter(pfm_context_t
*ctx
, int i
)
777 return ctx
->ctx_pmds
[i
].val
+ (ia64_get_pmd(i
) & pmu_conf
->ovfl_val
);
781 * PMD[i] must be a counter. no check is made
784 pfm_write_soft_counter(pfm_context_t
*ctx
, int i
, unsigned long val
)
786 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
788 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
790 * writing to unimplemented part is ignore, so we do not need to
793 ia64_set_pmd(i
, val
& ovfl_val
);
797 pfm_get_new_msg(pfm_context_t
*ctx
)
801 next
= (ctx
->ctx_msgq_tail
+1) % PFM_MAX_MSGS
;
803 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
804 if (next
== ctx
->ctx_msgq_head
) return NULL
;
806 idx
= ctx
->ctx_msgq_tail
;
807 ctx
->ctx_msgq_tail
= next
;
809 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, idx
));
811 return ctx
->ctx_msgq
+idx
;
815 pfm_get_next_msg(pfm_context_t
*ctx
)
819 DPRINT(("ctx=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
821 if (PFM_CTXQ_EMPTY(ctx
)) return NULL
;
826 msg
= ctx
->ctx_msgq
+ctx
->ctx_msgq_head
;
831 ctx
->ctx_msgq_head
= (ctx
->ctx_msgq_head
+1) % PFM_MAX_MSGS
;
833 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, msg
->pfm_gen_msg
.msg_type
));
839 pfm_reset_msgq(pfm_context_t
*ctx
)
841 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
842 DPRINT(("ctx=%p msgq reset\n", ctx
));
846 pfm_rvmalloc(unsigned long size
)
851 size
= PAGE_ALIGN(size
);
854 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
855 memset(mem
, 0, size
);
856 addr
= (unsigned long)mem
;
858 pfm_reserve_page(addr
);
867 pfm_rvfree(void *mem
, unsigned long size
)
872 DPRINT(("freeing physical buffer @%p size=%lu\n", mem
, size
));
873 addr
= (unsigned long) mem
;
874 while ((long) size
> 0) {
875 pfm_unreserve_page(addr
);
884 static pfm_context_t
*
885 pfm_context_alloc(void)
890 * allocate context descriptor
891 * must be able to free with interrupts disabled
893 ctx
= kzalloc(sizeof(pfm_context_t
), GFP_KERNEL
);
895 DPRINT(("alloc ctx @%p\n", ctx
));
901 pfm_context_free(pfm_context_t
*ctx
)
904 DPRINT(("free ctx @%p\n", ctx
));
910 pfm_mask_monitoring(struct task_struct
*task
)
912 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
913 unsigned long mask
, val
, ovfl_mask
;
916 DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task
)));
918 ovfl_mask
= pmu_conf
->ovfl_val
;
920 * monitoring can only be masked as a result of a valid
921 * counter overflow. In UP, it means that the PMU still
922 * has an owner. Note that the owner can be different
923 * from the current task. However the PMU state belongs
925 * In SMP, a valid overflow only happens when task is
926 * current. Therefore if we come here, we know that
927 * the PMU state belongs to the current task, therefore
928 * we can access the live registers.
930 * So in both cases, the live register contains the owner's
931 * state. We can ONLY touch the PMU registers and NOT the PSR.
933 * As a consequence to this call, the ctx->th_pmds[] array
934 * contains stale information which must be ignored
935 * when context is reloaded AND monitoring is active (see
938 mask
= ctx
->ctx_used_pmds
[0];
939 for (i
= 0; mask
; i
++, mask
>>=1) {
940 /* skip non used pmds */
941 if ((mask
& 0x1) == 0) continue;
942 val
= ia64_get_pmd(i
);
944 if (PMD_IS_COUNTING(i
)) {
946 * we rebuild the full 64 bit value of the counter
948 ctx
->ctx_pmds
[i
].val
+= (val
& ovfl_mask
);
950 ctx
->ctx_pmds
[i
].val
= val
;
952 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
954 ctx
->ctx_pmds
[i
].val
,
958 * mask monitoring by setting the privilege level to 0
959 * we cannot use psr.pp/psr.up for this, it is controlled by
962 * if task is current, modify actual registers, otherwise modify
963 * thread save state, i.e., what will be restored in pfm_load_regs()
965 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
966 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
967 if ((mask
& 0x1) == 0UL) continue;
968 ia64_set_pmc(i
, ctx
->th_pmcs
[i
] & ~0xfUL
);
969 ctx
->th_pmcs
[i
] &= ~0xfUL
;
970 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i
, ctx
->th_pmcs
[i
]));
973 * make all of this visible
979 * must always be done with task == current
981 * context must be in MASKED state when calling
984 pfm_restore_monitoring(struct task_struct
*task
)
986 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
987 unsigned long mask
, ovfl_mask
;
988 unsigned long psr
, val
;
991 is_system
= ctx
->ctx_fl_system
;
992 ovfl_mask
= pmu_conf
->ovfl_val
;
994 if (task
!= current
) {
995 printk(KERN_ERR
"perfmon.%d: invalid task[%d] current[%d]\n", __LINE__
, task_pid_nr(task
), task_pid_nr(current
));
998 if (ctx
->ctx_state
!= PFM_CTX_MASKED
) {
999 printk(KERN_ERR
"perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__
,
1000 task_pid_nr(task
), task_pid_nr(current
), ctx
->ctx_state
);
1003 psr
= pfm_get_psr();
1005 * monitoring is masked via the PMC.
1006 * As we restore their value, we do not want each counter to
1007 * restart right away. We stop monitoring using the PSR,
1008 * restore the PMC (and PMD) and then re-establish the psr
1009 * as it was. Note that there can be no pending overflow at
1010 * this point, because monitoring was MASKED.
1012 * system-wide session are pinned and self-monitoring
1014 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
1015 /* disable dcr pp */
1016 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
1022 * first, we restore the PMD
1024 mask
= ctx
->ctx_used_pmds
[0];
1025 for (i
= 0; mask
; i
++, mask
>>=1) {
1026 /* skip non used pmds */
1027 if ((mask
& 0x1) == 0) continue;
1029 if (PMD_IS_COUNTING(i
)) {
1031 * we split the 64bit value according to
1034 val
= ctx
->ctx_pmds
[i
].val
& ovfl_mask
;
1035 ctx
->ctx_pmds
[i
].val
&= ~ovfl_mask
;
1037 val
= ctx
->ctx_pmds
[i
].val
;
1039 ia64_set_pmd(i
, val
);
1041 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1043 ctx
->ctx_pmds
[i
].val
,
1049 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
1050 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
1051 if ((mask
& 0x1) == 0UL) continue;
1052 ctx
->th_pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1053 ia64_set_pmc(i
, ctx
->th_pmcs
[i
]);
1054 DPRINT(("[%d] pmc[%d]=0x%lx\n",
1055 task_pid_nr(task
), i
, ctx
->th_pmcs
[i
]));
1060 * must restore DBR/IBR because could be modified while masked
1061 * XXX: need to optimize
1063 if (ctx
->ctx_fl_using_dbreg
) {
1064 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
1065 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
1071 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
1073 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
1080 pfm_save_pmds(unsigned long *pmds
, unsigned long mask
)
1086 for (i
=0; mask
; i
++, mask
>>=1) {
1087 if (mask
& 0x1) pmds
[i
] = ia64_get_pmd(i
);
1092 * reload from thread state (used for ctxw only)
1095 pfm_restore_pmds(unsigned long *pmds
, unsigned long mask
)
1098 unsigned long val
, ovfl_val
= pmu_conf
->ovfl_val
;
1100 for (i
=0; mask
; i
++, mask
>>=1) {
1101 if ((mask
& 0x1) == 0) continue;
1102 val
= PMD_IS_COUNTING(i
) ? pmds
[i
] & ovfl_val
: pmds
[i
];
1103 ia64_set_pmd(i
, val
);
1109 * propagate PMD from context to thread-state
1112 pfm_copy_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
1114 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
1115 unsigned long mask
= ctx
->ctx_all_pmds
[0];
1119 DPRINT(("mask=0x%lx\n", mask
));
1121 for (i
=0; mask
; i
++, mask
>>=1) {
1123 val
= ctx
->ctx_pmds
[i
].val
;
1126 * We break up the 64 bit value into 2 pieces
1127 * the lower bits go to the machine state in the
1128 * thread (will be reloaded on ctxsw in).
1129 * The upper part stays in the soft-counter.
1131 if (PMD_IS_COUNTING(i
)) {
1132 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
1135 ctx
->th_pmds
[i
] = val
;
1137 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1140 ctx
->ctx_pmds
[i
].val
));
1145 * propagate PMC from context to thread-state
1148 pfm_copy_pmcs(struct task_struct
*task
, pfm_context_t
*ctx
)
1150 unsigned long mask
= ctx
->ctx_all_pmcs
[0];
1153 DPRINT(("mask=0x%lx\n", mask
));
1155 for (i
=0; mask
; i
++, mask
>>=1) {
1156 /* masking 0 with ovfl_val yields 0 */
1157 ctx
->th_pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1158 DPRINT(("pmc[%d]=0x%lx\n", i
, ctx
->th_pmcs
[i
]));
1165 pfm_restore_pmcs(unsigned long *pmcs
, unsigned long mask
)
1169 for (i
=0; mask
; i
++, mask
>>=1) {
1170 if ((mask
& 0x1) == 0) continue;
1171 ia64_set_pmc(i
, pmcs
[i
]);
1177 pfm_uuid_cmp(pfm_uuid_t a
, pfm_uuid_t b
)
1179 return memcmp(a
, b
, sizeof(pfm_uuid_t
));
1183 pfm_buf_fmt_exit(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, struct pt_regs
*regs
)
1186 if (fmt
->fmt_exit
) ret
= (*fmt
->fmt_exit
)(task
, buf
, regs
);
1191 pfm_buf_fmt_getsize(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
, int cpu
, void *arg
, unsigned long *size
)
1194 if (fmt
->fmt_getsize
) ret
= (*fmt
->fmt_getsize
)(task
, flags
, cpu
, arg
, size
);
1200 pfm_buf_fmt_validate(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
,
1204 if (fmt
->fmt_validate
) ret
= (*fmt
->fmt_validate
)(task
, flags
, cpu
, arg
);
1209 pfm_buf_fmt_init(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, unsigned int flags
,
1213 if (fmt
->fmt_init
) ret
= (*fmt
->fmt_init
)(task
, buf
, flags
, cpu
, arg
);
1218 pfm_buf_fmt_restart(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1221 if (fmt
->fmt_restart
) ret
= (*fmt
->fmt_restart
)(task
, ctrl
, buf
, regs
);
1226 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1229 if (fmt
->fmt_restart_active
) ret
= (*fmt
->fmt_restart_active
)(task
, ctrl
, buf
, regs
);
1233 static pfm_buffer_fmt_t
*
1234 __pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1236 struct list_head
* pos
;
1237 pfm_buffer_fmt_t
* entry
;
1239 list_for_each(pos
, &pfm_buffer_fmt_list
) {
1240 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
1241 if (pfm_uuid_cmp(uuid
, entry
->fmt_uuid
) == 0)
1248 * find a buffer format based on its uuid
1250 static pfm_buffer_fmt_t
*
1251 pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1253 pfm_buffer_fmt_t
* fmt
;
1254 spin_lock(&pfm_buffer_fmt_lock
);
1255 fmt
= __pfm_find_buffer_fmt(uuid
);
1256 spin_unlock(&pfm_buffer_fmt_lock
);
1261 pfm_register_buffer_fmt(pfm_buffer_fmt_t
*fmt
)
1265 /* some sanity checks */
1266 if (fmt
== NULL
|| fmt
->fmt_name
== NULL
) return -EINVAL
;
1268 /* we need at least a handler */
1269 if (fmt
->fmt_handler
== NULL
) return -EINVAL
;
1272 * XXX: need check validity of fmt_arg_size
1275 spin_lock(&pfm_buffer_fmt_lock
);
1277 if (__pfm_find_buffer_fmt(fmt
->fmt_uuid
)) {
1278 printk(KERN_ERR
"perfmon: duplicate sampling format: %s\n", fmt
->fmt_name
);
1282 list_add(&fmt
->fmt_list
, &pfm_buffer_fmt_list
);
1283 printk(KERN_INFO
"perfmon: added sampling format %s\n", fmt
->fmt_name
);
1286 spin_unlock(&pfm_buffer_fmt_lock
);
1289 EXPORT_SYMBOL(pfm_register_buffer_fmt
);
1292 pfm_unregister_buffer_fmt(pfm_uuid_t uuid
)
1294 pfm_buffer_fmt_t
*fmt
;
1297 spin_lock(&pfm_buffer_fmt_lock
);
1299 fmt
= __pfm_find_buffer_fmt(uuid
);
1301 printk(KERN_ERR
"perfmon: cannot unregister format, not found\n");
1305 list_del_init(&fmt
->fmt_list
);
1306 printk(KERN_INFO
"perfmon: removed sampling format: %s\n", fmt
->fmt_name
);
1309 spin_unlock(&pfm_buffer_fmt_lock
);
1313 EXPORT_SYMBOL(pfm_unregister_buffer_fmt
);
1315 extern void update_pal_halt_status(int);
1318 pfm_reserve_session(struct task_struct
*task
, int is_syswide
, unsigned int cpu
)
1320 unsigned long flags
;
1322 * validity checks on cpu_mask have been done upstream
1326 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1327 pfm_sessions
.pfs_sys_sessions
,
1328 pfm_sessions
.pfs_task_sessions
,
1329 pfm_sessions
.pfs_sys_use_dbregs
,
1335 * cannot mix system wide and per-task sessions
1337 if (pfm_sessions
.pfs_task_sessions
> 0UL) {
1338 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1339 pfm_sessions
.pfs_task_sessions
));
1343 if (pfm_sessions
.pfs_sys_session
[cpu
]) goto error_conflict
;
1345 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu
, smp_processor_id()));
1347 pfm_sessions
.pfs_sys_session
[cpu
] = task
;
1349 pfm_sessions
.pfs_sys_sessions
++ ;
1352 if (pfm_sessions
.pfs_sys_sessions
) goto abort
;
1353 pfm_sessions
.pfs_task_sessions
++;
1356 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1357 pfm_sessions
.pfs_sys_sessions
,
1358 pfm_sessions
.pfs_task_sessions
,
1359 pfm_sessions
.pfs_sys_use_dbregs
,
1364 * disable default_idle() to go to PAL_HALT
1366 update_pal_halt_status(0);
1373 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1374 task_pid_nr(pfm_sessions
.pfs_sys_session
[cpu
]),
1384 pfm_unreserve_session(pfm_context_t
*ctx
, int is_syswide
, unsigned int cpu
)
1386 unsigned long flags
;
1388 * validity checks on cpu_mask have been done upstream
1392 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1393 pfm_sessions
.pfs_sys_sessions
,
1394 pfm_sessions
.pfs_task_sessions
,
1395 pfm_sessions
.pfs_sys_use_dbregs
,
1401 pfm_sessions
.pfs_sys_session
[cpu
] = NULL
;
1403 * would not work with perfmon+more than one bit in cpu_mask
1405 if (ctx
&& ctx
->ctx_fl_using_dbreg
) {
1406 if (pfm_sessions
.pfs_sys_use_dbregs
== 0) {
1407 printk(KERN_ERR
"perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx
);
1409 pfm_sessions
.pfs_sys_use_dbregs
--;
1412 pfm_sessions
.pfs_sys_sessions
--;
1414 pfm_sessions
.pfs_task_sessions
--;
1416 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1417 pfm_sessions
.pfs_sys_sessions
,
1418 pfm_sessions
.pfs_task_sessions
,
1419 pfm_sessions
.pfs_sys_use_dbregs
,
1424 * if possible, enable default_idle() to go into PAL_HALT
1426 if (pfm_sessions
.pfs_task_sessions
== 0 && pfm_sessions
.pfs_sys_sessions
== 0)
1427 update_pal_halt_status(1);
1435 * removes virtual mapping of the sampling buffer.
1436 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1437 * a PROTECT_CTX() section.
1440 pfm_remove_smpl_mapping(struct task_struct
*task
, void *vaddr
, unsigned long size
)
1445 if (task
->mm
== NULL
|| size
== 0UL || vaddr
== NULL
) {
1446 printk(KERN_ERR
"perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task
), task
->mm
);
1450 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr
, size
));
1453 * does the actual unmapping
1455 down_write(&task
->mm
->mmap_sem
);
1457 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr
, size
));
1459 r
= pfm_do_munmap(task
->mm
, (unsigned long)vaddr
, size
, 0);
1461 up_write(&task
->mm
->mmap_sem
);
1463 printk(KERN_ERR
"perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task
), vaddr
, size
);
1466 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr
, size
, r
));
1472 * free actual physical storage used by sampling buffer
1476 pfm_free_smpl_buffer(pfm_context_t
*ctx
)
1478 pfm_buffer_fmt_t
*fmt
;
1480 if (ctx
->ctx_smpl_hdr
== NULL
) goto invalid_free
;
1483 * we won't use the buffer format anymore
1485 fmt
= ctx
->ctx_buf_fmt
;
1487 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1490 ctx
->ctx_smpl_vaddr
));
1492 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1497 pfm_rvfree(ctx
->ctx_smpl_hdr
, ctx
->ctx_smpl_size
);
1499 ctx
->ctx_smpl_hdr
= NULL
;
1500 ctx
->ctx_smpl_size
= 0UL;
1505 printk(KERN_ERR
"perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current
));
1511 pfm_exit_smpl_buffer(pfm_buffer_fmt_t
*fmt
)
1513 if (fmt
== NULL
) return;
1515 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1520 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1521 * no real gain from having the whole whorehouse mounted. So we don't need
1522 * any operations on the root directory. However, we need a non-trivial
1523 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1525 static struct vfsmount
*pfmfs_mnt
;
1530 int err
= register_filesystem(&pfm_fs_type
);
1532 pfmfs_mnt
= kern_mount(&pfm_fs_type
);
1533 err
= PTR_ERR(pfmfs_mnt
);
1534 if (IS_ERR(pfmfs_mnt
))
1535 unregister_filesystem(&pfm_fs_type
);
1543 pfm_read(struct file
*filp
, char __user
*buf
, size_t size
, loff_t
*ppos
)
1548 unsigned long flags
;
1549 DECLARE_WAITQUEUE(wait
, current
);
1550 if (PFM_IS_FILE(filp
) == 0) {
1551 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current
));
1555 ctx
= (pfm_context_t
*)filp
->private_data
;
1557 printk(KERN_ERR
"perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current
));
1562 * check even when there is no message
1564 if (size
< sizeof(pfm_msg_t
)) {
1565 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx
, sizeof(pfm_msg_t
)));
1569 PROTECT_CTX(ctx
, flags
);
1572 * put ourselves on the wait queue
1574 add_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1582 set_current_state(TASK_INTERRUPTIBLE
);
1584 DPRINT(("head=%d tail=%d\n", ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
1587 if(PFM_CTXQ_EMPTY(ctx
) == 0) break;
1589 UNPROTECT_CTX(ctx
, flags
);
1592 * check non-blocking read
1595 if(filp
->f_flags
& O_NONBLOCK
) break;
1598 * check pending signals
1600 if(signal_pending(current
)) {
1605 * no message, so wait
1609 PROTECT_CTX(ctx
, flags
);
1611 DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current
), ret
));
1612 set_current_state(TASK_RUNNING
);
1613 remove_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1615 if (ret
< 0) goto abort
;
1618 msg
= pfm_get_next_msg(ctx
);
1620 printk(KERN_ERR
"perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx
, task_pid_nr(current
));
1624 DPRINT(("fd=%d type=%d\n", msg
->pfm_gen_msg
.msg_ctx_fd
, msg
->pfm_gen_msg
.msg_type
));
1627 if(copy_to_user(buf
, msg
, sizeof(pfm_msg_t
)) == 0) ret
= sizeof(pfm_msg_t
);
1630 UNPROTECT_CTX(ctx
, flags
);
1636 pfm_write(struct file
*file
, const char __user
*ubuf
,
1637 size_t size
, loff_t
*ppos
)
1639 DPRINT(("pfm_write called\n"));
1644 pfm_poll(struct file
*filp
, poll_table
* wait
)
1647 unsigned long flags
;
1648 unsigned int mask
= 0;
1650 if (PFM_IS_FILE(filp
) == 0) {
1651 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current
));
1655 ctx
= (pfm_context_t
*)filp
->private_data
;
1657 printk(KERN_ERR
"perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current
));
1662 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx
->ctx_fd
));
1664 poll_wait(filp
, &ctx
->ctx_msgq_wait
, wait
);
1666 PROTECT_CTX(ctx
, flags
);
1668 if (PFM_CTXQ_EMPTY(ctx
) == 0)
1669 mask
= POLLIN
| POLLRDNORM
;
1671 UNPROTECT_CTX(ctx
, flags
);
1673 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx
->ctx_fd
, mask
));
1679 pfm_ioctl(struct inode
*inode
, struct file
*file
, unsigned int cmd
, unsigned long arg
)
1681 DPRINT(("pfm_ioctl called\n"));
1686 * interrupt cannot be masked when coming here
1689 pfm_do_fasync(int fd
, struct file
*filp
, pfm_context_t
*ctx
, int on
)
1693 ret
= fasync_helper (fd
, filp
, on
, &ctx
->ctx_async_queue
);
1695 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1696 task_pid_nr(current
),
1699 ctx
->ctx_async_queue
, ret
));
1705 pfm_fasync(int fd
, struct file
*filp
, int on
)
1710 if (PFM_IS_FILE(filp
) == 0) {
1711 printk(KERN_ERR
"perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current
));
1715 ctx
= (pfm_context_t
*)filp
->private_data
;
1717 printk(KERN_ERR
"perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current
));
1721 * we cannot mask interrupts during this call because this may
1722 * may go to sleep if memory is not readily avalaible.
