x86: 64-bit, add the new split_large_page() function
[wrt350n-kernel.git] / fs / xfs / support / ktrace.c
blob5cf2e86caa7198653b37f086bf02335d2599fad6
1 /*
2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <xfs.h>
20 static kmem_zone_t *ktrace_hdr_zone;
21 static kmem_zone_t *ktrace_ent_zone;
22 static int ktrace_zentries;
24 void
25 ktrace_init(int zentries)
27 ktrace_zentries = zentries;
29 ktrace_hdr_zone = kmem_zone_init(sizeof(ktrace_t),
30 "ktrace_hdr");
31 ASSERT(ktrace_hdr_zone);
33 ktrace_ent_zone = kmem_zone_init(ktrace_zentries
34 * sizeof(ktrace_entry_t),
35 "ktrace_ent");
36 ASSERT(ktrace_ent_zone);
39 void
40 ktrace_uninit(void)
42 kmem_zone_destroy(ktrace_hdr_zone);
43 kmem_zone_destroy(ktrace_ent_zone);
47 * ktrace_alloc()
49 * Allocate a ktrace header and enough buffering for the given
50 * number of entries.
52 ktrace_t *
53 ktrace_alloc(int nentries, unsigned int __nocast sleep)
55 ktrace_t *ktp;
56 ktrace_entry_t *ktep;
58 ktp = (ktrace_t*)kmem_zone_alloc(ktrace_hdr_zone, sleep);
60 if (ktp == (ktrace_t*)NULL) {
62 * KM_SLEEP callers don't expect failure.
64 if (sleep & KM_SLEEP)
65 panic("ktrace_alloc: NULL memory on KM_SLEEP request!");
67 return NULL;
71 * Special treatment for buffers with the ktrace_zentries entries
73 if (nentries == ktrace_zentries) {
74 ktep = (ktrace_entry_t*)kmem_zone_zalloc(ktrace_ent_zone,
75 sleep);
76 } else {
77 ktep = (ktrace_entry_t*)kmem_zalloc((nentries * sizeof(*ktep)),
78 sleep | KM_LARGE);
81 if (ktep == NULL) {
83 * KM_SLEEP callers don't expect failure.
85 if (sleep & KM_SLEEP)
86 panic("ktrace_alloc: NULL memory on KM_SLEEP request!");
88 kmem_free(ktp, sizeof(*ktp));
90 return NULL;
93 spinlock_init(&(ktp->kt_lock), "kt_lock");
95 ktp->kt_entries = ktep;
96 ktp->kt_nentries = nentries;
97 ktp->kt_index = 0;
98 ktp->kt_rollover = 0;
99 return ktp;
104 * ktrace_free()
106 * Free up the ktrace header and buffer. It is up to the caller
107 * to ensure that no-one is referencing it.
109 void
110 ktrace_free(ktrace_t *ktp)
112 int entries_size;
114 if (ktp == (ktrace_t *)NULL)
115 return;
117 spinlock_destroy(&ktp->kt_lock);
120 * Special treatment for the Vnode trace buffer.
122 if (ktp->kt_nentries == ktrace_zentries) {
123 kmem_zone_free(ktrace_ent_zone, ktp->kt_entries);
124 } else {
125 entries_size = (int)(ktp->kt_nentries * sizeof(ktrace_entry_t));
127 kmem_free(ktp->kt_entries, entries_size);
130 kmem_zone_free(ktrace_hdr_zone, ktp);
135 * Enter the given values into the "next" entry in the trace buffer.
136 * kt_index is always the index of the next entry to be filled.
138 void
139 ktrace_enter(
140 ktrace_t *ktp,
141 void *val0,
142 void *val1,
143 void *val2,
144 void *val3,
145 void *val4,
146 void *val5,
147 void *val6,
148 void *val7,
149 void *val8,
150 void *val9,
151 void *val10,
152 void *val11,
153 void *val12,
154 void *val13,
155 void *val14,
156 void *val15)
158 static DEFINE_SPINLOCK(wrap_lock);
159 unsigned long flags;
160 int index;
161 ktrace_entry_t *ktep;
163 ASSERT(ktp != NULL);
166 * Grab an entry by pushing the index up to the next one.