1724 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1725 * done in caller. Serialization of this function is ensured by caller.
1727 ret
= pfm_do_fasync(fd
, filp
, ctx
, on
);
1730 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1733 ctx
->ctx_async_queue
, ret
));
1740 * this function is exclusively called from pfm_close().
1741 * The context is not protected at that time, nor are interrupts
1742 * on the remote CPU. That's necessary to avoid deadlocks.
1745 pfm_syswide_force_stop(void *info
)
1747 pfm_context_t
*ctx
= (pfm_context_t
*)info
;
1748 struct pt_regs
*regs
= task_pt_regs(current
);
1749 struct task_struct
*owner
;
1750 unsigned long flags
;
1753 if (ctx
->ctx_cpu
!= smp_processor_id()) {
1754 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1756 smp_processor_id());
1759 owner
= GET_PMU_OWNER();
1760 if (owner
!= ctx
->ctx_task
) {
1761 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1763 task_pid_nr(owner
), task_pid_nr(ctx
->ctx_task
));
1766 if (GET_PMU_CTX() != ctx
) {
1767 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1769 GET_PMU_CTX(), ctx
);
1773 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx
->ctx_task
)));
1775 * the context is already protected in pfm_close(), we simply
1776 * need to mask interrupts to avoid a PMU interrupt race on
1779 local_irq_save(flags
);
1781 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
1783 DPRINT(("context_unload returned %d\n", ret
));
1787 * unmask interrupts, PMU interrupts are now spurious here
1789 local_irq_restore(flags
);
1793 pfm_syswide_cleanup_other_cpu(pfm_context_t
*ctx
)
1797 DPRINT(("calling CPU%d for cleanup\n", ctx
->ctx_cpu
));
1798 ret
= smp_call_function_single(ctx
->ctx_cpu
, pfm_syswide_force_stop
, ctx
, 0, 1);
1799 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx
->ctx_cpu
, ret
));
1801 #endif /* CONFIG_SMP */
1804 * called for each close(). Partially free resources.
1805 * When caller is self-monitoring, the context is unloaded.
1808 pfm_flush(struct file
*filp
, fl_owner_t id
)
1811 struct task_struct
*task
;
1812 struct pt_regs
*regs
;
1813 unsigned long flags
;
1814 unsigned long smpl_buf_size
= 0UL;
1815 void *smpl_buf_vaddr
= NULL
;
1816 int state
, is_system
;
1818 if (PFM_IS_FILE(filp
) == 0) {
1819 DPRINT(("bad magic for\n"));
1823 ctx
= (pfm_context_t
*)filp
->private_data
;
1825 printk(KERN_ERR
"perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current
));
1830 * remove our file from the async queue, if we use this mode.
1831 * This can be done without the context being protected. We come
1832 * here when the context has become unreachable by other tasks.
1834 * We may still have active monitoring at this point and we may
1835 * end up in pfm_overflow_handler(). However, fasync_helper()
1836 * operates with interrupts disabled and it cleans up the
1837 * queue. If the PMU handler is called prior to entering
1838 * fasync_helper() then it will send a signal. If it is
1839 * invoked after, it will find an empty queue and no
1840 * signal will be sent. In both case, we are safe
1842 if (filp
->f_flags
& FASYNC
) {
1843 DPRINT(("cleaning up async_queue=%p\n", ctx
->ctx_async_queue
));
1844 pfm_do_fasync (-1, filp
, ctx
, 0);
1847 PROTECT_CTX(ctx
, flags
);
1849 state
= ctx
->ctx_state
;
1850 is_system
= ctx
->ctx_fl_system
;
1852 task
= PFM_CTX_TASK(ctx
);
1853 regs
= task_pt_regs(task
);
1855 DPRINT(("ctx_state=%d is_current=%d\n",
1857 task
== current
? 1 : 0));
1860 * if state == UNLOADED, then task is NULL
1864 * we must stop and unload because we are losing access to the context.
1866 if (task
== current
) {
1869 * the task IS the owner but it migrated to another CPU: that's bad
1870 * but we must handle this cleanly. Unfortunately, the kernel does
1871 * not provide a mechanism to block migration (while the context is loaded).
1873 * We need to release the resource on the ORIGINAL cpu.
1875 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
1877 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
1879 * keep context protected but unmask interrupt for IPI
1881 local_irq_restore(flags
);
1883 pfm_syswide_cleanup_other_cpu(ctx
);
1886 * restore interrupt masking
1888 local_irq_save(flags
);
1891 * context is unloaded at this point
1894 #endif /* CONFIG_SMP */
1897 DPRINT(("forcing unload\n"));
1899 * stop and unload, returning with state UNLOADED
1900 * and session unreserved.
1902 pfm_context_unload(ctx
, NULL
, 0, regs
);
1904 DPRINT(("ctx_state=%d\n", ctx
->ctx_state
));
1909 * remove virtual mapping, if any, for the calling task.
1910 * cannot reset ctx field until last user is calling close().
1912 * ctx_smpl_vaddr must never be cleared because it is needed
1913 * by every task with access to the context
1915 * When called from do_exit(), the mm context is gone already, therefore
1916 * mm is NULL, i.e., the VMA is already gone and we do not have to
1919 if (ctx
->ctx_smpl_vaddr
&& current
->mm
) {
1920 smpl_buf_vaddr
= ctx
->ctx_smpl_vaddr
;
1921 smpl_buf_size
= ctx
->ctx_smpl_size
;
1924 UNPROTECT_CTX(ctx
, flags
);
1927 * if there was a mapping, then we systematically remove it
1928 * at this point. Cannot be done inside critical section
1929 * because some VM function reenables interrupts.
1932 if (smpl_buf_vaddr
) pfm_remove_smpl_mapping(current
, smpl_buf_vaddr
, smpl_buf_size
);
1937 * called either on explicit close() or from exit_files().
1938 * Only the LAST user of the file gets to this point, i.e., it is
1941 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1942 * (fput()),i.e, last task to access the file. Nobody else can access the
1943 * file at this point.
1945 * When called from exit_files(), the VMA has been freed because exit_mm()
1946 * is executed before exit_files().
1948 * When called from exit_files(), the current task is not yet ZOMBIE but we
1949 * flush the PMU state to the context.
1952 pfm_close(struct inode
*inode
, struct file
*filp
)
1955 struct task_struct
*task
;
1956 struct pt_regs
*regs
;
1957 DECLARE_WAITQUEUE(wait
, current
);
1958 unsigned long flags
;
1959 unsigned long smpl_buf_size
= 0UL;
1960 void *smpl_buf_addr
= NULL
;
1961 int free_possible
= 1;
1962 int state
, is_system
;
1964 DPRINT(("pfm_close called private=%p\n", filp
->private_data
));
1966 if (PFM_IS_FILE(filp
) == 0) {
1967 DPRINT(("bad magic\n"));
1971 ctx
= (pfm_context_t
*)filp
->private_data
;
1973 printk(KERN_ERR
"perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current
));
1977 PROTECT_CTX(ctx
, flags
);
1979 state
= ctx
->ctx_state
;
1980 is_system
= ctx
->ctx_fl_system
;
1982 task
= PFM_CTX_TASK(ctx
);
1983 regs
= task_pt_regs(task
);
1985 DPRINT(("ctx_state=%d is_current=%d\n",
1987 task
== current
? 1 : 0));
1990 * if task == current, then pfm_flush() unloaded the context
1992 if (state
== PFM_CTX_UNLOADED
) goto doit
;
1995 * context is loaded/masked and task != current, we need to
1996 * either force an unload or go zombie
2000 * The task is currently blocked or will block after an overflow.
2001 * we must force it to wakeup to get out of the
2002 * MASKED state and transition to the unloaded state by itself.
2004 * This situation is only possible for per-task mode
2006 if (state
== PFM_CTX_MASKED
&& CTX_OVFL_NOBLOCK(ctx
) == 0) {
2009 * set a "partial" zombie state to be checked
2010 * upon return from down() in pfm_handle_work().
2012 * We cannot use the ZOMBIE state, because it is checked
2013 * by pfm_load_regs() which is called upon wakeup from down().
2014 * In such case, it would free the context and then we would
2015 * return to pfm_handle_work() which would access the
2016 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2017 * but visible to pfm_handle_work().
2019 * For some window of time, we have a zombie context with
2020 * ctx_state = MASKED and not ZOMBIE
2022 ctx
->ctx_fl_going_zombie
= 1;
2025 * force task to wake up from MASKED state
2027 complete(&ctx
->ctx_restart_done
);
2029 DPRINT(("waking up ctx_state=%d\n", state
));
2032 * put ourself to sleep waiting for the other
2033 * task to report completion
2035 * the context is protected by mutex, therefore there
2036 * is no risk of being notified of completion before
2037 * begin actually on the waitq.
2039 set_current_state(TASK_INTERRUPTIBLE
);
2040 add_wait_queue(&ctx
->ctx_zombieq
, &wait
);
2042 UNPROTECT_CTX(ctx
, flags
);
2045 * XXX: check for signals :
2046 * - ok for explicit close
2047 * - not ok when coming from exit_files()
2052 PROTECT_CTX(ctx
, flags
);
2055 remove_wait_queue(&ctx
->ctx_zombieq
, &wait
);
2056 set_current_state(TASK_RUNNING
);
2059 * context is unloaded at this point
2061 DPRINT(("after zombie wakeup ctx_state=%d for\n", state
));
2063 else if (task
!= current
) {
2066 * switch context to zombie state
2068 ctx
->ctx_state
= PFM_CTX_ZOMBIE
;
2070 DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task
)));
2072 * cannot free the context on the spot. deferred until
2073 * the task notices the ZOMBIE state
2077 pfm_context_unload(ctx
, NULL
, 0, regs
);
2082 /* reload state, may have changed during opening of critical section */
2083 state
= ctx
->ctx_state
;
2086 * the context is still attached to a task (possibly current)
2087 * we cannot destroy it right now
2091 * we must free the sampling buffer right here because
2092 * we cannot rely on it being cleaned up later by the
2093 * monitored task. It is not possible to free vmalloc'ed
2094 * memory in pfm_load_regs(). Instead, we remove the buffer
2095 * now. should there be subsequent PMU overflow originally
2096 * meant for sampling, the will be converted to spurious
2097 * and that's fine because the monitoring tools is gone anyway.
2099 if (ctx
->ctx_smpl_hdr
) {
2100 smpl_buf_addr
= ctx
->ctx_smpl_hdr
;
2101 smpl_buf_size
= ctx
->ctx_smpl_size
;
2102 /* no more sampling */
2103 ctx
->ctx_smpl_hdr
= NULL
;
2104 ctx
->ctx_fl_is_sampling
= 0;
2107 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2113 if (smpl_buf_addr
) pfm_exit_smpl_buffer(ctx
->ctx_buf_fmt
);
2116 * UNLOADED that the session has already been unreserved.
2118 if (state
== PFM_CTX_ZOMBIE
) {
2119 pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, ctx
->ctx_cpu
);
2123 * disconnect file descriptor from context must be done
2126 filp
->private_data
= NULL
;
2129 * if we free on the spot, the context is now completely unreachable
2130 * from the callers side. The monitored task side is also cut, so we
2133 * If we have a deferred free, only the caller side is disconnected.
2135 UNPROTECT_CTX(ctx
, flags
);
2138 * All memory free operations (especially for vmalloc'ed memory)
2139 * MUST be done with interrupts ENABLED.
2141 if (smpl_buf_addr
) pfm_rvfree(smpl_buf_addr
, smpl_buf_size
);
2144 * return the memory used by the context
2146 if (free_possible
) pfm_context_free(ctx
);
2152 pfm_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
2154 DPRINT(("pfm_no_open called\n"));
2160 static const struct file_operations pfm_file_ops
= {
2161 .llseek
= no_llseek
,
2166 .open
= pfm_no_open
, /* special open code to disallow open via /proc */
2167 .fasync
= pfm_fasync
,
2168 .release
= pfm_close
,
2173 pfmfs_delete_dentry(struct dentry
*dentry
)
2178 static struct dentry_operations pfmfs_dentry_operations
= {
2179 .d_delete
= pfmfs_delete_dentry
,
2184 pfm_alloc_fd(struct file
**cfile
)
2187 struct file
*file
= NULL
;
2188 struct inode
* inode
;
2192 fd
= get_unused_fd();
2193 if (fd
< 0) return -ENFILE
;
2197 file
= get_empty_filp();
2198 if (!file
) goto out
;
2201 * allocate a new inode
2203 inode
= new_inode(pfmfs_mnt
->mnt_sb
);
2204 if (!inode
) goto out
;
2206 DPRINT(("new inode ino=%ld @%p\n", inode
->i_ino
, inode
));
2208 inode
->i_mode
= S_IFCHR
|S_IRUGO
;
2209 inode
->i_uid
= current
->fsuid
;
2210 inode
->i_gid
= current
->fsgid
;
2212 sprintf(name
, "[%lu]", inode
->i_ino
);
2214 this.len
= strlen(name
);
2215 this.hash
= inode
->i_ino
;
2220 * allocate a new dcache entry
2222 file
->f_path
.dentry
= d_alloc(pfmfs_mnt
->mnt_sb
->s_root
, &this);
2223 if (!file
->f_path
.dentry
) goto out
;
2225 file
->f_path
.dentry
->d_op
= &pfmfs_dentry_operations
;
2227 d_add(file
->f_path
.dentry
, inode
);
2228 file
->f_path
.mnt
= mntget(pfmfs_mnt
);
2229 file
->f_mapping
= inode
->i_mapping
;
2231 file
->f_op
= &pfm_file_ops
;
2232 file
->f_mode
= FMODE_READ
;
2233 file
->f_flags
= O_RDONLY
;
2237 * may have to delay until context is attached?
2239 fd_install(fd
, file
);
2242 * the file structure we will use
2248 if (file
) put_filp(file
);
2254 pfm_free_fd(int fd
, struct file
*file
)
2256 struct files_struct
*files
= current
->files
;
2257 struct fdtable
*fdt
;
2260 * there ie no fd_uninstall(), so we do it here
2262 spin_lock(&files
->file_lock
);
2263 fdt
= files_fdtable(files
);
2264 rcu_assign_pointer(fdt
->fd
[fd
], NULL
);
2265 spin_unlock(&files
->file_lock
);
2273 pfm_remap_buffer(struct vm_area_struct
*vma
, unsigned long buf
, unsigned long addr
, unsigned long size
)
2275 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf
, addr
, size
));
2278 unsigned long pfn
= ia64_tpa(buf
) >> PAGE_SHIFT
;
2281 if (remap_pfn_range(vma
, addr
, pfn
, PAGE_SIZE
, PAGE_READONLY
))
2292 * allocate a sampling buffer and remaps it into the user address space of the task
2295 pfm_smpl_buffer_alloc(struct task_struct
*task
, struct file
*filp
, pfm_context_t
*ctx
, unsigned long rsize
, void **user_vaddr
)
2297 struct mm_struct
*mm
= task
->mm
;
2298 struct vm_area_struct
*vma
= NULL
;
2304 * the fixed header + requested size and align to page boundary
2306 size
= PAGE_ALIGN(rsize
);
2308 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize
, size
));
2311 * check requested size to avoid Denial-of-service attacks
2312 * XXX: may have to refine this test
2313 * Check against address space limit.
2315 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2318 if (size
> task
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
)
2322 * We do the easy to undo allocations first.
2324 * pfm_rvmalloc(), clears the buffer, so there is no leak
2326 smpl_buf
= pfm_rvmalloc(size
);
2327 if (smpl_buf
== NULL
) {
2328 DPRINT(("Can't allocate sampling buffer\n"));
2332 DPRINT(("smpl_buf @%p\n", smpl_buf
));
2335 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2337 DPRINT(("Cannot allocate vma\n"));
2342 * partially initialize the vma for the sampling buffer
2345 vma
->vm_file
= filp
;
2346 vma
->vm_flags
= VM_READ
| VM_MAYREAD
|VM_RESERVED
;
2347 vma
->vm_page_prot
= PAGE_READONLY
; /* XXX may need to change */
2350 * Now we have everything we need and we can initialize
2351 * and connect all the data structures
2354 ctx
->ctx_smpl_hdr
= smpl_buf
;
2355 ctx
->ctx_smpl_size
= size
; /* aligned size */
2358 * Let's do the difficult operations next.
2360 * now we atomically find some area in the address space and
2361 * remap the buffer in it.
2363 down_write(&task
->mm
->mmap_sem
);
2365 /* find some free area in address space, must have mmap sem held */
2366 vma
->vm_start
= pfm_get_unmapped_area(NULL
, 0, size
, 0, MAP_PRIVATE
|MAP_ANONYMOUS
, 0);
2367 if (vma
->vm_start
== 0UL) {
2368 DPRINT(("Cannot find unmapped area for size %ld\n", size
));
2369 up_write(&task
->mm
->mmap_sem
);
2372 vma
->vm_end
= vma
->vm_start
+ size
;
2373 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2375 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size
, ctx
->ctx_smpl_hdr
, vma
->vm_start
));
2377 /* can only be applied to current task, need to have the mm semaphore held when called */
2378 if (pfm_remap_buffer(vma
, (unsigned long)smpl_buf
, vma
->vm_start
, size
)) {
2379 DPRINT(("Can't remap buffer\n"));
2380 up_write(&task
->mm
->mmap_sem
);
2387 * now insert the vma in the vm list for the process, must be
2388 * done with mmap lock held
2390 insert_vm_struct(mm
, vma
);
2392 mm
->total_vm
+= size
>> PAGE_SHIFT
;
2393 vm_stat_account(vma
->vm_mm
, vma
->vm_flags
, vma
->vm_file
,
2395 up_write(&task
->mm
->mmap_sem
);
2398 * keep track of user level virtual address
2400 ctx
->ctx_smpl_vaddr
= (void *)vma
->vm_start
;
2401 *(unsigned long *)user_vaddr
= vma
->vm_start
;
2406 kmem_cache_free(vm_area_cachep
, vma
);
2408 pfm_rvfree(smpl_buf
, size
);
2414 * XXX: do something better here
2417 pfm_bad_permissions(struct task_struct
*task
)
2419 /* inspired by ptrace_attach() */
2420 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2429 return ((current
->uid
!= task
->euid
)
2430 || (current
->uid
!= task
->suid
)
2431 || (current
->uid
!= task
->uid
)
2432 || (current
->gid
!= task
->egid
)
2433 || (current
->gid
!= task
->sgid
)
2434 || (current
->gid
!= task
->gid
)) && !capable(CAP_SYS_PTRACE
);
2438 pfarg_is_sane(struct task_struct
*task
, pfarg_context_t
*pfx
)
2444 ctx_flags
= pfx
->ctx_flags
;
2446 if (ctx_flags
& PFM_FL_SYSTEM_WIDE
) {
2449 * cannot block in this mode
2451 if (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) {
2452 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2457 /* probably more to add here */
2463 pfm_setup_buffer_fmt(struct task_struct
*task
, struct file
*filp
, pfm_context_t
*ctx
, unsigned int ctx_flags
,
2464 unsigned int cpu
, pfarg_context_t
*arg
)
2466 pfm_buffer_fmt_t
*fmt
= NULL
;
2467 unsigned long size
= 0UL;
2469 void *fmt_arg
= NULL
;
2471 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2473 /* invoke and lock buffer format, if found */
2474 fmt
= pfm_find_buffer_fmt(arg
->ctx_smpl_buf_id
);
2476 DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task
)));
2481 * buffer argument MUST be contiguous to pfarg_context_t
2483 if (fmt
->fmt_arg_size
) fmt_arg
= PFM_CTXARG_BUF_ARG(arg
);
2485 ret
= pfm_buf_fmt_validate(fmt
, task
, ctx_flags
, cpu
, fmt_arg
);
2487 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task
), ctx_flags
, cpu
, fmt_arg
, ret
));
2489 if (ret
) goto error
;
2491 /* link buffer format and context */
2492 ctx
->ctx_buf_fmt
= fmt
;
2495 * check if buffer format wants to use perfmon buffer allocation/mapping service
2497 ret
= pfm_buf_fmt_getsize(fmt
, task
, ctx_flags
, cpu
, fmt_arg
, &size
);
2498 if (ret
) goto error
;
2502 * buffer is always remapped into the caller's address space
2504 ret
= pfm_smpl_buffer_alloc(current
, filp
, ctx
, size
, &uaddr
);
2505 if (ret
) goto error
;
2507 /* keep track of user address of buffer */
2508 arg
->ctx_smpl_vaddr
= uaddr
;
2510 ret
= pfm_buf_fmt_init(fmt
, task
, ctx
->ctx_smpl_hdr
, ctx_flags
, cpu
, fmt_arg
);
2517 pfm_reset_pmu_state(pfm_context_t
*ctx
)
2522 * install reset values for PMC.
2524 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
2525 if (PMC_IS_IMPL(i
) == 0) continue;
2526 ctx
->ctx_pmcs
[i
] = PMC_DFL_VAL(i
);
2527 DPRINT(("pmc[%d]=0x%lx\n", i
, ctx
->ctx_pmcs
[i
]));
2530 * PMD registers are set to 0UL when the context in memset()
2534 * On context switched restore, we must restore ALL pmc and ALL pmd even
2535 * when they are not actively used by the task. In UP, the incoming process
2536 * may otherwise pick up left over PMC, PMD state from the previous process.
2537 * As opposed to PMD, stale PMC can cause harm to the incoming
2538 * process because they may change what is being measured.
2539 * Therefore, we must systematically reinstall the entire
2540 * PMC state. In SMP, the same thing is possible on the
2541 * same CPU but also on between 2 CPUs.
2543 * The problem with PMD is information leaking especially
2544 * to user level when psr.sp=0
2546 * There is unfortunately no easy way to avoid this problem
2547 * on either UP or SMP. This definitively slows down the
2548 * pfm_load_regs() function.
2552 * bitmask of all PMCs accessible to this context
2554 * PMC0 is treated differently.
2556 ctx
->ctx_all_pmcs
[0] = pmu_conf
->impl_pmcs
[0] & ~0x1;
2559 * bitmask of all PMDs that are accessible to this context
2561 ctx
->ctx_all_pmds
[0] = pmu_conf
->impl_pmds
[0];
2563 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx
->ctx_fd
, ctx
->ctx_all_pmcs
[0],ctx
->ctx_all_pmds
[0]));
2566 * useful in case of re-enable after disable
2568 ctx
->ctx_used_ibrs
[0] = 0UL;
2569 ctx
->ctx_used_dbrs
[0] = 0UL;
2573 pfm_ctx_getsize(void *arg
, size_t *sz
)
2575 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2576 pfm_buffer_fmt_t
*fmt
;
2580 if (!pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) return 0;
2582 fmt
= pfm_find_buffer_fmt(req
->ctx_smpl_buf_id
);
2584 DPRINT(("cannot find buffer format\n"));
2587 /* get just enough to copy in user parameters */
2588 *sz
= fmt
->fmt_arg_size
;
2589 DPRINT(("arg_size=%lu\n", *sz
));
2597 * cannot attach if :
2599 * - task not owned by caller
2600 * - task incompatible with context mode
2603 pfm_task_incompatible(pfm_context_t
*ctx
, struct task_struct
*task
)
2606 * no kernel task or task not owner by caller
2608 if (task
->mm
== NULL
) {
2609 DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task
)));
2612 if (pfm_bad_permissions(task
)) {
2613 DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task
)));
2617 * cannot block in self-monitoring mode
2619 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && task
== current
) {
2620 DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task
)));
2624 if (task
->exit_state
== EXIT_ZOMBIE
) {
2625 DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task
)));
2630 * always ok for self
2632 if (task
== current
) return 0;
2634 if (!task_is_stopped_or_traced(task
)) {
2635 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task
), task
->state
));
2639 * make sure the task is off any CPU
2641 wait_task_inactive(task
);
2643 /* more to come... */
2649 pfm_get_task(pfm_context_t
*ctx
, pid_t pid
, struct task_struct
**task
)
2651 struct task_struct
*p
= current
;
2654 /* XXX: need to add more checks here */
2655 if (pid
< 2) return -EPERM
;
2657 if (pid
!= current
->pid
) {
2659 read_lock(&tasklist_lock
);
2661 p
= find_task_by_pid(pid
);
2663 /* make sure task cannot go away while we operate on it */
2664 if (p
) get_task_struct(p
);
2666 read_unlock(&tasklist_lock
);
2668 if (p
== NULL
) return -ESRCH
;
2671 ret
= pfm_task_incompatible(ctx
, p
);
2674 } else if (p
!= current
) {
2683 pfm_context_create(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2685 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2690 /* let's check the arguments first */
2691 ret
= pfarg_is_sane(current
, req
);
2692 if (ret
< 0) return ret
;
2694 ctx_flags
= req
->ctx_flags
;
2698 ctx
= pfm_context_alloc();
2699 if (!ctx
) goto error
;
2701 ret
= pfm_alloc_fd(&filp
);
2702 if (ret
< 0) goto error_file
;
2704 req
->ctx_fd
= ctx
->ctx_fd
= ret
;
2707 * attach context to file
2709 filp
->private_data
= ctx
;
2712 * does the user want to sample?
2714 if (pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) {
2715 ret
= pfm_setup_buffer_fmt(current
, filp
, ctx
, ctx_flags
, 0, req
);
2716 if (ret
) goto buffer_error
;
2720 * init context protection lock
2722 spin_lock_init(&ctx
->ctx_lock
);
2725 * context is unloaded
2727 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
2730 * initialization of context's flags
2732 ctx
->ctx_fl_block
= (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) ? 1 : 0;
2733 ctx
->ctx_fl_system
= (ctx_flags
& PFM_FL_SYSTEM_WIDE
) ? 1: 0;
2734 ctx
->ctx_fl_is_sampling
= ctx
->ctx_buf_fmt
? 1 : 0; /* assume record() is defined */
2735 ctx
->ctx_fl_no_msg
= (ctx_flags
& PFM_FL_OVFL_NO_MSG
) ? 1: 0;
2737 * will move to set properties
2738 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2742 * init restart semaphore to locked
2744 init_completion(&ctx
->ctx_restart_done
);
2747 * activation is used in SMP only
2749 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
2750 SET_LAST_CPU(ctx
, -1);
2753 * initialize notification message queue
2755 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
2756 init_waitqueue_head(&ctx
->ctx_msgq_wait
);
2757 init_waitqueue_head(&ctx
->ctx_zombieq
);
2759 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2764 ctx
->ctx_fl_excl_idle
,
2769 * initialize soft PMU state
2771 pfm_reset_pmu_state(ctx
);
2776 pfm_free_fd(ctx
->ctx_fd
, filp
);
2778 if (ctx
->ctx_buf_fmt
) {
2779 pfm_buf_fmt_exit(ctx
->ctx_buf_fmt
, current
, NULL
, regs
);
2782 pfm_context_free(ctx
);
2788 static inline unsigned long
2789 pfm_new_counter_value (pfm_counter_t
*reg
, int is_long_reset
)
2791 unsigned long val
= is_long_reset
? reg
->long_reset
: reg
->short_reset
;
2792 unsigned long new_seed
, old_seed
= reg
->seed
, mask
= reg
->mask
;
2793 extern unsigned long carta_random32 (unsigned long seed
);
2795 if (reg
->flags
& PFM_REGFL_RANDOM
) {
2796 new_seed
= carta_random32(old_seed
);
2797 val
-= (old_seed
& mask
); /* counter values are negative numbers! */
2798 if ((mask
>> 32) != 0)
2799 /* construct a full 64-bit random value: */
2800 new_seed
|= carta_random32(old_seed
>> 32) << 32;
2801 reg
->seed
= new_seed
;
2808 pfm_reset_regs_masked(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2810 unsigned long mask
= ovfl_regs
[0];
2811 unsigned long reset_others
= 0UL;
2816 * now restore reset value on sampling overflowed counters
2818 mask
>>= PMU_FIRST_COUNTER
;
2819 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2821 if ((mask
& 0x1UL
) == 0UL) continue;
2823 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2824 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2826 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2830 * Now take care of resetting the other registers
2832 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2834 if ((reset_others
& 0x1) == 0) continue;
2836 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2838 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2839 is_long_reset
? "long" : "short", i
, val
));
2844 pfm_reset_regs(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2846 unsigned long mask
= ovfl_regs
[0];
2847 unsigned long reset_others
= 0UL;
2851 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs
[0], is_long_reset
));
2853 if (ctx
->ctx_state
== PFM_CTX_MASKED
) {
2854 pfm_reset_regs_masked(ctx
, ovfl_regs
, is_long_reset
);
2859 * now restore reset value on sampling overflowed counters
2861 mask
>>= PMU_FIRST_COUNTER
;
2862 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2864 if ((mask
& 0x1UL
) == 0UL) continue;
2866 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2867 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2869 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2871 pfm_write_soft_counter(ctx
, i
, val
);
2875 * Now take care of resetting the other registers
2877 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2879 if ((reset_others
& 0x1) == 0) continue;
2881 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2883 if (PMD_IS_COUNTING(i
)) {
2884 pfm_write_soft_counter(ctx
, i
, val
);
2886 ia64_set_pmd(i
, val
);
2888 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2889 is_long_reset
? "long" : "short", i
, val
));
2895 pfm_write_pmcs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2897 struct task_struct
*task
;
2898 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
2899 unsigned long value
, pmc_pm
;
2900 unsigned long smpl_pmds
, reset_pmds
, impl_pmds
;
2901 unsigned int cnum
, reg_flags
, flags
, pmc_type
;
2902 int i
, can_access_pmu
= 0, is_loaded
, is_system
, expert_mode
;
2903 int is_monitor
, is_counting
, state
;
2905 pfm_reg_check_t wr_func
;
2906 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2908 state
= ctx
->ctx_state
;
2909 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
2910 is_system
= ctx
->ctx_fl_system
;
2911 task
= ctx
->ctx_task
;
2912 impl_pmds
= pmu_conf
->impl_pmds
[0];
2914 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
2918 * In system wide and when the context is loaded, access can only happen
2919 * when the caller is running on the CPU being monitored by the session.
2920 * It does not have to be the owner (ctx_task) of the context per se.
2922 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
2923 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
2926 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
2928 expert_mode
= pfm_sysctl
.expert_mode
;
2930 for (i
= 0; i
< count
; i
++, req
++) {
2932 cnum
= req
->reg_num
;
2933 reg_flags
= req
->reg_flags
;
2934 value
= req
->reg_value
;
2935 smpl_pmds
= req
->reg_smpl_pmds
[0];
2936 reset_pmds
= req
->reg_reset_pmds
[0];
2940 if (cnum
>= PMU_MAX_PMCS
) {
2941 DPRINT(("pmc%u is invalid\n", cnum
));
2945 pmc_type
= pmu_conf
->pmc_desc
[cnum
].type
;
2946 pmc_pm
= (value
>> pmu_conf
->pmc_desc
[cnum
].pm_pos
) & 0x1;
2947 is_counting
= (pmc_type
& PFM_REG_COUNTING
) == PFM_REG_COUNTING
? 1 : 0;
2948 is_monitor
= (pmc_type
& PFM_REG_MONITOR
) == PFM_REG_MONITOR
? 1 : 0;
2951 * we reject all non implemented PMC as well
2952 * as attempts to modify PMC[0-3] which are used
2953 * as status registers by the PMU
2955 if ((pmc_type
& PFM_REG_IMPL
) == 0 || (pmc_type
& PFM_REG_CONTROL
) == PFM_REG_CONTROL
) {
2956 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum
, pmc_type
));
2959 wr_func
= pmu_conf
->pmc_desc
[cnum
].write_check
;
2961 * If the PMC is a monitor, then if the value is not the default:
2962 * - system-wide session: PMCx.pm=1 (privileged monitor)
2963 * - per-task : PMCx.pm=0 (user monitor)
2965 if (is_monitor
&& value
!= PMC_DFL_VAL(cnum
) && is_system
^ pmc_pm
) {
2966 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2975 * enforce generation of overflow interrupt. Necessary on all
2978 value
|= 1 << PMU_PMC_OI
;
2980 if (reg_flags
& PFM_REGFL_OVFL_NOTIFY
) {
2981 flags
|= PFM_REGFL_OVFL_NOTIFY
;
2984 if (reg_flags
& PFM_REGFL_RANDOM
) flags
|= PFM_REGFL_RANDOM
;
2986 /* verify validity of smpl_pmds */
2987 if ((smpl_pmds
& impl_pmds
) != smpl_pmds
) {
2988 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds
, cnum
));
2992 /* verify validity of reset_pmds */
2993 if ((reset_pmds
& impl_pmds
) != reset_pmds
) {
2994 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds
, cnum
));
2998 if (reg_flags
& (PFM_REGFL_OVFL_NOTIFY
|PFM_REGFL_RANDOM
)) {
2999 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum
));
3002 /* eventid on non-counting monitors are ignored */
3006 * execute write checker, if any
3008 if (likely(expert_mode
== 0 && wr_func
)) {
3009 ret
= (*wr_func
)(task
, ctx
, cnum
, &value
, regs
);
3010 if (ret
) goto error
;
3015 * no error on this register
3017 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
3020 * Now we commit the changes to the software state
3024 * update overflow information
3028 * full flag update each time a register is programmed
3030 ctx
->ctx_pmds
[cnum
].flags
= flags
;
3032 ctx
->ctx_pmds
[cnum
].reset_pmds
[0] = reset_pmds
;
3033 ctx
->ctx_pmds
[cnum
].smpl_pmds
[0] = smpl_pmds
;
3034 ctx
->ctx_pmds
[cnum
].eventid
= req
->reg_smpl_eventid
;
3037 * Mark all PMDS to be accessed as used.
3039 * We do not keep track of PMC because we have to
3040 * systematically restore ALL of them.
3042 * We do not update the used_monitors mask, because
3043 * if we have not programmed them, then will be in
3044 * a quiescent state, therefore we will not need to
3045 * mask/restore then when context is MASKED.
3047 CTX_USED_PMD(ctx
, reset_pmds
);
3048 CTX_USED_PMD(ctx
, smpl_pmds
);
3050 * make sure we do not try to reset on
3051 * restart because we have established new values
3053 if (state
== PFM_CTX_MASKED
) ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
3056 * Needed in case the user does not initialize the equivalent
3057 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3058 * possible leak here.
3060 CTX_USED_PMD(ctx
, pmu_conf
->pmc_desc
[cnum
].dep_pmd
[0]);
3063 * keep track of the monitor PMC that we are using.
3064 * we save the value of the pmc in ctx_pmcs[] and if
3065 * the monitoring is not stopped for the context we also
3066 * place it in the saved state area so that it will be
3067 * picked up later by the context switch code.
3069 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3071 * The value in th_pmcs[] may be modified on overflow, i.e., when
3072 * monitoring needs to be stopped.