168 spin_lock_irqsave(&wrap_lock, flags);
169 index = ktp->kt_index;
170 if (++ktp->kt_index == ktp->kt_nentries)
171 ktp->kt_index = 0;
172 spin_unlock_irqrestore(&wrap_lock, flags);
174 if (!ktp->kt_rollover && index == ktp->kt_nentries - 1)
175 ktp->kt_rollover = 1;
177 ASSERT((index >= 0) && (index < ktp->kt_nentries));
179 ktep = &(ktp->kt_entries[index]);
181 ktep->val[0] = val0;
182 ktep->val[1] = val1;
183 ktep->val[2] = val2;
184 ktep->val[3] = val3;
185 ktep->val[4] = val4;
186 ktep->val[5] = val5;
187 ktep->val[6] = val6;
188 ktep->val[7] = val7;
189 ktep->val[8] = val8;
190 ktep->val[9] = val9;
191 ktep->val[10] = val10;
192 ktep->val[11] = val11;
193 ktep->val[12] = val12;
194 ktep->val[13] = val13;
195 ktep->val[14] = val14;
196 ktep->val[15] = val15;
200 * Return the number of entries in the trace buffer.
203 ktrace_nentries(
204 ktrace_t *ktp)
206 if (ktp == NULL) {
207 return 0;
210 return (ktp->kt_rollover ? ktp->kt_nentries : ktp->kt_index);
214 * ktrace_first()
216 * This is used to find the start of the trace buffer.
217 * In conjunction with ktrace_next() it can be used to
218 * iterate through the entire trace buffer. This code does
219 * not do any locking because it is assumed that it is called
220 * from the debugger.
222 * The caller must pass in a pointer to a ktrace_snap
223 * structure in which we will keep some state used to
224 * iterate through the buffer. This state must not touched
225 * by any code outside of this module.
227 ktrace_entry_t *
228 ktrace_first(ktrace_t *ktp, ktrace_snap_t *ktsp)
230 ktrace_entry_t *ktep;
231 int index;
232 int nentries;
234 if (ktp->kt_rollover)
235 index = ktp->kt_index;
236 else
237 index = 0;
239 ktsp->ks_start = index;
240 ktep = &(ktp->kt_entries[index]);
242 nentries = ktrace_nentries(ktp);
243 index++;
244 if (index < nentries) {
245 ktsp->ks_index = index;
246 } else {
247 ktsp->ks_index = 0;
248 if (index > nentries)
249 ktep = NULL;
251 return ktep;
255 * ktrace_next()
257 * This is used to iterate through the entries of the given
258 * trace buffer. The caller must pass in the ktrace_snap_t
259 * structure initialized by ktrace_first(). The return value
260 * will be either a pointer to the next ktrace_entry or NULL
261 * if all of the entries have been traversed.
263 ktrace_entry_t *
264 ktrace_next(
265 ktrace_t *ktp,
266 ktrace_snap_t *ktsp)
268 int index;
269 ktrace_entry_t *ktep;
271 index = ktsp->ks_index;
272 if (index == ktsp->ks_start) {
273 ktep = NULL;
274 } else {
275 ktep = &ktp->kt_entries[index];
278 index++;
279 if (index == ktrace_nentries(ktp)) {
280 ktsp->ks_index = 0;
281 } else {
282 ktsp->ks_index = index;
285 return ktep;
289 * ktrace_skip()
291 * Skip the next "count" entries and return the entry after that.
292 * Return NULL if this causes us to iterate past the beginning again.
294 ktrace_entry_t *
295 ktrace_skip(
296 ktrace_t *ktp,
297 int count,
298 ktrace_snap_t *ktsp)
300 int index;
301 int new_index;
302 ktrace_entry_t *ktep;
303 int nentries = ktrace_nentries(ktp);
305 index = ktsp->ks_index;
306 new_index = index + count;
307 while (new_index >= nentries) {
308 new_index -= nentries;
310 if (index == ktsp->ks_start) {
312 * We've iterated around to the start, so we're done.
314 ktep = NULL;
315 } else if ((new_index < index) && (index < ktsp->ks_index)) {
317 * We've skipped past the start again, so we're done.
319 ktep = NULL;
320 ktsp->ks_index = ktsp->ks_start;
321 } else {
322 ktep = &(ktp->kt_entries[new_index]);
323 new_index++;
324 if (new_index == nentries) {
325 ktsp->ks_index = 0;
326 } else {
327 ktsp->ks_index = new_index;
330 return ktep;