3074 if (is_monitor
) CTX_USED_MONITOR(ctx
, 1UL << cnum
);
3077 * update context state
3079 ctx
->ctx_pmcs
[cnum
] = value
;
3083 * write thread state
3085 if (is_system
== 0) ctx
->th_pmcs
[cnum
] = value
;
3088 * write hardware register if we can
3090 if (can_access_pmu
) {
3091 ia64_set_pmc(cnum
, value
);
3096 * per-task SMP only here
3098 * we are guaranteed that the task is not running on the other CPU,
3099 * we indicate that this PMD will need to be reloaded if the task
3100 * is rescheduled on the CPU it ran last on.
3102 ctx
->ctx_reload_pmcs
[0] |= 1UL << cnum
;
3107 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3113 ctx
->ctx_all_pmcs
[0],
3114 ctx
->ctx_used_pmds
[0],
3115 ctx
->ctx_pmds
[cnum
].eventid
,
3118 ctx
->ctx_reload_pmcs
[0],
3119 ctx
->ctx_used_monitors
[0],
3120 ctx
->ctx_ovfl_regs
[0]));
3124 * make sure the changes are visible
3126 if (can_access_pmu
) ia64_srlz_d();
3130 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3135 pfm_write_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3137 struct task_struct
*task
;
3138 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3139 unsigned long value
, hw_value
, ovfl_mask
;
3141 int i
, can_access_pmu
= 0, state
;
3142 int is_counting
, is_loaded
, is_system
, expert_mode
;
3144 pfm_reg_check_t wr_func
;
3147 state
= ctx
->ctx_state
;
3148 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3149 is_system
= ctx
->ctx_fl_system
;
3150 ovfl_mask
= pmu_conf
->ovfl_val
;
3151 task
= ctx
->ctx_task
;
3153 if (unlikely(state
== PFM_CTX_ZOMBIE
)) return -EINVAL
;
3156 * on both UP and SMP, we can only write to the PMC when the task is
3157 * the owner of the local PMU.
3159 if (likely(is_loaded
)) {
3161 * In system wide and when the context is loaded, access can only happen
3162 * when the caller is running on the CPU being monitored by the session.
3163 * It does not have to be the owner (ctx_task) of the context per se.
3165 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3166 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3169 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3171 expert_mode
= pfm_sysctl
.expert_mode
;
3173 for (i
= 0; i
< count
; i
++, req
++) {
3175 cnum
= req
->reg_num
;
3176 value
= req
->reg_value
;
3178 if (!PMD_IS_IMPL(cnum
)) {
3179 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum
));
3182 is_counting
= PMD_IS_COUNTING(cnum
);
3183 wr_func
= pmu_conf
->pmd_desc
[cnum
].write_check
;
3186 * execute write checker, if any
3188 if (unlikely(expert_mode
== 0 && wr_func
)) {
3189 unsigned long v
= value
;
3191 ret
= (*wr_func
)(task
, ctx
, cnum
, &v
, regs
);
3192 if (ret
) goto abort_mission
;
3199 * no error on this register
3201 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
3204 * now commit changes to software state
3209 * update virtualized (64bits) counter
3213 * write context state
3215 ctx
->ctx_pmds
[cnum
].lval
= value
;
3218 * when context is load we use the split value
3221 hw_value
= value
& ovfl_mask
;
3222 value
= value
& ~ovfl_mask
;
3226 * update reset values (not just for counters)
3228 ctx
->ctx_pmds
[cnum
].long_reset
= req
->reg_long_reset
;
3229 ctx
->ctx_pmds
[cnum
].short_reset
= req
->reg_short_reset
;
3232 * update randomization parameters (not just for counters)
3234 ctx
->ctx_pmds
[cnum
].seed
= req
->reg_random_seed
;
3235 ctx
->ctx_pmds
[cnum
].mask
= req
->reg_random_mask
;
3238 * update context value
3240 ctx
->ctx_pmds
[cnum
].val
= value
;
3243 * Keep track of what we use
3245 * We do not keep track of PMC because we have to
3246 * systematically restore ALL of them.
3248 CTX_USED_PMD(ctx
, PMD_PMD_DEP(cnum
));
3251 * mark this PMD register used as well
3253 CTX_USED_PMD(ctx
, RDEP(cnum
));
3256 * make sure we do not try to reset on
3257 * restart because we have established new values
3259 if (is_counting
&& state
== PFM_CTX_MASKED
) {
3260 ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
3265 * write thread state
3267 if (is_system
== 0) ctx
->th_pmds
[cnum
] = hw_value
;
3270 * write hardware register if we can
3272 if (can_access_pmu
) {
3273 ia64_set_pmd(cnum
, hw_value
);
3277 * we are guaranteed that the task is not running on the other CPU,
3278 * we indicate that this PMD will need to be reloaded if the task
3279 * is rescheduled on the CPU it ran last on.
3281 ctx
->ctx_reload_pmds
[0] |= 1UL << cnum
;
3286 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3287 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3293 ctx
->ctx_pmds
[cnum
].val
,
3294 ctx
->ctx_pmds
[cnum
].short_reset
,
3295 ctx
->ctx_pmds
[cnum
].long_reset
,
3296 PMC_OVFL_NOTIFY(ctx
, cnum
) ? 'Y':'N',
3297 ctx
->ctx_pmds
[cnum
].seed
,
3298 ctx
->ctx_pmds
[cnum
].mask
,
3299 ctx
->ctx_used_pmds
[0],
3300 ctx
->ctx_pmds
[cnum
].reset_pmds
[0],
3301 ctx
->ctx_reload_pmds
[0],
3302 ctx
->ctx_all_pmds
[0],
3303 ctx
->ctx_ovfl_regs
[0]));
3307 * make changes visible
3309 if (can_access_pmu
) ia64_srlz_d();
3315 * for now, we have only one possibility for error
3317 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3322 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3323 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3324 * interrupt is delivered during the call, it will be kept pending until we leave, making
3325 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3326 * guaranteed to return consistent data to the user, it may simply be old. It is not
3327 * trivial to treat the overflow while inside the call because you may end up in
3328 * some module sampling buffer code causing deadlocks.
3331 pfm_read_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3333 struct task_struct
*task
;
3334 unsigned long val
= 0UL, lval
, ovfl_mask
, sval
;
3335 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3336 unsigned int cnum
, reg_flags
= 0;
3337 int i
, can_access_pmu
= 0, state
;
3338 int is_loaded
, is_system
, is_counting
, expert_mode
;
3340 pfm_reg_check_t rd_func
;
3343 * access is possible when loaded only for
3344 * self-monitoring tasks or in UP mode
3347 state
= ctx
->ctx_state
;
3348 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3349 is_system
= ctx
->ctx_fl_system
;
3350 ovfl_mask
= pmu_conf
->ovfl_val
;
3351 task
= ctx
->ctx_task
;
3353 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3355 if (likely(is_loaded
)) {
3357 * In system wide and when the context is loaded, access can only happen
3358 * when the caller is running on the CPU being monitored by the session.
3359 * It does not have to be the owner (ctx_task) of the context per se.
3361 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3362 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3366 * this can be true when not self-monitoring only in UP
3368 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3370 if (can_access_pmu
) ia64_srlz_d();
3372 expert_mode
= pfm_sysctl
.expert_mode
;
3374 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3380 * on both UP and SMP, we can only read the PMD from the hardware register when
3381 * the task is the owner of the local PMU.
3384 for (i
= 0; i
< count
; i
++, req
++) {
3386 cnum
= req
->reg_num
;
3387 reg_flags
= req
->reg_flags
;
3389 if (unlikely(!PMD_IS_IMPL(cnum
))) goto error
;
3391 * we can only read the register that we use. That includes
3392 * the one we explicitly initialize AND the one we want included
3393 * in the sampling buffer (smpl_regs).
3395 * Having this restriction allows optimization in the ctxsw routine
3396 * without compromising security (leaks)
3398 if (unlikely(!CTX_IS_USED_PMD(ctx
, cnum
))) goto error
;
3400 sval
= ctx
->ctx_pmds
[cnum
].val
;
3401 lval
= ctx
->ctx_pmds
[cnum
].lval
;
3402 is_counting
= PMD_IS_COUNTING(cnum
);
3405 * If the task is not the current one, then we check if the
3406 * PMU state is still in the local live register due to lazy ctxsw.
3407 * If true, then we read directly from the registers.
3409 if (can_access_pmu
){
3410 val
= ia64_get_pmd(cnum
);
3413 * context has been saved
3414 * if context is zombie, then task does not exist anymore.
3415 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3417 val
= is_loaded
? ctx
->th_pmds
[cnum
] : 0UL;
3419 rd_func
= pmu_conf
->pmd_desc
[cnum
].read_check
;
3423 * XXX: need to check for overflow when loaded
3430 * execute read checker, if any
3432 if (unlikely(expert_mode
== 0 && rd_func
)) {
3433 unsigned long v
= val
;
3434 ret
= (*rd_func
)(ctx
->ctx_task
, ctx
, cnum
, &v
, regs
);
3435 if (ret
) goto error
;
3440 PFM_REG_RETFLAG_SET(reg_flags
, 0);
3442 DPRINT(("pmd[%u]=0x%lx\n", cnum
, val
));
3445 * update register return value, abort all if problem during copy.
3446 * we only modify the reg_flags field. no check mode is fine because
3447 * access has been verified upfront in sys_perfmonctl().
3449 req
->reg_value
= val
;
3450 req
->reg_flags
= reg_flags
;
3451 req
->reg_last_reset_val
= lval
;
3457 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3462 pfm_mod_write_pmcs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3466 if (req
== NULL
) return -EINVAL
;
3468 ctx
= GET_PMU_CTX();
3470 if (ctx
== NULL
) return -EINVAL
;
3473 * for now limit to current task, which is enough when calling
3474 * from overflow handler
3476 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3478 return pfm_write_pmcs(ctx
, req
, nreq
, regs
);
3480 EXPORT_SYMBOL(pfm_mod_write_pmcs
);
3483 pfm_mod_read_pmds(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3487 if (req
== NULL
) return -EINVAL
;
3489 ctx
= GET_PMU_CTX();
3491 if (ctx
== NULL
) return -EINVAL
;
3494 * for now limit to current task, which is enough when calling
3495 * from overflow handler
3497 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3499 return pfm_read_pmds(ctx
, req
, nreq
, regs
);
3501 EXPORT_SYMBOL(pfm_mod_read_pmds
);
3504 * Only call this function when a process it trying to
3505 * write the debug registers (reading is always allowed)
3508 pfm_use_debug_registers(struct task_struct
*task
)
3510 pfm_context_t
*ctx
= task
->thread
.pfm_context
;
3511 unsigned long flags
;
3514 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3516 DPRINT(("called for [%d]\n", task_pid_nr(task
)));
3521 if (task
->thread
.flags
& IA64_THREAD_DBG_VALID
) return 0;
3524 * Even on SMP, we do not need to use an atomic here because
3525 * the only way in is via ptrace() and this is possible only when the
3526 * process is stopped. Even in the case where the ctxsw out is not totally
3527 * completed by the time we come here, there is no way the 'stopped' process
3528 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3529 * So this is always safe.
3531 if (ctx
&& ctx
->ctx_fl_using_dbreg
== 1) return -1;
3536 * We cannot allow setting breakpoints when system wide monitoring
3537 * sessions are using the debug registers.
3539 if (pfm_sessions
.pfs_sys_use_dbregs
> 0)
3542 pfm_sessions
.pfs_ptrace_use_dbregs
++;
3544 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3545 pfm_sessions
.pfs_ptrace_use_dbregs
,
3546 pfm_sessions
.pfs_sys_use_dbregs
,
3547 task_pid_nr(task
), ret
));
3555 * This function is called for every task that exits with the
3556 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3557 * able to use the debug registers for debugging purposes via
3558 * ptrace(). Therefore we know it was not using them for
3559 * perfmormance monitoring, so we only decrement the number
3560 * of "ptraced" debug register users to keep the count up to date
3563 pfm_release_debug_registers(struct task_struct
*task
)
3565 unsigned long flags
;
3568 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3571 if (pfm_sessions
.pfs_ptrace_use_dbregs
== 0) {
3572 printk(KERN_ERR
"perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task
));
3575 pfm_sessions
.pfs_ptrace_use_dbregs
--;
3584 pfm_restart(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3586 struct task_struct
*task
;
3587 pfm_buffer_fmt_t
*fmt
;
3588 pfm_ovfl_ctrl_t rst_ctrl
;
3589 int state
, is_system
;
3592 state
= ctx
->ctx_state
;
3593 fmt
= ctx
->ctx_buf_fmt
;
3594 is_system
= ctx
->ctx_fl_system
;
3595 task
= PFM_CTX_TASK(ctx
);
3598 case PFM_CTX_MASKED
:
3600 case PFM_CTX_LOADED
:
3601 if (CTX_HAS_SMPL(ctx
) && fmt
->fmt_restart_active
) break;
3603 case PFM_CTX_UNLOADED
:
3604 case PFM_CTX_ZOMBIE
:
3605 DPRINT(("invalid state=%d\n", state
));
3608 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state
));
3613 * In system wide and when the context is loaded, access can only happen
3614 * when the caller is running on the CPU being monitored by the session.
3615 * It does not have to be the owner (ctx_task) of the context per se.
3617 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
3618 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3623 if (unlikely(task
== NULL
)) {
3624 printk(KERN_ERR
"perfmon: [%d] pfm_restart no task\n", task_pid_nr(current
));
3628 if (task
== current
|| is_system
) {
3630 fmt
= ctx
->ctx_buf_fmt
;
3632 DPRINT(("restarting self %d ovfl=0x%lx\n",
3634 ctx
->ctx_ovfl_regs
[0]));
3636 if (CTX_HAS_SMPL(ctx
)) {
3638 prefetch(ctx
->ctx_smpl_hdr
);
3640 rst_ctrl
.bits
.mask_monitoring
= 0;
3641 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
3643 if (state
== PFM_CTX_LOADED
)
3644 ret
= pfm_buf_fmt_restart_active(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3646 ret
= pfm_buf_fmt_restart(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3648 rst_ctrl
.bits
.mask_monitoring
= 0;
3649 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
3653 if (rst_ctrl
.bits
.reset_ovfl_pmds
)
3654 pfm_reset_regs(ctx
, ctx
->ctx_ovfl_regs
, PFM_PMD_LONG_RESET
);
3656 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
3657 DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task
)));
3659 if (state
== PFM_CTX_MASKED
) pfm_restore_monitoring(task
);
3661 DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task
)));
3663 // cannot use pfm_stop_monitoring(task, regs);
3667 * clear overflowed PMD mask to remove any stale information
3669 ctx
->ctx_ovfl_regs
[0] = 0UL;
3672 * back to LOADED state
3674 ctx
->ctx_state
= PFM_CTX_LOADED
;
3677 * XXX: not really useful for self monitoring
3679 ctx
->ctx_fl_can_restart
= 0;
3685 * restart another task
3689 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3690 * one is seen by the task.
3692 if (state
== PFM_CTX_MASKED
) {
3693 if (ctx
->ctx_fl_can_restart
== 0) return -EINVAL
;
3695 * will prevent subsequent restart before this one is
3696 * seen by other task
3698 ctx
->ctx_fl_can_restart
= 0;
3702 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3703 * the task is blocked or on its way to block. That's the normal
3704 * restart path. If the monitoring is not masked, then the task
3705 * can be actively monitoring and we cannot directly intervene.
3706 * Therefore we use the trap mechanism to catch the task and
3707 * force it to reset the buffer/reset PMDs.
3709 * if non-blocking, then we ensure that the task will go into
3710 * pfm_handle_work() before returning to user mode.
3712 * We cannot explicitly reset another task, it MUST always
3713 * be done by the task itself. This works for system wide because
3714 * the tool that is controlling the session is logically doing
3715 * "self-monitoring".
3717 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && state
== PFM_CTX_MASKED
) {
3718 DPRINT(("unblocking [%d] \n", task_pid_nr(task
)));
3719 complete(&ctx
->ctx_restart_done
);
3721 DPRINT(("[%d] armed exit trap\n", task_pid_nr(task
)));
3723 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_RESET
;
3725 PFM_SET_WORK_PENDING(task
, 1);
3727 pfm_set_task_notify(task
);
3730 * XXX: send reschedule if task runs on another CPU
3737 pfm_debug(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3739 unsigned int m
= *(unsigned int *)arg
;
3741 pfm_sysctl
.debug
= m
== 0 ? 0 : 1;
3743 printk(KERN_INFO
"perfmon debugging %s (timing reset)\n", pfm_sysctl
.debug
? "on" : "off");
3746 memset(pfm_stats
, 0, sizeof(pfm_stats
));
3747 for(m
=0; m
< NR_CPUS
; m
++) pfm_stats
[m
].pfm_ovfl_intr_cycles_min
= ~0UL;
3753 * arg can be NULL and count can be zero for this function
3756 pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3758 struct thread_struct
*thread
= NULL
;
3759 struct task_struct
*task
;
3760 pfarg_dbreg_t
*req
= (pfarg_dbreg_t
*)arg
;
3761 unsigned long flags
;
3766 int i
, can_access_pmu
= 0;
3767 int is_system
, is_loaded
;
3769 if (pmu_conf
->use_rr_dbregs
== 0) return -EINVAL
;
3771 state
= ctx
->ctx_state
;
3772 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3773 is_system
= ctx
->ctx_fl_system
;
3774 task
= ctx
->ctx_task
;
3776 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3779 * on both UP and SMP, we can only write to the PMC when the task is
3780 * the owner of the local PMU.
3783 thread
= &task
->thread
;
3785 * In system wide and when the context is loaded, access can only happen
3786 * when the caller is running on the CPU being monitored by the session.
3787 * It does not have to be the owner (ctx_task) of the context per se.
3789 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3790 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3793 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3797 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3798 * ensuring that no real breakpoint can be installed via this call.
3800 * IMPORTANT: regs can be NULL in this function
3803 first_time
= ctx
->ctx_fl_using_dbreg
== 0;
3806 * don't bother if we are loaded and task is being debugged
3808 if (is_loaded
&& (thread
->flags
& IA64_THREAD_DBG_VALID
) != 0) {
3809 DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task
)));
3814 * check for debug registers in system wide mode
3816 * If though a check is done in pfm_context_load(),
3817 * we must repeat it here, in case the registers are
3818 * written after the context is loaded
3823 if (first_time
&& is_system
) {
3824 if (pfm_sessions
.pfs_ptrace_use_dbregs
)
3827 pfm_sessions
.pfs_sys_use_dbregs
++;
3832 if (ret
!= 0) return ret
;
3835 * mark ourself as user of the debug registers for
3838 ctx
->ctx_fl_using_dbreg
= 1;
3841 * clear hardware registers to make sure we don't
3842 * pick up stale state.
3844 * for a system wide session, we do not use
3845 * thread.dbr, thread.ibr because this process
3846 * never leaves the current CPU and the state
3847 * is shared by all processes running on it
3849 if (first_time
&& can_access_pmu
) {
3850 DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task
)));
3851 for (i
=0; i
< pmu_conf
->num_ibrs
; i
++) {
3852 ia64_set_ibr(i
, 0UL);
3853 ia64_dv_serialize_instruction();
3856 for (i
=0; i
< pmu_conf
->num_dbrs
; i
++) {
3857 ia64_set_dbr(i
, 0UL);
3858 ia64_dv_serialize_data();
3864 * Now install the values into the registers
3866 for (i
= 0; i
< count
; i
++, req
++) {
3868 rnum
= req
->dbreg_num
;
3869 dbreg
.val
= req
->dbreg_value
;
3873 if ((mode
== PFM_CODE_RR
&& rnum
>= PFM_NUM_IBRS
) || ((mode
== PFM_DATA_RR
) && rnum
>= PFM_NUM_DBRS
)) {
3874 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3875 rnum
, dbreg
.val
, mode
, i
, count
));
3881 * make sure we do not install enabled breakpoint
3884 if (mode
== PFM_CODE_RR
)
3885 dbreg
.ibr
.ibr_x
= 0;
3887 dbreg
.dbr
.dbr_r
= dbreg
.dbr
.dbr_w
= 0;
3890 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, 0);
3893 * Debug registers, just like PMC, can only be modified
3894 * by a kernel call. Moreover, perfmon() access to those
3895 * registers are centralized in this routine. The hardware
3896 * does not modify the value of these registers, therefore,
3897 * if we save them as they are written, we can avoid having
3898 * to save them on context switch out. This is made possible
3899 * by the fact that when perfmon uses debug registers, ptrace()
3900 * won't be able to modify them concurrently.
3902 if (mode
== PFM_CODE_RR
) {
3903 CTX_USED_IBR(ctx
, rnum
);
3905 if (can_access_pmu
) {
3906 ia64_set_ibr(rnum
, dbreg
.val
);
3907 ia64_dv_serialize_instruction();
3910 ctx
->ctx_ibrs
[rnum
] = dbreg
.val
;
3912 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3913 rnum
, dbreg
.val
, ctx
->ctx_used_ibrs
[0], is_loaded
, can_access_pmu
));
3915 CTX_USED_DBR(ctx
, rnum
);
3917 if (can_access_pmu
) {
3918 ia64_set_dbr(rnum
, dbreg
.val
);
3919 ia64_dv_serialize_data();
3921 ctx
->ctx_dbrs
[rnum
] = dbreg
.val
;
3923 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3924 rnum
, dbreg
.val
, ctx
->ctx_used_dbrs
[0], is_loaded
, can_access_pmu
));
3932 * in case it was our first attempt, we undo the global modifications
3936 if (ctx
->ctx_fl_system
) {
3937 pfm_sessions
.pfs_sys_use_dbregs
--;
3940 ctx
->ctx_fl_using_dbreg
= 0;
3943 * install error return flag
3945 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, PFM_REG_RETFL_EINVAL
);
3951 pfm_write_ibrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3953 return pfm_write_ibr_dbr(PFM_CODE_RR
, ctx
, arg
, count
, regs
);
3957 pfm_write_dbrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3959 return pfm_write_ibr_dbr(PFM_DATA_RR
, ctx
, arg
, count
, regs
);
3963 pfm_mod_write_ibrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3967 if (req
== NULL
) return -EINVAL
;
3969 ctx
= GET_PMU_CTX();
3971 if (ctx
== NULL
) return -EINVAL
;
3974 * for now limit to current task, which is enough when calling
3975 * from overflow handler
3977 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3979 return pfm_write_ibrs(ctx
, req
, nreq
, regs
);
3981 EXPORT_SYMBOL(pfm_mod_write_ibrs
);
3984 pfm_mod_write_dbrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3988 if (req
== NULL
) return -EINVAL
;
3990 ctx
= GET_PMU_CTX();
3992 if (ctx
== NULL
) return -EINVAL
;
3995 * for now limit to current task, which is enough when calling
3996 * from overflow handler
3998 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
4000 return pfm_write_dbrs(ctx
, req
, nreq
, regs
);
4002 EXPORT_SYMBOL(pfm_mod_write_dbrs
);
4006 pfm_get_features(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4008 pfarg_features_t
*req
= (pfarg_features_t
*)arg
;
4010 req
->ft_version
= PFM_VERSION
;
4015 pfm_stop(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4017 struct pt_regs
*tregs
;
4018 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
4019 int state
, is_system
;
4021 state
= ctx
->ctx_state
;
4022 is_system
= ctx
->ctx_fl_system
;
4025 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
4027 if (state
== PFM_CTX_UNLOADED
) return -EINVAL
;
4030 * In system wide and when the context is loaded, access can only happen
4031 * when the caller is running on the CPU being monitored by the session.
4032 * It does not have to be the owner (ctx_task) of the context per se.
4034 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
4035 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
4038 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4039 task_pid_nr(PFM_CTX_TASK(ctx
)),
4043 * in system mode, we need to update the PMU directly
4044 * and the user level state of the caller, which may not
4045 * necessarily be the creator of the context.
4049 * Update local PMU first
4053 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
4057 * update local cpuinfo
4059 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
4062 * stop monitoring, does srlz.i
4067 * stop monitoring in the caller
4069 ia64_psr(regs
)->pp
= 0;
4077 if (task
== current
) {
4078 /* stop monitoring at kernel level */
4082 * stop monitoring at the user level
4084 ia64_psr(regs
)->up
= 0;
4086 tregs
= task_pt_regs(task
);
4089 * stop monitoring at the user level
4091 ia64_psr(tregs
)->up
= 0;
4094 * monitoring disabled in kernel at next reschedule
4096 ctx
->ctx_saved_psr_up
= 0;
4097 DPRINT(("task=[%d]\n", task_pid_nr(task
)));
4104 pfm_start(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4106 struct pt_regs
*tregs
;
4107 int state
, is_system
;
4109 state
= ctx
->ctx_state
;
4110 is_system
= ctx
->ctx_fl_system
;
4112 if (state
!= PFM_CTX_LOADED
) return -EINVAL
;
4115 * In system wide and when the context is loaded, access can only happen
4116 * when the caller is running on the CPU being monitored by the session.
4117 * It does not have to be the owner (ctx_task) of the context per se.
4119 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
4120 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
4125 * in system mode, we need to update the PMU directly
4126 * and the user level state of the caller, which may not
4127 * necessarily be the creator of the context.
4132 * set user level psr.pp for the caller
4134 ia64_psr(regs
)->pp
= 1;
4137 * now update the local PMU and cpuinfo
4139 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP
);
4142 * start monitoring at kernel level
4147 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
4157 if (ctx
->ctx_task
== current
) {
4159 /* start monitoring at kernel level */
4163 * activate monitoring at user level
4165 ia64_psr(regs
)->up
= 1;
4168 tregs
= task_pt_regs(ctx
->ctx_task
);
4171 * start monitoring at the kernel level the next
4172 * time the task is scheduled
4174 ctx
->ctx_saved_psr_up
= IA64_PSR_UP
;
4177 * activate monitoring at user level
4179 ia64_psr(tregs
)->up
= 1;
4185 pfm_get_pmc_reset(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4187 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
4192 for (i
= 0; i
< count
; i
++, req
++) {
4194 cnum
= req
->reg_num
;
4196 if (!PMC_IS_IMPL(cnum
)) goto abort_mission
;
4198 req
->reg_value
= PMC_DFL_VAL(cnum
);
4200 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
4202 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum
, req
->reg_value
));
4207 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
4212 pfm_check_task_exist(pfm_context_t
*ctx
)
4214 struct task_struct
*g
, *t
;
4217 read_lock(&tasklist_lock
);
4219 do_each_thread (g
, t
) {
4220 if (t
->thread
.pfm_context
== ctx
) {
4224 } while_each_thread (g
, t
);
4226 read_unlock(&tasklist_lock
);
4228 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret
, ctx
));
4234 pfm_context_load(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4236 struct task_struct
*task
;
4237 struct thread_struct
*thread
;
4238 struct pfm_context_t
*old
;
4239 unsigned long flags
;
4241 struct task_struct
*owner_task
= NULL
;
4243 pfarg_load_t
*req
= (pfarg_load_t
*)arg
;
4244 unsigned long *pmcs_source
, *pmds_source
;
4247 int state
, is_system
, set_dbregs
= 0;
4249 state
= ctx
->ctx_state
;
4250 is_system
= ctx
->ctx_fl_system
;
4252 * can only load from unloaded or terminated state
4254 if (state
!= PFM_CTX_UNLOADED
) {
4255 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4261 DPRINT(("load_pid [%d] using_dbreg=%d\n", req
->load_pid
, ctx
->ctx_fl_using_dbreg
));
4263 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && req
->load_pid
== current
->pid
) {
4264 DPRINT(("cannot use blocking mode on self\n"));
4268 ret
= pfm_get_task(ctx
, req
->load_pid
, &task
);
4270 DPRINT(("load_pid [%d] get_task=%d\n", req
->load_pid
, ret
));
4277 * system wide is self monitoring only
4279 if (is_system
&& task
!= current
) {
4280 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4285 thread
= &task
->thread
;
4289 * cannot load a context which is using range restrictions,
4290 * into a task that is being debugged.
4292 if (ctx
->ctx_fl_using_dbreg
) {
4293 if (thread
->flags
& IA64_THREAD_DBG_VALID
) {
4295 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req
->load_pid
));
4301 if (pfm_sessions
.pfs_ptrace_use_dbregs
) {
4302 DPRINT(("cannot load [%d] dbregs in use\n",
4303 task_pid_nr(task
)));
4306 pfm_sessions
.pfs_sys_use_dbregs
++;
4307 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task
), pfm_sessions
.pfs_sys_use_dbregs
));
4314 if (ret
) goto error
;
4318 * SMP system-wide monitoring implies self-monitoring.
4320 * The programming model expects the task to
4321 * be pinned on a CPU throughout the session.
4322 * Here we take note of the current CPU at the
4323 * time the context is loaded. No call from
4324 * another CPU will be allowed.
4326 * The pinning via shed_setaffinity()
4327 * must be done by the calling task prior
4330 * systemwide: keep track of CPU this session is supposed to run on
4332 the_cpu
= ctx
->ctx_cpu
= smp_processor_id();
4336 * now reserve the session
4338 ret
= pfm_reserve_session(current
, is_system
, the_cpu
);
4339 if (ret
) goto error
;
4342 * task is necessarily stopped at this point.
4344 * If the previous context was zombie, then it got removed in
4345 * pfm_save_regs(). Therefore we should not see it here.
4346 * If we see a context, then this is an active context
4348 * XXX: needs to be atomic
4350 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4351 thread
->pfm_context
, ctx
));
4354 old
= ia64_cmpxchg(acq
, &thread
->pfm_context
, NULL
, ctx
, sizeof(pfm_context_t
*));
4356 DPRINT(("load_pid [%d] already has a context\n", req
->load_pid
));
4360 pfm_reset_msgq(ctx
);
4362 ctx
->ctx_state
= PFM_CTX_LOADED
;
4365 * link context to task
4367 ctx
->ctx_task
= task
;
4371 * we load as stopped
4373 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE
);
4374 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
4376 if (ctx
->ctx_fl_excl_idle
) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE
);
4378 thread
->flags
|= IA64_THREAD_PM_VALID
;
4382 * propagate into thread-state
4384 pfm_copy_pmds(task
, ctx
);
4385 pfm_copy_pmcs(task
, ctx
);
4387 pmcs_source
= ctx
->th_pmcs
;
4388 pmds_source
= ctx
->th_pmds
;
4391 * always the case for system-wide
4393 if (task
== current
) {
4395 if (is_system
== 0) {
4397 /* allow user level control */
4398 ia64_psr(regs
)->sp
= 0;
4399 DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task
)));
4401 SET_LAST_CPU(ctx
, smp_processor_id());
4403 SET_ACTIVATION(ctx
);
4406 * push the other task out, if any
4408 owner_task
= GET_PMU_OWNER();
4409 if (owner_task
) pfm_lazy_save_regs(owner_task
);
4413 * load all PMD from ctx to PMU (as opposed to thread state)
4414 * restore all PMC from ctx to PMU
4416 pfm_restore_pmds(pmds_source
, ctx
->ctx_all_pmds
[0]);
4417 pfm_restore_pmcs(pmcs_source
, ctx
->ctx_all_pmcs
[0]);
4419 ctx
->ctx_reload_pmcs
[0] = 0UL;
4420 ctx
->ctx_reload_pmds
[0] = 0UL;
4423 * guaranteed safe by earlier check against DBG_VALID
4425 if (ctx
->ctx_fl_using_dbreg
) {
4426 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
4427 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
4432 SET_PMU_OWNER(task
, ctx
);
4434 DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task
)));
4437 * when not current, task MUST be stopped, so this is safe
4439 regs
= task_pt_regs(task
);
4441 /* force a full reload */
4442 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4443 SET_LAST_CPU(ctx
, -1);
4445 /* initial saved psr (stopped) */
4446 ctx
->ctx_saved_psr_up
= 0UL;
4447 ia64_psr(regs
)->up
= ia64_psr(regs
)->pp
= 0;
4453 if (ret
) pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, the_cpu
);
4456 * we must undo the dbregs setting (for system-wide)
4458 if (ret
&& set_dbregs
) {
4460 pfm_sessions
.pfs_sys_use_dbregs
--;
4464 * release task, there is now a link with the context
4466 if (is_system
== 0 && task
!= current
) {
4470 ret
= pfm_check_task_exist(ctx
);
4472 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4473 ctx
->ctx_task
= NULL
;
4481 * in this function, we do not need to increase the use count
4482 * for the task via get_task_struct(), because we hold the
4483 * context lock. If the task were to disappear while having
4484 * a context attached, it would go through pfm_exit_thread()
4485 * which also grabs the context lock and would therefore be blocked
4486 * until we are here.
4488 static void pfm_flush_pmds(struct task_struct
*, pfm_context_t
*ctx
);
4491 pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4493 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
4494 struct pt_regs
*tregs
;
4495 int prev_state
, is_system
;
4498 DPRINT(("ctx_state=%d task [%d]\n", ctx
->ctx_state
, task
? task_pid_nr(task
) : -1));
4500 prev_state
= ctx
->ctx_state
;
4501 is_system
= ctx
->ctx_fl_system
;
4504 * unload only when necessary
4506 if (prev_state
== PFM_CTX_UNLOADED
) {
4507 DPRINT(("ctx_state=%d, nothing to do\n", prev_state
));
4512 * clear psr and dcr bits
4514 ret
= pfm_stop(ctx
, NULL
, 0, regs
);
4515 if (ret
) return ret
;
4517 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4520 * in system mode, we need to update the PMU directly
4521 * and the user level state of the caller, which may not
4522 * necessarily be the creator of the context.
4529 * local PMU is taken care of in pfm_stop()
4531 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE
);
4532 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE
);
4535 * save PMDs in context
4538 pfm_flush_pmds(current
, ctx
);
4541 * at this point we are done with the PMU
4542 * so we can unreserve the resource.
4544 if (prev_state
!= PFM_CTX_ZOMBIE
)
4545 pfm_unreserve_session(ctx
, 1 , ctx
->ctx_cpu
);
4548 * disconnect context from task
4550 task
->thread
.pfm_context
= NULL
;
4552 * disconnect task from context
4554 ctx
->ctx_task
= NULL
;
4557 * There is nothing more to cleanup here.
4565 tregs
= task
== current
? regs
: task_pt_regs(task
);
4567 if (task
== current
) {
4569 * cancel user level control
4571 ia64_psr(regs
)->sp
= 1;
4573 DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task
)));
4576 * save PMDs to context
4579 pfm_flush_pmds(task
, ctx
);
4582 * at this point we are done with the PMU
4583 * so we can unreserve the resource.
4585 * when state was ZOMBIE, we have already unreserved.
4587 if (prev_state
!= PFM_CTX_ZOMBIE
)
4588 pfm_unreserve_session(ctx
, 0 , ctx
->ctx_cpu
);
4591 * reset activation counter and psr
4593 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4594 SET_LAST_CPU(ctx
, -1);
4597 * PMU state will not be restored
4599 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
4602 * break links between context and task
4604 task
->thread
.pfm_context
= NULL
;
4605 ctx
->ctx_task
= NULL
;
4607 PFM_SET_WORK_PENDING(task
, 0);
4609 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
4610 ctx
->ctx_fl_can_restart
= 0;
4611 ctx
->ctx_fl_going_zombie
= 0;
4613 DPRINT(("disconnected [%d] from context\n", task_pid_nr(task
)));
4620 * called only from exit_thread(): task == current
4621 * we come here only if current has a context attached (loaded or masked)
4624 pfm_exit_thread(struct task_struct
*task
)
4627 unsigned long flags
;
4628 struct pt_regs
*regs
= task_pt_regs(task
);
4632 ctx
= PFM_GET_CTX(task
);
4634 PROTECT_CTX(ctx
, flags
);
4636 DPRINT(("state=%d task [%d]\n", ctx
->ctx_state
, task_pid_nr(task
)));
4638 state
= ctx
->ctx_state
;
4640 case PFM_CTX_UNLOADED
:
4642 * only comes to this function if pfm_context is not NULL, i.e., cannot
4643 * be in unloaded state
4645 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task
));
4647 case PFM_CTX_LOADED
:
4648 case PFM_CTX_MASKED
:
4649 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4651 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task
), state
, ret
);
4653 DPRINT(("ctx unloaded for current state was %d\n", state
));
4655 pfm_end_notify_user(ctx
);
4657 case PFM_CTX_ZOMBIE
:
4658 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4660 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task
), state
, ret
);
4665 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task
), state
);
4668 UNPROTECT_CTX(ctx
, flags
);
4670 { u64 psr
= pfm_get_psr();
4671 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
4672 BUG_ON(GET_PMU_OWNER());
4673 BUG_ON(ia64_psr(regs
)->up
);
4674 BUG_ON(ia64_psr(regs
)->pp
);
4678 * All memory free operations (especially for vmalloc'ed memory)
4679 * MUST be done with interrupts ENABLED.
4681 if (free_ok
) pfm_context_free(ctx
);
4685 * functions MUST be listed in the increasing order of their index (see permfon.h)
4687 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4688 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4689 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4690 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4691 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4693 static pfm_cmd_desc_t pfm_cmd_tab
[]={
4694 /* 0 */PFM_CMD_NONE
,
4695 /* 1 */PFM_CMD(pfm_write_pmcs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4696 /* 2 */PFM_CMD(pfm_write_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4697 /* 3 */PFM_CMD(pfm_read_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4698 /* 4 */PFM_CMD_S(pfm_stop
, PFM_CMD_PCLRWS
),
4699 /* 5 */PFM_CMD_S(pfm_start
, PFM_CMD_PCLRWS
),
4700 /* 6 */PFM_CMD_NONE
,
4701 /* 7 */PFM_CMD_NONE
,
4702 /* 8 */PFM_CMD(pfm_context_create
, PFM_CMD_ARG_RW
, 1, pfarg_context_t
, pfm_ctx_getsize
),
4703 /* 9 */PFM_CMD_NONE
,
4704 /* 10 */PFM_CMD_S(pfm_restart
, PFM_CMD_PCLRW
),
4705 /* 11 */PFM_CMD_NONE
,
4706 /* 12 */PFM_CMD(pfm_get_features
, PFM_CMD_ARG_RW
, 1, pfarg_features_t
, NULL
),
4707 /* 13 */PFM_CMD(pfm_debug
, 0, 1, unsigned int, NULL
),
4708 /* 14 */PFM_CMD_NONE
,
4709 /* 15 */PFM_CMD(pfm_get_pmc_reset
, PFM_CMD_ARG_RW
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4710 /* 16 */PFM_CMD(pfm_context_load
, PFM_CMD_PCLRWS
, 1, pfarg_load_t
, NULL
),
4711 /* 17 */PFM_CMD_S(pfm_context_unload
, PFM_CMD_PCLRWS
),
4712 /* 18 */PFM_CMD_NONE
,
4713 /* 19 */PFM_CMD_NONE
,
4714 /* 20 */PFM_CMD_NONE
,
4715 /* 21 */PFM_CMD_NONE
,
4716 /* 22 */PFM_CMD_NONE
,
4717 /* 23 */PFM_CMD_NONE
,
4718 /* 24 */PFM_CMD_NONE
,
4719 /* 25 */PFM_CMD_NONE
,
4720 /* 26 */PFM_CMD_NONE
,
4721 /* 27 */PFM_CMD_NONE
,
4722 /* 28 */PFM_CMD_NONE
,
4723 /* 29 */PFM_CMD_NONE
,
4724 /* 30 */PFM_CMD_NONE
,
4725 /* 31 */PFM_CMD_NONE
,
4726 /* 32 */PFM_CMD(pfm_write_ibrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
),
4727 /* 33 */PFM_CMD(pfm_write_dbrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
)
4729 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4732 pfm_check_task_state(pfm_context_t
*ctx
, int cmd
, unsigned long flags
)
4734 struct task_struct
*task
;
4735 int state
, old_state
;
4738 state
= ctx
->ctx_state
;
4739 task
= ctx
->ctx_task
;
4742 DPRINT(("context %d no task, state=%d\n", ctx
->ctx_fd
, state
));
4746 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4750 task
->state
, PFM_CMD_STOPPED(cmd
)));
4753 * self-monitoring always ok.
4755 * for system-wide the caller can either be the creator of the
4756 * context (to one to which the context is attached to) OR
4757 * a task running on the same CPU as the session.
4759 if (task
== current
|| ctx
->ctx_fl_system
) return 0;
4762 * we are monitoring another thread
4765 case PFM_CTX_UNLOADED
:
4767 * if context is UNLOADED we are safe to go
4770 case PFM_CTX_ZOMBIE
:
4772 * no command can operate on a zombie context
4774 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd
));
4776 case PFM_CTX_MASKED
:
4778 * PMU state has been saved to software even though
4779 * the thread may still be running.
4781 if (cmd
!= PFM_UNLOAD_CONTEXT
) return 0;
4785 * context is LOADED or MASKED. Some commands may need to have
4788 * We could lift this restriction for UP but it would mean that
4789 * the user has no guarantee the task would not run between
4790 * two successive calls to perfmonctl(). That's probably OK.
4791 * If this user wants to ensure the task does not run, then
4792 * the task must be stopped.
4794 if (PFM_CMD_STOPPED(cmd
)) {
4795 if (!task_is_stopped_or_traced(task
)) {
4796 DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task
)));
4800 * task is now stopped, wait for ctxsw out
4802 * This is an interesting point in the code.
4803 * We need to unprotect the context because
4804 * the pfm_save_regs() routines needs to grab
4805 * the same lock. There are danger in doing
4806 * this because it leaves a window open for
4807 * another task to get access to the context
4808 * and possibly change its state. The one thing
4809 * that is not possible is for the context to disappear
4810 * because we are protected by the VFS layer, i.e.,
4811 * get_fd()/put_fd().
4815 UNPROTECT_CTX(ctx
, flags
);
4817 wait_task_inactive(task
);
4819 PROTECT_CTX(ctx
, flags
);
4822 * we must recheck to verify if state has changed
4824 if (ctx
->ctx_state
!= old_state
) {
4825 DPRINT(("old_state=%d new_state=%d\n", old_state
, ctx
->ctx_state
));
4833 * system-call entry point (must return long)
4836 sys_perfmonctl (int fd
, int cmd
, void __user
*arg
, int count
)
4838 struct file
*file
= NULL
;
4839 pfm_context_t
*ctx
= NULL
;
4840 unsigned long flags
= 0UL;
4841 void *args_k
= NULL
;
4842 long ret
; /* will expand int return types */
4843 size_t base_sz
, sz
, xtra_sz
= 0;
4844 int narg
, completed_args
= 0, call_made
= 0, cmd_flags
;
4845 int (*func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
4846 int (*getsize
)(void *arg
, size_t *sz
);
4847 #define PFM_MAX_ARGSIZE 4096
4850 * reject any call if perfmon was disabled at initialization
4852 if (unlikely(pmu_conf
== NULL
)) return -ENOSYS
;
4854 if (unlikely(cmd
< 0 || cmd
>= PFM_CMD_COUNT
)) {
4855 DPRINT(("invalid cmd=%d\n", cmd
));
4859 func
= pfm_cmd_tab
[cmd
].cmd_func
;
4860 narg
= pfm_cmd_tab
[cmd
].cmd_narg
;
4861 base_sz
= pfm_cmd_tab
[cmd
].cmd_argsize
;
4862 getsize
= pfm_cmd_tab
[cmd
].cmd_getsize
;
4863 cmd_flags
= pfm_cmd_tab
[cmd
].cmd_flags
;
4865 if (unlikely(func
== NULL
)) {
4866 DPRINT(("invalid cmd=%d\n", cmd
));
4870 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4878 * check if number of arguments matches what the command expects
4880 if (unlikely((narg
== PFM_CMD_ARG_MANY
&& count
<= 0) || (narg
> 0 && narg
!= count
)))
4884 sz
= xtra_sz
+ base_sz
*count
;
4886 * limit abuse to min page size
4888 if (unlikely(sz
> PFM_MAX_ARGSIZE
)) {
4889 printk(KERN_ERR
"perfmon: [%d] argument too big %lu\n", task_pid_nr(current
), sz
);
4894 * allocate default-sized argument buffer
4896 if (likely(count
&& args_k
== NULL
)) {
4897 args_k
= kmalloc(PFM_MAX_ARGSIZE
, GFP_KERNEL
);
4898 if (args_k
== NULL
) return -ENOMEM
;
4906 * assume sz = 0 for command without parameters
4908 if (sz
&& copy_from_user(args_k
, arg
, sz
)) {
4909 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz
, arg
));
4914 * check if command supports extra parameters
4916 if (completed_args
== 0 && getsize
) {
4918 * get extra parameters size (based on main argument)
4920 ret
= (*getsize
)(args_k
, &xtra_sz
);
4921 if (ret
) goto error_args
;
4925 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz
, xtra_sz
));
4927 /* retry if necessary */
4928 if (likely(xtra_sz
)) goto restart_args
;
4931 if (unlikely((cmd_flags
& PFM_CMD_FD
) == 0)) goto skip_fd
;
4936 if (unlikely(file
== NULL
)) {
4937 DPRINT(("invalid fd %d\n", fd
));
4940 if (unlikely(PFM_IS_FILE(file
) == 0)) {
4941 DPRINT(("fd %d not related to perfmon\n", fd
));
4945 ctx
= (pfm_context_t
*)file
->private_data
;
4946 if (unlikely(ctx
== NULL
)) {
4947 DPRINT(("no context for fd %d\n", fd
));
4950 prefetch(&ctx
->ctx_state
);
4952 PROTECT_CTX(ctx
, flags
);
4955 * check task is stopped
4957 ret
= pfm_check_task_state(ctx
, cmd
, flags
);
4958 if (unlikely(ret
)) goto abort_locked
;
4961 ret
= (*func
)(ctx
, args_k
, count
, task_pt_regs(current
));
4967 DPRINT(("context unlocked\n"));
4968 UNPROTECT_CTX(ctx
, flags
);
4971 /* copy argument back to user, if needed */
4972 if (call_made
&& PFM_CMD_RW_ARG(cmd
) && copy_to_user(arg
, args_k
, base_sz
*count
)) ret
= -EFAULT
;
4980 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd
), ret
));
4986 pfm_resume_after_ovfl(pfm_context_t
*ctx
, unsigned long ovfl_regs
, struct pt_regs
*regs
)
4988 pfm_buffer_fmt_t
*fmt
= ctx
->ctx_buf_fmt
;
4989 pfm_ovfl_ctrl_t rst_ctrl
;
4993 state
= ctx
->ctx_state
;
4995 * Unlock sampling buffer and reset index atomically
4996 * XXX: not really needed when blocking
4998 if (CTX_HAS_SMPL(ctx
)) {
5000 rst_ctrl
.bits
.mask_monitoring
= 0;
5001 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
5003 if (state
== PFM_CTX_LOADED
)
5004 ret
= pfm_buf_fmt_restart_active(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
5006 ret
= pfm_buf_fmt_restart(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
5008 rst_ctrl
.bits
.mask_monitoring
= 0;
5009 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
5013 if (rst_ctrl
.bits
.reset_ovfl_pmds
) {
5014 pfm_reset_regs(ctx
, &ovfl_regs
, PFM_PMD_LONG_RESET
);
5016 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
5017 DPRINT(("resuming monitoring\n"));
5018 if (ctx
->ctx_state
== PFM_CTX_MASKED
) pfm_restore_monitoring(current
);
5020 DPRINT(("stopping monitoring\n"));
5021 //pfm_stop_monitoring(current, regs);
5023 ctx
->ctx_state
= PFM_CTX_LOADED
;
5028 * context MUST BE LOCKED when calling
5029 * can only be called for current
5032 pfm_context_force_terminate(pfm_context_t
*ctx
, struct pt_regs
*regs
)
5036 DPRINT(("entering for [%d]\n", task_pid_nr(current
)));
5038 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
5040 printk(KERN_ERR
"pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current
), ret
);
5044 * and wakeup controlling task, indicating we are now disconnected
5046 wake_up_interruptible(&ctx
->ctx_zombieq
);
5049 * given that context is still locked, the controlling
5050 * task will only get access when we return from
5051 * pfm_handle_work().
5055 static int pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
);
5057 * pfm_handle_work() can be called with interrupts enabled
5058 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5059 * call may sleep, therefore we must re-enable interrupts
5060 * to avoid deadlocks. It is safe to do so because this function
5061 * is called ONLY when returning to user level (PUStk=1), in which case
5062 * there is no risk of kernel stack overflow due to deep
5063 * interrupt nesting.
5066 pfm_handle_work(void)
5069 struct pt_regs
*regs
;
5070 unsigned long flags
, dummy_flags
;
5071 unsigned long ovfl_regs
;
5072 unsigned int reason
;
5075 ctx
= PFM_GET_CTX(current
);
5077 printk(KERN_ERR
"perfmon: [%d] has no PFM context\n", task_pid_nr(current
));
5081 PROTECT_CTX(ctx
, flags
);
5083 PFM_SET_WORK_PENDING(current
, 0);
5085 pfm_clear_task_notify();
5087 regs
= task_pt_regs(current
);
5090 * extract reason for being here and clear
5092 reason
= ctx
->ctx_fl_trap_reason
;
5093 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
5094 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
5096 DPRINT(("reason=%d state=%d\n", reason
, ctx
->ctx_state
));
5099 * must be done before we check for simple-reset mode
5101 if (ctx
->ctx_fl_going_zombie
|| ctx
->ctx_state
== PFM_CTX_ZOMBIE
) goto do_zombie
;
5104 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5105 if (reason
== PFM_TRAP_REASON_RESET
) goto skip_blocking
;
5108 * restore interrupt mask to what it was on entry.
5109 * Could be enabled/diasbled.
5111 UNPROTECT_CTX(ctx
, flags
);
5114 * force interrupt enable because of down_interruptible()
5118 DPRINT(("before block sleeping\n"));
5121 * may go through without blocking on SMP systems
5122 * if restart has been received already by the time we call down()
5124 ret
= wait_for_completion_interruptible(&ctx
->ctx_restart_done
);
5126 DPRINT(("after block sleeping ret=%d\n", ret
));
5129 * lock context and mask interrupts again
5130 * We save flags into a dummy because we may have
5131 * altered interrupts mask compared to entry in this
5134 PROTECT_CTX(ctx
, dummy_flags
);
5137 * we need to read the ovfl_regs only after wake-up
5138 * because we may have had pfm_write_pmds() in between
5139 * and that can changed PMD values and therefore
5140 * ovfl_regs is reset for these new PMD values.
5142 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
5144 if (ctx
->ctx_fl_going_zombie
) {
5146 DPRINT(("context is zombie, bailing out\n"));
5147 pfm_context_force_terminate(ctx
, regs
);
5151 * in case of interruption of down() we don't restart anything
5153 if (ret
< 0) goto nothing_to_do
;
5156 pfm_resume_after_ovfl(ctx
, ovfl_regs
, regs
);
5157 ctx
->ctx_ovfl_regs
[0] = 0UL;
5161 * restore flags as they were upon entry
5163 UNPROTECT_CTX(ctx
, flags
);
5167 pfm_notify_user(pfm_context_t
*ctx
, pfm_msg_t
*msg
)
5169 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5170 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5174 DPRINT(("waking up somebody\n"));
5176 if (msg
) wake_up_interruptible(&ctx
->ctx_msgq_wait
);
5179 * safe, we are not in intr handler, nor in ctxsw when
5182 kill_fasync (&ctx
->ctx_async_queue
, SIGIO
, POLL_IN
);
5188 pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
)
5190 pfm_msg_t
*msg
= NULL
;
5192 if (ctx
->ctx_fl_no_msg
== 0) {
5193 msg
= pfm_get_new_msg(ctx
);
5195 printk(KERN_ERR
"perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5199 msg
->pfm_ovfl_msg
.msg_type
= PFM_MSG_OVFL
;
5200 msg
->pfm_ovfl_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5201 msg
->pfm_ovfl_msg
.msg_active_set
= 0;
5202 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[0] = ovfl_pmds
;
5203 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[1] = 0UL;
5204 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[2] = 0UL;
5205 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[3] = 0UL;
5206 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5209 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5215 return pfm_notify_user(ctx
, msg
);
5219 pfm_end_notify_user(pfm_context_t
*ctx
)
5223 msg
= pfm_get_new_msg(ctx
);
5225 printk(KERN_ERR
"perfmon: pfm_end_notify_user no more notification msgs\n");
5229 memset(msg
, 0, sizeof(*msg
));
5231 msg
->pfm_end_msg
.msg_type
= PFM_MSG_END
;
5232 msg
->pfm_end_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5233 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5235 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5240 return pfm_notify_user(ctx
, msg
);
5244 * main overflow processing routine.
5245 * it can be called from the interrupt path or explicitly during the context switch code
5248 pfm_overflow_handler(struct task_struct
*task
, pfm_context_t
*ctx
, u64 pmc0
, struct pt_regs
*regs
)
5250 pfm_ovfl_arg_t
*ovfl_arg
;
5252 unsigned long old_val
, ovfl_val
, new_val
;
5253 unsigned long ovfl_notify
= 0UL, ovfl_pmds
= 0UL, smpl_pmds
= 0UL, reset_pmds
;
5254 unsigned long tstamp
;
5255 pfm_ovfl_ctrl_t ovfl_ctrl
;
5256 unsigned int i
, has_smpl
;
5257 int must_notify
= 0;
5259 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) goto stop_monitoring
;
5262 * sanity test. Should never happen
5264 if (unlikely((pmc0
& 0x1) == 0)) goto sanity_check
;
5266 tstamp
= ia64_get_itc();
5267 mask
= pmc0
>> PMU_FIRST_COUNTER
;
5268 ovfl_val
= pmu_conf
->ovfl_val
;
5269 has_smpl
= CTX_HAS_SMPL(ctx
);
5271 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5272 "used_pmds=0x%lx\n",
5274 task
? task_pid_nr(task
): -1,
5275 (regs
? regs
->cr_iip
: 0),
5276 CTX_OVFL_NOBLOCK(ctx
) ? "nonblocking" : "blocking",
5277 ctx
->ctx_used_pmds
[0]));
5281 * first we update the virtual counters
5282 * assume there was a prior ia64_srlz_d() issued
5284 for (i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
5286 /* skip pmd which did not overflow */
5287 if ((mask
& 0x1) == 0) continue;
5290 * Note that the pmd is not necessarily 0 at this point as qualified events
5291 * may have happened before the PMU was frozen. The residual count is not
5292 * taken into consideration here but will be with any read of the pmd via
5295 old_val
= new_val
= ctx
->ctx_pmds
[i
].val
;
5296 new_val
+= 1 + ovfl_val
;
5297 ctx
->ctx_pmds
[i
].val
= new_val
;
5300 * check for overflow condition
5302 if (likely(old_val
> new_val
)) {
5303 ovfl_pmds
|= 1UL << i
;
5304 if (PMC_OVFL_NOTIFY(ctx
, i
)) ovfl_notify
|= 1UL << i
;
5307 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5311 ia64_get_pmd(i
) & ovfl_val
,
5317 * there was no 64-bit overflow, nothing else to do
5319 if (ovfl_pmds
== 0UL) return;
5322 * reset all control bits
5328 * if a sampling format module exists, then we "cache" the overflow by
5329 * calling the module's handler() routine.
5332 unsigned long start_cycles
, end_cycles
;
5333 unsigned long pmd_mask
;
5335 int this_cpu
= smp_processor_id();
5337 pmd_mask
= ovfl_pmds
>> PMU_FIRST_COUNTER
;
5338 ovfl_arg
= &ctx
->ctx_ovfl_arg
;
5340 prefetch(ctx
->ctx_smpl_hdr
);
5342 for(i
=PMU_FIRST_COUNTER
; pmd_mask
&& ret
== 0; i
++, pmd_mask
>>=1) {
5346 if ((pmd_mask
& 0x1) == 0) continue;
5348 ovfl_arg
->ovfl_pmd
= (unsigned char )i
;
5349 ovfl_arg
->ovfl_notify
= ovfl_notify
& mask
? 1 : 0;
5350 ovfl_arg
->active_set
= 0;
5351 ovfl_arg
->ovfl_ctrl
.val
= 0; /* module must fill in all fields */
5352 ovfl_arg
->smpl_pmds
[0] = smpl_pmds
= ctx
->ctx_pmds
[i
].smpl_pmds
[0];
5354 ovfl_arg
->pmd_value
= ctx
->ctx_pmds
[i
].val
;
5355 ovfl_arg
->pmd_last_reset
= ctx
->ctx_pmds
[i
].lval
;
5356 ovfl_arg
->pmd_eventid
= ctx
->ctx_pmds
[i
].eventid
;
5359 * copy values of pmds of interest. Sampling format may copy them
5360 * into sampling buffer.
5363 for(j
=0, k
=0; smpl_pmds
; j
++, smpl_pmds
>>=1) {
5364 if ((smpl_pmds
& 0x1) == 0) continue;
5365 ovfl_arg
->smpl_pmds_values
[k
++] = PMD_IS_COUNTING(j
) ? pfm_read_soft_counter(ctx
, j
) : ia64_get_pmd(j
);
5366 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k
-1, j
, ovfl_arg
->smpl_pmds_values
[k
-1]));
5370 pfm_stats
[this_cpu
].pfm_smpl_handler_calls
++;
5372 start_cycles
= ia64_get_itc();
5375 * call custom buffer format record (handler) routine
5377 ret
= (*ctx
->ctx_buf_fmt
->fmt_handler
)(task
, ctx
->ctx_smpl_hdr
, ovfl_arg
, regs
, tstamp
);
5379 end_cycles
= ia64_get_itc();
5382 * For those controls, we take the union because they have
5383 * an all or nothing behavior.
5385 ovfl_ctrl
.bits
.notify_user
|= ovfl_arg
->ovfl_ctrl
.bits
.notify_user
;
5386 ovfl_ctrl
.bits
.block_task
|= ovfl_arg
->ovfl_ctrl
.bits
.block_task
;
5387 ovfl_ctrl
.bits
.mask_monitoring
|= ovfl_arg
->ovfl_ctrl
.bits
.mask_monitoring
;
5389 * build the bitmask of pmds to reset now
5391 if (ovfl_arg
->ovfl_ctrl
.bits
.reset_ovfl_pmds
) reset_pmds
|= mask
;
5393 pfm_stats
[this_cpu
].pfm_smpl_handler_cycles
+= end_cycles
- start_cycles
;
5396 * when the module cannot handle the rest of the overflows, we abort right here
5398 if (ret
&& pmd_mask
) {
5399 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5400 pmd_mask
<<PMU_FIRST_COUNTER
));
5403 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5405 ovfl_pmds
&= ~reset_pmds
;
5408 * when no sampling module is used, then the default
5409 * is to notify on overflow if requested by user
5411 ovfl_ctrl
.bits
.notify_user
= ovfl_notify
? 1 : 0;
5412 ovfl_ctrl
.bits
.block_task
= ovfl_notify
? 1 : 0;
5413 ovfl_ctrl
.bits
.mask_monitoring
= ovfl_notify
? 1 : 0; /* XXX: change for saturation */
5414 ovfl_ctrl
.bits
.reset_ovfl_pmds
= ovfl_notify
? 0 : 1;
5416 * if needed, we reset all overflowed pmds
5418 if (ovfl_notify
== 0) reset_pmds
= ovfl_pmds
;
5421 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds
, reset_pmds
));
5424 * reset the requested PMD registers using the short reset values
5427 unsigned long bm
= reset_pmds
;
5428 pfm_reset_regs(ctx
, &bm
, PFM_PMD_SHORT_RESET
);
5431 if (ovfl_notify
&& ovfl_ctrl
.bits
.notify_user
) {
5433 * keep track of what to reset when unblocking
5435 ctx
->ctx_ovfl_regs
[0] = ovfl_pmds
;
5438 * check for blocking context
5440 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && ovfl_ctrl
.bits
.block_task
) {
5442 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_BLOCK
;
5445 * set the perfmon specific checking pending work for the task
5447 PFM_SET_WORK_PENDING(task
, 1);
5450 * when coming from ctxsw, current still points to the
5451 * previous task, therefore we must work with task and not current.
5453 pfm_set_task_notify(task
);
5456 * defer until state is changed (shorten spin window). the context is locked
5457 * anyway, so the signal receiver would come spin for nothing.
5462 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5463 GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5464 PFM_GET_WORK_PENDING(task
),
5465 ctx
->ctx_fl_trap_reason
,
5468 ovfl_ctrl
.bits
.mask_monitoring
? 1 : 0));
5470 * in case monitoring must be stopped, we toggle the psr bits
5472 if (ovfl_ctrl
.bits
.mask_monitoring
) {
5473 pfm_mask_monitoring(task
);
5474 ctx
->ctx_state
= PFM_CTX_MASKED
;
5475 ctx
->ctx_fl_can_restart
= 1;
5479 * send notification now
5481 if (must_notify
) pfm_ovfl_notify_user(ctx
, ovfl_notify
);
5486 printk(KERN_ERR
"perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5488 task
? task_pid_nr(task
) : -1,
5494 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5495 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5496 * come here as zombie only if the task is the current task. In which case, we
5497 * can access the PMU hardware directly.
5499 * Note that zombies do have PM_VALID set. So here we do the minimal.
5501 * In case the context was zombified it could not be reclaimed at the time
5502 * the monitoring program exited. At this point, the PMU reservation has been
5503 * returned, the sampiing buffer has been freed. We must convert this call
5504 * into a spurious interrupt. However, we must also avoid infinite overflows
5505 * by stopping monitoring for this task. We can only come here for a per-task
5506 * context. All we need to do is to stop monitoring using the psr bits which
5507 * are always task private. By re-enabling secure montioring, we ensure that
5508 * the monitored task will not be able to re-activate monitoring.
5509 * The task will eventually be context switched out, at which point the context
5510 * will be reclaimed (that includes releasing ownership of the PMU).
5512 * So there might be a window of time where the number of per-task session is zero
5513 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5514 * context. This is safe because if a per-task session comes in, it will push this one
5515 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5516 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5517 * also push our zombie context out.
5519 * Overall pretty hairy stuff....
5521 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task
? task_pid_nr(task
): -1));
5523 ia64_psr(regs
)->up
= 0;
5524 ia64_psr(regs
)->sp
= 1;
5529 pfm_do_interrupt_handler(int irq
, void *arg
, struct pt_regs
*regs
)
5531 struct task_struct
*task
;
5533 unsigned long flags
;
5535 int this_cpu
= smp_processor_id();
5538 pfm_stats
[this_cpu
].pfm_ovfl_intr_count
++;
5541 * srlz.d done before arriving here
5543 pmc0
= ia64_get_pmc(0);
5545 task
= GET_PMU_OWNER();
5546 ctx
= GET_PMU_CTX();
5549 * if we have some pending bits set
5550 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5552 if (PMC0_HAS_OVFL(pmc0
) && task
) {
5554 * we assume that pmc0.fr is always set here
5558 if (!ctx
) goto report_spurious1
;
5560 if (ctx
->ctx_fl_system
== 0 && (task
->thread
.flags
& IA64_THREAD_PM_VALID
) == 0)
5561 goto report_spurious2
;
5563 PROTECT_CTX_NOPRINT(ctx
, flags
);
5565 pfm_overflow_handler(task
, ctx
, pmc0
, regs
);
5567 UNPROTECT_CTX_NOPRINT(ctx
, flags
);
5570 pfm_stats
[this_cpu
].pfm_spurious_ovfl_intr_count
++;
5574 * keep it unfrozen at all times
5581 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5582 this_cpu
, task_pid_nr(task
));
5586 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5594 pfm_interrupt_handler(int irq
, void *arg
)
5596 unsigned long start_cycles
, total_cycles
;
5597 unsigned long min
, max
;
5600 struct pt_regs
*regs
= get_irq_regs();
5602 this_cpu
= get_cpu();
5603 if (likely(!pfm_alt_intr_handler
)) {
5604 min
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
;
5605 max
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
;
5607 start_cycles
= ia64_get_itc();
5609 ret
= pfm_do_interrupt_handler(irq
, arg
, regs
);
5611 total_cycles
= ia64_get_itc();
5614 * don't measure spurious interrupts
5616 if (likely(ret
== 0)) {
5617 total_cycles
-= start_cycles
;
5619 if (total_cycles
< min
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
= total_cycles
;
5620 if (total_cycles
> max
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
= total_cycles
;
5622 pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles
+= total_cycles
;
5626 (*pfm_alt_intr_handler
->handler
)(irq
, arg
, regs
);
5629 put_cpu_no_resched();
5634 * /proc/perfmon interface, for debug only
5637 #define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5640 pfm_proc_start(struct seq_file
*m
, loff_t
*pos
)
5643 return PFM_PROC_SHOW_HEADER
;
5646 while (*pos
<= NR_CPUS
) {
5647 if (cpu_online(*pos
- 1)) {
5648 return (void *)*pos
;
5656 pfm_proc_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
5659 return pfm_proc_start(m
, pos
);
5663 pfm_proc_stop(struct seq_file
*m
, void *v
)
5668 pfm_proc_show_header(struct seq_file
*m
)
5670 struct list_head
* pos
;
5671 pfm_buffer_fmt_t
* entry
;
5672 unsigned long flags
;
5675 "perfmon version : %u.%u\n"
5678 "expert mode : %s\n"
5679 "ovfl_mask : 0x%lx\n"
5680 "PMU flags : 0x%x\n",
5681 PFM_VERSION_MAJ
, PFM_VERSION_MIN
,
5683 pfm_sysctl
.fastctxsw
> 0 ? "Yes": "No",
5684 pfm_sysctl
.expert_mode
> 0 ? "Yes": "No",
5691 "proc_sessions : %u\n"
5692 "sys_sessions : %u\n"
5693 "sys_use_dbregs : %u\n"
5694 "ptrace_use_dbregs : %u\n",
5695 pfm_sessions
.pfs_task_sessions
,
5696 pfm_sessions
.pfs_sys_sessions
,
5697 pfm_sessions
.pfs_sys_use_dbregs
,
5698 pfm_sessions
.pfs_ptrace_use_dbregs
);
5702 spin_lock(&pfm_buffer_fmt_lock
);
5704 list_for_each(pos
, &pfm_buffer_fmt_list
) {
5705 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
5706 seq_printf(m
, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5717 entry
->fmt_uuid
[10],
5718 entry
->fmt_uuid
[11],
5719 entry
->fmt_uuid
[12],
5720 entry
->fmt_uuid
[13],
5721 entry
->fmt_uuid
[14],
5722 entry
->fmt_uuid
[15],
5725 spin_unlock(&pfm_buffer_fmt_lock
);
5730 pfm_proc_show(struct seq_file
*m
, void *v
)
5736 if (v
== PFM_PROC_SHOW_HEADER
) {
5737 pfm_proc_show_header(m
);
5741 /* show info for CPU (v - 1) */
5745 "CPU%-2d overflow intrs : %lu\n"
5746 "CPU%-2d overflow cycles : %lu\n"
5747 "CPU%-2d overflow min : %lu\n"
5748 "CPU%-2d overflow max : %lu\n"
5749 "CPU%-2d smpl handler calls : %lu\n"
5750 "CPU%-2d smpl handler cycles : %lu\n"
5751 "CPU%-2d spurious intrs : %lu\n"
5752 "CPU%-2d replay intrs : %lu\n"
5753 "CPU%-2d syst_wide : %d\n"
5754 "CPU%-2d dcr_pp : %d\n"
5755 "CPU%-2d exclude idle : %d\n"
5756 "CPU%-2d owner : %d\n"
5757 "CPU%-2d context : %p\n"
5758 "CPU%-2d activations : %lu\n",
5759 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_count
,
5760 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles
,
5761 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_min
,
5762 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_max
,
5763 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_calls
,
5764 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_cycles
,
5765 cpu
, pfm_stats
[cpu
].pfm_spurious_ovfl_intr_count
,
5766 cpu
, pfm_stats
[cpu
].pfm_replay_ovfl_intr_count
,
5767 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_SYST_WIDE
? 1 : 0,
5768 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_DCR_PP
? 1 : 0,
5769 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_EXCL_IDLE
? 1 : 0,
5770 cpu
, pfm_get_cpu_data(pmu_owner
, cpu
) ? pfm_get_cpu_data(pmu_owner
, cpu
)->pid
: -1,
5771 cpu
, pfm_get_cpu_data(pmu_ctx
, cpu
),
5772 cpu
, pfm_get_cpu_data(pmu_activation_number
, cpu
));
5774 if (num_online_cpus() == 1 && pfm_sysctl
.debug
> 0) {
5776 psr
= pfm_get_psr();
5781 "CPU%-2d psr : 0x%lx\n"
5782 "CPU%-2d pmc0 : 0x%lx\n",
5784 cpu
, ia64_get_pmc(0));
5786 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
5787 if (PMC_IS_COUNTING(i
) == 0) continue;
5789 "CPU%-2d pmc%u : 0x%lx\n"
5790 "CPU%-2d pmd%u : 0x%lx\n",
5791 cpu
, i
, ia64_get_pmc(i
),
5792 cpu
, i
, ia64_get_pmd(i
));
5798 struct seq_operations pfm_seq_ops
= {
5799 .start
= pfm_proc_start
,
5800 .next
= pfm_proc_next
,
5801 .stop
= pfm_proc_stop
,
5802 .show
= pfm_proc_show
5806 pfm_proc_open(struct inode
*inode
, struct file
*file
)
5808 return seq_open(file
, &pfm_seq_ops
);
5813 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5814 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5815 * is active or inactive based on mode. We must rely on the value in
5816 * local_cpu_data->pfm_syst_info
5819 pfm_syst_wide_update_task(struct task_struct
*task
, unsigned long info
, int is_ctxswin
)
5821 struct pt_regs
*regs
;
5823 unsigned long dcr_pp
;
5825 dcr_pp
= info
& PFM_CPUINFO_DCR_PP
? 1 : 0;
5828 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5829 * on every CPU, so we can rely on the pid to identify the idle task.
5831 if ((info
& PFM_CPUINFO_EXCL_IDLE
) == 0 || task
->pid
) {
5832 regs
= task_pt_regs(task
);
5833 ia64_psr(regs
)->pp
= is_ctxswin
? dcr_pp
: 0;
5837 * if monitoring has started
5840 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
5842 * context switching in?
5845 /* mask monitoring for the idle task */
5846 ia64_setreg(_IA64_REG_CR_DCR
, dcr
& ~IA64_DCR_PP
);
5852 * context switching out
5853 * restore monitoring for next task
5855 * Due to inlining this odd if-then-else construction generates
5858 ia64_setreg(_IA64_REG_CR_DCR
, dcr
|IA64_DCR_PP
);
5867 pfm_force_cleanup(pfm_context_t
*ctx
, struct pt_regs
*regs
)
5869 struct task_struct
*task
= ctx
->ctx_task
;
5871 ia64_psr(regs
)->up
= 0;
5872 ia64_psr(regs
)->sp
= 1;
5874 if (GET_PMU_OWNER() == task
) {
5875 DPRINT(("cleared ownership for [%d]\n",
5876 task_pid_nr(ctx
->ctx_task
)));
5877 SET_PMU_OWNER(NULL
, NULL
);
5881 * disconnect the task from the context and vice-versa
5883 PFM_SET_WORK_PENDING(task
, 0);
5885 task
->thread
.pfm_context
= NULL
;
5886 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
5888 DPRINT(("force cleanup for [%d]\n", task_pid_nr(task
)));
5893 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5896 pfm_save_regs(struct task_struct
*task
)
5899 unsigned long flags
;
5903 ctx
= PFM_GET_CTX(task
);
5904 if (ctx
== NULL
) return;
5907 * we always come here with interrupts ALREADY disabled by
5908 * the scheduler. So we simply need to protect against concurrent
5909 * access, not CPU concurrency.
5911 flags
= pfm_protect_ctx_ctxsw(ctx
);
5913 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5914 struct pt_regs
*regs
= task_pt_regs(task
);
5918 pfm_force_cleanup(ctx
, regs
);
5920 BUG_ON(ctx
->ctx_smpl_hdr
);
5922 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5924 pfm_context_free(ctx
);
5929 * save current PSR: needed because we modify it
5932 psr
= pfm_get_psr();
5934 BUG_ON(psr
& (IA64_PSR_I
));
5938 * This is the last instruction which may generate an overflow
5940 * We do not need to set psr.sp because, it is irrelevant in kernel.
5941 * It will be restored from ipsr when going back to user level
5946 * keep a copy of psr.up (for reload)
5948 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
5951 * release ownership of this PMU.
5952 * PM interrupts are masked, so nothing
5955 SET_PMU_OWNER(NULL
, NULL
);
5958 * we systematically save the PMD as we have no
5959 * guarantee we will be schedule at that same
5962 pfm_save_pmds(ctx
->th_pmds
, ctx
->ctx_used_pmds
[0]);
5965 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5966 * we will need it on the restore path to check
5967 * for pending overflow.
5969 ctx
->th_pmcs
[0] = ia64_get_pmc(0);
5972 * unfreeze PMU if had pending overflows
5974 if (ctx
->th_pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
5977 * finally, allow context access.
5978 * interrupts will still be masked after this call.
5980 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5983 #else /* !CONFIG_SMP */
5985 pfm_save_regs(struct task_struct
*task
)
5990 ctx
= PFM_GET_CTX(task
);
5991 if (ctx
== NULL
) return;
5994 * save current PSR: needed because we modify it
5996 psr
= pfm_get_psr();
5998 BUG_ON(psr
& (IA64_PSR_I
));
6002 * This is the last instruction which may generate an overflow
6004 * We do not need to set psr.sp because, it is irrelevant in kernel.
6005 * It will be restored from ipsr when going back to user level
6010 * keep a copy of psr.up (for reload)
6012 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
6016 pfm_lazy_save_regs (struct task_struct
*task
)
6019 unsigned long flags
;
6021 { u64 psr
= pfm_get_psr();
6022 BUG_ON(psr
& IA64_PSR_UP
);
6025 ctx
= PFM_GET_CTX(task
);
6028 * we need to mask PMU overflow here to
6029 * make sure that we maintain pmc0 until
6030 * we save it. overflow interrupts are
6031 * treated as spurious if there is no
6034 * XXX: I don't think this is necessary
6036 PROTECT_CTX(ctx
,flags
);
6039 * release ownership of this PMU.
6040 * must be done before we save the registers.
6042 * after this call any PMU interrupt is treated
6045 SET_PMU_OWNER(NULL
, NULL
);
6048 * save all the pmds we use
6050 pfm_save_pmds(ctx
->th_pmds
, ctx
->ctx_used_pmds
[0]);
6053 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6054 * it is needed to check for pended overflow
6055 * on the restore path
6057 ctx
->th_pmcs
[0] = ia64_get_pmc(0);
6060 * unfreeze PMU if had pending overflows
6062 if (ctx
->th_pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
6065 * now get can unmask PMU interrupts, they will
6066 * be treated as purely spurious and we will not
6067 * lose any information
6069 UNPROTECT_CTX(ctx
,flags
);
6071 #endif /* CONFIG_SMP */
6075 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6078 pfm_load_regs (struct task_struct
*task
)
6081 unsigned long pmc_mask
= 0UL, pmd_mask
= 0UL;
6082 unsigned long flags
;
6084 int need_irq_resend
;
6086 ctx
= PFM_GET_CTX(task
);
6087 if (unlikely(ctx
== NULL
)) return;
6089 BUG_ON(GET_PMU_OWNER());
6092 * possible on unload
6094 if (unlikely((task
->thread
.flags
& IA64_THREAD_PM_VALID
) == 0)) return;
6097 * we always come here with interrupts ALREADY disabled by
6098 * the scheduler. So we simply need to protect against concurrent
6099 * access, not CPU concurrency.
6101 flags
= pfm_protect_ctx_ctxsw(ctx
);
6102 psr
= pfm_get_psr();
6104 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
6106 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
6107 BUG_ON(psr
& IA64_PSR_I
);
6109 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) {
6110 struct pt_regs
*regs
= task_pt_regs(task
);
6112 BUG_ON(ctx
->ctx_smpl_hdr
);
6114 pfm_force_cleanup(ctx
, regs
);
6116 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
6119 * this one (kmalloc'ed) is fine with interrupts disabled
6121 pfm_context_free(ctx
);
6127 * we restore ALL the debug registers to avoid picking up
6130 if (ctx
->ctx_fl_using_dbreg
) {
6131 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
6132 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
6135 * retrieve saved psr.up
6137 psr_up
= ctx
->ctx_saved_psr_up
;
6140 * if we were the last user of the PMU on that CPU,
6141 * then nothing to do except restore psr
6143 if (GET_LAST_CPU(ctx
) == smp_processor_id() && ctx
->ctx_last_activation
== GET_ACTIVATION()) {
6146 * retrieve partial reload masks (due to user modifications)
6148 pmc_mask
= ctx
->ctx_reload_pmcs
[0];
6149 pmd_mask
= ctx
->ctx_reload_pmds
[0];
6153 * To avoid leaking information to the user level when psr.sp=0,
6154 * we must reload ALL implemented pmds (even the ones we don't use).
6155 * In the kernel we only allow PFM_READ_PMDS on registers which
6156 * we initialized or requested (sampling) so there is no risk there.
6158 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6161 * ALL accessible PMCs are systematically reloaded, unused registers
6162 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6163 * up stale configuration.
6165 * PMC0 is never in the mask. It is always restored separately.
6167 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6170 * when context is MASKED, we will restore PMC with plm=0
6171 * and PMD with stale information, but that's ok, nothing
6174 * XXX: optimize here
6176 if (pmd_mask
) pfm_restore_pmds(ctx
->th_pmds
, pmd_mask
);
6177 if (pmc_mask
) pfm_restore_pmcs(ctx
->th_pmcs
, pmc_mask
);
6180 * check for pending overflow at the time the state
6183 if (unlikely(PMC0_HAS_OVFL(ctx
->th_pmcs
[0]))) {
6185 * reload pmc0 with the overflow information
6186 * On McKinley PMU, this will trigger a PMU interrupt
6188 ia64_set_pmc(0, ctx
->th_pmcs
[0]);
6190 ctx
->th_pmcs
[0] = 0UL;
6193 * will replay the PMU interrupt
6195 if (need_irq_resend
) ia64_resend_irq(IA64_PERFMON_VECTOR
);
6197 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6201 * we just did a reload, so we reset the partial reload fields
6203 ctx
->ctx_reload_pmcs
[0] = 0UL;
6204 ctx
->ctx_reload_pmds
[0] = 0UL;
6206 SET_LAST_CPU(ctx
, smp_processor_id());
6209 * dump activation value for this PMU
6213 * record current activation for this context
6215 SET_ACTIVATION(ctx
);
6218 * establish new ownership.
6220 SET_PMU_OWNER(task
, ctx
);
6223 * restore the psr.up bit. measurement
6225 * no PMU interrupt can happen at this point
6226 * because we still have interrupts disabled.
6228 if (likely(psr_up
)) pfm_set_psr_up();
6231 * allow concurrent access to context
6233 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
6235 #else /* !CONFIG_SMP */
6237 * reload PMU state for UP kernels
6238 * in 2.5 we come here with interrupts disabled
6241 pfm_load_regs (struct task_struct
*task
)
6244 struct task_struct
*owner
;
6245 unsigned long pmd_mask
, pmc_mask
;
6247 int need_irq_resend
;
6249 owner
= GET_PMU_OWNER();
6250 ctx
= PFM_GET_CTX(task
);
6251 psr
= pfm_get_psr();
6253 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
6254 BUG_ON(psr
& IA64_PSR_I
);
6257 * we restore ALL the debug registers to avoid picking up
6260 * This must be done even when the task is still the owner
6261 * as the registers may have been modified via ptrace()
6262 * (not perfmon) by the previous task.
6264 if (ctx
->ctx_fl_using_dbreg
) {
6265 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
6266 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
6270 * retrieved saved psr.up
6272 psr_up
= ctx
->ctx_saved_psr_up
;
6273 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
6276 * short path, our state is still there, just
6277 * need to restore psr and we go
6279 * we do not touch either PMC nor PMD. the psr is not touched
6280 * by the overflow_handler. So we are safe w.r.t. to interrupt
6281 * concurrency even without interrupt masking.
6283 if (likely(owner
== task
)) {
6284 if (likely(psr_up
)) pfm_set_psr_up();
6289 * someone else is still using the PMU, first push it out and
6290 * then we'll be able to install our stuff !
6292 * Upon return, there will be no owner for the current PMU
6294 if (owner
) pfm_lazy_save_regs(owner
);
6297 * To avoid leaking information to the user level when psr.sp=0,
6298 * we must reload ALL implemented pmds (even the ones we don't use).
6299 * In the kernel we only allow PFM_READ_PMDS on registers which
6300 * we initialized or requested (sampling) so there is no risk there.
6302 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6305 * ALL accessible PMCs are systematically reloaded, unused registers
6306 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6307 * up stale configuration.
6309 * PMC0 is never in the mask. It is always restored separately
6311 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6313 pfm_restore_pmds(ctx
->th_pmds
, pmd_mask
);
6314 pfm_restore_pmcs(ctx
->th_pmcs
, pmc_mask
);
6317 * check for pending overflow at the time the state
6320 if (unlikely(PMC0_HAS_OVFL(ctx
->th_pmcs
[0]))) {
6322 * reload pmc0 with the overflow information
6323 * On McKinley PMU, this will trigger a PMU interrupt
6325 ia64_set_pmc(0, ctx
->th_pmcs
[0]);
6328 ctx
->th_pmcs
[0] = 0UL;
6331 * will replay the PMU interrupt
6333 if (need_irq_resend
) ia64_resend_irq(IA64_PERFMON_VECTOR
);
6335 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6339 * establish new ownership.
6341 SET_PMU_OWNER(task
, ctx
);
6344 * restore the psr.up bit. measurement
6346 * no PMU interrupt can happen at this point
6347 * because we still have interrupts disabled.
6349 if (likely(psr_up
)) pfm_set_psr_up();
6351 #endif /* CONFIG_SMP */
6354 * this function assumes monitoring is stopped
6357 pfm_flush_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
6360 unsigned long mask2
, val
, pmd_val
, ovfl_val
;
6361 int i
, can_access_pmu
= 0;
6365 * is the caller the task being monitored (or which initiated the
6366 * session for system wide measurements)
6368 is_self
= ctx
->ctx_task
== task
? 1 : 0;
6371 * can access PMU is task is the owner of the PMU state on the current CPU
6372 * or if we are running on the CPU bound to the context in system-wide mode
6373 * (that is not necessarily the task the context is attached to in this mode).
6374 * In system-wide we always have can_access_pmu true because a task running on an
6375 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6377 can_access_pmu
= (GET_PMU_OWNER() == task
) || (ctx
->ctx_fl_system
&& ctx
->ctx_cpu
== smp_processor_id());
6378 if (can_access_pmu
) {
6380 * Mark the PMU as not owned
6381 * This will cause the interrupt handler to do nothing in case an overflow
6382 * interrupt was in-flight
6383 * This also guarantees that pmc0 will contain the final state
6384 * It virtually gives us full control on overflow processing from that point
6387 SET_PMU_OWNER(NULL
, NULL
);
6388 DPRINT(("releasing ownership\n"));
6391 * read current overflow status:
6393 * we are guaranteed to read the final stable state
6396 pmc0
= ia64_get_pmc(0); /* slow */
6399 * reset freeze bit, overflow status information destroyed
6403 pmc0
= ctx
->th_pmcs
[0];
6405 * clear whatever overflow status bits there were
6407 ctx
->th_pmcs
[0] = 0;
6409 ovfl_val
= pmu_conf
->ovfl_val
;
6411 * we save all the used pmds
6412 * we take care of overflows for counting PMDs
6414 * XXX: sampling situation is not taken into account here
6416 mask2
= ctx
->ctx_used_pmds
[0];
6418 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self
, ovfl_val
, mask2
));
6420 for (i
= 0; mask2
; i
++, mask2
>>=1) {
6422 /* skip non used pmds */
6423 if ((mask2
& 0x1) == 0) continue;
6426 * can access PMU always true in system wide mode
6428 val
= pmd_val
= can_access_pmu
? ia64_get_pmd(i
) : ctx
->th_pmds
[i
];
6430 if (PMD_IS_COUNTING(i
)) {
6431 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6434 ctx
->ctx_pmds
[i
].val
,
6438 * we rebuild the full 64 bit value of the counter
6440 val
= ctx
->ctx_pmds
[i
].val
+ (val
& ovfl_val
);
6443 * now everything is in ctx_pmds[] and we need
6444 * to clear the saved context from save_regs() such that
6445 * pfm_read_pmds() gets the correct value
6450 * take care of overflow inline
6452 if (pmc0
& (1UL << i
)) {
6453 val
+= 1 + ovfl_val
;
6454 DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task
), i
));
6458 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task
), i
, val
, pmd_val
));
6460 if (is_self
) ctx
->th_pmds
[i
] = pmd_val
;
6462 ctx
->ctx_pmds
[i
].val
= val
;
6466 static struct irqaction perfmon_irqaction
= {
6467 .handler
= pfm_interrupt_handler
,
6468 .flags
= IRQF_DISABLED
,
6473 pfm_alt_save_pmu_state(void *data
)
6475 struct pt_regs
*regs
;
6477 regs
= task_pt_regs(current
);
6479 DPRINT(("called\n"));
6482 * should not be necessary but
6483 * let's take not risk
6487 ia64_psr(regs
)->pp
= 0;
6490 * This call is required
6491 * May cause a spurious interrupt on some processors
6499 pfm_alt_restore_pmu_state(void *data
)
6501 struct pt_regs
*regs
;
6503 regs
= task_pt_regs(current
);
6505 DPRINT(("called\n"));
6508 * put PMU back in state expected
6513 ia64_psr(regs
)->pp
= 0;
6516 * perfmon runs with PMU unfrozen at all times
6524 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t
*hdl
)
6529 /* some sanity checks */
6530 if (hdl
== NULL
|| hdl
->handler
== NULL
) return -EINVAL
;
6532 /* do the easy test first */
6533 if (pfm_alt_intr_handler
) return -EBUSY
;
6535 /* one at a time in the install or remove, just fail the others */
6536 if (!spin_trylock(&pfm_alt_install_check
)) {
6540 /* reserve our session */
6541 for_each_online_cpu(reserve_cpu
) {
6542 ret
= pfm_reserve_session(NULL
, 1, reserve_cpu
);
6543 if (ret
) goto cleanup_reserve
;
6546 /* save the current system wide pmu states */
6547 ret
= on_each_cpu(pfm_alt_save_pmu_state
, NULL
, 0, 1);
6549 DPRINT(("on_each_cpu() failed: %d\n", ret
));
6550 goto cleanup_reserve
;
6553 /* officially change to the alternate interrupt handler */
6554 pfm_alt_intr_handler
= hdl
;
6556 spin_unlock(&pfm_alt_install_check
);
6561 for_each_online_cpu(i
) {
6562 /* don't unreserve more than we reserved */
6563 if (i
>= reserve_cpu
) break;
6565 pfm_unreserve_session(NULL
, 1, i
);
6568 spin_unlock(&pfm_alt_install_check
);
6572 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt
);
6575 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t
*hdl
)
6580 if (hdl
== NULL
) return -EINVAL
;
6582 /* cannot remove someone else's handler! */
6583 if (pfm_alt_intr_handler
!= hdl
) return -EINVAL
;
6585 /* one at a time in the install or remove, just fail the others */
6586 if (!spin_trylock(&pfm_alt_install_check
)) {
6590 pfm_alt_intr_handler
= NULL
;
6592 ret
= on_each_cpu(pfm_alt_restore_pmu_state
, NULL
, 0, 1);
6594 DPRINT(("on_each_cpu() failed: %d\n", ret
));
6597 for_each_online_cpu(i
) {
6598 pfm_unreserve_session(NULL
, 1, i
);
6601 spin_unlock(&pfm_alt_install_check
);
6605 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt
);
6608 * perfmon initialization routine, called from the initcall() table
6610 static int init_pfm_fs(void);
6618 family
= local_cpu_data
->family
;
6623 if ((*p
)->probe() == 0) goto found
;
6624 } else if ((*p
)->pmu_family
== family
|| (*p
)->pmu_family
== 0xff) {
6635 static const struct file_operations pfm_proc_fops
= {
6636 .open
= pfm_proc_open
,
6638 .llseek
= seq_lseek
,
6639 .release
= seq_release
,
6645 unsigned int n
, n_counters
, i
;
6647 printk("perfmon: version %u.%u IRQ %u\n",
6650 IA64_PERFMON_VECTOR
);
6652 if (pfm_probe_pmu()) {
6653 printk(KERN_INFO
"perfmon: disabled, there is no support for processor family %d\n",
6654 local_cpu_data
->family
);
6659 * compute the number of implemented PMD/PMC from the
6660 * description tables
6663 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
6664 if (PMC_IS_IMPL(i
) == 0) continue;
6665 pmu_conf
->impl_pmcs
[i
>>6] |= 1UL << (i
&63);
6668 pmu_conf
->num_pmcs
= n
;
6670 n
= 0; n_counters
= 0;
6671 for (i
=0; PMD_IS_LAST(i
) == 0; i
++) {
6672 if (PMD_IS_IMPL(i
) == 0) continue;
6673 pmu_conf
->impl_pmds
[i
>>6] |= 1UL << (i
&63);
6675 if (PMD_IS_COUNTING(i
)) n_counters
++;
6677 pmu_conf
->num_pmds
= n
;
6678 pmu_conf
->num_counters
= n_counters
;
6681 * sanity checks on the number of debug registers
6683 if (pmu_conf
->use_rr_dbregs
) {
6684 if (pmu_conf
->num_ibrs
> IA64_NUM_DBG_REGS
) {
6685 printk(KERN_INFO
"perfmon: unsupported number of code debug registers (%u)\n", pmu_conf
->num_ibrs
);
6689 if (pmu_conf
->num_dbrs
> IA64_NUM_DBG_REGS
) {
6690 printk(KERN_INFO
"perfmon: unsupported number of data debug registers (%u)\n", pmu_conf
->num_ibrs
);
6696 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6700 pmu_conf
->num_counters
,
6701 ffz(pmu_conf
->ovfl_val
));
6704 if (pmu_conf
->num_pmds
>= PFM_NUM_PMD_REGS
|| pmu_conf
->num_pmcs
>= PFM_NUM_PMC_REGS
) {
6705 printk(KERN_ERR
"perfmon: not enough pmc/pmd, perfmon disabled\n");
6711 * create /proc/perfmon (mostly for debugging purposes)
6713 perfmon_dir
= create_proc_entry("perfmon", S_IRUGO
, NULL
);
6714 if (perfmon_dir
== NULL
) {
6715 printk(KERN_ERR
"perfmon: cannot create /proc entry, perfmon disabled\n");
6720 * install customized file operations for /proc/perfmon entry
6722 perfmon_dir
->proc_fops
= &pfm_proc_fops
;
6725 * create /proc/sys/kernel/perfmon (for debugging purposes)
6727 pfm_sysctl_header
= register_sysctl_table(pfm_sysctl_root
);
6730 * initialize all our spinlocks
6732 spin_lock_init(&pfm_sessions
.pfs_lock
);
6733 spin_lock_init(&pfm_buffer_fmt_lock
);
6737 for(i
=0; i
< NR_CPUS
; i
++) pfm_stats
[i
].pfm_ovfl_intr_cycles_min
= ~0UL;
6742 __initcall(pfm_init
);
6745 * this function is called before pfm_init()
6748 pfm_init_percpu (void)
6750 static int first_time
=1;
6752 * make sure no measurement is active
6753 * (may inherit programmed PMCs from EFI).
6759 * we run with the PMU not frozen at all times
6764 register_percpu_irq(IA64_PERFMON_VECTOR
, &perfmon_irqaction
);
6768 ia64_setreg(_IA64_REG_CR_PMV
, IA64_PERFMON_VECTOR
);
6773 * used for debug purposes only
6776 dump_pmu_state(const char *from
)
6778 struct task_struct
*task
;
6779 struct pt_regs
*regs
;
6781 unsigned long psr
, dcr
, info
, flags
;
6784 local_irq_save(flags
);
6786 this_cpu
= smp_processor_id();
6787 regs
= task_pt_regs(current
);
6788 info
= PFM_CPUINFO_GET();
6789 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
6791 if (info
== 0 && ia64_psr(regs
)->pp
== 0 && (dcr
& IA64_DCR_PP
) == 0) {
6792 local_irq_restore(flags
);
6796 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6799 task_pid_nr(current
),
6803 task
= GET_PMU_OWNER();
6804 ctx
= GET_PMU_CTX();
6806 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu
, task
? task_pid_nr(task
) : -1, ctx
);
6808 psr
= pfm_get_psr();
6810 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6813 psr
& IA64_PSR_PP
? 1 : 0,
6814 psr
& IA64_PSR_UP
? 1 : 0,
6815 dcr
& IA64_DCR_PP
? 1 : 0,
6818 ia64_psr(regs
)->pp
);
6820 ia64_psr(regs
)->up
= 0;
6821 ia64_psr(regs
)->pp
= 0;
6823 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
6824 if (PMC_IS_IMPL(i
) == 0) continue;
6825 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmc(i
), i
, ctx
->th_pmcs
[i
]);
6828 for (i
=1; PMD_IS_LAST(i
) == 0; i
++) {
6829 if (PMD_IS_IMPL(i
) == 0) continue;
6830 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmd(i
), i
, ctx
->th_pmds
[i
]);
6834 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6837 ctx
->ctx_smpl_vaddr
,
6841 ctx
->ctx_saved_psr_up
);
6843 local_irq_restore(flags
);
6847 * called from process.c:copy_thread(). task is new child.
6850 pfm_inherit(struct task_struct
*task
, struct pt_regs
*regs
)
6852 struct thread_struct
*thread
;
6854 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task
)));
6856 thread
= &task
->thread
;
6859 * cut links inherited from parent (current)
6861 thread
->pfm_context
= NULL
;
6863 PFM_SET_WORK_PENDING(task
, 0);
6866 * the psr bits are already set properly in copy_threads()
6869 #else /* !CONFIG_PERFMON */
6871 sys_perfmonctl (int fd
, int cmd
, void *arg
, int count
)
6875 #endif /* CONFIG_PERFMON */